JP3642415B2 - Fluid heating device - Google Patents

Fluid heating device Download PDF

Info

Publication number
JP3642415B2
JP3642415B2 JP2001062983A JP2001062983A JP3642415B2 JP 3642415 B2 JP3642415 B2 JP 3642415B2 JP 2001062983 A JP2001062983 A JP 2001062983A JP 2001062983 A JP2001062983 A JP 2001062983A JP 3642415 B2 JP3642415 B2 JP 3642415B2
Authority
JP
Japan
Prior art keywords
fluid
tube
induction coil
heating
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001062983A
Other languages
Japanese (ja)
Other versions
JP2002270351A (en
Inventor
鋼太郎 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP2001062983A priority Critical patent/JP3642415B2/en
Publication of JP2002270351A publication Critical patent/JP2002270351A/en
Application granted granted Critical
Publication of JP3642415B2 publication Critical patent/JP3642415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、気体、液体、粉粒体、又はこれらの混合物(分散物)等の、流動性を備えた物質(流体と総称する)を加熱するための装置に関し、特に、蒸気の過熱に好適な流体加熱装置に関する。
【0002】
【従来の技術】
従来より、流体を加熱する装置として種々なものが使用されており、数百度というような高温加熱を行うには、通常、燃焼ガスを利用したボイラ等の加熱装置が使用されている。しかしながら、燃焼ガスを使用するボイラ等の加熱装置は設備が大型化するため、多量の流体の加熱には適しているが、少量の流体の加熱には不適当である。
【0003】
そこで、少量の流体を高温に加熱可能な小型の装置として、急速且つ高温加熱が可能な誘導加熱を利用した加熱装置が提案されている。たとえば、流体を通過或いは収容するケーシング或いは管体を導電性材料で構成し、そのケーシング或いは管体を誘導加熱することで発熱させ、流体を加熱するように構成したもの、あるいは、流体を通過或いは収容するケーシング或いは管体の内部に導電性材料の発熱体を配置し、その発熱体を誘導加熱することで発熱させ流体を加熱するように構成したもの(例えば、特開平9−167679号公報参照)がある。
【0004】
【発明が解決しようとする課題】
しかしながら、これらの従来の誘導加熱を利用した加熱装置には次のような問題点があった。すなわち、ケーシング或いは管体自体を発熱させる方式では、発熱体(管体)の流体との接触面積をあまり大きくすることができず、このため流体への急速且つ均一な入熱が行えず、装置の小型化が困難であるという問題があった。
【0005】
一方、ケーシング或いは管体内に発熱体を配置し、その発熱体を発熱させる方式では、発熱体に波板を積層した構造等を採用することで、流体との接触面積を大きくすることができ、発熱体が均一に発熱した場合には、流体への入熱を急速且つ均一に行うことができ、装置の小型化が可能である。しかしながら、波板を積層した構造のような発熱体は、波板同志が電気的に導通した構造となっているため、その発熱体を取り囲むように配置した誘導コイルによって誘導加熱した際、誘導電流は、波板同志の接続によって外周部にも形成されたループ電路に優先的に流れて中心部には及ばず、中心部は発熱しない。このため、発熱体の中心部は外周部からの伝熱によって加熱されるのみで、その温度は外周部よりも常に低く、流体への入熱分布もこれに倣った不均一なものとなる。すなわち、流体への急速且つ均一な入熱が行えず、流体の加熱能率を十分には高めることができないという問題があった。
【0006】
本発明はかかる問題点に鑑みてなされたもので、流体に接触する発熱体を誘導加熱することによって流体を加熱する装置において、発熱体と流体の接触面積を大きくすると共に発熱体の均一な発熱を可能とし、これによって流体を高能率に且つ均一に加熱することの可能な、小型の流体加熱装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するため、発熱体として作用させるための導電材製の複数の管体を、互いに平行に、且つ、管体群の外周から中心に向かう方向にも分布するように配置した管体群を形成し、各管体の内側のみに加熱すべき流体を通す構成とすると共に、その管体群を取り囲むように誘導コイルを配して、複数の管体を誘導加熱する構成とし、更に、前記複数の管体を互いに非接触な状態で配置することにより前記誘導コイルで発生した交番磁界が管体群の中央部分にまで進入できて中央部分を含む各管体それぞれに円周方向に流れる誘導電流が発生するように構成するとともに、前記管体群の少なくとも外周領域に位置する管体を非磁性材料で構成することにより中心部に至る間の交番磁界の減衰を小さくしたものである。この構成により、小さい空間に多数の小径の管体を配置でき、従って、管体の流体との接触面積(管体の内面積)を増大させることができ、しかも、各管体内に円周方向に流れる誘導電流を効率良く発生させて誘導加熱することができ、流体を高能率で均一に加熱することができ、装置の小型化を図ることができる。
【0008】
【発明の実施の形態】
本発明の実施の形態に係る流体加熱装置は、互いに非接触な状態で平行に配置された複数の導電材製の管体からなる管体群であって、その管体群の外周から中心に向かう奥行方向にも管体が分布するように配置された管体群と、前記複数の管体に流体を供給し且つ排出させる流体給排手段と、前記管体群を取り囲むように配置された誘導コイルとを備え、前記管体群の少なくとも外周領域に位置する管体を非磁性材料で構成したことを特徴とするものであり、前記複数の管体内に流体を連続的に流しながら、或いは管体内に流体を満たし流れは止めた状態で、その管体を誘導コイルによって誘導加熱して発熱させ、内部の流体を能率よく加熱することができる。
【0009】
ここで、複数の管体の配置に当たって、管体群の外周から中心に向かう奥行方向にも管体が分布するように配置する方式を採用することで小さいスペースに多数の管体を配置することが可能となり、流体との接触面積を大きくできることによって装置をコンパクトにできる。また、複数の管体を非接触な状態で配置したことにより、誘導コイルで発生した交番磁界が管体群の中央部分にまで進入できて、各管体それぞれに円周方向に流れる誘導電流が発生する状況となり、しかも、管体群の少なくとも外周領域に位置する管体を非磁性(比透磁率≒1)の導電材製としたことで、中心部に至る間の交番磁界の減衰は管体が強磁性の場合に比べてはるかに小さく、中心領域には、その領域の管体を十分誘導加熱できる強さの交番磁界が進入する。かくして、複数の管体は外周領域に配置したもののみならず、中央領域に配置したものまで、効率良く且つほぼ均一に発熱し、その内部の流体を高能率で且つ均一に加熱することができる。なお、管体の使用本数を多くした場合などで、中央領域への交番磁界の進入が小さくなる場合には、中央に鉄心などのコア材を配置し、中央領域に交番磁界を集めるようにしてもよい。
【0010】
管体群内における管体の配列は、スペース効率を上げることができるよう、外周から中心に向かう奥行方向にも管体が分布するような配列であれば任意であるが、多重環状の配列を採用することが好ましい。管体を多重環状に配列すると、管体群の外側に円筒状の誘導コイルを配置したときの各管体誘導電流の均一化が、多重環状配列の各環の管体配置数の比率を調整することで容易に行える。
【0011】
管体群の周囲には、放熱を防止して熱効率を上げるため、断熱材を配置することが好ましいが、その際、管体群と誘導コイルとの間及び誘導コイルの外側の2個所に断熱材を配置することが好ましい。誘導コイルの内側に配置した断熱材は、発熱した管体からの放熱で誘導コイル自体が加熱され、過度に昇温するのを防く役割をも果たし、これによって誘導コイルの冷却を省略できる。誘導コイルはなるべく管体の近くに配置することが、誘導加熱効率の上から望ましいので、誘導コイルの内側の断熱材の厚さは、誘導コイルの保護に必要な厚さを確保できる範囲内で極力薄くすることが好ましい。また、この断熱材に適当な強度を持った材料を採用することで、この断熱材を、誘導コイルを保持するための保持部材として使用することもできる。
【0012】
複数の管体に流体を流しながら加熱する場合において複数の管体へ流体を流す形態は、複数の管体を流体が並列に流れる形態、直列に流れる形態、或いは並列と直列を併用する形態のいずれでもよいが、全部の管体を並列に流れる形態とすることが圧損を小さくでき且つ装置の構造を簡単とできるので好ましい。複数の管体に流体を並列に流す形態を採用する場合、前記流体給排手段の実施形態として、前記複数の管体の一端側を貫通させて保持した管板と、その管板の外面側に取り付けられた流体入口付きのハウジングとを有する流体供給ヘッダと、前記複数の管体の他端側を貫通させて保持した管板と、その管板の外面側に取り付けられた流体出口付きのハウジングとを有する流体排出ヘッダを備えた構成を挙げることができる。この構造により、多数の管体及びその両端の流体供給ヘッダ、流体排出ヘッダを一体化し、コンパクトな流体加熱装置を構成できる。
【0013】
上記構成の流体加熱装置において、管体内に、内部を流れる流体を乱すために、波板などの邪魔体を配置することが好ましい。この波板等の邪魔体を配置すると、管体内を流れる流体が乱されるため管体内面と流体との間の熱伝達係数が大幅に向上し、伝熱量を大きくすることができる。
【0014】
本発明の流体加熱装置は、任意の流体の加熱に利用可能であるが、特に、管体を高温に且つ敏速に加熱することができることから、気体を数百度に加熱するといった高温加熱、例えば、蒸気の過熱に用いるのに好適である。
【0015】
【実施例】
以下、図面に示す本発明の好適な実施例を説明する。図1は本発明の実施例に係る流体加熱装置の中心軸線に沿った概略断面図、図2はその流体加熱装置の中心軸線に直角な概略断面図である。全体を参照符号1で示す流体加熱装置は、多数の管体2からなる管体群2Aと、その管体2の一端に流体を供給する流体供給ヘッダ3と、管体2の他端から流体を排出させる流体排出ヘッダ4と、管体群2Aを取り囲むように配置された第一断熱材5と、その外側に配置された誘導コイル6と、更にその外側に配置された第二断熱材7を備えている。
【0016】
多数の管体2は、互いに非接触な状態で平行に且つ管体群2Aの外周から中心Oの間に多重になるように配置されている。更に詳しくは、多数の管体2は、多重環状に、すなわち、複数の同心円10a、10b、10c上に配置されている。また、管体2は中心にも配置されている。この構成により、一定直径の円内に多数の管体2を効率良く配置することができる。なお、中心に管体2を配置する代わりに鉄心を配置してもよい。管体2は、自身が誘導加熱されて内部を通過する流体を加熱するためのものであり、当然、誘導加熱可能なように導電性を備えると共に必要な耐熱性を備えた材料で造られている。更に、管体2は、誘導コイル6によって発生した交番磁界が中央領域に進入する際にその交番磁界をあまり減衰させることがないように非磁性(比透磁率≒1)としている。管体2を構成する非磁性導電材料の1例としては、オーステナイト系などの非磁性ステンレスを挙げることができる。なお、管体群2Aを構成する全管体2を非磁性とする必要は必ずしもなく、少なくとも管体群の外周領域に配置したたものを非磁性としてもよい。
【0017】
流体供給ヘッダ3は、複数の管体2の一端側を貫通させて保持した管板11と、その管板11の外面側に取り付けられた流体入口13付きのハウジング14を備えている。このハウジング14は、一端に管板2に取り付けるためのフランジ14aを備え、他端に流体供給管(図示せず)に連結するためのフランジ14bを備えている。また、流体排出ヘッダ4も同様な構造のものであり、複数の管体2の他端側を貫通させて保持した管板16と、その管板16の外面側に取り付けられた流体出口18付きのハウジング19を備えている。このハウジング19にも、フランジ19a、19bが設けられている。管体2を管板11、16へ挿入し、固定する方法としては、ねじ込み、拡管、シール材を介した嵌合、ろう付け等の公知の方法を適宜採用できる。このように管体2を管板11、16へ固定することで、管体群2A及びその両端の流体供給ヘッダ3、流体排出ヘッダ4を一体化することができる。なお、必要に応じ、両側の管板11、16を相互に連結する連結部材を設け、補強を図っても良い。流体供給ヘッダ3、流体排出ヘッダ4を構成する部材の材質は、必要な耐食・耐熱性、強度を備えたものであれば、電気的特性には制限はない。すなわち、管体2には誘導電流が流れるが、管軸方向に磁束が生じるように誘導コイル6を配置したことにより、その誘導電流は管体を円周方向に流れるのみであって、管体2の両端に向かってはほとんど流れないので、管板11、16を絶縁性とするとか、管板と管体2の間に絶縁材を配置するといった必要はない。従って、流体供給手段3、流体排出手段4を構成する部材には、炭素鋼、ステンレス鋼、合金鋼等の汎用材料を使用できる。
【0018】
管体群2Aの外側に配置した第一断熱材5は、誘導加熱された管体2からの放熱で誘導コイル6が異常に昇温するのを防止する役割をも果たすものであるが、本実施例では、第一断熱材5には、誘導コイル6を支持すると共に内側の管体2から絶縁する機能も持たせている。このため、第一断熱材5には適度な強度と絶縁性を持った円筒状のもの、例えば、アルミナ繊維などの無機繊維の不織布パイプを使用している。
【0019】
誘導コイル6は、管体群2Aを誘導加熱するためのものであり、管体群2Aの外側のほぼ全長をカバーするように配置されている。本実施例では、可撓性を持った導電性線材、例えばリッツ線を円筒状の第一断熱材5の外周にらせん状に巻き付けることによって誘導コイル6を構成している。この構成を採用することで、簡単に且つ安価に誘導コイル6を形成できる。なお、誘導コイル6を流れる電流が大きい場合、或いは、流体の加熱温度が非常に高い場合などには、誘導コイル6に水冷等の冷却手段を付加することが好ましい。上記水冷は、たとえば、誘導コイルを銅製のチューブで形成し、チューブ内に冷却水を通すといった形で行うことができる。
【0020】
第二断熱材7は、第一断熱材5と共に放熱を防止して熱効率を高めるために設けたものであり、必要な断熱性能を発揮するように厚さが定められる。
【0021】
次に、上記構成の流体加熱装置による加熱動作を説明する。加熱すべき流体、例えば水蒸気が流体入口13から供給され、複数の管体2内を流れている状態で誘導コイル6に適宜周波数の交流を通電する。この通電により、その誘導コイル6の内側に交番磁界が発生し、内部の各管体2に誘導電流を生じさせ、発熱させる。この際、上記したように、管体2が相互に離れているので、管体群2Aの外周部分を円周方向に循環する誘導電流は生じないこと、また管体2が非磁性であることから、管体群2Aの中心部にまで交番磁界がかなりの強さで進入し、管という誘導加熱に適した形態であることも相まって、各管体2に誘導電流が効率よく且つほぼ均一に発生して、管体2を効率よく且つ均等に発熱させる。更に、流体は多数の小径の管体2内を通過するので、発熱源である管体の流体との接触面積が、単に1本の大径の管体内を通す場合に比べてはるかに大きくなっており、急速入熱が可能となる。かくして、流体を高能率且つ均一に加熱、昇温させることができる。更に、誘導加熱の特長として、管体2を、ひいては管内の流体を数百度といった高温にまで敏速に加熱することが可能であり、例えば、長さ300mm程度の管体2を用いて、100°Cの水蒸気を500°C程度に容易に過熱することができる。
【0022】
なお、以上の説明では、管体2内に流体を流しながら加熱する場合を説明したが、流体の種類によっては、管体2内に流体を満たした後、流体の流れは止めた状態で加熱し、所望温度に達した時点で管体2から流体を排出するといったバッチ式の加熱方法を採っても良い。
【0023】
また、上記実施例では、管体2の内側に何も設けていないが、管体2内に伝熱性能を向上させるための適当な邪魔体を挿入してもよい。図3はその1例を示すものであり、管体2内に、板材をジグザクに折り曲げた波板23を挿入している。この波板23を挿入しておくと、管体2内を流れる流体が乱されるため、管体2の内面と流体との間の熱伝達係数が大幅に向上し、伝熱量を大きくすることができる。また、波板23も管体2からの熱伝導によって加熱されるので、その表面も加熱面積として作用し、この点からも伝熱量を大きくすることができる。
【0024】
【発明の効果】
以上に説明したように、本発明は、導電材製の複数の管体を、互いに非接触な状態で平行に且つ外周から中心に向かう奥行方向にも分布するように配置して管体群を形成し、その管体群の少なくとも外周領域に位置する管体を非磁性材料で構成し、更に、各管体内に流体を通す構成とすると共に、その管体群を取り囲むように誘導コイルを配して、複数の管体を誘導加熱し、それぞれを均一な発熱源として機能させる構成としたことにより、小さい空間に多数の発熱源を分散配置して、流体との接触面積を高位に確保した加熱態様を、汎用資材を用い、しかも簡単な構造で実現しえたものである。すなわち、流体の高能率且つ均一な加熱並びに高温加熱が可能な、小型の加熱装置を安価に提供できるという効果を有している。
【図面の簡単な説明】
【図1】本発明の一実施例による流体加熱装置の中心軸線に沿った概略断面図
【図2】図1に示す流体加熱装置の中心軸線に直角な概略断面図
【図3】(a)は管体及びその中に挿入した波板を示す概略断面図
(b)は(a)に示す管体及びその中の波板の概略端面図
【符号の説明】
1 流体加熱装置
2A 管体群
2 管体
3 流体供給ヘッダ
4 流体排出ヘッダ
5 第一断熱材
6 誘導コイル
7 第二断熱材
11、16 管板
14、19 ハウジング
23 波板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for heating a substance having fluidity (collectively referred to as a fluid) such as a gas, a liquid, a granular material, or a mixture (dispersion) thereof, and is particularly suitable for superheating of steam. The present invention relates to a fluid heating device.
[0002]
[Prior art]
Conventionally, various devices for heating a fluid have been used, and a heating device such as a boiler using combustion gas is usually used for high temperature heating such as several hundred degrees. However, since a heating apparatus such as a boiler using combustion gas is large in size, it is suitable for heating a large amount of fluid, but not suitable for heating a small amount of fluid.
[0003]
Therefore, as a small device capable of heating a small amount of fluid to a high temperature, a heating device using induction heating capable of rapid and high temperature heating has been proposed. For example, a casing or tube that passes or contains fluid is made of a conductive material, the casing or tube is heated by induction heating, and the fluid is heated, or the fluid passes or A structure in which a heating element made of a conductive material is arranged inside a casing or a tube to be housed, and the heating element is heated by induction heating to heat the fluid (for example, see JP-A-9-167679) )
[0004]
[Problems to be solved by the invention]
However, these conventional heating devices using induction heating have the following problems. That is, in the method of generating heat in the casing or the tube itself, the contact area between the heat generating body (tube body) and the fluid cannot be increased so much that rapid and uniform heat input to the fluid cannot be performed. There was a problem that it was difficult to reduce the size.
[0005]
On the other hand, in the system in which a heating element is arranged in a casing or a tube and the heating element generates heat, by adopting a structure in which corrugated plates are laminated on the heating element, the contact area with the fluid can be increased, When the heating element generates heat uniformly, heat input to the fluid can be performed rapidly and uniformly, and the apparatus can be miniaturized. However, since a heating element such as a structure in which corrugated plates are laminated has a structure in which the corrugated plates are electrically connected to each other, an induction current is generated when induction heating is performed by an induction coil arranged so as to surround the heating element. Flows preferentially to the loop electric circuit formed in the outer peripheral portion by the corrugated plate connection, does not reach the central portion, and the central portion does not generate heat. For this reason, the central part of the heating element is only heated by heat transfer from the outer peripheral part, the temperature is always lower than that of the outer peripheral part, and the heat input distribution to the fluid is also uneven. That is, there is a problem that rapid and uniform heat input to the fluid cannot be performed, and the heating efficiency of the fluid cannot be sufficiently increased.
[0006]
The present invention has been made in view of such problems, and in an apparatus for heating a fluid by induction heating of a heating element that contacts the fluid, the contact area between the heating element and the fluid is increased and the heating element is uniformly heated. Accordingly, it is an object of the present invention to provide a small-sized fluid heating apparatus that can heat a fluid efficiently and uniformly.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention distributes a plurality of tubes made of a conductive material for acting as a heating element in parallel to each other and in a direction from the outer periphery to the center of the tube group. The arranged tube group is formed, and the fluid to be heated is passed only inside each tube body, and an induction coil is arranged so as to surround the tube group, thereby inductively heating a plurality of tube bodies. Furthermore, by arranging the plurality of tubes in a non-contact state, the alternating magnetic field generated by the induction coil can enter the central portion of the tube group, and each tube including the central portion The induction current flowing in the circumferential direction is generated, and the tube located at least in the outer peripheral region of the tube group is made of a non-magnetic material, thereby reducing the attenuation of the alternating magnetic field to the center. It is a thing. With this configuration, a large number of small-diameter pipes can be arranged in a small space, so that the contact area of the pipes with the fluid (inner area of the pipes) can be increased, and the circumferential direction in each pipe body Inductive current flowing through the substrate can be efficiently generated and induction heated, the fluid can be heated uniformly with high efficiency, and the apparatus can be downsized.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
A fluid heating device according to an embodiment of the present invention is a tube group composed of a plurality of conductive material tube bodies arranged in parallel without being in contact with each other, and is centered from the outer periphery of the tube group. A tube group arranged so that the tubes are distributed also in the direction of the depth, a fluid supply / discharge means for supplying and discharging a fluid to and from the plurality of tubes, and arranged so as to surround the tube group An induction coil, and a tube located in at least an outer peripheral region of the tube group is made of a non-magnetic material, and a fluid flows continuously through the plurality of tubes, or In a state where the fluid is filled in the tubular body and the flow is stopped, the tubular body is inductively heated by the induction coil to generate heat, and the internal fluid can be efficiently heated.
[0009]
Here, when arranging a plurality of tubular bodies, a large number of tubular bodies are arranged in a small space by adopting a method in which the tubular bodies are distributed in the depth direction from the outer periphery of the tubular body group toward the center. The device can be made compact by increasing the contact area with the fluid. In addition, by arranging a plurality of tubes in a non-contact state, an alternating magnetic field generated by the induction coil can enter the central portion of the tube group, and an induced current flowing in the circumferential direction of each tube is generated. In addition, the tubular body positioned at least in the outer peripheral region of the tubular body group is made of a non-magnetic (relative magnetic permeability≈1) conductive material, so that the attenuation of the alternating magnetic field to the center portion is reduced. The magnetic field is much smaller than when the body is ferromagnetic, and an alternating magnetic field having a strength capable of sufficiently induction-heating the tube in the region enters the central region. Thus, the plurality of tubes can generate heat efficiently and substantially uniformly, not only those arranged in the outer peripheral region but also those arranged in the central region, and can heat the fluid inside thereof efficiently and uniformly. . In addition, when the number of tubes used is increased, and the approach of the alternating magnetic field to the central region becomes small, a core material such as an iron core is arranged in the center, and the alternating magnetic field is collected in the central region. Also good.
[0010]
The arrangement of the tubes in the tube group is arbitrary as long as the tubes are distributed in the depth direction from the outer periphery to the center so that space efficiency can be increased. It is preferable to adopt. When tubes are arranged in multiple rings, the uniformity of the tube induction current when a cylindrical induction coil is placed outside the tube group adjusts the ratio of the number of tubes arranged in each ring of the multiple ring array. This can be done easily.
[0011]
In order to prevent heat dissipation and increase thermal efficiency, it is preferable to place a heat insulating material around the tube group, but at that time, heat insulation is provided between the tube group and the induction coil and at two places outside the induction coil. It is preferable to arrange the material. The heat insulating material arranged inside the induction coil also serves to prevent the induction coil itself from being heated due to heat radiation from the heated tube and preventing the temperature from being excessively raised, thereby eliminating the cooling of the induction coil. Since it is desirable to arrange the induction coil as close to the tube as possible from the viewpoint of induction heating efficiency, the thickness of the heat insulating material inside the induction coil should be within a range that can secure the thickness necessary to protect the induction coil. It is preferable to make it as thin as possible. Moreover, this heat insulating material can also be used as a holding member for hold | maintaining an induction coil by employ | adopting the material with appropriate intensity | strength for this heat insulating material.
[0012]
In the case of heating while flowing fluid through a plurality of pipes, the form of flowing the fluid to the plurality of pipes is a form in which the fluid flows through the plurality of pipes in parallel, a form in which the fluid flows in series, or a form in which parallel and series are used in combination Any of them may be used, but it is preferable to make all the pipes flow in parallel because pressure loss can be reduced and the structure of the apparatus can be simplified. In the case of adopting a configuration in which fluids flow in parallel to a plurality of tubes, as an embodiment of the fluid supply / discharge means, a tube plate that is held through one end side of the plurality of tubes, and an outer surface side of the tube plate A fluid supply header having a housing with a fluid inlet attached to the tube, a tube plate held through the other end of the plurality of tubes, and a fluid outlet attached to the outer surface side of the tube plate A configuration including a fluid discharge header having a housing may be mentioned. With this structure, a large number of tubes and fluid supply headers and fluid discharge headers at both ends thereof can be integrated to form a compact fluid heating apparatus.
[0013]
In the fluid heating apparatus having the above-described configuration, it is preferable to dispose a baffle such as a corrugated plate in the pipe body in order to disturb the fluid flowing inside. When a baffle such as this corrugated plate is arranged, the fluid flowing through the tube is disturbed, so the heat transfer coefficient between the tube inner surface and the fluid is greatly improved, and the amount of heat transfer can be increased.
[0014]
The fluid heating device of the present invention can be used for heating any fluid. In particular, since the tube body can be heated to a high temperature and quickly, high temperature heating such as heating a gas to several hundred degrees, for example, Suitable for use in steam superheating.
[0015]
【Example】
Hereinafter, preferred embodiments of the present invention shown in the drawings will be described. FIG. 1 is a schematic sectional view taken along the central axis of a fluid heating apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic sectional view perpendicular to the central axis of the fluid heating apparatus. A fluid heating apparatus generally indicated by reference numeral 1 includes a tube group 2A composed of a large number of tube bodies 2, a fluid supply header 3 for supplying fluid to one end of the tube body 2, and a fluid from the other end of the tube body 2. A fluid discharge header 4, a first heat insulating material 5 disposed so as to surround the tube group 2A, an induction coil 6 disposed outside the second heat insulating material 7, and a second heat insulating material 7 disposed further outside. It has.
[0016]
A large number of the tube bodies 2 are arranged in parallel with each other in a non-contact manner and in a multiple manner between the outer periphery of the tube body group 2A and the center O. More specifically, the multiple tube bodies 2 are arranged in multiple rings, that is, on a plurality of concentric circles 10a, 10b, and 10c. The tube body 2 is also arranged at the center. With this configuration, a large number of tube bodies 2 can be efficiently arranged in a circle having a constant diameter. In addition, you may arrange | position an iron core instead of arrange | positioning the pipe body 2 in the center. The tube body 2 is for heating the fluid that is heated by induction and passes through the inside thereof. Of course, the tube body 2 is made of a material having conductivity and necessary heat resistance so that induction heating is possible. Yes. Further, the tubular body 2 is non-magnetic (relative magnetic permeability≈1) so that the alternating magnetic field generated by the induction coil 6 does not attenuate the alternating magnetic field so much when entering the central region. As an example of the nonmagnetic conductive material constituting the tubular body 2, an austenitic nonmagnetic stainless steel can be exemplified. Note that it is not always necessary to make all the tubular bodies 2 constituting the tubular body group 2A non-magnetic, and at least those arranged in the outer peripheral region of the tubular body group may be made non-magnetic.
[0017]
The fluid supply header 3 includes a tube plate 11 that is held through one end side of the plurality of tube bodies 2 and a housing 14 with a fluid inlet 13 that is attached to the outer surface side of the tube plate 11. The housing 14 has a flange 14a for attaching to the tube plate 2 at one end, and a flange 14b for connecting to a fluid supply pipe (not shown) at the other end. The fluid discharge header 4 has a similar structure, and includes a tube plate 16 that is held through the other ends of the plurality of tube bodies 2 and a fluid outlet 18 that is attached to the outer surface side of the tube plate 16. The housing 19 is provided. The housing 19 is also provided with flanges 19a and 19b. As a method for inserting and fixing the tube body 2 to the tube plates 11 and 16, a known method such as screwing, tube expansion, fitting via a sealing material, brazing, or the like can be appropriately employed. By fixing the tube body 2 to the tube plates 11 and 16 in this way, the tube body group 2A, the fluid supply header 3 and the fluid discharge header 4 at both ends thereof can be integrated. If necessary, a connecting member for connecting the tube plates 11 and 16 on both sides may be provided to reinforce them. As long as the material of the members constituting the fluid supply header 3 and the fluid discharge header 4 has the necessary corrosion resistance, heat resistance, and strength, the electrical characteristics are not limited. That is, an induced current flows through the tube 2, but by arranging the induction coil 6 so that a magnetic flux is generated in the tube axis direction, the induced current only flows in the circumferential direction of the tube, Since there is almost no flow toward both ends of the tube 2, there is no need to make the tube plates 11 and 16 insulative or to dispose an insulating material between the tube plate and the tube body 2. Therefore, general-purpose materials such as carbon steel, stainless steel, and alloy steel can be used for the members constituting the fluid supply means 3 and the fluid discharge means 4.
[0018]
The first heat insulating material 5 arranged outside the tube group 2A also serves to prevent the induction coil 6 from being abnormally heated due to heat radiation from the tube body 2 that has been induction-heated. In the embodiment, the first heat insulating material 5 has a function of supporting the induction coil 6 and insulating from the inner tubular body 2. For this reason, the 1st heat insulating material 5 uses the cylindrical thing with moderate intensity | strength and insulation, for example, the nonwoven fabric pipe of inorganic fibers, such as an alumina fiber.
[0019]
The induction coil 6 is for inductively heating the tube group 2A, and is arranged to cover almost the entire length outside the tube group 2A. In this embodiment, the induction coil 6 is constituted by winding a flexible conductive wire, for example, a litz wire, around the outer circumference of the cylindrical first heat insulating material 5 in a spiral shape. By adopting this configuration, the induction coil 6 can be formed easily and inexpensively. In addition, when the electric current which flows through the induction coil 6 is large, or when the heating temperature of the fluid is very high, it is preferable to add cooling means such as water cooling to the induction coil 6. The water cooling can be performed, for example, by forming the induction coil with a copper tube and passing cooling water through the tube.
[0020]
The second heat insulating material 7 is provided together with the first heat insulating material 5 in order to prevent heat dissipation and increase thermal efficiency, and the thickness is determined so as to exhibit necessary heat insulating performance.
[0021]
Next, the heating operation by the fluid heating apparatus having the above configuration will be described. A fluid to be heated, for example, water vapor, is supplied from the fluid inlet 13, and an alternating current having an appropriate frequency is supplied to the induction coil 6 in a state where the fluid flows in the plurality of pipe bodies 2. By this energization, an alternating magnetic field is generated inside the induction coil 6, and an induced current is generated in each internal tube 2 to generate heat. At this time, as described above, since the tube bodies 2 are separated from each other, no induced current circulating in the outer circumferential portion of the tube body group 2A is generated, and the tube body 2 is non-magnetic. To the center of the tube group 2A, the alternating magnetic field enters the tube body 2A with a considerable strength, and combined with the fact that the tube is in a form suitable for induction heating, the induced current is efficiently and substantially uniform in each tube body 2. It generates and heats the tube 2 efficiently and evenly. Furthermore, since the fluid passes through a large number of small-diameter pipes 2, the contact area of the pipe, which is a heat generation source, with the fluid is much larger than when passing through a single large-diameter pipe. And rapid heat input is possible. Thus, the fluid can be heated and heated uniformly with high efficiency. Furthermore, as a feature of induction heating, it is possible to quickly heat the tube 2 and thus the fluid in the tube to a high temperature such as several hundred degrees. For example, using the tube 2 having a length of about 300 mm, C water vapor can be easily heated to about 500 ° C.
[0022]
In the above description, the case where heating is performed while flowing a fluid into the tube body 2 has been described. However, depending on the type of fluid, the tube body 2 is filled with the fluid and then heated with the fluid flow stopped. Then, a batch-type heating method may be employed in which the fluid is discharged from the tube body 2 when the desired temperature is reached.
[0023]
Moreover, in the said Example, although nothing is provided inside the pipe body 2, you may insert the appropriate baffle body for improving heat-transfer performance in the pipe body 2. FIG. FIG. 3 shows an example thereof, and a corrugated plate 23 in which a plate material is bent in a zigzag manner is inserted into the tube body 2. If the corrugated plate 23 is inserted, the fluid flowing in the tube body 2 is disturbed, so that the heat transfer coefficient between the inner surface of the tube body 2 and the fluid is greatly improved and the amount of heat transfer is increased. Can do. Further, since the corrugated plate 23 is also heated by heat conduction from the tube body 2, the surface thereof also acts as a heating area, and the amount of heat transfer can be increased from this point.
[0024]
【The invention's effect】
As described above, according to the present invention, a plurality of tubes made of a conductive material are arranged so as to be distributed in the depth direction from the outer periphery to the center in parallel with each other in a non-contact state. The tube body formed and formed at least in the outer peripheral region of the tube group is made of a non-magnetic material, and the fluid is passed through each tube body, and the induction coil is arranged so as to surround the tube group. In addition, by adopting a configuration in which a plurality of tubes are induction-heated and each of them functions as a uniform heat source, a large number of heat sources are distributed and arranged in a small space to ensure a high contact area with the fluid. The heating mode can be realized by using a general-purpose material and with a simple structure. That is, there is an effect that it is possible to provide a small-sized heating device at a low cost, capable of high-efficiency and uniform heating of the fluid and high-temperature heating.
[Brief description of the drawings]
1 is a schematic cross-sectional view taken along the central axis of a fluid heating apparatus according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view perpendicular to the central axis of the fluid heating apparatus shown in FIG. Is a schematic cross-sectional view showing a tube body and a corrugated plate inserted therein (b) is a schematic end view of the tube body shown in FIG.
DESCRIPTION OF SYMBOLS 1 Fluid heating apparatus 2A Tube group 2 Tube 3 Fluid supply header 4 Fluid discharge header 5 First heat insulating material 6 Inductive coil 7 Second heat insulating material 11, 16 Tube plate 14, 19 Housing 23 Corrugated plate

Claims (6)

互いに平行に配置された複数の導電材製の管体からなる管体群であって、その管体群の外周から中心に向かう奥行方向にも管体が分布するように配置された管体群と、前記複数の管体の内側のみに加熱すべき流体を供給し且つ排出させる流体給排手段と、前記管体群を取り囲むように配置された誘導コイルとを備え、前記管体群を互いに非接触な状態で配置することにより前記誘導コイルで発生した交番磁界が管体群の中央部分にまで進入できて中央部分を含む各管体それぞれに円周方向に流れる誘導電流が発生するように構成するとともに、前記管体群の少なくとも外周領域に位置する管体を非磁性材料で構成することにより中心部に至る間の交番磁界の減衰を小さくしたことを特徴とする流体加熱装置。A tube group consisting of a plurality of conductive material tubes arranged in parallel to each other, the tube group arranged so that the tubes are distributed also in the depth direction from the outer periphery to the center of the tube group And a fluid supply / discharge means for supplying and discharging a fluid to be heated only inside the plurality of tubes, and an induction coil arranged so as to surround the tube groups, the tube groups being mutually connected By arranging in a non-contact state, the alternating magnetic field generated by the induction coil can enter the central portion of the tube group, and an induced current flowing in the circumferential direction is generated in each tubular body including the central portion. A fluid heating apparatus characterized in that the attenuation of an alternating magnetic field to the center portion is reduced by forming a tubular body located at least in an outer peripheral region of the tubular body group with a nonmagnetic material. 前記複数の管体を多重環状に配置したことを特徴とする請求項1記載の流体加熱装置。  The fluid heating device according to claim 1, wherein the plurality of tubes are arranged in a multiple ring shape. 前記管体群と誘導コイルとの間に第一断熱材を配置し、前記誘導コイルの外側に第二断熱材を配置したことを特徴とする請求項1又は2記載の流体加熱装置。  The fluid heating device according to claim 1 or 2, wherein a first heat insulating material is disposed between the tube group and the induction coil, and a second heat insulating material is disposed outside the induction coil. 前記流体給排手段が、前記複数の管体の一端側を貫通させて保持した管板と、その管板の外面側に取り付けられた流体入口付きのハウジングとを有する流体供給ヘッダと、前記複数の管体の他端側を貫通させて保持した管板と、その管板の外面側に取り付けられた流体出口付きのハウジングとを有する流体排出ヘッダを備えていることを特徴とする請求項1、2又は3記載の流体加熱装置。  A fluid supply header, wherein the fluid supply / discharge means includes a tube plate held through one end side of the plurality of tube bodies, and a housing with a fluid inlet attached to an outer surface side of the tube plate; 2. A fluid discharge header comprising: a tube plate that is held by penetrating the other end of the tube body; and a housing with a fluid outlet that is attached to the outer surface of the tube plate. 2. The fluid heating apparatus according to 2 or 3. 前記複数の管体のそれぞれの内部に、内部を流れる流体を乱すための邪魔体を配置していることを特徴とする請求項1から4のいずれか1項記載の流体加熱装置。  5. The fluid heating apparatus according to claim 1, wherein a baffle for disturbing a fluid flowing through the plurality of pipes is disposed inside each of the plurality of pipes. 流体として蒸気を供給し、その蒸気を過熱することを特徴とする請求項1から5のいずれか1項記載の流体加熱装置。  6. The fluid heating apparatus according to claim 1, wherein steam is supplied as a fluid and the steam is superheated.
JP2001062983A 2001-03-07 2001-03-07 Fluid heating device Expired - Fee Related JP3642415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001062983A JP3642415B2 (en) 2001-03-07 2001-03-07 Fluid heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001062983A JP3642415B2 (en) 2001-03-07 2001-03-07 Fluid heating device

Publications (2)

Publication Number Publication Date
JP2002270351A JP2002270351A (en) 2002-09-20
JP3642415B2 true JP3642415B2 (en) 2005-04-27

Family

ID=18922043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001062983A Expired - Fee Related JP3642415B2 (en) 2001-03-07 2001-03-07 Fluid heating device

Country Status (1)

Country Link
JP (1) JP3642415B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107063A (en) * 2006-10-27 2008-05-08 Shinko Sangyo Kk Fluid material heater using induction heating
JP2008134041A (en) * 2006-10-26 2008-06-12 Fuji Denki Thermosystems Kk Fluid heating apparatus
JP2008232606A (en) * 2007-02-21 2008-10-02 Fuji Denki Thermosystems Kk Fluid heating device
JP2009079821A (en) * 2007-09-26 2009-04-16 Fuji Denki Thermosystems Kk Fluid heating device
KR101080108B1 (en) * 2009-08-19 2011-11-04 박춘영 multiplex induction heater Device for boiler
KR101144242B1 (en) * 2009-08-19 2012-05-09 박춘영 multiplex induction heater Device for boiler

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301498A (en) * 2003-03-20 2004-10-28 Shinritsu Denki Kk Superheated steam generator
JP2007080715A (en) * 2005-09-15 2007-03-29 Omron Corp Electromagnetic induction fluid heating device
US8042498B2 (en) * 2006-12-13 2011-10-25 Dai-Ichi High Frequency Co., Ltd. Superheated steam generator
DE102010035560A1 (en) * 2010-08-26 2012-03-01 Viessmann Werke Gmbh & Co Kg Wall-mounted device for inductive heating fluid e.g. industrial water, has cylindrical metallic body arranged in inner side of pipe line, and coil generating electromagnetic induction in body and wound-arranged at outer side of pipe line
CN114074394B (en) * 2020-08-18 2024-04-16 苏州亮福电器有限公司 Method for improving surface quality of injection foaming molding plastic part

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134041A (en) * 2006-10-26 2008-06-12 Fuji Denki Thermosystems Kk Fluid heating apparatus
JP2008107063A (en) * 2006-10-27 2008-05-08 Shinko Sangyo Kk Fluid material heater using induction heating
JP2008232606A (en) * 2007-02-21 2008-10-02 Fuji Denki Thermosystems Kk Fluid heating device
JP2009079821A (en) * 2007-09-26 2009-04-16 Fuji Denki Thermosystems Kk Fluid heating device
KR101080108B1 (en) * 2009-08-19 2011-11-04 박춘영 multiplex induction heater Device for boiler
KR101144242B1 (en) * 2009-08-19 2012-05-09 박춘영 multiplex induction heater Device for boiler

Also Published As

Publication number Publication date
JP2002270351A (en) 2002-09-20

Similar Documents

Publication Publication Date Title
EP2213140B1 (en) Flow-through induction heater
CA1185663A (en) Inductive heater
US9140445B2 (en) Superheated steam generation container, superheated steam generator, and superheated steam generation method
JP3642415B2 (en) Fluid heating device
JP3553627B2 (en) Electromagnetic induction heat converter
JP5310832B2 (en) Fluid heating device
BG60656B1 (en) Device for fluid heating
JP4958679B2 (en) Fluid heating device
JP2007147114A (en) Induction heating type steam generator
JP2008270123A (en) Fluid temperature rising apparatus
JP6760637B2 (en) Fluid heating device
JP2004205146A (en) Steam generator
JP2013057482A (en) Induction heating type liquid heater and induction heating type liquid heating apparatus
JP2009041885A (en) Fluid heating device
WO2018096718A1 (en) Electromagnetic induction-heating device
JPH09178103A (en) Induction type super heated steam generator
JP2005100935A (en) Pipe induction heating device
JP2003068443A (en) Induction heating unit for fluid heating
JP7065506B2 (en) Superheated steam generator
JP2002313546A (en) Heating cell for electromagnetic induction type fluid heating device
JP4987565B2 (en) Cooker
JP3743064B2 (en) Heating device
JP3903339B2 (en) Fluid heating device by electromagnetic induction
JP6760636B2 (en) Fluid heating device
KR101189953B1 (en) Rapid heating apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3642415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees