JPH09178103A - Induction type super heated steam generator - Google Patents

Induction type super heated steam generator

Info

Publication number
JPH09178103A
JPH09178103A JP35034595A JP35034595A JPH09178103A JP H09178103 A JPH09178103 A JP H09178103A JP 35034595 A JP35034595 A JP 35034595A JP 35034595 A JP35034595 A JP 35034595A JP H09178103 A JPH09178103 A JP H09178103A
Authority
JP
Japan
Prior art keywords
coil
steam
water
separation container
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35034595A
Other languages
Japanese (ja)
Inventor
Keiji Hino
啓嗣 日野
Ryuji Onishi
隆二 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP35034595A priority Critical patent/JPH09178103A/en
Publication of JPH09178103A publication Critical patent/JPH09178103A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain superheated steam stably from water by a method wherein a steam separation container is connected between a heat exchanger tube having first and second coils and both the coils and shortcircuiting members are provided to electromagnetically isolate both the coils and the steam separation container by shortcircuiting the heat exchanger tube. SOLUTION: A water supply means 8 is driven by a controller 20 to introduce water to a first coil part 5 and a current is fed to an induction coil 2 from an AC power source. A magnetic flux generated in the induction coil 2 passes through the first and second coil parts 5 and 6 by way of a core member 1. An eddy current is caused in the surface of the coils by electromagnetic induction with the first and second coil parts 5 and 6 to generate an induction electromotive force. The first and second coil parts 5 and 6 form a closed electric circuit together with first and second shortcircuiting members 11 and 12. In this manner, the first and second coil parts 5 and 6 themselves function as heating body. This achieves higher efficiency of heat transfer and facilitates the separation of steam from hot water with the steam separation container 10 arranged on the downstream side of the first coil part 5 thereby enabling stable acquirement of superheated steam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、伝熱管をコイル
状に巻回し、この伝熱管に水を導入するとともに誘導加
熱することによって過熱蒸気を発生させる誘導加熱式過
熱蒸気発生器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction heating type superheated steam generator in which a heat transfer tube is wound in a coil shape, and water is introduced into the heat transfer tube and induction heating is performed to generate superheated steam. .

【0002】[0002]

【従来の技術】近年、燃焼を伴わずクリーンな加熱方式
として、誘導加熱方式が普及しつつあり、この加熱方式
を利用して、家庭用調理器具や、給湯設備(特に風呂用
の給湯設備)等が提案され、実際に使用されている。
2. Description of the Related Art In recent years, an induction heating method is becoming widespread as a clean heating method that does not involve combustion. By utilizing this heating method, household cookware and hot water supply equipment (especially hot water supply equipment for baths) are used. Etc. have been proposed and are actually used.

【0003】前記の加熱方式を利用した装置において、
管路内を流れる流体を加熱するものは、例えば、誘導コ
イルの中心に導電性材料で構成した管路を配置し、誘導
コイルがこの管路を略同軸状に取巻いた構成のものがあ
り、誘導コイルに交流電流を流すことによって前記管路
に渦電流を発生させ、この渦電流によるジュール熱によ
って加熱を行っている。
In an apparatus utilizing the above heating system,
One that heats the fluid flowing in the pipeline is, for example, a configuration in which a pipeline made of a conductive material is arranged at the center of the induction coil, and the induction coil surrounds this pipeline in a substantially coaxial shape. An eddy current is generated in the pipe by passing an alternating current through the induction coil, and heating is performed by Joule heat generated by the eddy current.

【0004】そのような加熱装置のうち、加熱部の面積
を増加させるために前記管路をコイル状としたものにお
いては、前記コイル状の管路と前記誘導コイルとをコア
部材に対してともに鎖交状態で配置し、更に、前記管路
をコイル状部分の流入側部分と流出側部分とを導電性の
部材によって短絡させ、コイル状の管路とこの部材とで
形成される閉回路中に誘導電流を流すことによって、こ
の誘導電流によるジュール熱によっても加熱するように
構成したものもある。この構成のものにおいては、水を
加熱して温水を得たり、蒸気を加熱して過熱蒸気を得る
ように相変化を伴わないものについては有効に利用でき
る。しかし、所謂蒸気ボイラのように、液体から気体へ
の相変化を伴うものについては次のような不都合があっ
て適用できなかった。即ち、このような電磁加熱方式の
ものでは、伝熱管の伝熱面全体が、バーナ等の熱源を用
いた一般的な蒸気発生器に比べて均一に加熱されるた
め、伝熱管全体に亘って蒸発による泡や、水中の空気の
膨張による気泡が同時に発生する。これらの泡は、その
上部の泡を更に押し上げることになるため、管の流出側
からは水が噴出することになる。従って、従来構造で
は、起動時から安定して高い乾き度の蒸気を供給できる
蒸気発生器を得ることは難しく、しかも、1系統の加熱
配管系、1系統の電源の構成では、水から過熱蒸気を得
る過熱蒸気発生器は達成できていない。特に、研究設備
や洗浄殺菌等の用途には過熱蒸気が多用される傾向にあ
り、このような用途の過熱蒸気発生器は、小型で、安定
した性能が要求されるが、1系統の加熱配管を電磁加熱
するのみではこの要求を満足する過熱蒸気発生器を得る
ことができなかった。
In such a heating device, in which the pipe is coiled in order to increase the area of the heating portion, both the coiled pipe and the induction coil are connected to the core member. In the closed circuit formed by the coiled pipe and this member, the pipes are arranged in an interlinking state, and the pipe is short-circuited between the inflow side part and the outflow side part of the coiled part by a conductive member. There is also a structure in which the Joule heat generated by the induced current is used for heating by causing an induced current to flow. With this structure, it is possible to effectively use water that does not undergo phase change, such as heating water to obtain hot water or heating steam to obtain superheated steam. However, the so-called steam boiler, which involves a phase change from liquid to gas, cannot be applied because of the following inconveniences. That is, in such an electromagnetic heating system, the entire heat transfer surface of the heat transfer tube is heated more uniformly than a general steam generator using a heat source such as a burner, so that the entire heat transfer tube is covered. At the same time, bubbles due to evaporation and bubbles due to expansion of air in water are generated. These bubbles will push the bubbles above them further, so that water will be ejected from the outflow side of the pipe. Therefore, with the conventional structure, it is difficult to obtain a steam generator that can stably supply steam with a high degree of dryness from the start-up. Moreover, in the configuration of one heating pipe system and one power source, superheated steam from water The superheated steam generator which obtains is not achieved. In particular, superheated steam tends to be heavily used for research equipment and applications such as cleaning and sterilization. The superheated steam generator for such applications is required to be compact and have stable performance. It was not possible to obtain a superheated steam generator satisfying this requirement only by electromagnetically heating the.

【0005】[0005]

【発明が解決しようとする課題】この発明が解決しよう
とする課題は、水から安定して過熱蒸気を得ることので
きる誘導加熱式の過熱蒸気蒸発生器を提供することであ
る。
The problem to be solved by the present invention is to provide an induction heating type superheated steam evaporator which can stably obtain superheated steam from water.

【0006】[0006]

【課題を解決するための手段】この発明は、上述の課題
を解決するためになされたものであって、コア部材と鎖
交状態で配置した誘導コイルと、前記コア部材と鎖交状
態で配置した第1コイル部,及び第2コイル部を有する
伝熱管と、前記第1コイル部の上流側と前記第2コイル
部の下流側との間に接続した気水分離容器と、前記伝熱
管を短絡することにより、第1コイル部,及び第2コイ
ル部と前記気水分離容器とを電磁気的に隔離する短絡部
材, とを備えたことを第1の特徴とし、前記短絡部材
は、前記第1コイル部の上流側と前記第2コイル部の下
流側との間に接続した第1短絡部材と、前記第1コイル
部における前記気水分離容器との接続部の上流側と前記
第2コイル部における前記気水分離容器との接続部の下
流側との間に接続した第2短絡部材であることを第2の
特徴とし、前記短絡部材は、前記第1コイル部の上流側
と前記第1コイル部における前記気水分離容器との接続
部の上流側との間に接続した第1短絡部材と、前記第2
コイル部の下流側と前記第2コイル部における前記気水
分離容器との接続部の下流側との間に接続した第2短絡
部材であることを第3の特徴とするものである。更に、
前記第1コイル部と前記第2コイル部の発熱量の比率
を、水を飽和蒸気とするのに必要なエネルギー量と飽和
蒸気を過熱蒸気とするのに必要なエネルギー量との比率
に略一致させたことを第4の特徴とし、前記気水分離容
器内に気水分離板を設けたことを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems and includes an induction coil arranged in a linked state with a core member, and an induction coil arranged in a linked state with the core member. A heat transfer tube having a first coil portion and a second coil portion, a steam separation container connected between an upstream side of the first coil portion and a downstream side of the second coil portion, and the heat transfer tube. A short circuit member that electromagnetically isolates the first and second coil units and the water-water separation container by short-circuiting is provided as a first feature, and the short circuit member is A first short-circuit member connected between an upstream side of the first coil portion and a downstream side of the second coil portion, and an upstream side of a connection portion of the first coil portion with the steam-water separation container and the second coil Connection between the steam water separation container and the downstream side of the connection part A second characteristic is that it is a second short-circuit member, and the short-circuit member is provided between an upstream side of the first coil portion and an upstream side of a connection portion of the first coil portion with the steam separation container. The first short-circuit member connected and the second
A third characteristic is that the second short-circuit member is connected between the downstream side of the coil portion and the downstream side of the connection portion of the second coil portion with the steam-water separation container. Furthermore,
The ratio of the amount of heat generated by the first coil portion to the amount of heat generated by the second coil portion is approximately equal to the ratio between the amount of energy required to make water into saturated steam and the amount of energy required to make saturated steam into superheated steam. The fourth feature is that the above-mentioned process is performed, and a steam separation plate is provided in the steam separation container.

【0007】[0007]

【発明の実施の形態】この発明の基本的な実施形態とし
ては、モノチューブ形式の伝熱管を備えた過熱蒸気発生
器として構成される。即ち、この発明における過熱蒸気
発生器においては、流体を導入する伝熱管をコイル状に
形成し、このコイル状部分を発熱部として利用してい
る。そのため、この構成によって容積当りの伝熱面積を
大きく設定できる。このコイル状部分をコア部材に鎖交
させて配置する。このコア部材には誘導コイルが、この
コア部材に鎖交させた状態で配置されており、従って、
前記コイル状部分と誘導コイルとは、コア部材を介して
磁気的に接続された状態となる。この際、前記誘導コイ
ルとコイル状部分は、共にコア部材に対して鎖交状態で
あれば良いが、誘導コイルによって発生する磁束を有効
に利用する上では略同軸状に配置することが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION A basic embodiment of the present invention is configured as a superheated steam generator provided with a monotube type heat transfer tube. That is, in the superheated steam generator according to the present invention, the heat transfer tube for introducing the fluid is formed into a coil shape, and this coiled portion is used as a heat generating portion. Therefore, this configuration can set a large heat transfer area per volume. The coiled portion is arranged so as to interlink with the core member. An induction coil is arranged in the core member in a state of being linked to the core member, and therefore,
The coil-shaped portion and the induction coil are magnetically connected via the core member. At this time, both the induction coil and the coil-shaped portion may be in an interlinking state with the core member, but they are preferably arranged substantially coaxially in order to effectively use the magnetic flux generated by the induction coil.

【0008】前記のコイル状部分は、上流側の第1コイ
ル部と下流側の第2コイル部とで構成され、前記第1コ
イル部と前記第2コイル部の発熱量の比率は、水を飽和
蒸気とするのに必要なエネルギー量と飽和蒸気を過熱蒸
気とするのに必要なエネルギー量との比率に略一致させ
てある。前記第1,第2コイル部のそれぞれの発熱量の
調整自体は、第1コイル部と第2コイル部の管の内外径
やコイル巻数、コイル径等の寸法的な要素、電気抵抗値
等の物性等材質適要素を選択することによって調整する
が、管径や材質、コイル径が同一であれば、巻数比によ
って調整すればよい。例えば、常温(約20℃)の水
(飽和水)を、圧力1〜5kg/cm2 Gの範囲の飽和蒸気
とするために必要なエネルギーは、おおよそ646.4
〜658.0kcal/kgであり、この飽和蒸気を、260
℃の過熱蒸気とするのに必要なエネルギーは、おおよそ
97〜83kcal/kgである。従って、水を飽和蒸気とす
るのに必要なエネルギー量は、飽和蒸気を過熱蒸気とす
るのに必要なエネルギー量の約6〜8倍であり、従っ
て、前記巻数の比は約6〜8倍となる。
The coiled portion is composed of a first coil portion on the upstream side and a second coil portion on the downstream side, and the heat generation ratio of the first coil portion and the second coil portion is water. The ratio of the amount of energy required to make saturated steam and the amount of energy necessary to make saturated steam superheated steam is made to substantially match. The adjustment of the heat generation amount of each of the first and second coil parts is performed by adjusting the inner and outer diameters of the tubes of the first coil part and the second coil part, the number of coil turns, dimensional elements such as the coil diameter, and the electrical resistance value. It is adjusted by selecting an appropriate material such as physical properties. If the tube diameter, the material, and the coil diameter are the same, the adjustment may be made according to the winding ratio. For example, the energy required to turn water (saturated water) at room temperature (about 20 ° C.) into saturated steam in the pressure range of 1 to 5 kg / cm 2 G is approximately 646.4.
~ 658.0 kcal / kg, this saturated steam is 260
The energy required to turn into superheated steam at ° C is approximately 97 to 83 kcal / kg. Therefore, the amount of energy required to turn water into saturated steam is about 6 to 8 times the amount of energy required to turn saturated steam into superheated steam. Therefore, the ratio of the number of turns is about 6 to 8 times. Becomes

【0009】更に、前記第1コイル部と第2コイル部と
の間には、気水分離容器が接続される。この気水分離容
器は、第1コイル部と第2コイル部との間に液相部と気
相部との境界を設けるためのもので、従って、第1コイ
ル部内は、水の加熱による飽和蒸気の生成を行い、第2
コイル部は、飽和蒸気の加熱による過熱蒸気の生成を行
う。
Further, a steam separation container is connected between the first coil portion and the second coil portion. This air / water separation container is for providing a boundary between the liquid phase portion and the gas phase portion between the first coil portion and the second coil portion, and therefore, the inside of the first coil portion is saturated by heating of water. The second to produce steam
The coil section generates superheated steam by heating saturated steam.

【0010】前記第1,第2コイル部は、それぞれの巻
き付け部分以外の個所で導電性部材によって短絡してお
り、これにより前記気水分離容器を電磁気的に隔離す
る。この際に用いられる短絡部材は、第1コイル部の上
流側と第2コイル部の下流側との間、及び第1コイル部
における気水分離容器との接続部の上流側と第2コイル
部における気水分離容器との接続部の下流側との間に接
続する。この構成によって、気水分離容器は、第1,第
2コイル部,及び各短絡部材によって構成される電気的
閉回路から隔離され、誘導電流が流れないため発熱せ
ず、従って過熱部となることはない。この際、各短絡部
材は、各コイル部になるべく近づけ、前記閉回路におけ
る電気抵抗を少なくしておくのが熱効率上好ましい。ま
た、各短絡部材は、第1コイル部の上流側と第1コイル
部における気水分離容器との接続部の上流側との間、及
び第2コイル部の下流側と第2コイル部における気水分
離容器との接続部の下流側との間のそれぞれにおいて接
続することによっても気水分離容器を各コイル部におけ
る誘導電流の影響を受けない構成とすることができる。
この場合において、第1コイル部の両端間に配置する短
絡部材を、両端間を連通させる管路としてもよく、この
場合には、短絡部材において消費されるエネルギーも蒸
気発生のために使用することができる。
The first and second coil portions are short-circuited by a conductive member at locations other than the respective winding portions, thereby electromagnetically isolating the water / water separation container. The short-circuit member used at this time is between the upstream side of the first coil portion and the downstream side of the second coil portion, and the upstream side of the connection portion of the first coil portion with the steam separation container and the second coil portion. It is connected to the downstream side of the connection part with the air / water separation container in. With this configuration, the air-water separation container is isolated from the electrically closed circuit formed by the first and second coil parts and each short-circuit member, and does not generate an induction current so that it does not generate heat and thus becomes an overheating part. There is no. At this time, it is preferable in terms of thermal efficiency that each short-circuit member is brought as close as possible to each coil portion to reduce the electric resistance in the closed circuit. Further, each short-circuit member is provided between the upstream side of the first coil portion and the upstream side of the connection portion of the first coil portion with the water-water separation container, and between the downstream side of the second coil portion and the air side of the second coil portion. The steam-water separation container can be configured so as not to be affected by the induced current in each coil by connecting the water-separation container and the downstream side of the connection part.
In this case, the short-circuit member arranged between both ends of the first coil portion may be a conduit for communicating the both ends, and in this case, the energy consumed in the short-circuit member should also be used for steam generation. You can

【0011】そして、前記誘導コイルに交流電流を通電
すると、前記第1,第2コイル部、並びに短絡部材(第
1,第2短絡部材)によって構成される閉回路には誘導
電流が流れることになり、第1,第2コイル部は、前記
渦電流,及び誘導電流によるジュール熱によって加熱さ
れる。即ち、前記誘導コイルと前記第1,第2コイル部
とによって変圧器が構成されるため、前記誘導コイルに
交流電源を接続すると第1,第2コイル部には大電流が
流れ、この大電流により各コイル部にジュール熱が発生
して効率良く加熱が行なわれる。また、このように各コ
イル部を加熱部とすることにより、伝熱面積(発熱面
積)を広くとることができ、熱交換を効率良く行うこと
ができる。この加熱状態において、第1コイル部の内部
では、水が蒸発して飽和蒸気となって前記気水分離容器
に流入し、第2コイル部の内部では、前記の気水分離容
器からの飽和蒸気が更に加熱されて過熱蒸気となる。ま
た、第1コイル部の両端間に配置する短絡部材を連結管
とした場合には、この連結管内の水も誘導電流によるジ
ュール熱によっても加熱されて蒸気となって、前記気水
分離容器内に流入する。
When an alternating current is applied to the induction coil, the induction current flows in the closed circuit composed of the first and second coil parts and the short-circuit member (first and second short-circuit member). Therefore, the first and second coil parts are heated by the eddy current and the Joule heat generated by the induced current. That is, since a transformer is formed by the induction coil and the first and second coil portions, a large current flows through the first and second coil portions when an AC power source is connected to the induction coil. As a result, Joule heat is generated in each coil and heating is performed efficiently. Further, by using each coil portion as a heating portion in this manner, a heat transfer area (heat generation area) can be widened, and heat exchange can be efficiently performed. In this heating state, water evaporates inside the first coil portion to become saturated steam and flows into the steam-water separation container, and inside the second coil portion, saturated steam from the steam-water separation container. Is further heated to become superheated steam. Also, when the short-circuit member arranged between both ends of the first coil portion is a connecting pipe, the water in the connecting pipe is also heated by Joule heat due to the induced current to become steam, and the water inside the water-water separation container is formed. Flow into.

【0012】ここで、前記のコア部材は通常変圧器の鉄
心として用いられる例えば珪素鋼板の積層体、またはア
モルファス金属フィルムの積層体等を使用できる。ま
た、誘導コイルを構成する導電性線材は、例えばガラス
繊維で被覆・絶縁した銅線等を使用することができる。
次に、管は、電流を流す材料であればいかなる材料であ
ってもよく、例えば、銅製パイプ、鉄(鋼を含む)パイ
プ、ステンレスパイプ等である。また、短絡部材として
機能する連結管も、前記の管同様に、電流を流す材料で
あればいかなる材料であってもよく、例えば、銅製パイ
プ、鉄(鋼を含む)パイプ、ステンレスパイプ等であ
る。
Here, as the core member, for example, a laminate of silicon steel sheets or a laminate of amorphous metal films, which is usually used as an iron core of a transformer, can be used. As the conductive wire material forming the induction coil, for example, a copper wire covered and insulated with glass fiber can be used.
Next, the pipe may be made of any material as long as it allows an electric current to flow, for example, a copper pipe, an iron (including steel) pipe, a stainless pipe, or the like. Also, the connecting pipe functioning as a short-circuit member may be made of any material as long as it can pass an electric current, like the above-mentioned pipe, and is, for example, a copper pipe, an iron (including steel) pipe, a stainless pipe, or the like. .

【0013】このように、第1,第2コイル部を適切な
比率で形成し、その間に気水分離容器を接続することに
より、各コイル部を液相部と気相部とに独立させること
ができ、前記気水分離容器内において蒸気と熱水とを分
離し、蒸気のみを第2コイル部に導入することが容易に
できるため、過熱蒸気を安定して提供することができ
る。また、前記第1コイル部の両端間を連結管によって
連結した場合には、この連結管が前述の降水管として機
能することになるため、第1コイル部から蒸気とともに
流出する液滴分をコイル状部分の上流側に還流させるこ
とができるから、乾き度の高い蒸気の安定供給が図れる
とともに、給水を加熱して熱の有効利用が図れる。
In this way, the first and second coil portions are formed in an appropriate ratio, and the vapor-water separation container is connected between them, so that each coil portion is independent of the liquid phase portion and the vapor phase portion. Since it is possible to easily separate the steam and the hot water in the steam-water separation container and introduce only the steam into the second coil portion, the superheated steam can be stably provided. Further, when the both ends of the first coil portion are connected by the connecting pipe, the connecting pipe functions as the above-described downfall pipe, so that the liquid droplets flowing out together with the steam from the first coil portion are coiled. Since it can be refluxed to the upstream side of the shaped portion, it is possible to stably supply the vapor having a high degree of dryness and heat the feed water to effectively use the heat.

【0014】更に、この発明の好ましい実施の形態にお
いては、前記気水分離容器内に気水分離板を設けた構成
とすることにより、第1コイル部内の水が突沸し、熱水
として気泡とともに噴出したとしても、この気水分離板
によって遮られ、過熱蒸気発生側の第2コイル部内に流
入するのを防ぐ。
Furthermore, in a preferred embodiment of the present invention, the water / water separation plate is provided in the water / water separation container, whereby the water in the first coil portion is boiled and is heated as bubbles together with bubbles. Even if it spouts, it is blocked by this steam separation plate and prevented from flowing into the second coil portion on the superheated steam generation side.

【0015】尚、この過熱蒸気発生器についての制御
は、例えば、以下のように行う。先ず、給水制御につい
ては、第1コイル部の下流側の温度を検出し、この温度
が所定の設定温度、或は設定温度範囲内となるように連
続的な流量制御を行っている。好ましくは、前記第1コ
イル部の下流側の表面に温度センサを設け、この温度セ
ンサからの出力によって、第1コイル部の加熱度合を検
出し、この加熱度合と設定温度との差に基づいて、パル
ス式電磁ポンプ等のような流量可変の給水ポンプによっ
て行う。次に、誘導加熱の制御は、前記したような第1
コイル部下流の温度を検出するセンサを設けることによ
り、この温度の変化に応じて誘導コイルへの通電のオン
オフ、更には通電量を制御することにより、前記第1コ
イル部の温度が所定の温度、或は温度範囲内となるよう
に制御する。即ち、第1コイル部の下流側において、内
部の水の状態が液(水,熱水)か、気体(蒸気)かによ
って、前記管から内部の流体への伝熱の状態が異なり温
度が変化するため、この温度を検出することによって過
熱を防止し、安定した制御が行える。従って、以上の誘
導加熱量の制御と給水の制御を組合せることにより、過
熱蒸気の発生量と温度を容易に調整できることになる。
The control of the superheated steam generator is performed as follows, for example. First, regarding water supply control, the temperature on the downstream side of the first coil portion is detected, and continuous flow rate control is performed so that this temperature falls within a predetermined set temperature or set temperature range. Preferably, a temperature sensor is provided on the surface on the downstream side of the first coil section, the heating degree of the first coil section is detected by the output from the temperature sensor, and based on the difference between the heating degree and the set temperature. , A pulse type electromagnetic pump, etc., with variable flow rate water supply pump. Next, the induction heating control is performed by the first control as described above.
By providing a sensor for detecting the temperature downstream of the coil portion, the temperature of the first coil portion is controlled to a predetermined temperature by turning on / off the power supply to the induction coil and controlling the amount of power supply according to the change in the temperature. Or, it is controlled to be within the temperature range. That is, on the downstream side of the first coil portion, the state of heat transfer from the pipe to the internal fluid differs depending on whether the state of the internal water is liquid (water, hot water) or gas (steam), and the temperature changes. Therefore, by detecting this temperature, overheating can be prevented and stable control can be performed. Therefore, it is possible to easily adjust the amount of superheated steam generated and the temperature by combining the control of the induction heating amount and the control of the feed water.

【0016】[0016]

【実施例】以下、この発明の具体的実施例を図面を参照
しながら説明する。尚、図1は、この発明に係る誘導加
熱式蒸気発生器の具体的な一実施例を示す側面説明図、
図2は、図1の平面説明図である。図面において、コア
部材(1) は長円形状をなしており、このコア部材(1)
は、それ自体の渦電流損を低減するために薄肉鋼板を間
に絶縁物を介在させた状態で積層し、薄肉鋼板も固有抵
抗を減少させるために珪素鋼板等を用いている。尚、前
記コア部材の太さは、磁気飽和に達しない磁束密度に保
てる程度であり、好ましくは2万ガウス以下に保つよう
な断面積に設定する。このコア部材(1) の一方の直線部
分には、誘導コイル(2) を鎖交させて配置してある。こ
の誘導コイル(2) は、例えば、ガラス繊維で被覆・絶縁
した銅線を所定回数巻回して構成したものである。ま
た、この誘導コイル(2) は、適宜の電源回路によって供
給される電流値、周波数を制御されるが、この実施例で
は、一般的な商用交流電源(以下、単に交流電源とい
う。)(3) を接続してある。
Embodiments of the present invention will be described below with reference to the drawings. Incidentally, FIG. 1 is a side view showing a specific embodiment of the induction heating steam generator according to the present invention.
FIG. 2 is an explanatory plan view of FIG. In the drawing, the core member (1) has an oval shape.
In order to reduce its own eddy current loss, thin steel plates are laminated with an insulator interposed therebetween, and the thin steel plates also use a silicon steel plate or the like to reduce the specific resistance. The thickness of the core member is set to a magnetic flux density that does not reach magnetic saturation, and is preferably set to a cross-sectional area such that it is maintained at 20,000 Gauss or less. The induction coil (2) is arranged in a chain with one linear portion of the core member (1). The induction coil (2) is formed by winding a copper wire coated and insulated with glass fiber a predetermined number of times. The induction coil (2) is controlled in current value and frequency supplied by an appropriate power supply circuit. In this embodiment, a general commercial AC power supply (hereinafter, simply referred to as AC power supply) (3 ) Is connected.

【0017】前記誘導コイル(2) の外周には、導電性材
料からなる伝熱管(4) をコイル状に巻回した第1,第2
コイル部(5),(6) を略同軸状に配置してある。従って、
これら第1,第2コイル部(5),(6) も前記誘導コイル
(2) と同様に、前記コア部材(1) と鎖交した状態となっ
ており、前記誘導コイル(2) と第1,第2コイル部(5),
(6) は、コア部材(1) を介して磁気的に結合された状態
となっている。上流側(図1の下方側)の第1コイル部
(5) と下流側(図1の上方側)の第2コイル部(6) にお
ける巻数比は、水を飽和蒸気とするのに必要なエネルギ
ー量と飽和蒸気を過熱蒸気とするのに必要なエネルギー
量との比率を勘案して設定されるもので、この実施例で
は第1,第2コイル部(5),(6) の管径,材質、コイル径
を同一としてあるため、巻数比によって調整してある。
例えば、この過熱蒸気発生器によって、圧力1〜5kg/
cm2 Gの範囲で、260℃の過熱蒸気を得る場合には、
前記第1コイル部(5) の巻数の比(或は、電気抵抗の
比)は、第2コイル部(6) の約6〜8倍となる。前記第
1コイル部(5) のコア部材(1) への巻き付け部分よりも
上流側(図1の下方側)の流入側部分(7) には給水手段
(8) を接続してあり、この給水手段(8)によって第1コ
イル部(5) 内部に水が導入される。尚、この給水手段
(8) としては、連続的に流量を調整できるポンプ、例え
ばパルス式の電磁ポンプを用いる。一方、前記第2コイ
ル部(6) のコア部材(1) への巻き付け部分よりも下流側
(図1の上方側)の流出側部分(9) には、調理器、暖房
機器、殺菌装置等の過熱蒸気使用機器(図示省略)が接
続される。
A heat transfer tube (4) made of a conductive material is wound around the outer circumference of the induction coil (2) in the form of a coil.
The coil parts (5) and (6) are arranged substantially coaxially. Therefore,
These first and second coil parts (5) and (6) are also the induction coil.
Similar to (2), the core member (1) is linked to the core member (1), and the induction coil (2) and the first and second coil portions (5),
(6) is in a state of being magnetically coupled through the core member (1). The first coil portion on the upstream side (the lower side in FIG. 1)
The turn ratio in (5) and the second coil section (6) on the downstream side (upper side in Fig. 1) is required to turn the saturated steam into superheated steam. It is set in consideration of the ratio with the amount of energy. In this embodiment, since the pipe diameter, material and coil diameter of the first and second coil portions (5) and (6) are the same, It is adjusted.
For example, with this superheated steam generator, pressure of 1-5 kg /
In the case of obtaining superheated steam at 260 ° C in the cm 2 G range,
The ratio of the number of turns of the first coil portion (5) (or the ratio of electrical resistance) is about 6 to 8 times that of the second coil portion (6). A water supply means is provided at an inflow side portion (7) upstream (lower side in FIG. 1) of the winding portion of the first coil portion (5) around the core member (1).
(8) is connected, and water is introduced into the inside of the first coil part (5) by this water supply means (8). In addition, this water supply means
As (8), a pump capable of continuously adjusting the flow rate, for example, a pulse type electromagnetic pump is used. On the other hand, a cooker, a heating device, a sterilizer, etc. are provided at the outflow side portion (9) on the downstream side (upper side in FIG. 1) of the winding portion of the second coil portion (6) around the core member (1). The superheated steam using device (not shown) is connected.

【0018】更に、前記第1コイル部(5) と第2コイル
部(6) との間、即ち、前記第1コイル部(5) のコア部材
(1) への巻き付け部分よりも下流側(図1の上方側)と
前記第2コイル部(6) のコア部材(1) への巻き付け部分
よりも上流側(図1の下方側)との間には、気水分離容
器(10)を接続してある。以上の構成により、この発明の
誘導加熱式蒸気発生器は、モノチューブ形式の伝熱管を
備えた蒸気発生器として構成される。
Further, between the first coil portion (5) and the second coil portion (6), that is, the core member of the first coil portion (5).
The downstream side (upper side in FIG. 1) of the winding portion around (1) and the upstream side (lower side in FIG. 1) than the winding portion around the core member (1) of the second coil portion (6). An air / water separation container (10) is connected between them. With the above configuration, the induction heating steam generator of the present invention is configured as a steam generator including a monotube type heat transfer tube.

【0019】更に、前記第1コイル部(5) の流入側部分
(7) と前記第2コイル部(6) の流出側部分(9) との間に
は、導電性部材からなる第1短絡部材(11)を機械的、電
気的に接続してあり、前記第1コイル部(5) における前
記気水分離容器(10)との接続部の上流側と前記第2コイ
ル部(6) における前記気水分離容器(10)との接続部の下
流側との間にも、同様に、導電性部材からなる第2短絡
部材(12)を機械的、電気的に接続してある。この構成に
より、第1コイル部(5) ,第2短絡部材(12),第2コイ
ル部(6) ,第1短絡部材(11),第1コイル部(5) と連な
る電気的閉回路が形成され、前記気水分離器(10)は、こ
れらから電気的に隔離される。尚、前記第1コイル部
(5) ,第2コイル部(12)と気水分離容器(10)との接続個
所に、ネジ込み式の管連結部材を使用する場合、このネ
ジ込み部に、パッキン、シールテープ等の絶縁性材料を
介在させると、気水分離容器(10)の電気的な隔離が一層
確実なものとなる。
Further, the inflow side portion of the first coil portion (5)
A first short-circuit member (11) made of a conductive member is mechanically and electrically connected between (7) and the outflow side portion (9) of the second coil portion (6). Between the upstream side of the connection portion of the first coil portion (5) with the steam / water separation container (10) and the downstream side of the connection portion of the second coil portion (6) with the steam / water separation container (10). Similarly, a second short-circuit member (12) made of a conductive member is mechanically and electrically connected between the two. With this configuration, an electrically closed circuit connected to the first coil portion (5), the second short-circuit member (12), the second coil portion (6), the first short-circuit member (11), and the first coil portion (5) is formed. Formed, the steam separator (10) is electrically isolated from them. The first coil portion
(5) When a screw-type pipe connecting member is used at the connection point between the second coil part (12) and the water / water separation container (10), the threaded part should be insulated with packing, sealing tape, etc. By interposing a conductive material, the electrical isolation of the steam-water separation container (10) becomes more reliable.

【0020】また、この誘導加熱式過熱蒸気発生器にお
ける制御装置(20)は、前記第1コイル部(5) の下流側に
設けた温度センサ(21)からの検出信号に基づいて、前記
誘導コイル(2) と交流電源(3) との間に接続した電源制
御手段(22)、並びに前記給水手段(8) を制御する構成と
してある。即ち、この実施例の制御装置(20)において
は、第1コイル部(5) の下流側(気水分離容器(10)への
上流側)の位置での伝熱管(4) の温度を温度センサ(21)
によって監視し、この温度の変化に応じて第1コイル部
(5) の加熱具合を検出し、この加熱具合と設定温度との
差に基づき、前記温度センサ(21)からの出力が所定の設
定温度、或は設定温度範囲内となるように前記給水手段
(8) の流量を連続的に制御し、また、前記温度の変化に
応じて前記電源制御手段(22)を制御することにより、誘
導コイル(2) への通電のオンオフ、更には通電量を調整
し、前記第1コイル部(5) の温度が所定の設定温度、或
は設定温度範囲内となるように制御している。
The control device (20) in the induction heating type superheated steam generator uses the induction signal based on the detection signal from the temperature sensor (21) provided on the downstream side of the first coil section (5). The power supply control means (22) connected between the coil (2) and the AC power supply (3) and the water supply means (8) are controlled. That is, in the control device (20) of this embodiment, the temperature of the heat transfer tube (4) at the position of the downstream side of the first coil portion (5) (upstream side to the steam separation container (10)) is set to the temperature. Sensor (21)
Monitored by the first coil unit according to this temperature change
The heating condition of (5) is detected, and based on the difference between this heating condition and the set temperature, the water supply means is set so that the output from the temperature sensor (21) is within a predetermined set temperature or set temperature range.
By continuously controlling the flow rate of (8) and controlling the power supply control means (22) according to the change of the temperature, on / off of the energization to the induction coil (2) and further the energization amount can be controlled. The temperature of the first coil portion (5) is adjusted and controlled so as to be within a predetermined set temperature or set temperature range.

【0021】以上の構成の誘導加熱式過熱蒸気発生器に
おいて、前記制御装置(20)により給水手段(8) を駆動
し、前記第1コイル部(5) 内に水を導入するとともに、
電源制御手段(22)により、前記誘導コイル(2) に前記交
流電源(3) からの交流電流を通電する。尚、この際、水
位は、気水分離容器(10)の内部、或はそれよりも下方の
第1コイル部(5) の上端近傍に位置するように制御す
る。前記誘導コイル(2) によって生じた磁束は前記コア
部材(1) を介して第1,第2コイル部(5),(6) を通過す
る。これらの第1,第2コイル部(5),(6) においては、
電磁誘導によりその表面に渦電流が生じるとともに誘導
起電力が生じる。また、前記第1,第2コイル部(5),
(6) は、第1,第2短絡部材(11),(12) とともに電気的
な閉回路を構成しているため、この誘導起電力によって
この閉回路内に誘導電流も流れることになる。従って、
前記電気的閉回路、即ち、第1,第2コイル部(5),(6)
は、誘導電流によるジュール熱によって加熱されること
になり、更に前記の渦電流によるジュール熱によっても
加熱される。この時、前記第1コイル部(5) と第2コイ
ル部(6) における巻数比は、水を飽和蒸気とするのに必
要なエネルギー量と飽和蒸気を過熱蒸気とするのに必要
なエネルギー量との比率を勘案して設定してあるため、
第1コイル部(5) では、水を飽和蒸気とするための適切
な加熱が行なわれ、第2コイル部(6) では、この飽和蒸
気を所定の過熱蒸気とするための適切な加熱が行なわれ
る。従って、前記給水手段(8) からの給水は、第1コイ
ル部(5) の内部で加熱されて蒸気となって気水分離容器
(10)内に流入する。この気水分離容器(10)の内部では、
前記蒸気のうちの飽和水は、この気水分離容器(10)内に
滞留するため、飽和蒸気が前記第2コイル部(6) に流入
する。そして、第2コイル部(6) では、この飽和蒸気が
更に加熱され、過熱蒸気となって流出側部分(9) から前
述の過熱蒸気使用機器に供給される。
In the induction heating type superheated steam generator having the above construction, the water supply means (8) is driven by the control device (20) to introduce water into the first coil portion (5),
An AC current from the AC power supply (3) is supplied to the induction coil (2) by a power supply control means (22). At this time, the water level is controlled so as to be located inside the steam separation container (10) or near the upper end of the first coil portion (5) below the water level. The magnetic flux generated by the induction coil (2) passes through the core member (1) and the first and second coil portions (5) and (6). In these first and second coil parts (5) and (6),
Electromagnetic induction causes an eddy current on its surface and an induced electromotive force. In addition, the first and second coil portions (5),
Since (6) constitutes an electrically closed circuit together with the first and second short-circuit members (11) and (12), an induced current also flows in this closed circuit due to this induced electromotive force. Therefore,
The electrically closed circuit, that is, the first and second coil parts (5), (6)
Will be heated by the Joule heat due to the induced current, and will also be heated by the Joule heat due to the eddy current. At this time, the turns ratio in the first coil portion (5) and the second coil portion (6) is such that the amount of energy required to turn water into saturated steam and the amount of energy required to turn saturated steam into superheated steam. Since it is set in consideration of the ratio with
Appropriate heating is performed in the first coil section (5) to turn water into saturated steam, and appropriate heating is performed in the second coil section (6) to turn this saturated steam into a predetermined superheated steam. Be done. Therefore, the water supply from the water supply means (8) is heated inside the first coil part (5) to become steam, which is a steam separation container.
It flows into (10). Inside this air / water separation container (10),
Saturated water of the steam stays in the steam-water separation container (10), so that the saturated steam flows into the second coil portion (6). Then, in the second coil portion (6), the saturated steam is further heated and becomes superheated steam, which is supplied from the outflow side portion (9) to the above-mentioned equipment using superheated steam.

【0022】以上のように、この発明においては、第
1,第2コイル部(5),(6) 自体が発熱体として機能する
ため伝熱効率がよく、しかも、電力ロスも後述の理由に
加えて少なくして伝熱が行なわれ、前記第1コイル部
(5) の下流側において、気水分離容器(10)を設けたこと
により、この気水分離容器(10)内において蒸気と熱水と
を分離することが容易にできるため、蒸気のみを第2コ
イル部(6) に提供し、過熱蒸気を得ることができる。
As described above, in the present invention, since the first and second coil portions (5) and (6) themselves function as a heating element, the heat transfer efficiency is good, and the power loss is in addition to the reason described below. The heat is transferred to the first coil portion.
By providing the steam-water separation container (10) on the downstream side of (5), it is possible to easily separate steam and hot water in the steam-water separation container (10). The superheated steam can be obtained by providing it to the two coil parts (6).

【0023】更に、この実施例においては、前記気水分
離容器(10)内に、前記第1コイル部(5) の開口部を遮る
気水分離板(13)を設けることにより、万が一、第1コイ
ル部(5) 内の水が突沸し、熱水として蒸気とともに噴出
したとしても、この気水分離板(13)によって遮られ、第
2コイル部(6) 側に流出するのを防ぐことができ、この
構成によって、過熱蒸気の供給が更に安定して行うこと
ができる。
Further, in this embodiment, by providing the air / water separation plate (13) in the air / water separation container (10) for blocking the opening of the first coil portion (5), the Even if the water in the coil part (5) bumps and is ejected together with steam as hot water, it is blocked by this steam separation plate (13) and prevented from flowing out to the second coil part (6) side. With this configuration, the superheated steam can be supplied more stably.

【0024】前記第1,第2短絡部材(11),(12) の接続
個所は、前記の実施例に限るものではなく、要するに気
水分離容器(10)が、第1,第2コイル部(5),(6) に流れ
る誘導電流の影響を受けない構成となればよい。この例
を、図3,図4を参照しながら説明する。ここで、図3
は、他の一実施例の側面説明、図4は、図3に示す実施
例の平面説明図である。この図3,図4に示す実施例に
おいては、第1短絡部材(11)を、前記第1コイル部(5)
の流入側部分(7) と第1コイル部(5) における気水分離
容器(10)との接続部の上流側との間に機械的、電気的に
接続し、第2短絡部材(12)を、前記第2コイル部(6) の
流出側部分(9) と第2コイル部(6) における気水分離容
器(10)との接続部の下流側との間に機械的、電気的に接
続したものである。この構成により、第1コイル部(5)
と第1短絡部材(11)とによって、また、第2コイル部
(6) と第2コイル部(6) とによってそれぞれ独立した電
気的閉回路を形成することができ、気水分離容器(10)を
前記第1,第2コイル部(5),(6) における誘導電流の影
響を受けない構成とすることができる。この場合、第1
コイル部(5) の両端間に配置する第1短絡部材(11)を、
図示するように第1コイル部(5) の両端間を連通させる
管路としてもよく、この場合には、前記第1短絡部材(1
1)に流れる誘導電流も蒸気発生のために使用することが
できる。
The connection points of the first and second short-circuit members (11) and (12) are not limited to those in the above-mentioned embodiment, and in short, the water-and-water separation container (10) is the first and second coil parts. It is sufficient if the configuration is not affected by the induced current flowing in (5) and (6). This example will be described with reference to FIGS. Here, FIG.
Is a side view of another embodiment, and FIG. 4 is a plan view of the embodiment shown in FIG. In the embodiment shown in FIGS. 3 and 4, the first short-circuit member (11) is connected to the first coil portion (5).
Mechanically and electrically connected between the inflow side portion (7) of the pipe and the upstream side of the connecting portion of the steam / water separation container (10) in the first coil portion (5), and the second short-circuit member (12) Mechanically and electrically between the outflow side part (9) of the second coil part (6) and the downstream side of the connection part of the steam / water separation container (10) in the second coil part (6). It is connected. With this configuration, the first coil portion (5)
And the first short-circuit member (11), the second coil portion
An independent electric closed circuit can be formed by the (6) and the second coil part (6), and the steam-water separation container (10) is connected to the first and second coil parts (5), (6). It is possible to adopt a configuration that is not affected by the induced current in. In this case, the first
The first short-circuit member (11) arranged between both ends of the coil part (5),
As shown in the figure, the first coil portion (5) may be a conduit for communicating between both ends thereof. In this case, the first short-circuit member (1
The induced current flowing in 1) can also be used for steam generation.

【0025】[0025]

【発明の効果】以上説明したように、この発明によれ
ば、伝熱管を巻回してなる第1,第2コイル部を誘導コ
イルと電磁気的に結合し、前記第1,第2コイル部間に
気水分離容器を接続したことにより、第1コイル部で水
を加熱し、第2コイル部では前記気水分離容器によって
分離した蒸気のみを加熱して過熱蒸気を得ることができ
るため、一台で過熱蒸気を安定して得ることのできる誘
導加熱式過熱蒸気発生器を提供することができる。更
に、前記気水分離容器は、第1,第2短絡部材によっ
て、第1,第2コイルにに発生する誘導電流の影響を受
けないように構成されているため、この誘導電流によっ
て発熱することはないため、過熱蒸気を得るための加熱
は、第1,第2コイル部によるもののみでり、従って加
熱の制御を容易に行うことができる。しかも、前記第1
コイル部と前記第2コイル部の発熱量の比率を、水を飽
和蒸気とするのに必要なエネルギー量と飽和蒸気を過熱
蒸気とするのに必要なエネルギー量との比率に略一致さ
せて設定したことにより、各コイル部において適切な加
熱を行うことができるため、エネルギーのロスを防止
し、効率を向上させることができる。更に、前記気水分
離容器内に、気水分離板を設けることにより、万が一、
第1コイル部内の水が突沸し、熱水として気泡とともに
噴出したとしても、この気水分離板によって遮られ、第
2コイル部内に流入するを防止できるため、過熱蒸気の
安定供給が確実なものとなる。
As described above, according to the present invention, the first and second coil portions formed by winding the heat transfer tube are electromagnetically coupled to the induction coil, and the first and second coil portions are electrically connected to each other. Since the steam-water separation container is connected to the first coil portion, water can be heated in the first coil portion, and only the steam separated by the steam-water separation container can be heated in the second coil portion to obtain superheated steam. An induction heating type superheated steam generator that can stably obtain superheated steam on a stand can be provided. Furthermore, since the air-water separation container is configured so as not to be affected by the induced current generated in the first and second coils by the first and second short-circuiting members, heat is generated by the induced current. Therefore, the heating for obtaining the superheated steam is performed only by the first and second coil portions, so that the heating can be easily controlled. Moreover, the first
The ratio of the calorific value of the coil part and the second coil part is set to be substantially equal to the ratio of the amount of energy required to turn water into saturated steam and the amount of energy required to turn saturated steam into superheated steam. By doing so, appropriate heating can be performed in each coil portion, so that energy loss can be prevented and efficiency can be improved. Furthermore, by providing a steam separation plate in the steam separation container, by any chance,
Even if the water in the first coil part bumps and is ejected together with bubbles as hot water, it can be blocked by this water-water separation plate and prevented from flowing into the second coil part, so that a stable supply of superheated steam is ensured. Becomes

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る誘導加熱式過熱蒸気発生器の具
体的な一実施例の側面説明面である。
FIG. 1 is a side view illustrating a specific embodiment of an induction heating type superheated steam generator according to the present invention.

【図2】図1に示す実施例の平面説明図である。FIG. 2 is an explanatory plan view of the embodiment shown in FIG. 1;

【図3】この発明に係る誘導加熱式過熱蒸気発生器の具
体的な他の一実施例の側面説明図である。
FIG. 3 is a side view of another specific example of the induction heating type superheated steam generator according to the present invention.

【図4】図3に示す実施例の平面説明図である。4 is an explanatory plan view of the embodiment shown in FIG.

【符号の説明】[Explanation of symbols]

(1) コア部材 (2) 誘導コイル (3) 交流電源 (4) 伝熱管 (5) 第1コイル部 (6) 第2コイル部 (7) 流入側部分 (8) 給水手段 (9) 流出側部分 (10) 気水分離容器 (11) 第1短絡部材 (12) 第2短絡部材 (13) 気水分離板 (20) 制御装置 (21) 温度センサ (22) 電源制御手段 (1) Core member (2) Induction coil (3) AC power supply (4) Heat transfer tube (5) First coil part (6) Second coil part (7) Inflow side part (8) Water supply means (9) Outflow side Part (10) Air-water separation container (11) First short-circuit member (12) Second short-circuit member (13) Water-water separation plate (20) Control device (21) Temperature sensor (22) Power supply control means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 コア部材(1) と鎖交状態で配置した誘導
コイル(2) と、前記コア部材(1) と鎖交状態で配置した
第1コイル部(5) ,及び第2コイル部(6) を有する伝熱
管(4) と、前記第1コイル部(5) の上流側と前記第2コ
イル部(6) の下流側との間に接続した気水分離容器(10)
と、前記伝熱管(4) を短絡することにより、第1コイル
部(5) ,及び第2コイル部(6) と前記気水分離容器(10)
とを電磁気的に隔離する短絡部材とを備えたことを特徴
とする誘導加熱式過熱蒸気発生器。
1. An induction coil (2) arranged in an interlinking state with a core member (1), a first coil portion (5) arranged in an interlinking state with the core member (1), and a second coil portion. A heat transfer tube (4) having (6), and a steam separation container (10) connected between the upstream side of the first coil section (5) and the downstream side of the second coil section (6)
By short-circuiting the heat transfer tube (4), the first coil part (5), the second coil part (6) and the water / water separation container (10)
An induction heating type superheated steam generator, comprising:
【請求項2】 前記短絡部材は、前記第1コイル部(5)
の上流側と前記第2コイル部(6) の下流側との間に接続
した第1短絡部材(11)と、前記第1コイル部(5) におけ
る前記気水分離容器(10)との接続部の上流側と前記第2
コイル部(6)における前記気水分離容器(10)との接続部
の下流側との間に接続した第2短絡部材(12)であること
を特徴とする請求項1記載の誘導加熱式過熱蒸気発生
器。
2. The short-circuit member comprises the first coil portion (5).
Connection between the first short-circuit member (11) connected between the upstream side of the coil and the downstream side of the second coil section (6) and the steam-water separation container (10) in the first coil section (5) Upstream of the section and the second
The induction heating type superheat according to claim 1, which is a second short-circuit member (12) connected between a coil portion (6) and a downstream side of a connection portion with the steam-water separation container (10). Steam generator.
【請求項3】 前記短絡部材は、前記第1コイル部(5)
の上流側と前記第1コイル部(5) における前記気水分離
容器(10)との接続部の上流側との間に接続した第1短絡
部材(11)と、前記第2コイル部(6) の下流側と前記第2
コイル部(6)における前記気水分離容器(10)との接続部
の下流側との間に接続した第2短絡部材(12)であること
を特徴とする請求項1記載の誘導加熱式過熱蒸気発生
器。
3. The short-circuit member comprises the first coil portion (5).
First short-circuit member (11) connected between the upstream side of the first coil part (5) and the upstream side of the connection part of the steam / water separation container (10) in the first coil part (5), and the second coil part (6 ) And the second side
The induction heating type superheat according to claim 1, which is a second short-circuit member (12) connected between a coil portion (6) and a downstream side of a connection portion with the steam-water separation container (10). Steam generator.
【請求項4】 前記第1コイル部(5) と前記第2コイル
部(6) の発熱量の比率を、水を飽和蒸気とするのに必要
なエネルギー量と飽和蒸気を過熱蒸気とするのに必要な
エネルギー量との比率に略一致させたことを特徴とする
請求項1,請求項2,又は請求項3記載の誘導加熱式過
熱蒸気発生器。
4. The ratio of the calorific value of the first coil section (5) to the second coil section (6) is such that the amount of energy required to make water into saturated steam and the saturated steam to be superheated steam. The induction heating type superheated steam generator according to claim 1, claim 2 or claim 3, wherein the ratio is substantially equal to the amount of energy required for the above.
【請求項5】 前記気水分離容器(10)内に気水分離板(1
3)を設けたことを特徴とする請求項1,請求項2,請求
項3,又は請求項4記載の誘導加熱式過熱蒸気発生器。
5. A steam separation plate (1) is provided in the steam separation container (10).
The induction heating type superheated steam generator according to claim 1, claim 2, claim 3, or claim 4, characterized in that 3) is provided.
JP35034595A 1995-12-21 1995-12-21 Induction type super heated steam generator Pending JPH09178103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35034595A JPH09178103A (en) 1995-12-21 1995-12-21 Induction type super heated steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35034595A JPH09178103A (en) 1995-12-21 1995-12-21 Induction type super heated steam generator

Publications (1)

Publication Number Publication Date
JPH09178103A true JPH09178103A (en) 1997-07-11

Family

ID=18409862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35034595A Pending JPH09178103A (en) 1995-12-21 1995-12-21 Induction type super heated steam generator

Country Status (1)

Country Link
JP (1) JPH09178103A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465765B2 (en) 2000-02-24 2002-10-15 Omron Corporation Fluid heating apparatus
JP2003090501A (en) * 2001-09-13 2003-03-28 Tlv Co Ltd Pure steam generating device
CN1312962C (en) * 2002-11-18 2007-04-25 乐金电子(天津)电器有限公司 Steam cleaner
CN101943394A (en) * 2010-08-25 2011-01-12 晶辉科技(深圳)有限公司 Steam generating device and domestic electric steam box
JP2012163229A (en) * 2011-02-04 2012-08-30 Tokuden Co Ltd Superheated water vapor generator
JP2014097447A (en) * 2012-11-13 2014-05-29 Shimizu Corp Steam cleaning apparatus
JP2016065706A (en) * 2014-09-19 2016-04-28 トクデン株式会社 Fluid heating device
CN105805716A (en) * 2016-04-11 2016-07-27 大庆瑞宏电子技术服务有限公司 High-frequency electromagnetic steam cleaning machine
CN106801598A (en) * 2017-03-31 2017-06-06 邓晓亮 Burn mixed phase superheated steam device and method processed for underground
US10206249B2 (en) 2014-09-19 2019-02-12 Tokuden Co., Ltd. Fluid heating device
JP2019113282A (en) * 2017-12-26 2019-07-11 トクデン株式会社 Superheated steam generation device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465765B2 (en) 2000-02-24 2002-10-15 Omron Corporation Fluid heating apparatus
KR100417736B1 (en) * 2000-02-24 2004-02-11 다이닛뽕스크린 세이조오 가부시키가이샤 Fluid heating apparatus
JP2003090501A (en) * 2001-09-13 2003-03-28 Tlv Co Ltd Pure steam generating device
CN1312962C (en) * 2002-11-18 2007-04-25 乐金电子(天津)电器有限公司 Steam cleaner
CN101943394A (en) * 2010-08-25 2011-01-12 晶辉科技(深圳)有限公司 Steam generating device and domestic electric steam box
JP2012163229A (en) * 2011-02-04 2012-08-30 Tokuden Co Ltd Superheated water vapor generator
JP2014097447A (en) * 2012-11-13 2014-05-29 Shimizu Corp Steam cleaning apparatus
JP2016065706A (en) * 2014-09-19 2016-04-28 トクデン株式会社 Fluid heating device
US10206249B2 (en) 2014-09-19 2019-02-12 Tokuden Co., Ltd. Fluid heating device
CN105805716A (en) * 2016-04-11 2016-07-27 大庆瑞宏电子技术服务有限公司 High-frequency electromagnetic steam cleaning machine
CN106801598A (en) * 2017-03-31 2017-06-06 邓晓亮 Burn mixed phase superheated steam device and method processed for underground
CN106801598B (en) * 2017-03-31 2023-05-23 邓晓亮 Device and method for burning mixed-phase superheated steam underground
JP2019113282A (en) * 2017-12-26 2019-07-11 トクデン株式会社 Superheated steam generation device

Similar Documents

Publication Publication Date Title
JP3240384B2 (en) Fluid heating device
US20090092384A1 (en) High frequency induction heating instantaneous tankless water heaters
US5350901A (en) Electromagnetic induction steam generator
JP5654791B2 (en) Superheated steam generator
JPH04230987A (en) Electromagnetic induction heater
JPH09178103A (en) Induction type super heated steam generator
JP2004205146A (en) Steam generator
JP3642415B2 (en) Fluid heating device
WO2019039960A1 (en) Electric steam generator
JPH1194203A (en) Steam producing equipment
JPH09178102A (en) Induction heating type steam generator
WO1998029685A1 (en) Superheated steam generator
JP2001203069A (en) Electromagnetic induction heating device
KR100577239B1 (en) device for hot water supply in water purifier
JP3743064B2 (en) Heating device
JP2008025913A (en) Water supply device, and food vending machine with the water supply device
KR100571680B1 (en) Apparatus for drying food using overheated steam produced by induction heating
JPH1194202A (en) Steam producing equipment
JP2003336801A (en) High temperature steam generating device
RU2752986C1 (en) Electric steam generator
CN214223421U (en) High-frequency electromagnetic water heater
RU2797032C1 (en) Fluid induction heater
JPH02297889A (en) Low frequency electromagnetic induction heating device
CN205514108U (en) Energy -conserving water dispenser of preparation micro molecule water body
JPH113770A (en) Heating device