JP2022028893A - Induction heating coil - Google Patents

Induction heating coil Download PDF

Info

Publication number
JP2022028893A
JP2022028893A JP2021193792A JP2021193792A JP2022028893A JP 2022028893 A JP2022028893 A JP 2022028893A JP 2021193792 A JP2021193792 A JP 2021193792A JP 2021193792 A JP2021193792 A JP 2021193792A JP 2022028893 A JP2022028893 A JP 2022028893A
Authority
JP
Japan
Prior art keywords
coil
heating
cover
heated
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021193792A
Other languages
Japanese (ja)
Other versions
JP7231901B2 (en
Inventor
英司 鈴木
Eiji Suzuki
昌訓 西村
Masanori Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyaden Co Ltd
Original Assignee
Miyaden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018017746A external-priority patent/JP7045128B2/en
Application filed by Miyaden Co Ltd filed Critical Miyaden Co Ltd
Priority to JP2021193792A priority Critical patent/JP7231901B2/en
Publication of JP2022028893A publication Critical patent/JP2022028893A/en
Application granted granted Critical
Publication of JP7231901B2 publication Critical patent/JP7231901B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To provide an induction heating coil enabling heating temperature at a predetermined portion of a heating object to be easily and highly accurately measured while the heating object is induction heated, thereby enabling highly accurate heating condition to be easily obtained in the heating object, the heating object being arranged in a heating space and during being induction heated.
SOLUTION: An induction heating coil comprises: a coil portion 22 formed of a plate-shaped conductor with a predetermined number of turns; a coil cover that covers the inside, outside, and both sides of the coil portion in an air tight manner and has a heating space on the inner peripheral side in which a heating object can be placed; and a cooling medium supply portion 25 capable of circulating and supplying a cooling medium to the internal space formed between an inner cover 23a and an outer cover of the coil cover, high-frequency current is supplied to the coil portion, and a cooling medium is supplied from the cooling medium supply portion to the internal space of the coil cover while the heating object is placed in the heating space of the coil cover, thus the heating object disposed in the heating space is induction-heated.
SELECTED DRAWING: Figure 6
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、加熱空間に例えば柱状ワークや筒状ワーク(被加熱物)を配置して、ワークの外面(外径面)等を誘導加熱する際に使用される誘導加熱コイルに関する。 The present invention relates to an induction heating coil used when, for example, a columnar work or a tubular work (object to be heated) is arranged in a heating space to induce and heat the outer surface (outer diameter surface) of the work.

従来、被加熱物の内面を誘導加熱する誘導加熱コイルは、例えば特許文献1に開示されている。この誘導加熱コイル(内径面誘導加熱コイル)は、絶縁体で形成され、板状部の中央部位に内径突出部が形成されたベース部材、及び大径の膨出部と細径の外径突出部を備えたカバー部材からなる中空のケースと、このケースの内部に配設された薄板状の導体を所定回数巻回した加熱部材とを備え、加熱部材に高周波電流を供給すると共に加熱部材を配設したケース内に冷却水を供給して、被加熱部材の内径面を誘導加熱するようにしたものである。 Conventionally, an induction heating coil that induces and heats the inner surface of an object to be heated is disclosed in, for example, Patent Document 1. This induction heating coil (inner diameter surface induction heating coil) is a base member formed of an insulator and having an inner diameter protrusion formed in the central portion of a plate-shaped portion, and a large diameter bulge and a small diameter outer diameter protrusion. A hollow case made of a cover member provided with a portion and a heating member in which a thin plate-shaped conductor arranged inside the case is wound a predetermined number of times are provided, and a high-frequency current is supplied to the heating member and the heating member is provided. Cooling water is supplied into the arranged case to induce and heat the inner diameter surface of the member to be heated.

また、被加熱物の外面を誘導加熱する誘導加熱コイルは、例えば特許文献2に開示されている。この誘導加熱コイルは、銅の丸パイプを複数回巻回した複数のコイル部と、このコイル部の両端部を連結するパイプ状の直線状導体を備え、コイル部の内側空間である加熱空間に被加熱物を配置した状態で、コイル部に高周波電流を供給すると共にコイル部のパイプ内に冷却水を循環供給して、被加熱物を誘導加熱するようにしたものである。 Further, an induction heating coil that induces and heats the outer surface of an object to be heated is disclosed in, for example, Patent Document 2. This induction heating coil has a plurality of coil portions in which a round copper pipe is wound multiple times, and a pipe-shaped linear conductor connecting both ends of the coil portion, and is provided in a heating space which is an inner space of the coil portion. In a state where the object to be heated is arranged, a high-frequency current is supplied to the coil portion and cooling water is circulated and supplied into the pipe of the coil portion to induce and heat the object to be heated.

特許第543127号公報Japanese Patent No. 543127 特許第3621685号公報Japanese Patent No. 3621685

しかしながら、これらの誘導加熱コイルにあっては、被加熱物の内面や外面を高精度に誘導加熱するために、非接触式の放射温度センサで被加熱物の加熱部位の温度を測定して、被加熱物に応じて所定温度となった際に、加熱コイルへの通電(誘導加熱)を停止するようにしている。ところが、従来の誘導加熱コイルでは、放射温度センサを加熱コイルとは別体で加熱コイルの外側に配置しており、この構成では内面の温度測定の場合に、加熱コイルが軸孔内に嵌挿されることから、加熱コイルを一旦軸孔から取り外した状態で、被加熱物の軸孔の加熱コイルが挿入される上端部等の端部の温度を測定せざるを得ない。 However, in these induction heating coils, in order to induce and heat the inner and outer surfaces of the object to be heated with high accuracy, the temperature of the heated part of the object to be heated is measured with a non-contact radiation temperature sensor. When the temperature reaches a predetermined temperature according to the object to be heated, the energization (induction heating) of the heating coil is stopped. However, in the conventional induction heating coil, the radiation temperature sensor is arranged outside the heating coil separately from the heating coil, and in this configuration, the heating coil is inserted into the shaft hole when measuring the temperature on the inner surface. Therefore, once the heating coil is removed from the shaft hole, the temperature of the end portion such as the upper end portion where the heating coil of the shaft hole of the object to be heated is inserted must be measured.

また、外面の温度測定の場合も、加熱コイルの巻回部分に隙間がある場合は、この隙間等を利用して被加熱物の外面の中央部分等の温度測定が可能になるものの、例えば加熱コイルの巻回部分に隙間等がない場合には、温度測定が困難で、前述した軸孔の温度測定と同様に、加熱コイルを一旦被加熱部から取り外した状態で、被加熱物の軸方向の端部等の温度測定をしているのが実情である。 Also, in the case of measuring the temperature of the outer surface, if there is a gap in the winding part of the heating coil, it is possible to measure the temperature of the central part of the outer surface of the object to be heated by using this gap, but for example, heating. If there is no gap in the winding part of the coil, it is difficult to measure the temperature. Similar to the temperature measurement of the shaft hole described above, with the heating coil once removed from the heated part, the axial direction of the object to be heated The actual situation is that the temperature of the end of the is measured.

ところで、本出願人は、先に、被加熱物の内面を誘導加熱するための誘導加熱コイル(特願2017-121138)と、被加熱物の外面を誘導加熱するための誘導加熱コイル(特願2017-126824)を提案した。そして、その後の鋭意研究により、これらの誘導加熱コイルにおいては、コイル部が流通する冷却水中に浸漬状態で冷却される構造を備えることから、放射温度センサを加熱コイルの外部に単に配設しただけでは、被加熱物の長手方向の中央に近い部分等の内部の加熱温度を精度良く計測することは困難であると共に、温度測定作業が非常に面倒であることが判明し、本発明は、この点を改良したものである。 By the way, the applicant first of all, an induction heating coil for inductively heating the inner surface of the object to be heated (Japanese Patent Application No. 2017-12118) and an induction heating coil for inductively heating the outer surface of the object to be heated (Japanese Patent Application No. 2017-12138). 2017-126824) was proposed. Then, according to the subsequent diligent research, since these induction heating coils have a structure in which the coil portion is cooled in the cooling water flowing in the cooling water, the radiation temperature sensor is simply arranged outside the heating coil. Then, it was found that it is difficult to accurately measure the internal heating temperature of the portion near the center in the longitudinal direction of the object to be heated, and the temperature measurement work is very troublesome. It is an improvement of the point.

すなわち、本発明の目的は、所定機能を有する放射温度センサを加熱コイルの所定位置に一体的に配設することで、例えばコイル部が流通する冷却水中に浸漬状態で冷却される加熱コイルであっても、誘導加熱中の被加熱物の所定部位の加熱温度を加熱状態のままで精度良く簡単に測定して、被加熱物に高精度な加熱状態を容易に得ることが可能な誘導加熱コイルを提供することにある。 That is, an object of the present invention is a heating coil that is cooled in a state of being immersed in cooling water through which a coil portion flows, for example, by integrally disposing a radiation temperature sensor having a predetermined function at a predetermined position of the heating coil. However, the induction heating coil that can easily obtain a highly accurate heating state for the object to be heated by accurately and easily measuring the heating temperature of a predetermined portion of the object to be heated during induction heating with the heating state. Is to provide.

かかる目的を達成すべく、本発明のうち請求項1に記載の発明は、板状の導体で所定巻数に形成されたコイル部と、該コイル部の内側と外側及び両側面を気密性を有して覆うと共に内周側に被加熱物を配置可能な加熱空間を有するコイルカバーと、該コイルカバーの内側カバーと外側カバー間に形成される内部空間に冷却媒体を循環供給可能な冷却媒体供給部と、備え、前記コイルカバーの前記加熱空間に被加熱物を配置した状態で、前記コイル部に高周波電流を供給すると共に、前記冷却媒体供給部から前記コイルカバーの前記内部空間に冷却媒体を供給して、前記加熱空間内に配置された被加熱物を誘導加熱することを特徴とする。 In order to achieve such an object, the invention according to claim 1 of the present invention has a coil portion formed of a plate-shaped conductor in a predetermined number of turns and airtightness on the inside, outside and both side surfaces of the coil portion. A cooling medium supply capable of circulating and supplying a cooling medium to a coil cover having a heating space in which an object to be heated can be placed on the inner peripheral side and an internal space formed between the inner cover and the outer cover of the coil cover. A high-frequency current is supplied to the coil portion and a cooling medium is supplied from the cooling medium supply portion to the internal space of the coil cover in a state where the object to be heated is arranged in the heating space of the coil cover. It is characterized in that it is supplied to induce and heat an object to be heated arranged in the heating space.

また、請求項2に記載の発明は、前記コイル部が、薄板かもしくは内部に扁平な隙間を有する扁平パイプの板状導体を円形もしくは馬蹄形に所定回数巻回もしくは連結して構成されることを特徴とする。また、請求項3に記載の発明は、前記コイルカバーの軸方向の所定位置に、前記加熱空間内に配置された被加熱物からの放射光を受光可能なプローブを有する放射温度センサが、前記被加熱物の外周面に指向した状態で配設されていることを特徴とする。 Further, according to the second aspect of the present invention, the coil portion is configured by winding or connecting a thin plate or a plate-shaped conductor of a flat pipe having a flat gap inside in a circular or horseshoe shape a predetermined number of times. It is a feature. The invention according to claim 3 is the radiation temperature sensor having a probe capable of receiving synchrotron radiation from an object to be heated arranged in the heating space at a predetermined position in the axial direction of the coil cover. It is characterized in that it is arranged in a state of being oriented toward the outer peripheral surface of the object to be heated.

また、請求項4に記載の発明は、前記放射温度センサが、前記プローブの先端が前記コイルカバーの内側カバーに設けた開口から前記加熱空間内に気密状態で露出すると共に前記コイル部に干渉しない状態で配設されていることを特徴とする。また、請求項5に記載の発明は、前記コイル部が、所定板厚の銅板を所定回数したコイル導体を有し、該コイル導体が前記内側カバーの外周面に近接して配置されていることを特徴とする。 Further, according to the fourth aspect of the present invention, the radiation temperature sensor is airtightly exposed in the heating space from the opening provided in the inner cover of the coil cover by the tip of the probe and does not interfere with the coil portion. It is characterized in that it is arranged in a state. Further, in the invention according to claim 5, the coil portion has a coil conductor in which a copper plate having a predetermined plate thickness is formed a predetermined number of times, and the coil conductor is arranged close to the outer peripheral surface of the inner cover. It is characterized by.

本発明のうち請求項1に記載の発明によれば、コイルカバーの加熱空間に被加熱物を配置した状態で、コイル部に高周波電流を供給すると共に、冷却媒体供給部からコイルカバーの内部空間に冷却媒体を供給して被加熱物を誘導加熱するため、コイル部外周の全域に冷却媒体を供給して冷却でき、コイル部の通電時の発熱を効果的に抑制できると共に冷却媒体を供給するための構成を簡略化し、かつ低圧の冷却媒体を使用できて省エネにも優れ、被加熱物の全域を略均一に加熱することができる。 According to the invention of claim 1 of the present invention, a high frequency current is supplied to the coil portion in a state where the object to be heated is arranged in the heating space of the coil cover, and the internal space of the coil cover is supplied from the cooling medium supply portion. Since the cooling medium is supplied to the coil to induce and heat the object to be heated, the cooling medium can be supplied to the entire outer periphery of the coil portion to cool the coil portion, and the heat generated when the coil portion is energized can be effectively suppressed and the cooling medium is supplied. The configuration for this purpose is simplified, a low-pressure cooling medium can be used, and it is excellent in energy saving, and the entire area of the object to be heated can be heated substantially uniformly.

また、請求項2に記載の発明によれば、請求項1に記載の発明の効果に加え、コイル部が、板状の導体を円形もしくは馬蹄形に所定回数巻回もしくは連結して構成されるため、例えば所定板厚の銅板を所定回数巻回したり、あるいは複数の銅板を被加熱物の外周面に沿って連結することでコイル部を形成でき、コイル部の外形を小さくできて、加熱コイルの小型化を図ることができる。 Further, according to the invention of claim 2, in addition to the effect of the invention of claim 1, the coil portion is configured by winding or connecting a plate-shaped conductor in a circular shape or a horseshoe shape a predetermined number of times. For example, a coil portion can be formed by winding a copper plate having a predetermined thickness a predetermined number of times, or by connecting a plurality of copper plates along the outer peripheral surface of the object to be heated, and the outer shape of the coil portion can be made smaller. It is possible to reduce the size.

また、請求項3、4に記載の発明によれば、加熱空間内に配置された被加熱物からの放射光を受光可能なプローブが加熱空間内の被加熱物の外面に指向した放射温度センサを備えるため、コイルカバーの西部空間内を流通する冷却水中にそのコイル導体が浸漬状態で冷却される加熱コイルであっても、放射温度センサのプローブで、誘導加熱中の被加熱物の外面所定位置の加熱温度を精度良く、かつ加熱状態のままで簡単に温度測定ができて、被加熱物に高精度な加熱状態を容易に得ることが可能になる。 Further, according to the inventions of claims 3 and 4, a radiation temperature sensor in which a probe capable of receiving radiant light from a heated object arranged in the heated space is directed toward the outer surface of the heated object in the heated space. Therefore, even if the coil conductor is cooled in the cooling water flowing in the western space of the coil cover in the immersed state, the outer surface of the object to be heated during induction heating is determined by the probe of the radiation temperature sensor. The heating temperature at the position can be measured accurately and the temperature can be easily measured while the heating state remains, and it becomes possible to easily obtain a highly accurate heating state for the object to be heated.

また、請求項5に記載の発明によれば、誘導加熱時に、コイル部のコイル導体が内側カバーに近接して配置されているため、コイル導体の表裏面から放射される磁力線を被加熱物の外周面に効率的に照射できると共に、コイル導体の発熱自体が効果的に抑制されることになり、被加熱物の誘導加熱効率が十分に高められる。 Further, according to the invention of claim 5, since the coil conductor of the coil portion is arranged close to the inner cover during induction heating, the magnetic field lines radiated from the front and back surfaces of the coil conductor are the object to be heated. The outer peripheral surface can be efficiently irradiated, and the heat generation itself of the coil conductor is effectively suppressed, so that the induction heating efficiency of the object to be heated is sufficiently enhanced.

本発明に係わる誘導加熱コイルの基本概念を示す斜視図A perspective view showing the basic concept of the induction heating coil according to the present invention. 同その正面図Same as the front view 同その平面図The plan view 同コイル部の一例を示す断面図Cross-sectional view showing an example of the coil portion 本発明に係わる誘導加熱コイルの一実施形態を示す斜視図A perspective view showing an embodiment of an induction heating coil according to the present invention. 同そのコイル部の斜視図The perspective view of the coil part 同コイル部の断面図Cross-sectional view of the coil part

以下、本発明を実施するための形態を図面に基づいて詳細に説明する。
図1~図4は、本発明に係わる誘導加熱コイルの基本概念を示している。図1~図3に示すように、誘導加熱コイル1(加熱コイル1という)は、コイル部2と、このコイル部2の基端側を支持するコイル支持部3と、このコイル支持部3に連結されたホルダー部4等を備えている。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
1 to 4 show the basic concept of the induction heating coil according to the present invention. As shown in FIGS. 1 to 3, the induction heating coil 1 (referred to as a heating coil 1) is provided in the coil portion 2, the coil support portion 3 that supports the proximal end side of the coil portion 2, and the coil support portion 3. It is provided with a connected holder portion 4 and the like.

前記コイル部2は、図4に示すように、扁平パイプを所定回数コイル状に巻回したコイル導体2aと、このコイル導体2aの外周側と先端側とを覆うベーク材等の絶縁体で形成された有底筒状のコイルカバー2bを有している。このとき、コイル導体2aは、導体である丸銅パイプを直径(断面)方向に潰すことで、内部に扁平な隙間を有した潰し銅パイプが使用され、この潰し銅パイプを直線状の軸芯に沿って所定回数巻回することでコイル状に形成されている。 As shown in FIG. 4, the coil portion 2 is formed of a coil conductor 2a in which a flat pipe is wound in a coil shape a predetermined number of times, and an insulator such as a bake material that covers the outer peripheral side and the tip side of the coil conductor 2a. It has a bottomed tubular coil cover 2b. At this time, as the coil conductor 2a, a crushed copper pipe having a flat gap inside is used by crushing the round copper pipe which is a conductor in the diameter (cross section) direction, and the crushed copper pipe is used as a linear shaft core. It is formed into a coil shape by winding it a predetermined number of times along the above.

また、コイル導体2aの両端部となる基端側端部と先端部には、一対の丸形銅パイプ2c、2dの先端がそれぞれロー付け固着され、この銅パイプ2c、2dは、図1及び図2に示すように、その基端部が上方に所定寸法延設されて、前記コイル支持部3上に突出している。このとき、図4に示すように、一方の銅パイプ2cは、コイルカバー2bの開放側に下方に開口した状態で配設されると共に、その下端側面とコイル導体2aとが連通孔で連通状態とされている。また、他方の銅パイプ2dは、コイル導体2aの軸芯位置に挿通され、その下端側面とコイル導体2aとが連通孔で連通状態とされている。 Further, the tips of a pair of round copper pipes 2c and 2d are brazed and fixed to the proximal end side end portion and the tip end portion which are both ends of the coil conductor 2a, and the copper pipes 2c and 2d are shown in FIGS. 1 and 1 and 2. As shown in FIG. 2, the base end portion thereof is extended upward by a predetermined dimension and protrudes onto the coil support portion 3. At this time, as shown in FIG. 4, one of the copper pipes 2c is arranged so as to open downward on the open side of the coil cover 2b, and the lower end side surface thereof and the coil conductor 2a communicate with each other through a communication hole. It is said that. Further, the other copper pipe 2d is inserted into the axial core position of the coil conductor 2a, and the lower end side surface thereof and the coil conductor 2a are in a communicating state with a communication hole.

この銅パイプ2c、2dを介して、コイル導体2aに後述する如く高周波電流が供給されると共に、コイル導体2a内の隙間とコイルカバー2b内に冷却水が循環供給されるようになっている。また、コイル支持部3に支持される銅パイプ2c、2dにより、本実施形態の冷却水供給部が形成されている。なお、コイル導体2aとしては、内部に隙間を有する前記潰し銅パイプに限らず、例えば銅の薄板等の内部に隙間を有さない中実状の適宜導体を使用することもでき、この場合は、銅パイプ2c、2dから供給される冷却水は、コイルカバー2b内にのみ循環供給されるように構成される。 A high-frequency current is supplied to the coil conductor 2a through the copper pipes 2c and 2d as described later, and cooling water is circulated and supplied to the gap in the coil conductor 2a and the coil cover 2b. Further, the cooling water supply portion of the present embodiment is formed by the copper pipes 2c and 2d supported by the coil support portion 3. The coil conductor 2a is not limited to the crushed copper pipe having a gap inside, and a solid solid conductor having no gap inside, for example, a thin copper plate, can be used. In this case, the coil conductor 2a can be used. The cooling water supplied from the copper pipes 2c and 2d is configured to be circulated and supplied only into the coil cover 2b.

前記コイル支持部3は、図1~図3に示すように、それぞれ絶縁材で形成された、コイル固定ナット3a、コイル固定板3b、センサ支持板3c及び分割状態のコイルクランプ3d等を有している。そして、コイル固定ナット3aやコイル固定板3bにより、前記コイル部2の基端部が銅パイプ2c、2d等を介して支持されている。この銅パイプ2c、2dの基端部に、前記ホルダー部4が連結固定されている。 As shown in FIGS. 1 to 3, the coil support portion 3 has a coil fixing nut 3a, a coil fixing plate 3b, a sensor support plate 3c, a divided coil clamp 3d, and the like, respectively, which are formed of an insulating material. ing. The base end portion of the coil portion 2 is supported by the coil fixing nut 3a and the coil fixing plate 3b via the copper pipes 2c, 2d, and the like. The holder portion 4 is connected and fixed to the base end portions of the copper pipes 2c and 2d.

このホルダー部4は、絶縁板4bを介して圧接固定された一対の銅板4aを有し、各銅板4aの基端部には、図示しない出力変成器に電気的及び機械的に接続可能な接続部としての端子部4cがそれぞれ設けられている。また、各銅板4aの外面には、銅板4a自体を冷却可能な角銅パイプからなる冷却パイプ4dがそれぞれロー付け固着され、この冷却パイプ4dの先端部が前記銅パイプ2c、2dに連通状態でそれぞれロー付け固着されると共に、各冷却パイプ4dの基端部にはホースジョイント4eがそれぞれロー付け固着されている。 The holder portion 4 has a pair of copper plates 4a that are pressure-welded and fixed via an insulating plate 4b, and a connection that can be electrically and mechanically connected to an output transformer (not shown) is connected to the base end portion of each copper plate 4a. A terminal portion 4c as a portion is provided respectively. Further, a cooling pipe 4d made of a square copper pipe capable of cooling the copper plate 4a itself is brazed and fixed to the outer surface of each copper plate 4a, and the tip of the cooling pipe 4d is communicated with the copper pipes 2c and 2d. Each is brazed and fixed, and a hose joint 4e is brazed and fixed to the base end of each cooling pipe 4d.

また、前記センサ支持板3cには、放射温度センサ6が図2の上下方向に指向して取り付けられている。この放射温度センサ6は、円筒形状の筐体の先端部に円板形状の透明なサフアィア窓が封止構造で接合されて内部に光伝送路を有するプローブ6aと、光検出部を含む制御部6b等を有している。そして、円筒形状のプローブ6aが、センサ支持板3cの上下方向の嵌合孔に嵌合されることで、放射温度センサ6がセンサ支持板3cで支持されている。 Further, a radiation temperature sensor 6 is attached to the sensor support plate 3c so as to face in the vertical direction of FIG. The radiation temperature sensor 6 includes a probe 6a having a disk-shaped transparent safia window bonded to the tip of a cylindrical housing in a sealed structure and having an optical transmission path inside, and a control unit including an optical detection unit. It has 6b and the like. The cylindrical probe 6a is fitted into the fitting hole in the vertical direction of the sensor support plate 3c, so that the radiation temperature sensor 6 is supported by the sensor support plate 3c.

また、センサ支持板3cの嵌合孔に対応して下方に位置するコイル固定板3b及びカバー固定ナット3aには、上下方向に貫通して放射光が透過(通過)可能な貫通孔(もしくは外周面に形成された貫通凹部)がそれぞれ設けられている。なお、放射温度センサ6は、センサ支持板3cの嵌合孔やコイル固定板3b等の貫通孔に対して、手動もしくは自動で上下方向に移動可能に配設され、放射温度センサ6の放射光の受光位置が所定値に設定可能となっている。また、放射温度センサ6は、以上説明した構成に限定されず、放射光を検知して温度を測定可能な適宜構成のセンサを使用することができる。 Further, the coil fixing plate 3b and the cover fixing nut 3a located below corresponding to the fitting hole of the sensor support plate 3c have a through hole (or an outer periphery) through which synchrotron radiation can pass through in the vertical direction. (Through recesses formed on the surface) are provided respectively. The radiation temperature sensor 6 is arranged so as to be manually or automatically movable in the vertical direction with respect to the fitting hole of the sensor support plate 3c and the through hole such as the coil fixing plate 3b, and the synchrotron radiation of the radiation temperature sensor 6 is provided. The light receiving position of is set to a predetermined value. Further, the radiation temperature sensor 6 is not limited to the configuration described above, and a sensor having an appropriate configuration capable of detecting synchrotron radiation and measuring the temperature can be used.

そして、センサ支持板3cの上面には、前記一対のコイルクランプ4dが着脱可能に固定され、放射温度センサ6や前記銅パイプ2c、2dの基端部が支持されている。なお、コイル支持部3の構成は、以上の例に限定されず、コイル固定板3bにセンサ支持板3cの機能を持たせる等、コイル部2や放射温度センサ6及びホルダー部4を支持可能な適宜の構成を採用することができる。 The pair of coil clamps 4d are detachably fixed on the upper surface of the sensor support plate 3c, and the base end portions of the radiation temperature sensor 6 and the copper pipes 2c and 2d are supported. The configuration of the coil support portion 3 is not limited to the above examples, and the coil portion 2, the radiation temperature sensor 6, and the holder portion 4 can be supported by providing the coil fixing plate 3b with the function of the sensor support plate 3c. An appropriate configuration can be adopted.

このように構成された前記加熱コイル1は、図1及び図2に示すように、ホルダー部4の一対の端子部4dを図示しない出力変成器の二次側端子に接続すると共に、コイル部2を金属製ボルトW(被加熱物で、以下ボルトWという)の軸孔Waに上方から嵌挿させて使用される。また、放射温度センサ6は、そのプローブ6aがボルトWの軸孔Wa内面方向に指向すると共に、プローブ6aでボルトWの軸孔Wa内部からの放射光を的確に受光できる位置に設定される。 In the heating coil 1 configured in this way, as shown in FIGS. 1 and 2, the pair of terminal portions 4d of the holder portion 4 are connected to the secondary terminal of an output transformer (not shown), and the coil portion 2 is connected. Is used by being fitted into the shaft hole Wa of a metal bolt W (a material to be heated, hereinafter referred to as a bolt W) from above. Further, the radiation temperature sensor 6 is set at a position where the probe 6a is directed toward the inner surface of the shaft hole Wa of the bolt W and the probe 6a can accurately receive the radiated light from the inside of the shaft hole Wa of the bolt W.

そして、出力変成器は、その一次側が図示しない可撓性の接続ケーブルを介して高周波誘導加熱装置のトランジスタインバータに電気的に接続されると共に、加熱コイル1のホルダー部4の一対のホースジョイント4eが、適宜のホースを介して例えば同誘導加熱装置内に配設した冷却水供給器にそれぞれ接続される。この状態で、トランジスタインバータと冷却水供給器を作動させると、トランジスタインバータから高周波電流が出力ケーブル、出力変成器、ホルダー部4及び銅パイプ2c、2dを介してコイル導体2に供給(給電)される。 The output transformer is electrically connected to the transistor inverter of the high frequency induction heating device via a flexible connection cable whose primary side is not shown, and the pair of hose joints 4e of the holder portion 4 of the heating coil 1 are connected. Is connected to, for example, a cooling water supply device arranged in the induction heating device via an appropriate hose. When the transistor inverter and the cooling water supply device are operated in this state, high-frequency current is supplied (powered) from the transistor inverter to the coil conductor 2 via the output cable, the output transformer, the holder portion 4 and the copper pipes 2c and 2d. To.

コイル導体2に高周波電流が供給されると、ボルトWの軸孔Wa内面に渦電流が誘起されて当該内面7aが誘導加熱される。このとき、コイル導体2が扁平銅パイプであることから、軸孔Wa内面に対向する導体の表面積を例えば単なる丸銅パイプ等に比較して大きく、すなわちコイル導体2から軸孔Wa内面に向けて照射される磁力線の数を増大できて、効率的な誘導加熱状態が得られることになる。 When a high-frequency current is supplied to the coil conductor 2, an eddy current is induced in the inner surface of the shaft hole Wa of the bolt W, and the inner surface 7a is induced and heated. At this time, since the coil conductor 2 is a flat copper pipe, the surface area of the conductor facing the inner surface of the shaft hole Wa is larger than that of, for example, a simple round copper pipe, that is, from the coil conductor 2 toward the inner surface of the shaft hole Wa. The number of irradiated magnetic field lines can be increased, and an efficient induction heating state can be obtained.

この誘導加熱による軸孔Wa内面の加熱温度は、放射温度センサ6で逐次測定され、その信号が高周波誘導加熱装置の制御部(図示せず)に入力される。そして、測定温度が制御部に予め設定してある設定温度となった時点で、例えばトランジスタインバータの作動を停止させることで設定温度となるように維持される。これにより、ボルトWの軸孔Wa内面が所定温度で誘導加熱されることになる。 The heating temperature of the inner surface of the shaft hole Wa by this induction heating is sequentially measured by the radiation temperature sensor 6, and the signal is input to the control unit (not shown) of the high frequency induction heating device. Then, when the measured temperature reaches a set temperature preset in the control unit, the set temperature is maintained by, for example, stopping the operation of the transistor inverter. As a result, the inner surface of the shaft hole Wa of the bolt W is induced and heated at a predetermined temperature.

このとき、放射光を受光する放射温度センサ6が、加熱コイル1のコイル支持部3に一体的に配設されると共に、放射光の指向方向がコイルカバー2bの外周側とボルトWの軸孔Wa内面(内部)間に指向し、かつ軸孔Wa内部からの放射光が的確に受光できるように設定されていることから、加熱コイル1をセットしたまま(加熱状態のまま)で軸孔Wa内部の所望位置(例えば軸方向の中央に近い位置)の加熱温度を精度良く逐次に測定できて、軸孔Wa内面の略全域を所望温度で略均一に加熱できることになる。 At this time, the radiation temperature sensor 6 that receives the radiated light is integrally arranged on the coil support portion 3 of the heating coil 1, and the direction of the radiated light is directed to the outer peripheral side of the coil cover 2b and the shaft hole of the bolt W. Since it is set so that it is directed between the inner surfaces (inside) of Wa and can receive synchrotron radiation from the inside of the shaft hole Wa accurately, the shaft hole Wa is set with the heating coil 1 set (heated state). The heating temperature at a desired position inside (for example, a position close to the center in the axial direction) can be measured sequentially with high accuracy, and substantially the entire inner surface of the shaft hole Wa can be heated substantially uniformly at a desired temperature.

一方、トランジスタインバータと例えば略同時に冷却水供給器が作動すると、冷却水が前記一方のホースジョイント4e、一方の冷却パイプ4d、銅パイプ2cを介してコイルカバー2b内に供給され、該カバー2b内を流通してコイル導体2aを冷却する。またこの冷却水は、銅パイプ2d、他方の冷却パイプ4d、他方のホースジョイント4e等を介して冷却水供給器に戻される。また、銅パイプ2cを介して供給される冷却水の一部は、銅パイプ2c、2dの前記連通孔を介してコイル導体2aの隙間内にも流通して、コイル導体2aが内部からも冷却される。 On the other hand, when the cooling water supply device is operated at substantially the same time as the transistor inverter, for example, the cooling water is supplied into the coil cover 2b via the one hose joint 4e, the one cooling pipe 4d, and the copper pipe 2c, and the inside of the cover 2b. To cool the coil conductor 2a. Further, the cooling water is returned to the cooling water supply device via the copper pipe 2d, the other cooling pipe 4d, the other hose joint 4e, and the like. Further, a part of the cooling water supplied via the copper pipe 2c also flows into the gap of the coil conductor 2a through the communication holes of the copper pipes 2c and 2d, and the coil conductor 2a is also cooled from the inside. Will be done.

これにより、加熱コイル1のコイル導体2a内に冷却水が流通する流路と、コイルカバー2b内に冷却水が流通する流路の二系統の冷却水流路が形成されることになる。このとき、冷却水はコイルカバー2b内を流通してコイル導体2aを冷却することから、コイル導体2aが冷却水中に浸漬状態で冷却されると共に、扁平な内部と表面に冷却水が確実に接触しつつ冷却され、コイル導体2aの発熱が効率的に抑制されることになる。なお、コイル導体2aとして、前述したような内部に隙間を有さない薄板銅板等を使用した場合の冷却水の流路は、コイルカバー2b内にのみに流通する一系統となり、この流路の冷却水がコイル導体2aの外周面全域が接触して冷却されることになる。 As a result, two cooling water flow paths are formed, one in which the cooling water flows in the coil conductor 2a of the heating coil 1 and the other in which the cooling water flows in the coil cover 2b. At this time, since the cooling water flows through the coil cover 2b to cool the coil conductor 2a, the coil conductor 2a is cooled in the cooling water in a state of being immersed in the cooling water, and the cooling water surely contacts the flat interior and the surface. It is cooled while being cooled, and the heat generation of the coil conductor 2a is efficiently suppressed. When a thin copper plate or the like having no internal gap as described above is used as the coil conductor 2a, the flow path of the cooling water becomes one system that circulates only in the coil cover 2b, and the flow path of this flow path. The entire outer peripheral surface of the coil conductor 2a is brought into contact with the cooling water to be cooled.

そして、このようにして加熱コイル1で軸孔Wa内面が加熱されたボルトWは、軸孔Waの軸方向全域が抜き取り作業に適した加熱温度に略均等に加熱されることから、ボルトの抜き取り作業を簡単に行うことがてきる。また、ボルトWの抜き取り時に、加熱コイル1が小型で持ち運び等が容易な出力変成器の出力端子に直接固定されていることから、複数設置された隣接するボルトW間の移動や設置及び作業開始や作業終了時の移動等が簡単となり、例えば多数のボルトWで固定されている蒸気タービン室内のフランジから、ボルトWが短時間かつ簡単に抜き取りできることになる。 Then, the bolt W whose inner surface of the shaft hole Wa is heated by the heating coil 1 in this way is heated substantially evenly to a heating temperature suitable for the extraction work in the entire axial direction of the shaft hole Wa, so that the bolt is extracted. It's easy to do the work. Further, since the heating coil 1 is directly fixed to the output terminal of the output transformer, which is small and easy to carry, when the bolt W is pulled out, it is possible to move, install, and start work between a plurality of adjacent bolts W installed. And movement at the end of work becomes easy. For example, bolts W can be easily removed from a flange in a steam turbine chamber fixed with a large number of bolts W in a short time.

このように、前記加熱コイル1によれば、コイル導体2aがコイルカバー2b内に内蔵されたコイル部2を支持するコイル支持部3に、放射光を受光する放射温度センサ6のプローブ6aが、ボルトの軸孔Wa内部に指向した状態で一体的に配設されているため、例えばコイルカバー2b内を流通する冷却水中にそのコイル導体2aが浸漬状態で冷却される加熱コイル1であっても、誘導加熱中のボルトWの軸孔Wa内面内部の加熱温度を加熱状態のままで精度良く、かつ加熱コイル1を軸孔Waから取り外すことなく簡単に温度測定できて、ボルトWに高精度な加熱状態を容易に得ることが可能になる。 As described above, according to the heating coil 1, the probe 6a of the radiation temperature sensor 6 that receives the radiated light is attached to the coil support portion 3 that supports the coil portion 2 in which the coil conductor 2a is built in the coil cover 2b. Since it is integrally arranged in a state of being oriented toward the inside of the shaft hole Wa of the bolt, for example, even if the heating coil 1 is cooled in the cooling water flowing in the coil cover 2b in the coil conductor 2a in the immersed state. The heating temperature inside the inner surface of the shaft hole Wa of the bolt W during induction heating can be accurately measured while the heating state remains, and the temperature can be easily measured without removing the heating coil 1 from the shaft hole Wa, which is highly accurate for the bolt W. It becomes possible to easily obtain a heated state.

特に、放射温度センサ6がコイル導体2aの軸芯方向(図2の上下方向)に移動調整可能に配設されているため、ボルトWの軸孔Wa内部の所定部位の温度をより精度良く測定することができ、一層高精度な加熱状態が得られると共に、各種ボルトWやその他ワークの軸孔に対応できて、加熱コイル1の汎用性を向上させることができる。 In particular, since the radiation temperature sensor 6 is arranged so as to be movable and adjustable in the axial core direction (vertical direction in FIG. 2) of the coil conductor 2a, the temperature of a predetermined portion inside the shaft hole Wa of the bolt W can be measured more accurately. It is possible to obtain a more accurate heating state, and it is possible to cope with various bolts W and shaft holes of other workpieces, and it is possible to improve the versatility of the heating coil 1.

さらに、コイル支持部3が、外面に冷却水循環用の冷却パイプ4dを有するホルダー部4の先端側に連結接続され、ホルダー部4の基端側に出力変成器が接続可能な端子部4cが設けられているため、加熱コイル1を出力変成器の出力端子に電気的及び機械的に容易に接続できて、例えばタービン室内のフランジの移動不可能なボルトWの軸孔Waであっても、加熱コイル1と出力変成器を各ボルトW近傍に配置して誘導加熱でき、使い勝手に優れた加熱コイル1を得ることができる。 Further, the coil support portion 3 is connected and connected to the tip end side of the holder portion 4 having the cooling water circulation cooling pipe 4d on the outer surface, and the terminal portion 4c to which the output transformer can be connected is provided on the base end side of the holder portion 4. Therefore, the heating coil 1 can be easily electrically and mechanically connected to the output terminal of the output transformer, and even if the shaft hole Wa of the unmovable bolt W of the flange in the turbine chamber is heated, for example. The coil 1 and the output transformer can be arranged in the vicinity of each bolt W for induction heating, and the heating coil 1 having excellent usability can be obtained.

また、前記実施形態の加熱コイル1のコイル部2の構成により、次のような作用効果を得ることができる。すなわち、コイル部2をボルトWの軸孔Wa内に挿入配置した状態で、コイル導体2aにトランジスタインバータから高周波電流を供給すると共に、冷却水供給器からコイルカバー2b内とコイル導体2aの隙間内に冷却水を供給して、ボルトWの軸孔Wa内面を誘導加熱するため、コイル導体2aの外周面の全域と隙間内面を冷却水で冷却できて、コイル導体2aの通電時の発熱を効果的に抑制しその加熱効率を高めることができる。 In addition, the following effects can be obtained by the configuration of the coil portion 2 of the heating coil 1 of the above embodiment. That is, in a state where the coil portion 2 is inserted and arranged in the shaft hole Wa of the bolt W, a high-frequency current is supplied from the transistor inverter to the coil conductor 2a, and at the same time, in the gap between the coil cover 2b and the coil conductor 2a from the cooling water supply device. Since cooling water is supplied to the coil conductor W to induce and heat the inner surface of the shaft hole Wa of the bolt W, the entire outer peripheral surface of the coil conductor 2a and the inner surface of the gap can be cooled by the cooling water, and the heat generated when the coil conductor 2a is energized is effective. The heating efficiency can be increased.

また同時に、新たな冷却水の流路の構成により、コイル支持部3の外径を従来例のように大きくする必要がないため、コイル支持部3の小型化を図って加熱コイル1の運搬や設置が容易に行えたり、加熱コイル1の使用範囲を広めることができて、各種設置状態のボルトW等の軸孔Waの誘導加熱に簡単に利用できる等、加熱コイル1の汎用性を大幅に向上させることが可能になる。 At the same time, since it is not necessary to increase the outer diameter of the coil support portion 3 as in the conventional example due to the new configuration of the cooling water flow path, the coil support portion 3 can be miniaturized and the heating coil 1 can be transported. The versatility of the heating coil 1 is greatly enhanced, such as easy installation, widening of the range of use of the heating coil 1, and easy use for induction heating of shaft holes Wa such as bolts W in various installed states. It will be possible to improve.

また、コイル導体2aを、丸(円形)銅パイプを扁平状に潰した潰し銅パイプか、もしくは断面長方形状の角銅パイプ等で形成すれば、丸銅パイプを潰して巻回したり、あるいは断面長方形状(扁平形状)の角銅パイプを巻回することでコイル状導体2aを容易に形成することができて、加熱コイル1のコストアップを抑えることが可能になる。また、コイル導体2aとして薄板銅板等の忠実状の導体を使用すれば、加熱効率を一層高めることができると共に、各種形態の導体を使用できる等、使い勝手に優れた加熱コイル1を得ることができる。 Further, if the coil conductor 2a is formed of a crushed copper pipe obtained by crushing a round (circular) copper pipe into a flat shape, or a square copper pipe having a rectangular cross section, the round copper pipe can be crushed and wound or cross-sectionally formed. By winding a rectangular (flat) square copper pipe, the coiled conductor 2a can be easily formed, and the cost increase of the heating coil 1 can be suppressed. Further, if a faithful conductor such as a thin copper plate is used as the coil conductor 2a, the heating efficiency can be further improved, and various types of conductors can be used, so that the heating coil 1 having excellent usability can be obtained. ..

また、コイル導体2aが、その基端側に銅パイプ2c、2dの先端が電気的及び機械的に接続され、その先端側に当該コイル導体2aの軸芯位置に配置された銅パイプ2dの先端が電気的及び機械的に接続されて、両銅パイプ2c、2dに冷却水の流路が形成されるため、銅パイプ2c、2dの先端部にコイル導体2aの両端部を電気的に接続しつつ機械的に安定支持することができると共に、銅パイプ2c、2dを介して冷却水を良好に流通させることができて、加熱コイル1に安定した加熱状態を得ることができる。 Further, the tip of the copper pipe 2c and 2d of the coil conductor 2a is electrically and mechanically connected to the base end side thereof, and the tip of the copper pipe 2d arranged at the axial core position of the coil conductor 2a on the tip end side thereof. Are electrically and mechanically connected to form a cooling water flow path in both copper pipes 2c and 2d, so that both ends of the coil conductor 2a are electrically connected to the tips of the copper pipes 2c and 2d. At the same time, it can be mechanically and stably supported, and cooling water can be satisfactorily circulated through the copper pipes 2c and 2d, so that a stable heated state can be obtained in the heating coil 1.

さらに、銅パイプ2c、2dとコイル導体2aとの接続部に、各銅パイプ2c、2dの内部空間とコイル導体2aの隙間とを連通する連通孔を設けることで、銅パイプ2c、2dとコイル導体2a間に冷却水を流通できて、冷却水をコイルカバー2b内でより効率的に供給循環させて、コイル導体2aの冷却効果を一層高めることができる。 Further, by providing a communication hole for communicating the internal space of each copper pipe 2c and 2d and the gap of the coil conductor 2a at the connection portion between the copper pipe 2c and 2d and the coil conductor 2a, the copper pipe 2c and 2d and the coil are provided. Cooling water can flow between the conductors 2a, and the cooling water can be supplied and circulated more efficiently in the coil cover 2b, so that the cooling effect of the coil conductor 2a can be further enhanced.

また、冷却水供給器からの冷却水が、コイル導体2aの隙間及び又はコイルカバー2bの内部空間に供給可能であるため、コイルカバー2b内に冷却水を二系統で供給することができて、ボルトWの形態等に応じて冷却系統を設定でき、コイル導体2aの冷却効果をより一層高めることができる。このとき、コイル導体2aの隙間やコイルカバー2b内への冷却水の供給を、コイルカバー2b内の冷却水の温度に基づいて制御するように構成すれば、コイル導体2aの冷却状態に応じた最適条件での冷却が可能となる。 Further, since the cooling water from the cooling water supply device can be supplied to the gap of the coil conductor 2a and / or the internal space of the coil cover 2b, the cooling water can be supplied into the coil cover 2b in two systems. The cooling system can be set according to the form of the bolt W and the like, and the cooling effect of the coil conductor 2a can be further enhanced. At this time, if the gap between the coil conductor 2a and the supply of the cooling water into the coil cover 2b are controlled based on the temperature of the cooling water in the coil cover 2b, the cooling state of the coil conductor 2a can be adjusted. Cooling under optimum conditions is possible.

図5~図7は、本発明に係わる誘導加熱コイルの一実施形態を示し、被加熱物の外面(外径面)を誘導加熱するための加熱コイルである。以下、これについて説明する。この誘導加熱コイル21(加熱コイル21という)は、所定外径で所定有効長さのコイル部22と、このコイル部22の外周側を覆う二重円筒形状のコイルカバー23と、このコイルカバー23に設けられた電極カバー24と、冷却水供給部25及び放射温度センサ26等を備えている。 5 to 7 show an embodiment of the induction heating coil according to the present invention, and is a heating coil for inductively heating the outer surface (outer diameter surface) of the object to be heated. This will be described below. The induction heating coil 21 (referred to as a heating coil 21) includes a coil portion 22 having a predetermined outer diameter and a predetermined effective length, a double cylindrical coil cover 23 covering the outer peripheral side of the coil portion 22, and the coil cover 23. It is provided with an electrode cover 24 provided in the above, a cooling water supply unit 25, a radiation temperature sensor 26, and the like.

前記コイル部22は、図6及び図7に示すように、所定板厚(例えば1~5mm程度)の銅板を所定回数軸方向に沿って一定ピッチで巻回したコイル導体22aを有している。このとき、コイル導体22aは、巻回端部が軸方向の略中央位置まで延び、該位置から略90度外側に折り曲げられて外周方向に直線的に引き出されることで、その両端部に一対の引出部22bが形成され、この引出部22bが前記電極カバー24に後述する如く支持されている。 As shown in FIGS. 6 and 7, the coil portion 22 has a coil conductor 22a in which a copper plate having a predetermined plate thickness (for example, about 1 to 5 mm) is wound at a constant pitch along a predetermined number of axial directions. .. At this time, the coil conductor 22a has a pair of winding ends extending to a substantially central position in the axial direction, bent outward by approximately 90 degrees from that position, and linearly pulled out in the outer peripheral direction. A drawer portion 22b is formed, and the drawer portion 22b is supported by the electrode cover 24 as described later.

前記コイルカバー23は、それぞれ絶縁材で形成された、内側カバー23aと外側カバー23b及び軸方向両側面の一対の側面カバー23c、23dを有している。内側カバー23aは、その板厚が比較的薄い円筒形状に形成され、外側カバー23bは、内側カバー23aより大きい板厚の円筒形状に形成されると共に、その外周面の軸(長手)方向の中央位置には、内外に連通して前記電極カバー24を取り付けるための電極取付孔が形成されている。 The coil cover 23 has an inner cover 23a, an outer cover 23b, and a pair of side surface covers 23c and 23d on both sides in the axial direction, which are each made of an insulating material. The inner cover 23a is formed in a cylindrical shape having a relatively thin plate thickness, and the outer cover 23b is formed in a cylindrical shape having a plate thickness larger than that of the inner cover 23a, and the outer peripheral surface thereof is centered in the axial (longitudinal) direction. At the position, an electrode mounting hole for mounting the electrode cover 24 is formed so as to communicate inside and outside.

また、前記一対の側面カバー23c、23dは、左右対称形状の所定板厚の板体で円環形状に形成され、その中心位置には、被加熱物(図示せず)を挿入配置するための開口が形成されると共に、この開口の内面部分には前記内側カバー23aの両端部が当接する段差状の凹部が円環状に形成されている。この両側面カバー23c、23dと内側カバー23a両端部との当接面には、Oリング(オーリング)が嵌装されている。 Further, the pair of side cover 23c and 23d are formed in a ring shape by a plate body having a symmetrical plate thickness and a predetermined plate thickness, and an object to be heated (not shown) is inserted and arranged at the center position thereof. An opening is formed, and a stepped recess with which both ends of the inner cover 23a abut is formed in an annular shape on the inner surface portion of the opening. An O-ring is fitted on the contact surface between the both side surface covers 23c and 23d and both ends of the inner cover 23a.

また、一対の側面カバー23c、23dの外周縁の内面には、前記外側カバー23bの両端部が当接する段差状の凹部が円環状に形成され、当接状態の両側面カバー23c、23dと外側カバー23bの両端部とが、円周方向に例えば8箇所でボルトにより固定されている。この両側面カバー23c、23dと外側カバー23bの両端部の当接面にも、Oリングが嵌装されている。 Further, on the inner surface of the outer peripheral edge of the pair of side cover 23c and 23d, stepped recesses with which both ends of the outer cover 23b abut are formed in an annular shape, and the both side surface covers 23c and 23d in the abutted state and the outside. Both ends of the cover 23b are fixed by bolts at, for example, eight points in the circumferential direction. O-rings are also fitted to the contact surfaces at both ends of the both side covers 23c and 23d and the outer cover 23b.

前記電極カバー24は、図5及び図7に示すように、外側カバー23b側が開口し反外側カバー23b側が底壁24aで閉塞された有底円筒形状に形成され、端子として機能する一対の電極24b、24cと、コイルクランプ24d等を有している。一対の電極24b、24cは、電極カバー24の底壁24aに設けた一対の貫通孔を貫通して電極カバー24外にそれぞれ所定寸法突出すると共に、電極カバー24の内部において、前記コイル部22の引出部22bの先端と加締め端子等により電気的及び機械的に接続されている。 As shown in FIGS. 5 and 7, the electrode cover 24 is formed in a bottomed cylindrical shape in which the outer cover 23b side is open and the anti-outer cover 23b side is closed by the bottom wall 24a, and the pair of electrodes 24b functions as terminals. , 24c, coil clamp 24d and the like. The pair of electrodes 24b and 24c penetrate the pair of through holes provided in the bottom wall 24a of the electrode cover 24 and project to the outside of the electrode cover 24 by predetermined dimensions, and inside the electrode cover 24, the coil portion 22 It is electrically and mechanically connected to the tip of the drawer portion 22b by a crimping terminal or the like.

なお、電極カバー24は、その開口側に設けた鍔部が、外側カバー23bの前記電極取付孔に設けた段差状の凹部上に当接し、この当接状態で鍔部と外側カバー23bとが複数個のボルトにより固定されている。また、電極カバー24の開口側の周面と外側カバー23bの電極取付孔の内周面間には、Oリングが嵌装されると共に、底壁24aの前記電極24c、24dが貫通する電極貫通孔の開口端部にもOリングが嵌装されている。 In the electrode cover 24, the flange portion provided on the opening side abuts on the stepped recess provided in the electrode mounting hole of the outer cover 23b, and the flange portion and the outer cover 23b come into contact with each other in this abutting state. It is fixed by multiple bolts. Further, an O-ring is fitted between the peripheral surface on the opening side of the electrode cover 24 and the inner peripheral surface of the electrode mounting hole of the outer cover 23b, and the electrodes 24c and 24d of the bottom wall 24a penetrate the electrodes. An O-ring is also fitted at the open end of the hole.

これらのOリング等により、組み立てられたコイルカバー23のコイル部22の周囲に気密性を有する冷却空間としての内部空間30が形成されると共に、前記電極貫通孔の開口端部に嵌装されるOリングにより、内部空間30内の冷却水の、電極カバー24内部から電極24b、24cの外周面に沿った漏洩が防止されるようになっている。なお、図6及び図7の記載から明らかなように、コイル導体22aは内側カバー23aの外周面に近接した状態で巻回配置されおり、加熱空間31内に収容配置される被加熱物の加熱効率が高まるように構成されている。 By these O-rings and the like, an internal space 30 as an airtight cooling space is formed around the coil portion 22 of the assembled coil cover 23, and is fitted to the open end portion of the electrode through hole. The O-ring prevents the cooling water in the internal space 30 from leaking from the inside of the electrode cover 24 along the outer peripheral surfaces of the electrodes 24b and 24c. As is clear from the description of FIGS. 6 and 7, the coil conductor 22a is wound and arranged in a state close to the outer peripheral surface of the inner cover 23a, and the heated object accommodated and arranged in the heating space 31 is heated. It is configured to be more efficient.

また、電極カバー24の底壁24a外側に突出する銅パイプや銅棒等からなる前記一対の電極24b、24cは、電極カバー24の底壁24a外面に固定した前記コイルクランプ24dで電極カバー24に支持されている。そして、この一対の電極24b、24cに、例えば図示しない可撓性のケーブルや必要に応じて配置された出力変成器等を介してトランジスタインバータの出力端子に電気的に接続されるようになっている。これらにより、内側カバー23aと外側カバー23b及び両側面カバー23c、23dで構成されたコイルカバー23の前記内部空間30内にコイル部22が収容(内蔵)配置された状態となっている。 Further, the pair of electrodes 24b and 24c made of a copper pipe, a copper rod, or the like projecting to the outside of the bottom wall 24a of the electrode cover 24 are attached to the electrode cover 24 by the coil clamp 24d fixed to the outer surface of the bottom wall 24a of the electrode cover 24. It is supported. Then, the pair of electrodes 24b and 24c are electrically connected to the output terminal of the transistor inverter via, for example, a flexible cable (not shown) or an output transformer arranged as needed. There is. As a result, the coil portion 22 is housed (built-in) in the internal space 30 of the coil cover 23 composed of the inner cover 23a, the outer cover 23b, and the side surface covers 23c and 23d.

前記冷却水供給部25は、前記コイルカバー23の両側面カバー23c、23dに、それぞれ対向した状態で設けられた例えば合計4個のホースジョイント25a~25dを有している。このホースジョイント25a~25dは、その取付側が前記コイルカバー3の内部空間30に対応した位置の両側面カバー23c、23dの取付孔にそれぞれ取り付けられ、そのジョイント部が両側面カバー23c、23dの外面側に突出状態とされている。この各ホースジョイント25a~25dが、図示しないホース等を介して前記トランジスタインバータに併設して設けられる冷却水供給器の冷却タンク等に接続されている。 The cooling water supply unit 25 has, for example, a total of four hose joints 25a to 25d provided on both side surface covers 23c and 23d of the coil cover 23 in a state of facing each other. The hose joints 25a to 25d are attached to the mounting holes of the side covers 23c and 23d at positions whose mounting sides correspond to the internal space 30 of the coil cover 3, respectively, and the joint portions are the outer surfaces of the cover 23c and 23d on both sides. It is in a protruding state to the side. The hose joints 25a to 25d are connected to a cooling tank or the like of a cooling water supply device provided alongside the transistor inverter via a hose or the like (not shown).

また、前記放射温度センサ26は、前記放射温度センサ6と同様に、プローブ26aや制御部26bを有して、前記コイルカバー23の軸方向(長手方向)の略中央位置の外周面に、前記電極カバー24と90度の角度を有して配設されている。このとき、コイルカバー23の外周面には図5に示す凹部32が形成され、この凹部32にセンサ支持板33を介して放射温度センサ26が支持されている。 Further, the radiation temperature sensor 26 has a probe 26a and a control unit 26b like the radiation temperature sensor 6, and is located on an outer peripheral surface of the coil cover 23 at a substantially central position in the axial direction (longitudinal direction). It is arranged at an angle of 90 degrees with the electrode cover 24. At this time, a recess 32 shown in FIG. 5 is formed on the outer peripheral surface of the coil cover 23, and the radiation temperature sensor 26 is supported by the recess 32 via the sensor support plate 33.

また、放射温度センサ26のプローブ26aは、コイルカバー23の内部空間30に貫通状態で配置されると共に、プローブ26aの先端が内側カバー23aに設けた開口から加熱空間31内に気密状態で露出配置されている。これにより、加熱空間31内に貫通配置された被加熱物の軸方向の例えば略中央部分からの放射光がプローブ26aで受光され、外側ケース23bの外面側の制御部26bで加熱温度として測定される。 Further, the probe 26a of the radiation temperature sensor 26 is arranged in a penetrating state in the internal space 30 of the coil cover 23, and the tip of the probe 26a is exposed in the heating space 31 from the opening provided in the inner cover 23a in an airtight state. Has been done. As a result, synchrotron radiation from, for example, a substantially central portion in the axial direction of the object to be heated, which is arranged through the heating space 31, is received by the probe 26a and measured as the heating temperature by the control unit 26b on the outer surface side of the outer case 23b. To.

この加熱コイル21は、次のようにして使用される。すなわち、加熱コイル21の前記一対の電極24b、24cには、例えば銅板からなる端子板が固定され、この端子板が前記トランジスタインバータの出力端子に接続された出力変成器の出力端子等が接続される。また、加熱コイル21の前記ホースジョイント25a~2dは、前記冷却水供給器にホース等により接続される。 The heating coil 21 is used as follows. That is, a terminal plate made of, for example, a copper plate is fixed to the pair of electrodes 24b and 24c of the heating coil 21, and the output terminal of an output transformer to which this terminal plate is connected to the output terminal of the transistor inverter is connected. To. Further, the hose joints 25a to 2d of the heating coil 21 are connected to the cooling water supply device by a hose or the like.

このとき、加熱コイル21の側面カバー23c及び側面カバー23dに設けた一方の上下一対のホースジョイント25a、25bが、冷却水の供給(給水)用として使用され、側面カバー23d及び側面カバー23dに設けた他方の上下一対のホースジョイント25c、25dが、冷却水の排出(排水)用として使用される。これにより、容積の大きな内部空間30内に冷却水の比較的緩やかな流れが生成され、この冷却水の流れによりコイル導体22aの外周面が冷却される。 At this time, one pair of upper and lower hose joints 25a and 25b provided on the side cover 23c and the side cover 23d of the heating coil 21 are used for supplying (water supply) cooling water, and are provided on the side cover 23d and the side cover 23d. The other pair of upper and lower hose joints 25c and 25d are used for discharging (draining) cooling water. As a result, a relatively gentle flow of cooling water is generated in the large internal space 30, and the outer peripheral surface of the coil conductor 22a is cooled by this flow of cooling water.

このコイル導体22aの冷却状態で、前記トランジスタインバータから出力変成器等を介して電極24b、24cに高周波電流が供給されると、加熱コイル21の前記加熱空間31内に配置された例えば円筒形状の被加熱物の外周面に渦電流が誘起されて被加熱物が誘導加熱される。この誘導加熱時に、コイル部22のコイル導体22aが内側カバー23aに近接して、該コイル導体22aの表裏面から放射される磁力線を被加熱物の外周面に効率的に照射できることと、コイル導体22aの発熱自体が効果的に抑制されることから、被加熱物の誘導加熱効率が十分に高められる。 When a high-frequency current is supplied from the transistor inverter to the electrodes 24b and 24c via an output transformer or the like in the cooled state of the coil conductor 22a, for example, a cylindrical shape arranged in the heating space 31 of the heating coil 21. An eddy current is induced on the outer peripheral surface of the object to be heated to induce and heat the object to be heated. At the time of this induction heating, the coil conductor 22a of the coil portion 22 is close to the inner cover 23a, and the magnetic field lines radiated from the front and back surfaces of the coil conductor 22a can efficiently irradiate the outer peripheral surface of the object to be heated, and the coil conductor. Since the heat generation itself of 22a is effectively suppressed, the induction heating efficiency of the object to be heated is sufficiently enhanced.

また、加熱コイル21による誘導加熱時に、被加熱物の外面の加熱温度は、放射温度センサ26で逐次測定され、その信号が高周波誘導加熱装置の制御部に入力される。そして、測定温度が制御部に予め設定してある設定温度となった時点で、例えばトランジスタインバータの作動を停止させる。これにより、被加熱物の外面が所定温度で加熱される。 Further, at the time of induction heating by the heating coil 21, the heating temperature of the outer surface of the object to be heated is sequentially measured by the radiation temperature sensor 26, and the signal is input to the control unit of the high frequency induction heating device. Then, when the measured temperature reaches the set temperature preset in the control unit, for example, the operation of the transistor inverter is stopped. As a result, the outer surface of the object to be heated is heated at a predetermined temperature.

このとき、この加熱コイル21の場合、誘導加熱時に放射温度センサ26が、加熱コイル21のコイルカバー23の外面にセンサ支持部33を介して一体的に配設されると共に、被加熱物からの放射光を加熱空間31内に露出状態のプローブ26aの先端で受光することができ、被加熱物の外周面の軸方向の中心部分の温度を精度良く逐次に測定できて、被加熱物の外面を所望温度で加熱できることになる。なお、放射温度センサ26のプローブ26aは、コイルカバー23内のコイル導体22a等に干渉しない状態で配設されることは言うまでもない。 At this time, in the case of the heating coil 21, the radiation temperature sensor 26 is integrally disposed on the outer surface of the coil cover 23 of the heating coil 21 via the sensor support portion 33 at the time of induction heating, and is also provided from the object to be heated. Radiated light can be received by the tip of the probe 26a exposed in the heating space 31, and the temperature of the central portion of the outer peripheral surface of the object to be heated in the axial direction can be measured accurately and sequentially, and the outer surface of the object to be heated can be measured. Can be heated at a desired temperature. Needless to say, the probe 26a of the radiation temperature sensor 26 is arranged so as not to interfere with the coil conductor 22a or the like in the coil cover 23.

この実施形態の加熱コイル21によれば、コイル導体22aが巻回されたコイル部22の内側と外側及び両側面を気密性を有して覆うと共に内周側に被加熱物を配置可能な加熱空間31を有するコイルカバー23の内部空間30内に冷却水を循環供給し、コイル導体22aを冷却水で冷却しつつ、コイルカバー23の軸方向の所定位置に配設され、加熱空間31内に挿入配設された被加熱物からの放射光を受光するプローブ26aが被加熱物の外周面に指向した放射温度センサ26と備えるため、例えばコイルカバー23内を流通する冷却水中にそのコイル部22が浸漬状態で冷却される加熱コイル21であっても、放射温度センサ26のプローブ26aで、誘導加熱中の被加熱物の外面所定位置の加熱温度を加熱状態のままで精度良く測定して、被加熱物に高精度な加熱状態を容易に得ることが可能になる。 According to the heating coil 21 of this embodiment, the coil conductor 22a covers the inside, the outside, and both side surfaces of the wound coil portion 22 with airtightness, and the heated object can be arranged on the inner peripheral side. Cooling water is circulated and supplied into the internal space 30 of the coil cover 23 having the space 31, and while the coil conductor 22a is cooled by the cooling water, the coil cover 23 is arranged at a predetermined position in the axial direction in the heating space 31. Since the probe 26a that receives the radiant light from the inserted and disposed object to be heated is provided with the radiation temperature sensor 26 that is directed to the outer peripheral surface of the object to be heated, for example, the coil portion 22 is in the cooling water flowing in the coil cover 23. Even if the heating coil 21 is cooled in the immersed state, the probe 26a of the radiant temperature sensor 26 accurately measures the heating temperature at a predetermined position on the outer surface of the object to be heated during induction heating in the heated state. It becomes possible to easily obtain a highly accurate heated state for the object to be heated.

また、コイル部22のコイル導体22aを板状導体等で形成でき、これらがコイルカバー23内に供給される冷却水中に浸漬状態で冷却可能に構成されているため、コイル導体22aを効果的に冷却できて、加熱コイル21の加熱効率を十分に高めることができると共に、使い勝手に優れた加熱コイル21を得ることができる。さらに、この加熱コイル21においても、コイル導体22aを冷却水に浸漬状態で冷却したり、コイル導体22aとして板体や扁平パイプを使用できることから、前記基本概念の加熱コイル1と略同様の作用効果を得ることができる。 Further, since the coil conductor 22a of the coil portion 22 can be formed of a plate-shaped conductor or the like and can be cooled in a state of being immersed in the cooling water supplied in the coil cover 23, the coil conductor 22a can be effectively used. It can be cooled, the heating efficiency of the heating coil 21 can be sufficiently increased, and the heating coil 21 having excellent usability can be obtained. Further, also in this heating coil 21, since the coil conductor 22a can be cooled in a state of being immersed in cooling water and a plate body or a flat pipe can be used as the coil conductor 22a, the operation and effect are substantially the same as those of the heating coil 1 of the basic concept. Can be obtained.

なお、前記実施形態における、各部の構成は一例であって、例えばコイル導体22aの巻数を軸方向に一定(均一)ではなく、軸方向中央部分の巻数を密とし両側部分の巻数の粗とする等、軸方向に巻数を異ならせて、軸孔の軸方向内面をより均一に加熱できる構成としたり、被加熱物の形態に応じたコイル導体22aとして、内部隙間を有する導体や内部隙間を有さない適宜の導体を使用する等、同等の作用効果が得られかつ本発明に係わる各発明の要旨を逸脱しない範囲で適宜に変更することができる。 The configuration of each part in the above embodiment is an example. For example, the number of turns of the coil conductor 22a is not constant (uniform) in the axial direction, but the number of turns in the central part in the axial direction is dense and the number of turns on both sides is rough. For example, by varying the number of turns in the axial direction, the inner surface in the axial direction of the shaft hole can be heated more uniformly, or as the coil conductor 22a according to the form of the object to be heated, a conductor having an internal gap or an internal gap is provided. It can be appropriately changed as long as the same effect and effect can be obtained and the gist of each invention related to the present invention is not deviated, such as by using an appropriate conductor.

本発明は、特に被加熱物の外面等を誘導加熱する必要がある全ての金属製品に利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used particularly for all metal products that require induction heating of the outer surface of an object to be heated.

1・・・誘導加熱コイル、2・・・コイル部、2a・・・コイル導体、2b・・・コイルカバー、2c、2d・・・銅パイプ、3・・・コイル支持部、3a・・・コイル固定ナット、3b・・・コイル固定板、3c・・・センサ支持板、3d・・・コイルクランプ、4・・・ホルダー部、4a・・・銅板、4c・・・端子部、4d・・・冷却パイプ、4e・・・ホースジョイント、6・・・放射温度センサ、6a・・・プローブ、6b・・・制御部、21・・・誘導加熱コイル、22・・・コイル部、22a・・・コイル導体、23・・・コイルカバー、23a・・・内側カバー、23b・・・外側カバー、23c、23d・・・側面カバー、24・・・電極カバー、24a、24b・・・電極、25・・・冷却水供給部、25a~25d・・・ホースジョイント、26・・・放射温度センサ、26a・・・プローブ、26b・・・制御部、30・・・内部空間、31・・・加熱空間、33・・・センサ支持板、W・・・金属製ボルト、Wa・・・軸孔、 1 ... Induction heating coil, 2 ... Coil part, 2a ... Coil conductor, 2b ... Coil cover, 2c, 2d ... Copper pipe, 3 ... Coil support part, 3a ... Coil fixing nut, 3b ... Coil fixing plate, 3c ... Sensor support plate, 3d ... Coil clamp, 4 ... Holder part, 4a ... Copper plate, 4c ... Terminal part, 4d ...・ Cooling pipe, 4e ... hose joint, 6 ... radiation temperature sensor, 6a ... probe, 6b ... control unit, 21 ... induction heating coil, 22 ... coil unit, 22a ... Coil conductor, 23 ... Coil cover, 23a ... Inner cover, 23b ... Outer cover, 23c, 23d ... Side cover, 24 ... Electrode cover, 24a, 24b ... Electrode, 25 ... Cooling water supply unit, 25a to 25d ... Hose joint, 26 ... Radiation temperature sensor, 26a ... Probe, 26b ... Control unit, 30 ... Internal space, 31 ... Heating Space, 33 ... Sensor support plate, W ... Metal bolt, Wa ... Shaft hole,

Claims (5)

板状の導体で所定巻数に形成されたコイル部と、該コイル部の内側と外側及び両側面を気密性を有して覆うと共に内周側に被加熱物を配置可能な加熱空間を有するコイルカバーと、該コイルカバーの内側カバーと外側カバー間に形成される内部空間に冷却媒体を循環供給可能な冷却媒体供給部と、備え、
前記コイルカバーの前記加熱空間に被加熱物を配置した状態で、前記コイル部に高周波電流を供給すると共に、前記冷却媒体供給部から前記コイルカバーの前記内部空間に冷却媒体を供給して、前記加熱空間内に配置された被加熱物を誘導加熱することを特徴とする誘導加熱コイル。
A coil having a coil portion formed of a plate-shaped conductor in a predetermined number of turns, and a coil having a heating space in which an object to be heated can be placed on the inner peripheral side while covering the inside, outside and both side surfaces of the coil portion with airtightness. A cover and a cooling medium supply unit capable of circulating and supplying a cooling medium to an internal space formed between the inner cover and the outer cover of the coil cover are provided.
In a state where the object to be heated is arranged in the heating space of the coil cover, a high frequency current is supplied to the coil portion, and a cooling medium is supplied from the cooling medium supply unit to the internal space of the coil cover to supply the cooling medium. An induction heating coil characterized by inductively heating an object to be heated arranged in a heating space.
前記コイル部は、薄板かもしくは内部に扁平な隙間を有する扁平パイプの板状導体を円形もしくは馬蹄形に所定回数巻回もしくは連結して構成されることを特徴とする請求項1に記載の誘導加熱コイル。 The induction heating according to claim 1, wherein the coil portion is formed by winding or connecting a thin plate or a plate-shaped conductor of a flat pipe having a flat gap inside in a circular or horseshoe shape a predetermined number of times. coil. 前記コイルカバーの軸方向の所定位置に、前記加熱空間内に配置された被加熱物からの放射光を受光可能なプローブを有する放射温度センサが、前記被加熱物の外周面に指向した状態で配設されていることを特徴とする請求項1または2に記載の誘導加熱コイル。 A radiation temperature sensor having a probe capable of receiving synchrotron radiation from a heated object arranged in the heated space at a predetermined position in the axial direction of the coil cover is directed toward the outer peripheral surface of the heated object. The induction heating coil according to claim 1 or 2, wherein the coil is arranged. 前記放射温度センサは、前記プローブの先端が前記コイルカバーの内側カバーに設けた開口から前記加熱空間内に気密状態で露出すると共に前記コイル部に干渉しない状態で配設されていることを特徴とする請求項3に記載の誘導加熱コイル。 The radiation temperature sensor is characterized in that the tip of the probe is exposed in the heating space from an opening provided in the inner cover of the coil cover in an airtight state and is arranged so as not to interfere with the coil portion. The induction heating coil according to claim 3. 前記コイル部は、所定板厚の銅板を所定回数したコイル導体を有し、該コイル導体が前記内側カバーの外周面に近接して配置されていることを特徴とする請求項1ないし4のいずれかに記載の誘導加熱コイル Any of claims 1 to 4, wherein the coil portion has a coil conductor in which a copper plate having a predetermined plate thickness is formed a predetermined number of times, and the coil conductor is arranged close to the outer peripheral surface of the inner cover. Induction heating coil described in
JP2021193792A 2018-02-04 2021-11-30 induction heating coil Active JP7231901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021193792A JP7231901B2 (en) 2018-02-04 2021-11-30 induction heating coil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018017746A JP7045128B2 (en) 2018-02-04 2018-02-04 Induction heating coil
JP2021193792A JP7231901B2 (en) 2018-02-04 2021-11-30 induction heating coil

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018017746A Division JP7045128B2 (en) 2018-02-04 2018-02-04 Induction heating coil

Publications (2)

Publication Number Publication Date
JP2022028893A true JP2022028893A (en) 2022-02-16
JP7231901B2 JP7231901B2 (en) 2023-03-02

Family

ID=87852808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021193792A Active JP7231901B2 (en) 2018-02-04 2021-11-30 induction heating coil

Country Status (1)

Country Link
JP (1) JP7231901B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282689A (en) * 1985-10-04 1987-04-16 日本電子株式会社 Induction heater
JPH0633395U (en) * 1992-10-01 1994-04-28 株式会社ミヤデン High frequency induction heating coil
JP2019133902A (en) * 2018-02-04 2019-08-08 株式会社ミヤデン Induction heating coil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282689A (en) * 1985-10-04 1987-04-16 日本電子株式会社 Induction heater
JPH0633395U (en) * 1992-10-01 1994-04-28 株式会社ミヤデン High frequency induction heating coil
JP2019133902A (en) * 2018-02-04 2019-08-08 株式会社ミヤデン Induction heating coil

Also Published As

Publication number Publication date
JP7231901B2 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
JP7362061B2 (en) Induction heating method and induction heating device
AU2003203492B2 (en) Superheated Steam Generator
JP5230746B2 (en) Flowing water induction heater
US9700951B2 (en) Heater sensor complex with high thermal capacity
FI57181B (en) FASTRANSFORMATIONSMAETARE
US20160234885A1 (en) Induction heating coil, induction heating device, and heating method
JP7045128B2 (en) Induction heating coil
JP7231901B2 (en) induction heating coil
JP2005337509A (en) Heating steam generating device
JP3642415B2 (en) Fluid heating device
KR20220052594A (en) Double heating type heat-emitting apparatus for electronic cigarette, heat-emitting method and electronic cigarette
JP7299582B2 (en) induction heating coil
CN216051460U (en) In-situ heater capable of offsetting magnetic field interference based on scanning electron microscope
JP7074290B2 (en) Output transformer for induction heating
JP2019009097A (en) Induction heating coil
JP4089822B2 (en) Transformer for high frequency heating
JP4187635B2 (en) High frequency induction heating coil
JP5818492B2 (en) Oxidation treatment apparatus and oxidation treatment method
JP6872935B2 (en) Plasma generator
JP4848792B2 (en) Induction heating device
JP5969184B2 (en) Induction heating device
JP7352434B2 (en) Superheated steam generator
JP2013093282A (en) Induction heating liquid heating method, induction heating liquid heater and liquid heating system using induction heating liquid heater
JP2006145143A (en) Heating system
JPH01311589A (en) High-frequency induction heating device for spiral metal pipeline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230208

R150 Certificate of patent or registration of utility model

Ref document number: 7231901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150