JP2022030010A - 重荷重用チューブレスタイヤ - Google Patents

重荷重用チューブレスタイヤ Download PDF

Info

Publication number
JP2022030010A
JP2022030010A JP2020133690A JP2020133690A JP2022030010A JP 2022030010 A JP2022030010 A JP 2022030010A JP 2020133690 A JP2020133690 A JP 2020133690A JP 2020133690 A JP2020133690 A JP 2020133690A JP 2022030010 A JP2022030010 A JP 2022030010A
Authority
JP
Japan
Prior art keywords
tire
carcass
ratio
less
tread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020133690A
Other languages
English (en)
Inventor
資輝 金谷
Shiki Kanetani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2020133690A priority Critical patent/JP2022030010A/ja
Publication of JP2022030010A publication Critical patent/JP2022030010A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

【課題】他の性能への影響を抑えながら、ライフ性能及び氷雪上性能の向上を達成できる、重荷重用チューブレスタイヤ2の提供。【解決手段】このタイヤ2は75%以上90%以下の偏平比を有する。トレッド4の幅の、リム幅に対する比率は105%以上125%以下である。トレッド面28の端Teにおけるタイヤ2の厚さの、赤道面におけるタイヤ2の厚さに対する比率は124%以上132%以下である。カーカス12の輪郭はバットレス円弧と下部円弧とを含む。バットレス円弧の半径の、ビードベースラインからビード8の端PAまでの径方向距離に対する比率は70%以上95%以下である。バットレス円弧の半径の、下部円弧の半径に対する比率は100%以上110%以下である。【選択図】図1

Description

本発明は、重荷重用チューブレスタイヤに関する。
トラック、バス等の車両に装着される、重荷重用チューブレスタイヤには、大きな荷重が作用する。このタイヤでは、大きな荷重に耐えうるよう必要な剛性を確保しながら、性能の向上が検討されている(例えば、下記の特許文献1)。
特開2007-45375号公報
ライフ性能や氷雪上性能の向上を図るために、幅広のトレッドの採用が検討される。トレッドに幅広トレッドを採用すると、ショルダー部の厚さが増し、例えば、タイヤ質量の増加、転がり抵抗の上昇、及びベルト端での損傷の発生が懸念される。ショルダー部のボリュームコントロールのために、例えば、溝深さを調整すると、ライフ性能が損なわれる恐れがある。他の性能への影響を抑えながら、ライフ性能及び氷雪上性能の向上を図るのは難しい。
本発明は、このような実状に鑑みてなされたものであり、他の性能への影響を抑えながら、ライフ性能及び氷雪上性能の向上を達成できる、重荷重用チューブレスタイヤを提供することを目的とする。
本発明の一態様に係る重荷重用チューブレスタイヤは、一対のビードと、一方のビードと他方のビードとの間を架け渡すカーカスと、径方向において前記カーカスの外側に位置するベルトと、前記ベルトの端と前記カーカスとの間に位置する一対のクッションと、径方向において前記ベルトの外側に位置するトレッドとを備え、75%以上90%以下の偏平比を有する。前記トレッドは路面と接触するトレッド面を備え、前記トレッドの幅の、前記タイヤが装着される正規リムのリム幅に対する比率は105%以上125%以下である。前記トレッド面の端における前記タイヤの厚さの、赤道面における前記タイヤの厚さに対する比率は、124%以上132%以下である。前記カーカスの輪郭は、前記クッションと重複する部分の輪郭を表す円弧としてのバットレス円弧と、前記カーカスの最大幅位置から前記ビードの端までの部分の輪郭を表す円弧としての下部円弧とを含む。前記バットレス円弧の半径の、ビードベースラインから前記ビードの端までの径方向距離に対する比率は70%以上95%以下である。前記バットレス円弧の半径の、前記下部円弧の半径に対する比率は100%以上110%以下である。
好ましくは、この重荷重用チューブレスタイヤでは、前記トレッドの幅の、前記タイヤの断面幅に対する比率は、83%以上87%以下である。
好ましくは、この重荷重用チューブレスタイヤでは、前記タイヤの内面と外面との境界がトゥであり、前記トレッドの幅の、一方のトゥから他方のトゥまでの軸方向距離で表される、トゥ間隔に対する比率が、151%以上162%以下である。
好ましくは、この重荷重用チューブレスタイヤでは、ビードベースラインから前記タイヤの断面幅が得られる前記タイヤの外面上の位置までの径方向距離の、前記ビードベースラインから前記ベルトの頂までの径方向距離に対する比率は、52%以上60%以下である。
好ましくは、この重荷重用チューブレスタイヤでは、前記カーカスは列した多数のカーカスコードを含み、カーカスコードの外径は0.6mm以上1.0mm以下である。前記カーカスコードの材質はチールである。
本発明によれば、他の性能への影響を抑えながら、ライフ性能及び氷雪上性能の向上を達成できる、重荷重用チューブレスタイヤが得られる。
図1は、本発明の一実施形態に係る重荷重用チューブレスタイヤの一部が示された断面図である。 図2は、図1に示されたタイヤの一部が示された拡大断面図である。 図3は、図1に示されたタイヤの赤道面に沿った拡大断面図である。 図4は、図1に示されたタイヤのカーカスの輪郭が示された断面図である。 図5は、タイヤのトゥ間隔の計測方法を説明する図である。
以下、適宜図面が参照されつつ、好ましい実施形態に基づいて、本発明が詳細に説明される。
本開示においては、タイヤを正規リムに組み、タイヤの内圧を正規内圧に調整し、タイヤに荷重をかけない状態は、正規状態と称される。本開示では、特に言及がない限り、正規状態において、タイヤ各部の寸法及び角度が測定される。
正規リムとは、タイヤが依拠する規格において定められたリムを意味する。JATMA規格における「標準リム」、TRA規格における「Design Rim」、及びETRTO規格における「Measuring Rim」は、正規リムである。
正規内圧とは、タイヤが依拠する規格において定められた内圧を意味する。JATMA規格における「最高空気圧」、TRA規格における「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に掲載された「最大値」、及びETRTO規格における「INFLATION PRESSURE」は、正規内圧である。
正規荷重とは、タイヤが依拠する規格において定められた荷重を意味する。JATMA規格における「最大負荷能力」、TRA規格における「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に掲載された「最大値」、及びETRTO規格における「LOAD CAPACITY」は、正規荷重である。
図1は、本発明の一実施形態に係る重荷重用チューブレスタイヤ2(以下、単に「タイヤ2」と称することがある。)の一部を示す。図2は、図1に示されたタイヤ2の一部を示す。このタイヤ2は、トラック及びバス用タイヤである。
図1及び図2は、タイヤ2の回転軸を含む平面に沿った、このタイヤ2の断面の一部を示す。図1及び図2において、左右方向はタイヤ2の軸方向であり、上下方向はタイヤ2の径方向である。図1及び図2の紙面に対して垂直な方向は、タイヤ2の周方向である。図1及び図2において、一点鎖線ELはタイヤ2の赤道面を表す。タイヤ2は、リムR(正規リム)に組まれている。図1及び図2に示されたタイヤ2は、正規状態にある。
図1において、軸方向に延びる実線BBLはビードベースラインである。このビードベースラインは、リムRのリム径(JATMA等参照)を規定する線である。
図1において、径方向に延びる実線RBLはリムベースラインである。両矢印WRは、一方のリムベースラインから他方のリムベースラインまでの軸方向距離を表す。この距離WRが、このタイヤ2が装着されるリムRのリム幅(JATMA等参照)である。リムベースラインは、リム幅WR(JATMA等参照)を規定する線である。
図1において、符号PWはこのタイヤ2の軸方向外端である。この外端PWは、このタイヤ2の外面に模様や文字等の装飾がないと仮定して得られる、仮想外面に基づいて特定される。両矢印WSは一方の外端PWから他方の外端PWまでの軸方向距離である。この距離WSが、このタイヤ2の断面幅(JATMA等参照)である。この外端PWは、タイヤ2の断面幅WSが得られる、タイヤ2の外面上の位置である。両矢印HWは、ビードベースラインからタイヤ2の断面幅WSが得られる、タイヤ2の外面上の位置PWまでの径方向距離である。
図1において、符号PTはこのタイヤ2の径方向内端である。この内端PTはトゥとも称される。トゥPTは、タイヤ2の外面と内面との境界である。
このタイヤ2は、トレッド4、一対のサイドウォール6、一対のビード8、一対のチェーファー10、カーカス12、ベルト14、一対のクッション16、インナーライナー18、インスレーション20、一対の補強層22、一対の層間ストリップ24、及び一対のエッジストリップ26を備える。
トレッド4は、径方向において、ベルト14の外側に位置する。トレッド4の外面には路面と接触するトレッド面28が構成される。トレッド4は、路面と接触するトレッド面28を備える。図1において、符号PEはトレッド面28と赤道面との交点である。交点PEはタイヤ2の赤道である。タイヤ2の赤道PEは、タイヤ2の径方向外端でもある。赤道面上に溝がある場合には、トレッド面28に溝がないと仮定して得られる仮想トレッド面に基づいて、このタイヤ2の赤道PEは特定される。
図1において、両矢印HSはビードベースラインから赤道PEまでの径方向距離である。この距離HSは、このタイヤ2の断面高さ(JATMA等参照)である。
図1において、符号Teはトレッド面28の端である。このトレッド面28の端Teは、タイヤ2の路面との接地面の端、詳細には、この接地面の軸方向外端に対応する、トレッド4の外面上の位置である。
トレッド面28の端Teを特定するための接地面は、例えば、接地面形状測定装置(図示されず)を用いて得られる。この装置において、正規状態のタイヤ2に正規荷重を負荷し、キャンバー角を0°としこのタイヤ2を平らな路面に接地させることで、この接地面は得られる。
図2において、両矢印WTは、一方のトレッド面28の端Teから他方のトレッド面28の端Teまでの軸方向距離である。このタイヤ2では、この距離WTがトレッド4の幅である。
トレッド4は、ベース部30と、このベース部30の径方向外側に位置するキャップ部32とを備える。ベース部30及びキャップ部はそれぞれ、架橋ゴムからなる。
トレッド4には、周方向に連続して延びる溝34(すなわち、周方向溝34)が刻まれる。これにより、トレッド4には、軸方向に並列した複数の陸部36が構成される。このトレッド4は、周方向溝34によって区画された複数の陸部36を有する。このタイヤ2のトレッド4に5本の周方向溝34が刻まれ、6本の陸部36が構成される。
5本の周方向溝34のうち、軸方向において、外側に位置する周方向溝34がショルダー周方向溝34sである。ショルダー周方向溝34sの内側に位置する周方向溝34がミドル周方向溝34mである。ミドル周方向溝34mの内側に位置する周方向溝34がセンター周方向溝34cである。このタイヤ2では、センター周方向溝34cが赤道面上に位置する。
6本の陸部36のうち、軸方向において外側に位置し、トレッド面28の端Teを含む陸部36がショルダー陸部36sである。軸方向において、ショルダー陸部36sの内側に位置する陸部36がミドル陸部36mである。軸方向において、ミドル陸部36mの内側に位置する陸部36がセンター陸部36cである。このタイヤ2のトレッド4には、2本のセンター陸部36cが設けられ、両センター陸部36cの間がセンター周方向溝34cである。
このタイヤ2では、排水性及びトラクション性能への貢献の観点から、周方向溝34の幅はトレッド面28の幅の1%以上10%以下が好ましい。この周方向溝34の深さは、10mm以上25mm以下が好ましい。トレッド面28の幅は、トレッド面28の一方の端Teから他方の端Teまでの軸方向距離で表される。
それぞれのサイドウォール6は、トレッド4の端に連なる。サイドウォール6は、トレッド4の端からカーカス12に沿って径方向内向きに延びる。サイドウォール6は、架橋ゴムからなる。
それぞれのビード8は、サイドウォール6よりも径方向内側に位置する。ビード8は、コア38と、エイペックス40とを備える。
コア38は、周方向に延びる。図示されないが、コア38は巻き回されたスチール製のワイヤを含む。エイペックス40は、コア38の径方向外側に位置する。エイペックス40は、コア38から径方向外向きに延びる。符号PAは、エイペックス40の径方向外端である。この外端PAは、ビード8の端でもある。
図1において、両矢印HAはビードベースラインからビード8の端PAまでの径方向距離である。この距離HAはビード8の高さとも称される。
エイペックス40は先細りである。エイペックス40は、内側エイペックス40uと外側エイペックス40sとを備える。外側エイペックス40sは径方向において内側エイペックス40uの外側に位置する。内側エイペックス40u及び外側エイペックス40sは架橋ゴムからなる。外側エイペックス40sは内側エイペックス40uに比して軟質である。
それぞれのチェーファー10は、ビード8の軸方向外側に位置する。チェーファー10は、サイドウォール6よりも径方向内側に位置する。チェーファー10は、リムRと接触する。チェーファー10は、架橋ゴムからなる。
カーカス12は、トレッド4、サイドウォール6及びチェーファー10の内側に位置する。カーカス12は、一方のビード8と他方のビード8との間を架け渡す。このカーカス12は、ラジアル構造を有する。カーカス12は、少なくとも1枚のカーカスプライ42を備える。このタイヤ2のカーカス12は、1枚のカーカスプライ42からなる。
このタイヤ2では、カーカスプライ42はそれぞれのビード8のコア38の周りにて軸方向内側から外側に向かって折り返される。このカーカスプライ42は、一方のコア38から他方のコア38に向かって延びるプライ本体42aと、このプライ本体42aに連なりそれぞれのコア38の周りにて軸方向内側から外側に向かって折り返される一対の折り返し部42bとを有する。このタイヤ2では、折り返し部42bの端は、従来タイヤと同様の位置に配置される。
図3は、赤道面に沿った、タイヤ2の断面が示される。図3において、左右方向はタイヤ2の周方向であり、上下方向はタイヤ2の径方向である。
図3に示されるように、カーカス12をなすカーカスプライ42は並列した多数のカーカスコード44を含む。これらカーカスコード44はトッピングゴム44で覆われる。このタイヤ2では、カーカスコード44の材質はスチールである。カーカスコード44はスチールコードである。
図3において、両矢印CDはカーカスコード44の外径である。このタイヤ2では、カーカスコード44の外径CDは0.6mm以上1.0mm以下である。
外径CDが0.6mm以上に設定されることにより、カーカスコード44自体が適度な剛性を有する。このカーカスコード44を含むカーカスプライ42では、カーカスコード44の切断を伴う損傷が発生しにくい。この観点から、外径CDは0.7mm以上が好ましい。外径CDが1.0mm以下に設定されることにより、カーカスコード44によるカーカスプライ42の剛性への影響が抑えられる。このタイヤ2では、良好なリム組み性が維持される。細いカーカスコード44は、タイヤ2の軽量化に貢献する。この観点から、外径CDは0.9mm以下がより好ましい。
このタイヤ2では、カーカスプライ42に含まれるカーカスコード44のエンズは20本以上が好ましく、40本以下が好ましい。カーカスコード44のエンズは、カーカスプライ42の幅50mm当りに含まれるカーカスコード44の本数により表される。
カーカスコード44のエンズが20本以上に設定されることにより、カーカスプライ42が適度な剛性を有する。過剰な変形が抑えられるので、このカーカスプライ42では、カーカスコード44の切断を伴う損傷が発生しにくい。この観点から、カーカスコード44のエンズは25本以上がより好ましい。カーカスコード44のエンズが40本以下に設定されることにより、カーカスプライ42の剛性が適切に維持される。このタイヤ2では、良好なリム組み性が維持される。
このタイヤ2では、カーカスコード44の切断を伴う損傷の発生が効果的に抑えられる観点から、カーカスコード44の外径CDが0.6mm以上であり、カーカスコード44のエンズが20本以上であるのが好ましい。タイヤ質量の増加が抑えられ、良好なリム組み性が維持される観点から、カーカスコード44の外径CDが1.0mm以下であり、カーカスコード44のエンズが40本以下であるのが好ましい。
図1に示されるように、ベルト14は径方向においてトレッド4の内側に位置する。このベルト14は、径方向においてカーカス12の外側に位置する。
ベルト14は、径方向に積層された複数の層48で構成される。このタイヤ2では、ベルト14は3枚の層48で構成される。このタイヤ2では、ベルト14を構成する層48の数に特に制限はない。ベルト14の構成はタイヤ2の仕様が考慮され適宜決められる。
図示されないが、それぞれの層48は並列された多数のベルトコードを含む。それぞれのベルトコードは赤道面に対して傾斜する。ベルトコードの材質はスチールである。
このタイヤ2では、4枚の層48のうち、第一層48Aと第三層48Cとの間に位置する第二層48Bが最大の軸方向幅を有する。径方向において最も外側に位置する第四層48Dが、最小の軸方向幅を有する。
図1において、符号PBがベルト14の頂である。この頂PBは、ベルト14の径方向外端により表される。両矢印HBは、ビードベースラインからベルト14の頂PBまでの径方向距離である。この径方向距離HBはベルトトップ高さとも称される。
このタイヤ2では、ベルトトップ高さHBに対するビード8の高さHAの比率(HA/HB)が35%以上45%以下であるように、ビード8の高さHAが調整される。この比率(HA/HB)は、37%以上が好ましく、43%以下が好ましい。
それぞれのクッション16は、径方向において、ベルト14の端とカーカス12との間に位置する。クッション16は、架橋ゴムからなる。
図1に示されるように、このタイヤ2では、クッション16は、ベルト14の端50(詳細には、第二層48Bの端50)の部分において最大の厚さを有する。クッション16は、その最大の厚さを有する部分から軸方向内向きに先細りである。クッション16は、その最大の厚さを有する部分から径方向内向きに先細りである。
図1に示されるように、赤道面側に位置するクッション16の端52(以下、横端52)は、軸方向において、ショルダー周方向溝34sの外側に位置する。ビード8側に位置するクッション16の端54(以下、縦端54)は、径方向において、タイヤ2の軸方向外端PWよりも外側に位置する。
インナーライナー18は、カーカス12の内側に位置する。インナーライナー18は、タイヤ2の内面を構成する。インナーライナー18は、空気遮蔽性に優れた架橋ゴムからなる。
インスレーション20は、カーカス12とインナーライナー18との間に位置する。インスレーション20は、カーカス12と接合し、インナーライナー18と接合する。言い換えれば、インナーライナー18は、インスレーション20を介してカーカス12に接合される。インスレーション20は、接着性が考慮された架橋ゴムからなる。
それぞれの補強層22は、ビード8の部分に位置する。補強層22は、カーカスプライ42に沿って、コア38の周りにて軸方向内側から外側に向かって折り返される。このタイヤ2では、補強層22とビード8との間にカーカスプライ42が位置する。
図示されないが、補強層22は並列した多数のフィラーコードを含む。補強層22においてフィラーコードはトッピングゴムで覆われる。フィラーコードの材質はスチールである。
このタイヤ2では、補強層22の一方の端(以下、内端)は径方向において内側エイペックス40uの外端とコア38との間に位置する。補強層22の他方の端(以下、外端)は、径方向において、折り返し部42bの端とコア38との間に位置する。図1に示されるように、このタイヤ2では、径方向において、補強層22の外端はその内端よりも内側に位置する。
それぞれの層間ストリップ24は、ビード8の外側エイペックス40sとチェーファー10との間に位置する。層間ストリップ24は、折り返し部42bの端、そして補強層22の外端を覆う。層間ストリップ24は架橋ゴムからなる。
それぞれのエッジストリップ26は、ビード8の外側エイペックス40sと層間ストリップ24との間に位置する。このエッジストリップ26に、折り返し部42bの端の部分が当接する。このタイヤ2では、エッジストリップ26と層間ストリップ24との間に折り返し部42bの端が挟まれる。エッジストリップ26は架橋ゴムからなる。このタイヤ2では、エッジストリップ26は層間ストリップ24の材質と同じ材質からなる。
図4は、図1に示されたタイヤ2の一部を示す。この図4には、タイヤ2に含まれるカーカス12の輪郭CLが示される。このカーカス12の輪郭CLは、正規状態のタイヤ2において特定されるプライ本体42aの輪郭である。図4において、左右方向はタイヤ2の軸方向であり、上下方向はタイヤ2の径方向である。図4の紙面に対して垂直な方向は、タイヤ2の周方向である。このタイヤ2が複数のプライ本体42aを含む場合、タイヤ2の外面側に位置するプライ本体42aに基づいて、カーカス12の輪郭CLは特定される。
図4において、符号PLは、クッション16の横端52を通り径方向に延びる直線とカーカス12の輪郭CLとの交点である。符号PVは、クッション16の縦端54を通り軸方向に延びる直線とカーカス12の輪郭CLとの交点である。このタイヤ2では、このカーカス12の輪郭CLのうち、交点PLから交点PVまでの部分が、クッション16と重複する部分の輪郭である。
このタイヤ2では、クッション16と重複する部分の輪郭は円弧で表され、この円弧はバットレス円弧と称される。図4において、符号CBはこのバットレス円弧の中心である。このタイヤ2では、バットレス円弧の中心CBは次のようにして特定される。
交点PLと交点PVとを結ぶ線分の垂直二等分線(以下、第一垂直二等分線L1)が描かれる。第一垂直二等分線L1とカーカス12の輪郭CLとの交点P1が求められる。交点P1と交点PLとを結ぶ線分の垂直二等分線(以下、第二垂直二等分線L2)が描かれる。第二垂直二等分線L2と、第一垂直二等分線L1との交点(以下、第一交点とも称される。)が、バットレス円弧の中心CBである。
図示されないが、交点P1と交点PVとを結ぶ線分の垂直二等分線(以下、第三垂直二等分線L3)を描き、この第三垂直二等分線L3と第一垂直二等分線L1との交点(以下、第二交点とも称される。)により、バットレス円弧の中心CBが表されてもよい。
図4において、矢印Rbはバットレス円弧の半径である。このタイヤ2では、第一垂直二等分線L1に沿って計測される中心CBからカーカス12の輪郭CLまでの長さと、第二垂直二等分線L2に沿って計測される中心CBからカーカス12の輪郭CLまでの長さとの平均値がこのバットレス円弧の半径Rbとして表される。
第三垂直二等分線L3(図示されず)と第一垂直二等分線L1との交点、すなわち、第二交点により、バットレス円弧の中心CBが表される場合には、第一垂直二等分線L1に沿って計測される第二交点からカーカス12の輪郭CLまでの長さと、第三垂直二等分線L3に沿って計測される第二交点からカーカス12の輪郭CLまでの長さとの平均値がこのバットレス円弧の半径Rbとして表される。
第二垂直二等分線L2と第一垂直二等分線L1との交点、すなわち第一交点と、第二交点とが一致する場合には、第一垂直二等分線L1に沿って計測される第一交点からカーカス12の輪郭CLまでの長さ及び第二垂直二等分線L2に沿って計測される第一交点からカーカス12の輪郭CLまでの長さ、並びに、第一垂直二等分線L1に沿って計測される第二交点からカーカス12の輪郭CLまでの長さ及び第三垂直二等分線L3に沿って計測される第二交点からカーカス12の輪郭CLまでの長さの平均値が、このバットレス円弧の半径Rbとして表される。第一交点と、第二交点との間の距離が3mm以内にある場合が、第一交点と第二交点とが一致する場合である。なお、第一交点と第二交点とが一致しない場合は、第一垂直二等分線L1と第二垂直二等分線L2との交点で表される第一交点がバットレス円弧の中心CBとされ、このバットレス円弧の半径Rbが特定される。
図4において、符号PMは、カーカス12の輪郭CLの軸方向外端である。カーカス12は、この外端PMの位置において、最大幅を示す。符号PMで示される位置は、カーカス12の最大幅位置に対応する、カーカス12の輪郭CL上の位置である。このタイヤ2では、この軸方向外端PMは、前述の軸方向外端PWを通り軸方向に延びる直線上に位置する。符号PNは、ビード8の端PAを通り軸方向に延びる直線とカーカス12の輪郭CLとの交点である。このタイヤ2では、このカーカス12の輪郭CLのうち、軸方向外端PMから交点PNまでの部分が、カーカス12の最大幅位置からビード8の端PAまでの部分の輪郭である。
このタイヤ2では、カーカス12の最大幅位置からビード8の端PAまでの部分の輪郭は円弧で表され、この円弧は下部円弧と称される。図3において、符号CSはこの下部円弧の中心である。このタイヤ2では、下部円弧の中心CSは次のようにして特定される。
軸方向外端PMと交点PNとを結ぶ線分の垂直二等分線(以下、第四垂直二等分線L4)が描かれる。第四垂直二等分線L4とカーカス12の輪郭CLとの交点P4が求められる。交点P4と交点PNとを結ぶ線分の垂直二等分線(以下、第五垂直二等分線L5)が描かれる。第五垂直二等分線L5と、第四垂直二等分線L4との交点(以下、第三交点とも称される。)が、下部円弧の中心CSである。このタイヤ2では、下部円弧の中心CSは、軸方向外端PMを通り軸方向に延びる直線上に位置するのが好ましい。
図示されないが、交点P4と軸方向外端PMとを結ぶ線分の垂直二等分線(以下、第六垂直二等分線L6)を描き、この第六垂直二等分線L6と第四垂直二等分線L4との交点(以下、第四交点とも称される。)により、下部円弧の中心CSが表されてもよい。
図4において、矢印Rsは下部円弧の半径である。このタイヤ2では、第四垂直二等分線L4に沿って計測される中心CSからカーカス12の輪郭CLまでの長さと、第五垂直二等分線L5に沿って計測される中心CSからカーカス12の輪郭CLまでの長さとの平均値がこの下部円弧の半径Rsとして表される。
第六垂直二等分線L6(図示されず)と第四垂直二等分線L4との交点、すなわち、第四交点により、下部円弧の中心CSが表される場合には、第四垂直二等分線L4に沿って計測される第四交点からカーカス12の輪郭CLまでの長さと、第六垂直二等分線L6に沿って計測される第四交点からカーカス12の輪郭CLまでの長さとの平均値がこの下部円弧の半径Rsとして表される。
第五垂直二等分線L5と第四垂直二等分線L4との交点、すなわち第三交点と、第四交点とが一致する場合には、第四垂直二等分線L4に沿って計測される第三交点からカーカス12の輪郭CLまでの長さ及び第五垂直二等分線L5に沿って計測される第三交点からカーカス12の輪郭CLまでの長さ、並びに、第四垂直二等分線L4に沿って計測される第四交点からカーカス12の輪郭CLまでの長さ及び第六垂直二等分線L6に沿って計測される第四交点からカーカス12の輪郭CLまでの長さの平均値が、この下部円弧の半径Rsとして表される。第三交点と、第四交点との間の距離が3mm以内にある場合が、第三交点と第四交点とが一致する場合である。なお、第三交点と第四交点とが一致しない場合は、第四垂直二等分線L4と第五垂直二等分線L5との交点で表される第三交点が下部円弧の中心CSとされ、この下部円弧の半径Rsが特定される。
このタイヤ2では、リムRすなわち正規リムに組み、内圧を正規内圧に調整し、荷重をかけない、正規状態において、カーカス12の輪郭CLは、クッション16と重複する部分の輪郭を表す円弧としてのバットレス円弧と、カーカス12の最大幅位置からビード8の端PAまでの部分の輪郭を表す円弧としての下部円弧とを含む。
図2において、両矢印TAは赤道面におけるタイヤ2の厚さである。この厚さTAは、赤道面に沿って計測されるタイヤ2の内面から外面までの距離で表される。実線LEは、トレッド面28の端Teを通る、カーカス12、詳細には、カーカスプライ42の一部をなし、カーカス12の輪郭CLの特定に用いられるプライ本体42aの法線である。両矢印TEは、この法線LEに沿って計測されるタイヤ2の内面から外面までの距離である。このタイヤ2では、この距離TEが、トレッド面28の端Teにおけるタイヤ2の厚さである。
図2において、両矢印TBは、赤道面におけるトレッド4の厚さである。この厚さTBは、ベルト14の頂PBから赤道PEまでの距離により表される。このタイヤ2では、このトレッド4の厚さTBの、赤道面におけるタイヤ2の厚さTAに対する比率(TB/TA)は60%以上80%以下の範囲で設定される。
このタイヤ2では、断面高さHSの、断面幅WSに対する比(HS/WS)で表される偏平比は75%以上90%以下である。言い換えれば、このタイヤ2は、75%以上90%以下の偏平比を有する。このタイヤ2は、高偏平タイヤである。
このタイヤ2では、トレッド4の幅WTの、リム幅WRに対する比率(WT/WR)は105%以上125%以下である。
比率(WT/WR)が105%以上であるので、十分な面積を有するトレッド面28が構成される。接地圧が低減されるので、このタイヤはライフ性能の向上を図ることができる。十分なグリップ力も確保されるので、このタイヤは氷雪上性能の向上も図ることができる。この観点から、この比率(WT/WR)は107%以上が好ましく、109%以上がより好ましい。
比率(WT/WR)が125%以下であるので、幅広のトレッドによる、タイヤ質量及び転がり抵抗への影響が抑えられる。この観点から、この比率(WT/WR)は123%以下が好ましく、121%以下がより好ましい。
ところで、比率(WT/WR)が105%以上である、幅広のトレッドを、トレッド4に採用すると、トレッド4の端の部分(以下、ショルダー部とも称される。)の厚さが増し、例えば、タイヤ質量の増加、転がり抵抗の上昇、及びベルト14の端50付近での損傷の発生が懸念される。このショルダー部のボリュームコントロールのために、例えば、溝深さを調整すると、ライフ性能が損なわれる恐れもある。
しかしこのタイヤ2では、トレッド面28の端Teにおけるタイヤ2の厚さTEの、赤道面におけるタイヤ2の厚さTAに対する比率(TE/TA)が124%以上132%以下である。
比率(TE/TA)が132%以下であるので、トレッド4が広い幅WTを有しているにも関わらず、ショルダー部の厚さ増加が効果的に抑えられる。このタイヤ2では、ショルダー部の厚さを考慮していない、従来の、幅広のトレッドを有するタイヤに比べて、タイヤ質量の減量が図れる。変形に伴う発熱が効果的に抑えられるので、転がり抵抗の上昇や、ベルト14の端50の付近での損傷の発生も抑えられる。ショルダー部のボリュームコントロールのために、溝深さを調整する必要もないので、このタイヤ2では、良好なライフ性能及び氷雪上性能が維持される。この観点から、この比率(TE/TA)は130%以下が好ましい。
比率(TE/TA)が124%以上であるので、ショルダー部に必要な剛性が確保される。このタイヤ2では、幅広のトレッド4がライフ性能及び氷雪上性能の向上に効果的に貢献できる。この観点から、この比率(TE/TA)は126%以上が好ましい。
このタイヤ2では、バットレス円弧の半径Rbの、ビードベースラインからビード8の端PAまでの径方向距離HAに対する比率(Rb/HA)は、70%以上である。
このタイヤ2のバットレス円弧の半径Rbは、従来タイヤのバットレス円弧の半径に比べて大きい。バットレス円弧の半径Rbとして大きな半径が設定されたタイヤ2では、ショルダー部の厚さが効果的に低減される。このタイヤ2では、バットレス円弧の半径Rbを考慮していない、従来の、幅広のトレッドを有するタイヤに比べて、タイヤ質量の減量が図れる。変形に伴う発熱が効果的に抑えられるので、転がり抵抗の上昇や、ベルト14の端50の付近での損傷の発生も抑えられる。ショルダー部のボリュームコントロールのために、溝深さを調整する必要もないので、このタイヤ2では、良好なライフ性能及び氷雪上性能が維持される。この観点から、比率(Rb/HA)は72%以上が好ましい。
このタイヤ2では、比率(Rb/HA)は95%以下である。ショルダー部の厚さが適切に維持され、ショルダー部において必要な剛性が確保されるので、幅広のトレッド4がライフ性能及び氷雪上性能の向上に効果的に貢献できる。この観点から、この比率(Rb/HA)は93%以下が好ましい。
このタイヤ2では、バットレス円弧の半径Rbの、下部円弧の半径Rsに対する比率(Rb/Rs)は100%以上である。
このタイヤ2では、正規状態におけるカーカス12の輪郭CLにおいて、バットレス円弧の半径Rbは下部円弧の半径Rsと同等であるか、下部円弧の半径Rsよりも大きい。ショルダー部の厚さが効果的に低減されるので、このタイヤ2では、バットレス円弧の半径Rbを考慮していない、従来の、幅広のトレッドを有するタイヤに比べて、タイヤ質量の減量が図れる。変形に伴う発熱が効果的に抑えられるので、転がり抵抗の上昇や、ベルト14の端50の付近での損傷の発生も抑えられる。ショルダー部のボリュームコントロールのために、溝深さを調整する必要もないので、このタイヤ2では、良好なライフ性能及び氷雪上性能が維持される。この観点から、この比率(Rb/Rs)は102%以上が好ましい。
このタイヤ2では、比率(Rb/Rs)は110%以下である。バットレス円弧の半径Rbと同程度の大きさの半径が下部円弧の半径Rsとして設定される。このタイヤ2では、下部円弧の半径Rsも、従来タイヤの下部円弧の半径に比べて大きいので、インフレート時のビードの倒れ込みが抑えられる。このタイヤ2は、ビードの部分における耐久性の向上も図ることができる。正規状態におけるカーカス12の輪郭CLにおいて、バットレス円弧の半径Rbと下部円弧の半径Rsとの差が下部円弧の半径Rsに対して10%以内に抑えられるので、このカーカス12には、歪が集中しにくい。カーカス12に作用する力が分散されるので、このタイヤ2ではカーカス12における損傷の発生も抑えられる。この観点から、この比率(Rb/Rs)は108%以下が好ましい。
このタイヤ2は、ベルト14の端50の付近での耐久性、ビードの部分での耐久性、タイヤ質量、そして転がり抵抗への影響を抑えながら、ライフ性能及び氷雪上性能の向上を達成できる。
このタイヤ2では、トレッドの幅WTの、タイヤ2の断面幅WSに対する比率(WT/WS)は87%以下が好ましい。
このタイヤ2は、従来のタイヤよりも広い断面幅WSを有する。広い断面幅WSが設定されることで、このタイヤ2は、カーカスの輪郭CLのバットレス円弧に対し、大きな半径Rbを設定できる。前述したように、バットレス円弧の半径Rbとして大きな半径が設定されたタイヤ2では、ショルダー部の厚さが効果的に低減される。このタイヤ2では、タイヤ質量の減量が図れるとともに、転がり抵抗の上昇や、ベルト14の端50の付近での損傷の発生も抑えられる。さらにこのタイヤ2では、良好なライフ性能及び氷雪上性能が維持される。この観点から、この比率(WT/WS)は85%以下がより好ましい。
このタイヤ2では、比率(WT/WS)は83%以上が好ましい。これにより、カーカスの輪郭CLが歪な形状になることが防止される。このカーカス12には、歪が集中しにくい。カーカス12に作用する力が分散されるので、このタイヤ2ではカーカス12における損傷の発生も抑えられる。この観点から、この比率(WT/WS)は84%以上がより好ましい。
このタイヤ2では、一方のトゥPTから他方のトゥPTまでの軸方向距離で表されるトゥ間隔も考慮される。このトゥ間隔の計測方法が、図5を参照しつつ、説明される。
トゥ間隔の計測方法では、図5(a)に示されるように、タイヤ2をリムRに組むことなく、このタイヤ2が平らな路面に立てられる。両矢印HTで表されるタイヤ2の高さが計測される。一点鎖線HLで表される、計測した高さHTの半分の位置が特定される。図5(b)に示されるように、この位置HLにおける、一方のトゥPTから他方のトゥPTまでの軸方向距離STが計測される。このタイヤ2では、この距離STがトゥ間隔TWである。このトゥ間隔STは、自重以外の荷重が作用しない状態で計測される。詳述しないが、このトゥ間隔STは、このタイヤ2の製造で用いられるモールド(図示されず)のクリップ幅を調整することで、コントロールできる。
このタイヤ2では、トレッドの幅WTの、トゥ間隔STに対する比率(WT/ST)は162%以下が好ましい。
このタイヤ2は、従来のタイヤよりも広いトゥ間隔STを有する。広いトゥ間隔STが設定されることで、このタイヤ2は、カーカスの輪郭CLのバットレス円弧に対し、大きな半径Rbを設定できる。前述したように、バットレス円弧の半径Rbとして大きな半径が設定されたタイヤ2では、ショルダー部の厚さが効果的に低減される。このタイヤ2では、タイヤ質量の減量が図れるとともに、転がり抵抗の上昇や、ベルト14の端50の付近での損傷の発生も抑えられる。さらにこのタイヤ2では、良好なライフ性能及び氷雪上性能が維持される。この観点から、この比率(WT/ST)は158%以下がより好ましい。
このタイヤ2では、比率(WT/ST)は151%以上が好ましい。これにより、カーカスの輪郭CLが歪な形状になることが防止される。このカーカス12には、歪が集中しにくい。カーカス12に作用する力が分散されるので、このタイヤ2ではカーカス12における損傷の発生も抑えられる。この観点から、この比率(WT/ST)は155%以上がより好ましい。
このタイヤ2では、ベルト14の端50の付近での耐久性、タイヤ質量、そして転がり抵抗への影響を抑えながら、ライフ性能及び氷雪上性能の向上を達成できる観点から、比率(WT/WS)が83%以上87%以下であり、比率(WT/ST)が151%以上162%以下であるのが好ましい。
このタイヤ2では、ビードベースラインからタイヤ2の断面幅WSが得られるタイヤの外面上の位置PWまでの径方向距離HWの、ビードベースラインからベルト14の頂PBまでの径方向距離HBに対する比率(HW/HB)は52%以上が好ましく、60%以下が好ましい。
比率(HW/HB)は52%以上に設定されることにより、タイヤ2の断面幅WSが得られるタイヤの外面上の位置PW(以下、最大幅位置PWとも称される。)が、従来のタイヤよりも径方向において外側に配置される。これにより、カーカスの輪郭CLにおいて、バットレス円弧の半径Rbと同程度の大きさの半径が下部円弧の半径Rsとして設定される。このタイヤ2では、下部円弧の半径Rsも、従来タイヤの下部円弧の半径に比べて大きいので、インフレート時のビードの倒れ込みが抑えられる。このタイヤ2は、ビードの部分における耐久性の向上も図ることができる。正規状態におけるカーカス12の輪郭CLにおいて、バットレス円弧の半径Rbと下部円弧の半径Rsとの差が抑えられるので、このカーカス12には、歪が集中しにくい。カーカス12に作用する力が分散されるので、このタイヤ2ではカーカス12における損傷の発生も抑えられる。この観点から、この比率(HW/HB)は53%以上がより好ましい。
比率(HW/HB)が60%以下に設定されることにより、カーカスの輪郭CLが歪な形状になることが防止される。このカーカス12には、歪が集中しにくい。カーカス12に作用する力が分散されるので、このタイヤ2ではカーカス12における損傷の発生も抑えられる。この観点から、この比率(HW/HB)は58%以下がより好ましい。
以上の説明から明らかなように、本発明の重荷重用チューブレスタイヤ2では、他の性能への影響を効果的に抑えながら、ライフ性能及び氷雪上性能の向上が達成される。本発明は、75%以上90%以下の偏平比を有する、高偏平なタイヤ2において、顕著な効果を奏する。
以下、実施例などにより、本発明をさらに詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。
[実施例1]
図1に示された構成を備え、表1に示された仕様を備えた重荷重用チューブレスタイヤ(サイズ=225/80R17.5)を得た。
この実施例1では、0.76mmの外径CDを有するスチールコードがカーカスコードに使用された。比率(WT/WR)、比率(WT/WS)、比率(WT/ST)、比率(Rb/Rs)、比率(Rb/HA)、比率(HW/HB)、及び比率(TE/TA)は下記の表1に示される通りとした。
この実施例1では、ビードベースラインからビードの端PAまでの径方向距離HAは65mmであった。ビードベースラインからベルトの頂PBまでの径方向距離HBは163mmであった。赤道面におけるタイヤの厚さTAは37mmであった。偏平比(HS/WS)は78.2%であった。
[比較例1]
比較例1は従来のタイヤ(サイズ=225/80R17.5)である。この比較例1では、0.76mmの外径CDを有するスチールコードがカーカスコードに使用された。比率(WT/WR)、比率(WT/WS)、比率(WT/ST)、比率(Rb/Rs)、比率(Rb/HA)、比率(HW/HB)、及び比率(TE/TA)は下記の表1に示される通りであった。
この比較例1では、ビードベースラインからビードの端PAまでの径方向距離HAは65mmであった。ビードベースラインからベルトの頂PBまでの径方向距離HBは163mmであった。赤道面におけるタイヤの厚さTAは37mmであった。偏平比(HS/WS)は84.6%であった。
[比較例2]
比率(WT/WS)、比率(WT/ST)、比率(Rb/Rs)、比率(Rb/HA)、比率(HW/HB)、及び比率(TE/TA)を下記の表1に示される通りとした他は実施例1と同様にして、比較例2のタイヤを得た。この比較例2は、比較例1のトレッドを幅広のトレッドに置き換えたタイヤに相当する。
[比較例3]
比率(Rb/Rs)、比率(Rb/HA)、及び比率(HW/HB)を下記の表1に示される通りとした他は実施例1と同様にして、比較例3のタイヤを得た。この比較例3は、比較例2の断面幅WS及びトゥ間隔STを広げたタイヤに相当する。この比較例3の最大幅位置PWを調整したタイヤが前述の実施例1である。
[ライフ性能]
試作タイヤをリム(サイズ=6.75×17.5)に組み、空気を充填し、内圧を700kPaに調整した。このタイヤを、試験車両(10tトラック)の全輪に装着した。荷台中央に標準積載量の50%の荷物を積載した状態で、一般道路においてこの試験車両を走行させた。交換が必要な摩耗量に到達するまでの走行距離を計測した。この結果が、比較例1を100とした指数で下記の表1に示される。数値が大きいほどライフ性能に優れる。
[氷雪上性能]
試作タイヤをリム(サイズ=6.75×17.5)に組み、空気を充填し、内圧を700kPaに調整した。このタイヤを、試験車両(10tトラック)の全輪に装着した。荷台中央に標準積載量の50%の荷物を積載した状態で、雪上においてこの試験車両を走行させた。ドライバーによる、氷雪上性能に関する官能評価を行った。この結果が、比較例1を100とした指数で下記の表1に示される。数値が大きいほど氷雪上性能に優れる。
[耐久性A(耐ベルトセパレーション性能)]
試作タイヤをリム(サイズ=6.75×17.5)に組み、空気を充填し、内圧を700kPaに調整した。このタイヤをドラム試験機に装着した。18.09kNの荷重をタイヤに負荷し、ドラム(ドラム径=1707mm)上でタイヤを走行させた。走行速度を80km/hから2時間毎に10km/hステップアップしていき、ベルトの端にセパレーションが発生するまでの走行時間を計測した。この結果が、比較例1を100とした指数で下記の表1に示される。数値が大きいほど耐ベルトセパレーション性能に優れる。
[耐久性B(ビード耐久性)]
試作タイヤをリム(サイズ=6.75×17.5)に組み、空気を充填し内圧を700kPaに調整した。このタイヤをドラム試験機に装着した。タイヤに負荷する荷重を段階的に増加させながら、ドラム(ドラム径=1707mm)上で20km/hの速度でタイヤを走行させた。この走行において荷重は、まず、30.36kNに設定された。この荷重下でタイヤが96時間走行できた場合、荷重は34.88kNに設定された。この荷重下でタイヤが96時間走行できた場合、荷重は38.76kNに設定された。この荷重下でタイヤが96時間走行できた場合、その時点で評価は終了とした。この評価では、走行を開始してからビードに損傷が生じるまでの走行時間を計測した。この結果が、比較例1を100とした指数で下記の表1に示される。数値が大きいほど走行時間が長く、ビード耐久性に優れる。
[質量]
試作タイヤの質量を計測した。この結果が、下記の表1に指数で示される。数値が小さいほど質量は小さい。
[転がり抵抗係数(RRC)]
転がり抵抗試験機を用い、各試作タイヤが下記の条件でドラム上を速度80km/hで走行するときの転がり抵抗係数(RRC)が測定される。この結果が、下記の表1に指数で示される。数値が大きいほど転がり抵抗が小さい。
リムサイズ:6.75×17.5
内圧:700kPa
縦荷重:12.92kN
Figure 2022030010000002
表1に示されるように、実施例では、ベルトの端の付近での耐久性、ビードの部分での耐久性、タイヤ質量、そして転がり抵抗への影響を抑えながら、ライフ性能及び氷雪上性能の向上が達成される。この評価結果から、本発明の優位性は明らかである。
以上説明された、他の性能への影響を抑えながら、ライフ性能及び氷雪上性能の向上を達成させる技術は、種々のタイヤに適用されうる。
2・・・タイヤ
4・・・トレッド
6・・・サイドウォール
8・・・ビード
12・・・カーカス
14・・・ベルト
16・・・クッション
28・・・トレッド面
42・・・カーカスプライ
42a・・・プライ本体
42b・・・折り返し部
44・・・カーカスコード
50・・・ベルト14の端
52・・・クッション16の横端
54・・・クッション16の縦端

Claims (5)

  1. 一対のビードと、一方のビードと他方のビードとの間を架け渡すカーカスと、径方向において前記カーカスの外側に位置するベルトと、前記ベルトの端と前記カーカスとの間に位置する一対のクッションと、径方向において前記ベルトの外側に位置するトレッドとを備え、75%以上90%以下の偏平比を有する、重荷重用チューブレスタイヤであって、
    前記トレッドが路面と接触するトレッド面を備え、
    前記トレッドの幅の、前記タイヤが装着される正規リムのリム幅に対する比率が、105%以上125%以下であり、
    前記トレッド面の端における前記タイヤの厚さの、赤道面における前記タイヤの厚さに対する比率が、124%以上132%以下であり、
    前記カーカスの輪郭が、前記クッションと重複する部分の輪郭を表す円弧としてのバットレス円弧と、前記カーカスの最大幅位置から前記ビードの端までの部分の輪郭を表す円弧としての下部円弧とを含み、
    前記バットレス円弧の半径の、ビードベースラインから前記ビードの端までの径方向距離に対する比率が、70%以上95%以下であり、
    前記バットレス円弧の半径の、前記下部円弧の半径に対する比率が100%以上110%以下である、
    重荷重用チューブレスタイヤ。
  2. 前記トレッドの幅の、前記タイヤの断面幅に対する比率が、83%以上87%以下である、
    請求項1に記載の重荷重用チューブレスタイヤ。
  3. 前記タイヤの内面と外面との境界がトゥであり、
    前記トレッドの幅の、一方のトゥから他方のトゥまでの軸方向距離で表される、トゥ間隔に対する比率が、151%以上162%以下である、
    請求項1又は2に記載の重荷重用チューブレスタイヤ。
  4. ビードベースラインから前記タイヤの断面幅が得られる前記タイヤの外面上の位置までの径方向距離の、前記ビードベースラインから前記ベルトの頂までの径方向距離に対する比率が、52%以上60%以下である、
    請求項1から3のいずれかに記載の重荷重用チューブレスタイヤ。
  5. 前記カーカスが並列した多数のカーカスコードを含み、カーカスコードの外径が、0.6mm以上1.0mm以下であり、
    前記カーカスコードの材質がスチールである、
    請求項1から4のいずれか一項に記載の重荷重用チューブレスタイヤ。
JP2020133690A 2020-08-06 2020-08-06 重荷重用チューブレスタイヤ Pending JP2022030010A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020133690A JP2022030010A (ja) 2020-08-06 2020-08-06 重荷重用チューブレスタイヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020133690A JP2022030010A (ja) 2020-08-06 2020-08-06 重荷重用チューブレスタイヤ

Publications (1)

Publication Number Publication Date
JP2022030010A true JP2022030010A (ja) 2022-02-18

Family

ID=80323826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020133690A Pending JP2022030010A (ja) 2020-08-06 2020-08-06 重荷重用チューブレスタイヤ

Country Status (1)

Country Link
JP (1) JP2022030010A (ja)

Similar Documents

Publication Publication Date Title
JP5333510B2 (ja) 空気入りタイヤ
JP4723310B2 (ja) 空気入りタイヤ
EP3332991B1 (en) Pneumatic tire
JP5791427B2 (ja) 重荷重用空気入りタイヤ
JP4915069B2 (ja) 空気入りタイヤ
US11890897B2 (en) Pneumatic tire
JP6740711B2 (ja) 空気入りタイヤ
JP6013759B2 (ja) 空気入りタイヤ
JP6777536B2 (ja) 空気入りタイヤ
JP2022030010A (ja) 重荷重用チューブレスタイヤ
WO2020179137A1 (ja) 二輪車用タイヤ
JP6852285B2 (ja) 空気入りタイヤ
JP7234692B2 (ja) 重荷重用空気入りタイヤ
JP7463712B2 (ja) 重荷重用チューブレスタイヤ及び製造方法
JP7251185B2 (ja) 空気入りタイヤ
WO2023105833A1 (ja) 乗用車用空気入りラジアルタイヤ
EP2248682B1 (en) Studless tire
US20220402308A1 (en) Tire and tire-vehicle combination
US20220281267A1 (en) Pneumatic tire
JP7342547B2 (ja) 重荷重用空気入りタイヤ
US20230241923A1 (en) Tire and method for using the same
WO2023105830A1 (ja) 乗用車用空気入りラジアルタイヤ
US11524527B2 (en) Pneumatic tire
JP7225690B2 (ja) 重荷重用空気入りタイヤ
JP2018103855A (ja) 空気入りタイヤ