JP2007080715A - Electromagnetic induction fluid heating device - Google Patents

Electromagnetic induction fluid heating device Download PDF

Info

Publication number
JP2007080715A
JP2007080715A JP2005268091A JP2005268091A JP2007080715A JP 2007080715 A JP2007080715 A JP 2007080715A JP 2005268091 A JP2005268091 A JP 2005268091A JP 2005268091 A JP2005268091 A JP 2005268091A JP 2007080715 A JP2007080715 A JP 2007080715A
Authority
JP
Japan
Prior art keywords
tube
heat generating
electromagnetic induction
bent tube
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005268091A
Other languages
Japanese (ja)
Inventor
Junji Nakao
順次 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2005268091A priority Critical patent/JP2007080715A/en
Publication of JP2007080715A publication Critical patent/JP2007080715A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic induction fluid heating device capable of substantially enhancing heat exchange efficiency for fluid to be heated which circulates in a heating tube. <P>SOLUTION: In this electromagnetic induction fluid heating device having a heating tube 2 of a conductive material in which fluid to be heated circulates, a heating coil 4 disposed so as to surround the heating tube, and a high frequency power supply part 5 for supplying high frequency power to this heating coil, electromagnetic induction power is generated in the heating tube by lines of magnetic flux which is generated if high frequency power is supplied to the heating coil, and the heating tube is heated by this electromagnetic induction power. The heating tube is composed of a first heating bent tube 10A and a second heating bent tube 10B, the almost center part of the first heating bent tube is spirally twisted to form a first spiral part 11A, and the almost center part of the second heating bent tube is spirally twisted to form a second spiral part 11B. The first heating bent tube and the second heating bent tube are mounted to the heating coil so that the lines of magnetic flux generated in the heating coil interlink with the first heating bent tube and the second heating bent tube. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば水やアルコール等の液体や、窒素ガスやアルゴンガス等の気体等の被加熱流体を電磁誘導的に加熱する、例えば半導体製造装置に使用される電磁誘導流体加熱装置に関する。   The present invention relates to an electromagnetic induction fluid heating apparatus used in, for example, a semiconductor manufacturing apparatus that electromagnetically heats a heated fluid such as a liquid such as water or alcohol, or a gas such as nitrogen gas or argon gas.

従来、本出願人は、被加熱流体が流通する導電性材料の発熱管と、螺旋状に巻回して前記発熱管を取り囲むように配置した加熱コイルと、この加熱コイルに対して高周波電力を供給する高周波電源部と、発熱管の両端部を電気的に接続する短絡部とを有し、前記加熱コイルに対して高周波電力を供給することで発生する磁束線で前記発熱管に電磁誘導電力を発生させ、この電磁誘導電力で同発熱管を加熱する電磁誘導流体加熱装置を提案している(例えば特許文献1参照)。   Conventionally, the present applicant has supplied a high-frequency power to a heating tube of a conductive material through which a fluid to be heated circulates, a heating coil that is spirally wound so as to surround the heating tube, and the heating coil. A high-frequency power supply unit that electrically connects both ends of the heat generating tube, and electromagnetic induction power is supplied to the heat generating tube by magnetic flux lines generated by supplying high-frequency power to the heating coil. An electromagnetic induction fluid heating device that generates and heats the heat generating tube with this electromagnetic induction power has been proposed (see, for example, Patent Document 1).

図7は特許文献1の電磁誘導流体加熱装置内部の加熱コイル、発熱管及び短絡部の電気的関係を端的に示す説明図、図8は特許文献1の電磁誘導流体加熱装置内部の加熱コイル、発熱管及び短絡部の電気的関係を直流抵抗見地から端的に示す説明図である。   FIG. 7 is an explanatory view simply showing the electrical relationship between the heating coil, the heat generating tube, and the short-circuit portion inside the electromagnetic induction fluid heating apparatus of Patent Document 1, and FIG. It is explanatory drawing which shows directly the electrical relationship of a heat generating tube and a short circuit part from a DC resistance standpoint.

図7に示す電磁誘導流体加熱装置100は、高周波電源部101と、加熱コイルに相当するコイルL1Aと、発熱管に相当するコイルL2Aと、発熱管の両端同士を電気的に接続する短絡部102とを有し、コイルL2A及び短絡部102で閉回路を形成することになる。   The electromagnetic induction fluid heating apparatus 100 shown in FIG. 7 includes a high-frequency power supply unit 101, a coil L1A corresponding to a heating coil, a coil L2A corresponding to a heating tube, and a short-circuit unit 102 that electrically connects both ends of the heating tube. And the coil L2A and the short circuit portion 102 form a closed circuit.

コイルL1Aは、高周波電源部101から高周波電力を供給すると、磁束線120を発生し、この磁束線120でコイルL2Aに電磁誘導電力を発生させることになる。   When the high frequency power is supplied from the high frequency power supply unit 101, the coil L1A generates a magnetic flux line 120, and the magnetic flux line 120 generates electromagnetic induction power in the coil L2A.

図8に示す電磁誘導流体加熱装置100は、高周波電源部101と、発熱管に相当する抵抗R1Aと、短絡部102に相当する短絡抵抗r2Aとで構成し、これら抵抗R1A及び短絡抵抗r2Aで閉回路を形成し、発熱管で発生した電磁誘導電力に応じて抵抗R1A及び短絡抵抗r1Aでジュール熱を発生することになる。   The electromagnetic induction fluid heating apparatus 100 shown in FIG. 8 includes a high-frequency power supply unit 101, a resistor R1A corresponding to a heat generating tube, and a short-circuit resistor r2A corresponding to a short-circuit unit 102, and is closed by the resistor R1A and the short-circuit resistor r2A. A circuit is formed, and Joule heat is generated by the resistor R1A and the short-circuit resistor r1A according to the electromagnetic induction power generated in the heating tube.

従って、特許文献1の電磁誘導流体加熱装置100によれば、加熱コイルに高周波電力が供給されると、加熱コイルに磁束が発生し、この加熱コイルの内側に配置されている磁界内の発熱管に電磁誘導電力が発生し、発熱管及び短絡部で形成する閉回路に電流が流れてジュール熱が発生し、このジュール熱で発熱管内を流通する被加熱流体を加熱昇温するようにしたので、例えば発熱が無駄にされていた短絡棒を用いる方式(例えば特許文献2参照)に比較して、被加熱流体に対する加熱効率を大幅に向上させることができる。
特開2003−317915号公報(要約書及び図1参照) 特開2001−235228号公報(要約書及び図1参照)
Therefore, according to the electromagnetic induction fluid heating apparatus 100 of Patent Document 1, when high-frequency power is supplied to the heating coil, magnetic flux is generated in the heating coil, and the heating tube in the magnetic field disposed inside the heating coil. Electromagnetic induction power is generated, current flows through the closed circuit formed by the heat generating tube and the short circuit, Joule heat is generated, and the heated fluid flowing through the heat generating tube is heated and heated by this Joule heat. For example, the heating efficiency for the fluid to be heated can be greatly improved as compared with a method using a short-circuit rod in which heat generation is wasted (see, for example, Patent Document 2).
JP 2003-317915 A (see abstract and FIG. 1) JP 2001-235228 A (see abstract and FIG. 1)

しかしながら、特許文献1の電磁誘導流体加熱装置100によれば、一本の発熱管の両端部分を電気的に接続する短絡部を備え、加熱コイルへの高周波電力供給に応じて発熱管に電磁誘導電力を発生し、この発熱管及び短絡部で形成する閉回路に電流を流して短絡部との発熱管の接続箇所が主要発熱部分としてジュール熱を発生させるようにしたが、短絡部との発熱管の接続箇所以外の部位は熱交換に直接寄与しないため、発熱管を流通する被加熱流体に対する熱交換効率に改善の余地があった。   However, according to the electromagnetic induction fluid heating apparatus 100 of Patent Document 1, a short-circuit portion that electrically connects both ends of one heat generating tube is provided, and electromagnetic induction is applied to the heat generating tube in response to high-frequency power supply to the heating coil. Electric power was generated, and current was passed through the closed circuit formed by the heat generating tube and the short-circuited part so that the connection point of the heat-generating tube to the shorted part generated Joule heat as the main heat generating part. Since parts other than the pipe connection part do not directly contribute to the heat exchange, there is room for improvement in the heat exchange efficiency with respect to the heated fluid flowing through the heat generating pipe.

そこで、本発明は上記点に鑑みてなされたものであり、その目的とするところは、発熱管を流通する被加熱流体に対して熱交換効率を大幅に向上させることができる電磁誘導流体加熱装置を提供することにある。   Accordingly, the present invention has been made in view of the above points, and an object of the present invention is to provide an electromagnetic induction fluid heating apparatus capable of greatly improving the heat exchange efficiency with respect to the heated fluid flowing through the heat generating pipe. Is to provide.

上記目的を達成するために本発明の電磁誘導流体加熱装置は、被加熱流体が流通する導電性材料の発熱管と、螺旋状に巻回して前記発熱管を取り囲むように配置する加熱コイルと、この加熱コイルに対して高周波電力を供給する高周波電源部とを有し、前記加熱コイルに対して高周波電力を供給することで発生する磁束線で前記発熱管に電磁誘導電力を発生させ、この電磁誘導電力で同発熱管を加熱する電磁誘導流体加熱装置であって、前記発熱管を少なくとも2本の発熱曲管で構成し、一方の発熱曲管の略中央部を螺旋状に捩回して第1螺旋状部を形成すると共に、他方の発熱曲管の略中央部を螺旋状に捩回して第2螺旋状部を形成し、前記加熱コイルに対して高周波電力を供給すると、前記加熱コイルで発生する磁束線が前記2本の発熱曲管に鎖交するように、前記加熱コイルに対して前記少なくとも2本の発熱曲管を配置したものである。   In order to achieve the above object, an electromagnetic induction fluid heating apparatus of the present invention includes a heat generating tube made of a conductive material through which a fluid to be heated flows, a heating coil that is spirally wound and arranged to surround the heat generating tube, A high-frequency power supply unit that supplies high-frequency power to the heating coil, and generates electromagnetic induction power in the heating tube by magnetic flux lines generated by supplying high-frequency power to the heating coil. An electromagnetic induction fluid heating apparatus for heating the heat generating tube with induced power, wherein the heat generating tube is composed of at least two heat generating bent tubes, and a substantially central portion of one of the heat generating bent tubes is spirally wound to form a first one. Forming one spiral portion and spirally twisting the substantially central portion of the other heat generating bent tube to form a second spiral portion, and supplying high frequency power to the heating coil, The generated magnetic flux lines are the two heat generations. As interlinked with the tube, it said is obtained by arranging at least two heat-generating bent tube with respect to the heating coil.

本発明の電磁誘導流体加熱装置は、前記一方の発熱曲管で発生する電磁誘導電力の電力方向及び、前記他方の発熱曲管で発生する電磁誘導電力の電力方向が同相となるように、前記加熱コイルに対して前記少なくとも2本の発熱曲管を配置したものである。   In the electromagnetic induction fluid heating device of the present invention, the power direction of the electromagnetic induction power generated in the one heat generating bent tube and the power direction of the electromagnetic induction power generated in the other heat generating bent tube are in phase. The at least two exothermic bent tubes are arranged with respect to the heating coil.

本発明の電磁誘導流体加熱装置は、前記第1螺旋状部の間に前記第2螺旋状部を介在させるように、前記加熱コイルに対して前記少なくとも2本の発熱曲管を配置したものである。   In the electromagnetic induction fluid heating device of the present invention, the at least two heat generating bent tubes are arranged with respect to the heating coil so that the second spiral portion is interposed between the first spiral portions. is there.

本発明の電磁誘導流体加熱装置は、前記第1螺旋状部で構成する挿通孔に前記第2螺旋状部を挿通するように、前記加熱コイルに対して前記少なくとも2本の発熱曲管を配置したものである。   In the electromagnetic induction fluid heating device of the present invention, the at least two heat generating bent tubes are arranged with respect to the heating coil so that the second spiral portion is inserted into an insertion hole formed by the first spiral portion. It is a thing.

本発明の電磁誘導流体加熱装置は、前記発熱管の両端部同士を電気的に接続する短絡部を有するようにした。   The electromagnetic induction fluid heating device of the present invention has a short-circuit portion that electrically connects both end portions of the heat generating tube.

本発明の電磁誘導流体加熱装置は、前記短絡部を、前記一方の発熱曲管の両端部同士を電気的に接続する第1短絡部と、前記他方の発熱曲管の両端部同士を電気的に接続する第2短絡部とで構成するようにしたものである。   In the electromagnetic induction fluid heating device of the present invention, the short-circuit portion is electrically connected between the first short-circuit portion that electrically connects both end portions of the one exothermic bent tube and the other end portion of the other exothermic bent tube. And a second short-circuit portion connected to the.

上記のように構成された本発明の電磁誘導流体加熱装置によれば、前記発熱管を少なくとも2本の発熱曲管で構成し、一方の発熱曲管の略中央部を螺旋状に捩回して第1螺旋状部を形成すると共に、他方の発熱曲管の略中央部を螺旋状に捩回して第2螺旋状部を形成し、前記加熱コイルに対して高周波電力を供給すると、前記加熱コイルで発生する磁束線が前記2本の発熱曲管に鎖交するように、前記加熱コイルに対して前記少なくとも2本の発熱曲管を配置するようにしたので、前記加熱コイルで発生した磁束線で前記一方の発熱曲管及び前記他方の発熱曲管に電磁誘導電力を発生させ、さらに、これら発熱曲管で発生した磁束線で発熱曲管同士に電磁誘導電力を発生させることになるため、磁界内の一方の発熱曲管及び他方の発熱曲管の大部分の部位で熱交換に寄与し、その結果、被加熱流体に対する熱交換効率を大幅に向上させることができる。   According to the electromagnetic induction fluid heating apparatus of the present invention configured as described above, the heat generating tube is configured by at least two heat generating bent tubes, and a substantially central portion of one heat generating bent tube is spirally wound. When the first spiral portion is formed and the second spiral portion is formed by spirally twisting the substantially central portion of the other exothermic bent tube, and the high frequency power is supplied to the heating coil, the heating coil Since the at least two heat generating bent tubes are arranged with respect to the heating coil so that the magnetic flux lines generated in the above are linked to the two heat generating bent tubes, the magnetic flux lines generated in the heating coil In order to generate electromagnetic induction power in the one exothermic bent tube and the other exothermic bent tube, and further to generate electromagnetic induction power between the exothermic bent tubes with magnetic flux lines generated in these exothermic bent tubes, Of one exothermic bent tube and the other exothermic bent tube in a magnetic field. It contributes to heat exchange at the site of the portion, so that it is possible to significantly improve the heat exchange efficiency with respect to the heated fluid.

また、本発明の電磁誘導流体加熱装置によれば、前記一方の発熱曲管で発生する電磁誘導電力の電力方向及び、前記他方の発熱曲管で発生する電磁誘導電力の電力方向が同相となるように、前記加熱コイルに対して前記少なくとも2本の発熱曲管を配置したので、前記加熱コイルで発生した磁束線で前記一方の発熱曲管及び前記他方の発熱曲管に電磁誘導電力を発生させ、さらに、これら発熱曲管で発生した磁束線で打ち消しあうことなく、発熱曲管同士に電磁誘導電力を発生させることになるため、磁界内の一方の発熱曲管及び他方の発熱曲管の大部分の部位で熱交換に寄与し、その結果、被加熱流体に対する熱交換効率を大幅に向上させることができる。   Further, according to the electromagnetic induction fluid heating device of the present invention, the power direction of the electromagnetic induction power generated in the one heat generating bent tube and the power direction of the electromagnetic induction power generated in the other heat generating bent tube are in phase. As described above, since the at least two heat generating bent tubes are arranged with respect to the heating coil, electromagnetic induction power is generated in the one heat generating bent tube and the other heat generating bent tube by the magnetic flux generated by the heating coil. In addition, electromagnetic induction power is generated between the heat generating bent tubes without canceling with the magnetic flux lines generated by these heat generating bent tubes, so that one of the heat generating bent tubes and the other heat generating bent tube in the magnetic field It contributes to heat exchange in most parts, and as a result, the heat exchange efficiency for the fluid to be heated can be greatly improved.

また、本発明の電磁誘導流体加熱装置によれば、前記第1螺旋状部の間に前記第2螺旋状部を介在させるように、前記加熱コイルに対して前記少なくとも2本の発熱曲管を配置したので、前記加熱コイルで発生した磁束線で前記一方の発熱曲管及び前記他方の発熱曲管に電磁誘導電力を発生させ、さらに、これら発熱曲管で発生した磁束線で発熱曲管同士に電磁誘導電力を発生させることになるため、磁界内の一方の発熱曲管及び他方の発熱曲管の大部分の部位で熱交換に寄与し、その結果、被加熱流体に対する熱交換効率を大幅に向上させることができる。   Further, according to the electromagnetic induction fluid heating device of the present invention, the at least two heat generating bent pipes are arranged with respect to the heating coil so that the second spiral portion is interposed between the first spiral portions. Because of the arrangement, electromagnetic induction power is generated in the one exothermic bent tube and the other exothermic bent tube by the magnetic flux lines generated in the heating coil, and further, the exothermic bent tubes are formed by the magnetic flux lines generated in these exothermic bent tubes. Because it generates electromagnetic induction power, it contributes to heat exchange in the most part of one exothermic bent tube and the other exothermic bent tube in the magnetic field. As a result, the heat exchange efficiency for the heated fluid is greatly increased. Can be improved.

また、本発明の電磁誘導流体加熱装置によれば、前記第1螺旋状部で構成する挿通孔に前記第2螺旋状部を挿通するように、前記加熱コイルに対して前記少なくとも2本の発熱曲管を配置したので、前記加熱コイルで発生した磁束線で前記一方の発熱曲管及び前記他方の発熱曲管に電磁誘導電力を発生させ、さらに、これら発熱曲管で発生した磁束線で発熱曲管同士に電磁誘導電力を発生させることになるため、磁界内の一方の発熱曲管及び他方の発熱曲管の大部分の部位で熱交換に寄与し、その結果、被加熱流体に対する熱交換効率を大幅に向上させることができる。   Further, according to the electromagnetic induction fluid heating device of the present invention, the at least two heat generations with respect to the heating coil such that the second spiral portion is inserted through the insertion hole formed by the first spiral portion. Since the bent tube is arranged, electromagnetic induction power is generated in the one exothermic bent tube and the other exothermic bent tube by the magnetic flux lines generated by the heating coil, and further, heat is generated by the magnetic flux lines generated by these exothermic bent tubes. Since electromagnetic induction power is generated between the curved pipes, it contributes to heat exchange in most parts of the one exothermic bent pipe and the other exothermic bent pipe in the magnetic field, and as a result, heat exchange for the heated fluid Efficiency can be greatly improved.

また、本発明の電磁誘導流体加熱装置によれば、前記発熱管の両端部同士を電気的に接続する短絡部を有するようにしたので、前記加熱コイルで発生した磁束線で前記一方の発熱曲管及び前記他方の発熱曲管に電磁誘導電力を発生させ、さらに、これら発熱曲管で発生した磁束線で発熱曲管同士に電磁誘導電力を発生させることになるため、前記短絡部を通じて磁界内の一方の発熱曲管及び他方の発熱曲管の大部分の部位で熱交換に寄与し、その結果、被加熱流体に対する熱交換効率を大幅に向上させることができる。   In addition, according to the electromagnetic induction fluid heating device of the present invention, since the short-circuit portion that electrically connects both ends of the heat generating tube is provided, the one heat generation curve is generated by the magnetic flux lines generated in the heating coil. Electromagnetic induction power is generated in the tube and the other heat generating bent tube, and further, electromagnetic induction power is generated between the heat generating bent tubes by the magnetic flux lines generated in these heat generating bent tubes. This contributes to heat exchange in most of the heat generating bent tube and the other heat generating bent tube, and as a result, the heat exchange efficiency for the fluid to be heated can be greatly improved.

また、本発明の電磁誘導流体加熱装置によれば、前記短絡部を、前記一方の発熱曲管の両端部同士を電気的に接続する第1短絡部と、前記他方の発熱曲管の両端部同士を電気的に接続する第2短絡部とで構成するようにしたので、前記加熱コイルで発生した磁束線で前記一方の発熱曲管及び前記他方の発熱曲管に電磁誘導電力を発生させ、さらに、これら発熱曲管で発生した磁束線で発熱曲管同士に電磁誘導電力を発生させることになるため、前記第1短絡部及び第2短絡部を通じて磁界内の一方の発熱曲管及び他方の発熱曲管の大部分の部位で熱交換に寄与し、その結果、被加熱流体に対する熱交換効率を大幅に向上させることができる。   According to the electromagnetic induction fluid heating device of the present invention, the short-circuit portion includes a first short-circuit portion that electrically connects both end portions of the one exothermic bent tube, and both end portions of the other exothermic bent tube. Since the second short-circuit portion that electrically connects each other is configured, electromagnetic induction power is generated in the one exothermic bent tube and the other exothermic bent tube by the magnetic flux generated in the heating coil, Furthermore, since electromagnetic induction power is generated between the heat generating bent tubes by the magnetic flux lines generated by these heat generating bent tubes, one of the heat generating bent tubes and the other of the heat generating bent tubes in the magnetic field are passed through the first short circuit portion and the second short circuit portion. It contributes to heat exchange in the most part of the heat generating bent tube, and as a result, the heat exchange efficiency for the fluid to be heated can be greatly improved.

以下、図面に基づいて本発明の実施の形態を示す電磁誘導流体加熱装置について説明する。   Hereinafter, an electromagnetic induction fluid heating apparatus showing an embodiment of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は第1の実施の形態を示す電磁誘導流体加熱装置の内部構造を端的に示す説明図、図2は同電磁誘導流体加熱装置の内部構造の一部を断面にした説明図である。
(Embodiment 1)
FIG. 1 is an explanatory view simply showing the internal structure of the electromagnetic induction fluid heating apparatus according to the first embodiment, and FIG. 2 is an explanatory view showing a part of the internal structure of the electromagnetic induction fluid heating apparatus in cross section.

図1及び図2に示す電磁誘導流体加熱装置1は、被加熱流体が一端2A側から他端2B側に流通する導電性材料の発熱管2と、この発熱管2の外側に配設されて同発熱管2を取り囲む円筒状のコイルボビン3と、このコイルボビン3に螺旋状に巻回された加熱コイル4と、この加熱コイル4に対して高周波電力を供給する高周波電源部5とを有し、加熱コイル4に対して高周波電力を供給することで発生する磁束線で発熱管2に電磁誘導電力を発生させ、この電磁誘導電力で同発熱管2を加熱するものである。   The electromagnetic induction fluid heating apparatus 1 shown in FIGS. 1 and 2 is provided on a heat generating tube 2 made of a conductive material in which a fluid to be heated flows from one end 2A side to the other end 2B side, and outside the heat generating tube 2. A cylindrical coil bobbin 3 surrounding the heat generating tube 2, a heating coil 4 spirally wound around the coil bobbin 3, and a high-frequency power supply unit 5 for supplying high-frequency power to the heating coil 4; Electromagnetic induction power is generated in the heat generating tube 2 by magnetic flux lines generated by supplying high frequency power to the heating coil 4, and the heat generating tube 2 is heated by this electromagnetic induction power.

高周波電源部5は、高周波電源5Aと、高周波電源5Aから出力する高周波電力を制御する電源制御器5Bと、図示せぬ温度センサで得た被加熱流体の現在温度や発熱管2の現在温度等の温度結果に基づき、被加熱流体の現在温度を目標温度に到達させるべく、電源制御器5Bを制御するコントローラ5Cとを有している。   The high frequency power supply unit 5 includes a high frequency power supply 5A, a power supply controller 5B that controls high frequency power output from the high frequency power supply 5A, a current temperature of a fluid to be heated obtained by a temperature sensor (not shown), a current temperature of the heating pipe 2, and the like. And a controller 5C for controlling the power supply controller 5B so that the current temperature of the fluid to be heated reaches the target temperature.

コイルボビン3は、例えばガラスやセラミック等の電気絶縁材料で円筒状に形成されたものである。   The coil bobbin 3 is formed in a cylindrical shape with an electrically insulating material such as glass or ceramic.

発熱管2は、2本の第1発熱曲管10A及び第2発熱曲管10Bで構成し、第1発熱曲管10Aの略中央部を螺旋状に捩回して第1螺旋状部11Aを形成すると共に、第2発熱曲管10Bの略中央部を螺旋状に捩回して第2螺旋状部11Bを形成し、第1発熱曲管10Aの第1螺旋状部11Aの間に第2発熱曲管10Bの第2螺旋状部11Bを介在させ、加熱コイル4に対して高周波電力を供給すると、加熱コイル4で発生する磁束線が第1発熱曲管10A及び第2発熱曲管10B夫々に鎖交するように、これら第1発熱曲管10A及び第2発熱曲管10Bを、加熱コイル4を巻回したコイルボビン3内に配置したものである。尚、第1発熱曲管10A及び第2発熱曲管10Bは、第1発熱曲管10Aで発生する電磁誘導電力の電力方向と、第2発熱曲管10Bで発生する電磁誘導電力の電力方向とが同相となるように配置したものである。   The heat generating tube 2 is composed of two first heat generating bent tubes 10A and a second heat generating bent tube 10B, and a first spiral portion 11A is formed by spirally twisting a substantially central portion of the first heat generating bent tube 10A. At the same time, a substantially central portion of the second heat generating bent tube 10B is spirally twisted to form a second helical portion 11B, and a second heat generating bent portion is formed between the first helical portions 11A of the first heat generating bent tube 10A. When high frequency power is supplied to the heating coil 4 through the second spiral portion 11B of the tube 10B, the magnetic flux lines generated in the heating coil 4 are chained to the first heat generating bent tube 10A and the second heat generating bent tube 10B, respectively. These first heat generating bent tube 10A and second heat generating bent tube 10B are arranged in a coil bobbin 3 around which the heating coil 4 is wound so as to intersect. The first exothermic bent tube 10A and the second exothermic bent tube 10B have a power direction of electromagnetic induction power generated in the first exothermic bent tube 10A and a power direction of electromagnetic induction power generated in the second exothermic bent tube 10B. Are arranged so as to be in phase.

また、第1発熱曲管10A及び第2発熱曲管10Bを形成する導電性材料としては、例えば耐腐食性材料の電磁的誘導加熱に適したフェライト系ステンレス鋼や、電磁的誘導加熱に適したSUS316LやSUS304等のオーステナイト系ステンレス鋼や、電界研磨加工や酸化不動態膜処理を施したものを使用することが望ましい。   In addition, as the conductive material forming the first exothermic bent tube 10A and the second exothermic bent tube 10B, for example, ferritic stainless steel suitable for electromagnetic induction heating of a corrosion resistant material, or suitable for electromagnetic induction heating. It is desirable to use an austenitic stainless steel such as SUS316L or SUS304, or one that has been subjected to electropolishing or oxidation passivation film treatment.

また、発熱管2は、その両端部2A,2B同士を電気的に接続する短絡部6を有し、短絡部6は、第1発熱曲管10Aの一端部2A及び他端部2B同士を電気的に接続する第1短絡部6Aと、第2発熱曲管10Bの一端部2A及び他端部2B同士を電気的に接続する第2短絡部6Bとで構成し、第1発熱曲管10A及び第1短絡部6A間、第2発熱曲管10B及び第2短絡部2B間で閉回路を夫々形成することになる。   Moreover, the heat generating tube 2 has a short-circuit portion 6 that electrically connects both end portions 2A and 2B, and the short-circuit portion 6 electrically connects the one end portion 2A and the other end portion 2B of the first heat generating bent tube 10A. The first short-circuit portion 6A that is electrically connected, and the second short-circuit portion 6B that electrically connects the one end portion 2A and the other end portion 2B of the second heat-generating bent tube 10B, A closed circuit is formed between the first short-circuit portion 6A, the second heat generating bent tube 10B, and the second short-circuit portion 2B.

図3は同電磁誘導流体加熱装置1内部の加熱コイル4、第1発熱曲管10A、第2発熱曲管10B、第1短絡部6A及び第2短絡部6Bの電気的関係を端的に示す説明図、図4は同電磁誘導流体加熱装置1内部の第1発熱曲管10A、第2発熱曲管10B、第1短絡部6A及び第2短絡部6Bの電気的関係を直流抵抗見地から端的に示す説明図である。   FIG. 3 simply illustrates the electrical relationship among the heating coil 4, the first heat generating bent tube 10A, the second heat generating bent tube 10B, the first short circuit portion 6A, and the second short circuit portion 6B in the electromagnetic induction fluid heating apparatus 1. 4 and FIG. 4 briefly show the electrical relationship among the first exothermic bent tube 10A, the second exothermic bent tube 10B, the first short circuit portion 6A, and the second short circuit portion 6B in the electromagnetic induction fluid heating apparatus 1 from the viewpoint of DC resistance. It is explanatory drawing shown.

図3に示す電磁誘導流体加熱装置1は、高周波電源部5と、加熱コイル4に相当するコイルL1と、第1発熱曲管10Aに相当するコイルL2と、第2発熱曲管10Bに相当するコイルL3と、コイルL2の両端部同士を電気的に接続する第1短絡部6Aと、コイルL3の両端部同士を電気的に接続する第2短絡部6Bとを有し、コイルL2及び第1短絡部6A間、コイルL3及び第2短絡部6B間で閉回路を夫々形成することになる。   The electromagnetic induction fluid heating device 1 shown in FIG. 3 corresponds to the high-frequency power source 5, the coil L1 corresponding to the heating coil 4, the coil L2 corresponding to the first heat generating bent tube 10A, and the second heat generating bent tube 10B. The coil L3 has a first short-circuit portion 6A that electrically connects both ends of the coil L2, and a second short-circuit portion 6B that electrically connects both ends of the coil L3. Closed circuits are formed between the short-circuit portions 6A and between the coil L3 and the second short-circuit portion 6B.

コイルL1は、高周波電源部5から高周波電力を供給すると、コイルL2に鎖交する磁束線20A及びコイルL3に鎖交する磁束線20Bを発生し、これら磁束線20A及び磁束線20BでコイルL2及びコイルL3に電磁誘導電力を発生させ、さらにコイルL2及びコイルL3で発生した磁束線20CでコイルL2及びコイルL3同士で、さらなる電磁誘導電力を発生させることになる。   When the high frequency power is supplied from the high frequency power supply unit 5, the coil L1 generates a magnetic flux line 20A interlinking with the coil L2 and a magnetic flux line 20B interlinking with the coil L3, and the coil L2 and the magnetic flux line 20B Electromagnetic induction power is generated in the coil L3, and further electromagnetic induction power is generated between the coils L2 and L3 with the magnetic flux lines 20C generated in the coils L2 and L3.

図4に示す電磁誘導流体加熱装置1は、高周波電源部5、第1発熱曲管10Aに相当する抵抗R1及び、第1短絡部6Aに相当する短絡抵抗r1で構成する第1閉回路50Aと、高周波電源部5、第2発熱曲管10Bに相当する抵抗R2及び、第2短絡部6Bに相当する短絡抵抗r2で構成する第2閉回路50Bとで構成し、第1発熱曲管10A、第2発熱曲管10Bで発生した電磁誘導電力に応じて第1閉回路50A内の抵抗R1及び短絡抵抗r1、第2閉回路50B内の抵抗R2及び短絡抵抗r2でジュール熱を発生することになる。   The electromagnetic induction fluid heating device 1 shown in FIG. 4 includes a high frequency power supply unit 5, a resistor R1 corresponding to the first heat generating bent tube 10A, and a first closed circuit 50A configured by a short circuit resistor r1 corresponding to the first short circuit unit 6A. , A high-frequency power supply unit 5, a resistor R2 corresponding to the second heat generating bent tube 10B, and a second closed circuit 50B formed of a short circuit resistor r2 corresponding to the second short-circuiting unit 6B, the first heat generating bent tube 10A, According to the electromagnetic induction power generated in the second heat generating bent tube 10B, Joule heat is generated by the resistor R1 and the short circuit resistor r1 in the first closed circuit 50A, the resistor R2 and the short circuit resistor r2 in the second closed circuit 50B. Become.

従って、抵抗R1、抵抗R2、短絡抵抗r1及び短絡抵抗r2でジュール熱が発生することで、同抵抗R1及び抵抗R2に相当する第1発熱曲管10A及び第2発熱曲管10Bを流通する被加熱流体が加熱昇温することになる。   Accordingly, when Joule heat is generated by the resistor R1, the resistor R2, the short-circuit resistor r1, and the short-circuit resistor r2, the covered heat pipes 10A and 2B corresponding to the resistor R1 and the resistor R2 are circulated. The heating fluid will heat up.

尚、請求項記載の電磁誘導流体加熱装置は電磁誘導流体加熱装置1、発熱管は発熱管2、加熱コイルは加熱コイル4、高周波電源部は高周波電源部5、一方の発熱曲管は第1発熱曲管10A、他方の発熱曲管は第2発熱曲管10B、第1螺旋状部は第1螺旋状部11A、第2螺旋状部は第2螺旋状部11B、短絡部は短絡部6、第1短絡部6A、第2短絡部6Bに相当するものである。   The electromagnetic induction fluid heating device according to the claims is the electromagnetic induction fluid heating device 1, the heating tube is the heating tube 2, the heating coil is the heating coil 4, the high-frequency power source is the high-frequency power source 5, and one heating bent tube is the first. The exothermic bent tube 10A, the other exothermic bent tube is the second exothermic bent tube 10B, the first spiral portion is the first spiral portion 11A, the second spiral portion is the second spiral portion 11B, and the short-circuit portion is the short-circuit portion 6. These correspond to the first short-circuit portion 6A and the second short-circuit portion 6B.

次に第1の実施の形態を示す電磁誘導流体加熱装置1の動作について説明する。   Next, operation | movement of the electromagnetic induction fluid heating apparatus 1 which shows 1st Embodiment is demonstrated.

まず、加熱コイル4は、高周波電源5Aからの高周波電力を供給すると、磁束線を発生し、同加熱コイル4の内側に配置されて磁界20A内にある第1発熱曲管10Aに渦電流の電磁誘導電力が発生し、この電磁誘導電力でジュール熱が発生して第1発熱曲管10Aが発熱する。   First, when the heating coil 4 supplies high-frequency power from the high-frequency power source 5A, magnetic flux lines are generated, and an electromagnetic wave of eddy current is placed on the first heating bent tube 10A disposed inside the heating coil 4 and in the magnetic field 20A. Inductive power is generated, Joule heat is generated by this electromagnetic induction power, and the first heat generating bent tube 10A generates heat.

また、第2発熱曲管10Bも同様に、加熱コイル4の内側に配置されて磁界20B内にあるため、渦電流の電磁誘導電力が発生し、この電磁誘導電力でジュール熱が発生することで同第2発熱曲管10Bが発熱する。   Similarly, since the second heat generating bent tube 10B is disposed inside the heating coil 4 and is in the magnetic field 20B, electromagnetic induction power of eddy current is generated, and Joule heat is generated by this electromagnetic induction power. The second heat generating bent tube 10B generates heat.

さらに、第1発熱曲管10A及び第2発熱曲管10Bは、電磁誘導電力の発生に応じて磁束を発生し、第1発熱曲管10A及び第2発熱曲管10Bの磁界20C内にある第1発熱曲管10A及び第2発熱曲管10Bでも、更なる電磁誘導電力が発生し、さらに、第1短絡部6A及び第1発熱曲管10A間、第2短絡部2B及び第2発熱曲管10B間で形成される閉回路に電流が流れることで第1発熱曲管10A及び第2発熱曲管10Bも夫々発熱することになる。   Further, the first heat generating bent tube 10A and the second heat generating bent tube 10B generate magnetic flux in response to the generation of electromagnetic induction power, and the first heat generating bent tube 10A and the second heat generating bent tube 10B are within the magnetic field 20C of the first heat generating bent tube 10A and the second heat generating bent tube 10B. In the first heat generating bent tube 10A and the second heat generating bent tube 10B, further electromagnetic induction power is generated, and further, between the first short circuit portion 6A and the first heat generating bent tube 10A, the second short circuit portion 2B and the second heat generating bent tube. When a current flows through a closed circuit formed between 10B, the first heat generating bent tube 10A and the second heat generating bent tube 10B also generate heat.

そして、このように発熱した第1発熱曲管10A及び第2発熱曲管10B内を被加熱流体が流通することで、同第1発熱曲管10A及び第2発熱曲管10Bの内壁面から熱伝達で被加熱流体が加熱されることになる。   The heated fluid circulates in the first heat generating bent tube 10A and the second heat generating bent tube 10B that generate heat in this way, so that heat is generated from the inner wall surfaces of the first heat generating bent tube 10A and the second heat generating bent tube 10B. The fluid to be heated is heated by the transmission.

従って、第1の実施の形態によれば、発熱管2を第1発熱曲管10A及び第2発熱曲管10Bで構成し、第1発熱曲管10Aの略中央部を螺旋状に捩回して第1螺旋状部11Aを形成すると共に、第2発熱曲管10Bの略中央部を螺旋状に捩回して第2螺旋状部11Bを形成し、第1発熱曲管10Aの第1螺旋状部11Aの間に第2発熱曲管10Bの第2螺旋状部11Bを介在させ、加熱コイル4に対して高周波電力を供給すると、加熱コイル4で発生する磁束線が第1発熱曲管10A及び第2発熱曲管10B夫々に鎖交するように、第1発熱曲管10A及び第2発熱曲管10Bを、加熱コイル4を巻回したコイルボビン3内に配置するようにしたので、加熱コイル4で発生した磁束線で第1発熱曲管10A及び第2発熱曲管10Bに電磁誘導電力を発生させ、さらに、これら第1発熱曲管10A及び第2発熱曲管10Bで発生した磁束線で第1発熱曲管10A及び第2発熱曲管10B同士に電磁誘導電力を発生させることになるため、磁界内の第1発熱曲管10A及び第2発熱曲管10B大部分の部位で熱交換に寄与し、その結果、被加熱流体に対する熱交換効率を大幅に向上させることができる。   Therefore, according to the first embodiment, the heat generating tube 2 is constituted by the first heat generating bent tube 10A and the second heat generating bent tube 10B, and the substantially central portion of the first heat generating bent tube 10A is spirally twisted. The first spiral portion 11A is formed, and the second spiral portion 11B is formed by spirally twisting the substantially central portion of the second exothermic curved tube 10B to form the first spiral portion of the first exothermic bent tube 10A. When the second spiral portion 11B of the second heat generating bent tube 10B is interposed between 11A and high frequency power is supplied to the heating coil 4, the magnetic flux lines generated in the heating coil 4 are changed to the first heat generating bent tube 10A and the first heat generating bent tube 10A. Since the first exothermic bent tube 10A and the second exothermic bent tube 10B are arranged in the coil bobbin 3 around which the heating coil 4 is wound so as to interlink with the two exothermic bent tubes 10B, the heating coil 4 Electromagnetic induction to the first heat generating bent tube 10A and the second heat generating bent tube 10B by the generated magnetic flux lines Electric power is generated, and further, electromagnetic induction power is generated between the first heat generating bent tube 10A and the second heat generating bent tube 10B with the magnetic flux lines generated in the first heat generating bent tube 10A and the second heat generating bent tube 10B. Therefore, it contributes to heat exchange in most of the first heat generating bent tube 10A and the second heat generating bent tube 10B in the magnetic field, and as a result, the heat exchange efficiency for the fluid to be heated can be significantly improved.

また、第1の実施の形態によれば、第1発熱曲管10Aで発生する電磁誘導電力の電力方向及び、第2発熱曲管10Bで発生する電磁誘導電力の電力方向が同相となるように、加熱コイル4に対して第1発熱曲管10A及び第2発熱曲管10Bを配置したので、第1発熱曲管10A及び第2発熱曲管10Bに電磁誘導電力で発生した磁束線が打ち消しあうことなく、第1発熱曲管10A及び第2発熱曲管10B同士に電磁誘導電力を発生させることになるため、磁界内の第1発熱曲管10A及び第2発熱曲管10Bの大部分の部位で熱交換に寄与し、その結果、被加熱流体に対する熱交換効率を大幅に向上させることができる。   Further, according to the first embodiment, the power direction of electromagnetic induction power generated in the first heat generating bent tube 10A and the power direction of electromagnetic induction power generated in the second heat generating bent tube 10B are in phase. Since the first heat generating bent tube 10A and the second heat generating bent tube 10B are arranged with respect to the heating coil 4, the magnetic flux lines generated by electromagnetic induction power cancel each other in the first heat generating bent tube 10A and the second heat generating bent tube 10B. Therefore, electromagnetic induction power is generated between the first heat generating bent tube 10A and the second heat generating bent tube 10B, so that most of the first heat generating bent tube 10A and the second heat generating bent tube 10B in the magnetic field. This contributes to heat exchange, and as a result, the heat exchange efficiency for the fluid to be heated can be greatly improved.

また、第1の実施の形態によれば、短絡部6を、第1発熱曲管10Aの一端部2A及び他端部2B同士を電気的に接続する第1短絡部6Aと、第2発熱曲管10Bの一端部2A及び他端部2B同士を電気的に接続する第2短絡部6Bとで構成し、第1発熱曲管10A及び第1短絡部6A間、第2発熱曲管10B及び第2短絡部6B間で閉回路を夫々形成するようにしたので、第1発熱曲管10A及び第2発熱曲管10Bも夫々発熱することになるため、熱交換効率が大幅に向上させることができる。   In addition, according to the first embodiment, the short-circuit portion 6 includes the first short-circuit portion 6A that electrically connects the one end portion 2A and the other end portion 2B of the first exothermic bent tube 10A, and the second exothermic curve. The first end 2A and the second end 2B of the tube 10B are electrically connected to each other, and the second short circuit 6B is electrically connected to each other. The first exothermic bent tube 10A and the first short circuit 6A, the second exothermic bent tube 10B and the second Since the closed circuit is formed between the two short-circuit portions 6B, the first heat generating bent tube 10A and the second heat generating bent tube 10B also generate heat, so that the heat exchange efficiency can be greatly improved. .

(実施の形態2)
次に第2の実施の形態を示す電磁誘導流体加熱装置について説明する。図5は第2の実施の形態を示す電磁誘導流体加熱装置の内部構造を端的に示す説明図、図6は同電磁誘導流体加熱装置の内部構造の一部を断面にした説明図である。尚、第1の実施の形態を示す電磁誘導流体加熱装置1と同一の構成については同一符号を付すことで、その重複する構成及び動作の説明については省略する。
(Embodiment 2)
Next, an electromagnetic induction fluid heating apparatus showing a second embodiment will be described. FIG. 5 is an explanatory view simply showing the internal structure of the electromagnetic induction fluid heating apparatus according to the second embodiment, and FIG. 6 is an explanatory view showing a part of the internal structure of the electromagnetic induction fluid heating apparatus in cross section. In addition, about the structure same as the electromagnetic induction fluid heating apparatus 1 which shows 1st Embodiment, the same code | symbol is attached | subjected and description about the overlapping structure and operation | movement is abbreviate | omitted.

図5及び図6に示す第2の実施の形態を示す電磁誘導流体加熱装置1Aと第1の実施の形態を示す電磁誘導流体加熱装置1とが異なるところは、発熱管2の構成が、第1発熱曲管10Aの第1螺旋状部10Aで構成する挿通孔12に第2発熱曲管10Bの第2螺旋状部11Bを挿通させるように、加熱コイル4を巻回したコイルボビン3内に第1発熱曲管10A及び第2発熱曲管10Bを配置した点にある。   The electromagnetic induction fluid heating apparatus 1A showing the second embodiment shown in FIGS. 5 and 6 is different from the electromagnetic induction fluid heating apparatus 1 showing the first embodiment in that the configuration of the heating tube 2 is the first. In the coil bobbin 3 around which the heating coil 4 is wound, the second spiral portion 11B of the second exothermic bent tube 10B is inserted into the insertion hole 12 formed by the first spiral portion 10A of the first exothermic bent tube 10A. The first heat generating bent tube 10A and the second heat generating bent tube 10B are arranged.

尚、請求項記載の電磁誘導流体加熱装置は電磁誘導流体加熱装置1A、挿通孔は挿通孔12に相当するものである。   The electromagnetic induction fluid heating device according to the claims corresponds to the electromagnetic induction fluid heating device 1A, and the insertion hole corresponds to the insertion hole 12.

次に第2の実施の形態を示す電磁誘導流体加熱装置1Aの動作について説明する。   Next, the operation of the electromagnetic induction fluid heating apparatus 1A showing the second embodiment will be described.

加熱コイル4は、高周波電源部5から高周波電力を供給すると、磁束線を発生し、同加熱コイル4内側の磁界内ある第1発熱曲管10A及び第2発熱曲管10B夫々に渦電流の電磁誘導電力を発生し、この電磁誘導電力でジュール熱を発生させることで第1発熱曲管10A及び第2発熱曲管10B夫々が発熱する。   When the heating coil 4 supplies high-frequency power from the high-frequency power supply unit 5, magnetic flux lines are generated, and eddy current electromagnetic waves are respectively generated in the first heat generating bent tube 10 </ b> A and the second heat generating bent tube 10 </ b> B in the magnetic field inside the heating coil 4. By generating inductive power and generating Joule heat by this electromagnetic induction power, each of the first heat generating bent tube 10A and the second heat generating bent tube 10B generates heat.

さらに、第1発熱曲管10A及び第2発熱曲管10Bは、電磁誘導電力の発生に応じて磁束を発生し、第1発熱曲管10A及び第2発熱曲管10Bの磁界内にある第1発熱曲管10A及び第2発熱曲管10Bでも、更なる電磁誘導電力が発生し、第1発熱曲管10A及び第1短絡部6A間、第2発熱曲管10B及び第2短絡部6B間で夫々形成する閉回路で第1発熱曲管10A及び第2発熱曲管10Bも夫々発熱することになる。   Further, the first heat generating bent tube 10A and the second heat generating bent tube 10B generate magnetic flux in response to the generation of electromagnetic induction power, and the first heat generating bent tube 10A and the second heat generating bent tube 10B are in the magnetic field of the first heat generating bent tube 10B. In the heat generating bent tube 10A and the second heat generating bent tube 10B, further electromagnetic induction power is generated, and between the first heat generating bent tube 10A and the first short-circuit portion 6A, between the second heat generating bent tube 10B and the second short-circuit portion 6B. The first heat generating bent tube 10A and the second heat generating bent tube 10B also generate heat in the closed circuit formed respectively.

そして、このように発熱した第1発熱曲管10A及び第2発熱曲管10B内を被加熱流体が流通することで、同第1発熱曲管10A及び第2発熱曲管10Bの内壁面から熱伝達で被加熱流体が加熱されることになる。   The heated fluid circulates in the first heat generating bent tube 10A and the second heat generating bent tube 10B that generate heat in this way, so that heat is generated from the inner wall surfaces of the first heat generating bent tube 10A and the second heat generating bent tube 10B. The fluid to be heated is heated by the transmission.

従って、第2の実施の形態によれば、発熱管2を第1発熱曲管10A及び第2発熱曲管10Bで構成し、第1発熱曲管10Aの略中央部を螺旋状に捩回して第1螺旋状部11Aを形成すると共に、第2発熱曲管10Bの略中央部を螺旋状に捩回して第2螺旋状部11Bを形成し、第1発熱曲管10Aの第1螺旋状部11Aで構成する挿通孔12に第2発熱曲管10Bの第2螺旋状部11Bを挿通させ、加熱コイル4に対して高周波電力を供給すると、加熱コイル4で発生する磁束線が第1発熱曲管10A及び第2発熱曲管10B夫々に鎖交するように、第1発熱曲管10A及び第2発熱曲管10Bを、加熱コイル4を巻回したコイルボビン3内に配置するようにしたので、加熱コイル4で発生した磁束線で第1発熱曲管10A及び第2発熱曲管10Bに電磁誘導電力を発生させ、さらに、これら第1発熱曲管10A及び第2発熱曲管10Bで発生した磁束線で第1発熱曲管10A及び第2発熱曲管10B同士に電磁誘導電力を発生させることになるため、磁界内の第1発熱曲管10A及び第2発熱曲管10B大部分の部位で熱交換に寄与し、その結果、被加熱流体に対する熱交換効率を大幅に向上させることができる。   Therefore, according to the second embodiment, the heat generating tube 2 is composed of the first heat generating bent tube 10A and the second heat generating bent tube 10B, and the substantially central portion of the first heat generating bent tube 10A is spirally twisted. The first spiral portion 11A is formed, and the second spiral portion 11B is formed by spirally twisting the substantially central portion of the second exothermic curved tube 10B to form the first spiral portion of the first exothermic bent tube 10A. When the high frequency power is supplied to the heating coil 4 by inserting the second spiral portion 11B of the second heat generating bent tube 10B through the insertion hole 12 configured by 11A, the magnetic flux lines generated in the heating coil 4 are changed to the first heat generating curve. Since the first exothermic bent tube 10A and the second exothermic bent tube 10B are arranged in the coil bobbin 3 around which the heating coil 4 is wound so as to interlink with the tube 10A and the second exothermic bent tube 10B, respectively. The first heat generating bent tube 10A and the second heat generating bent by the magnetic flux generated in the heating coil 4. Electromagnetic induction power is generated in 10B, and further, electromagnetic induction power is generated between the first heat generating bent tube 10A and the second heat generating bent tube 10B by the magnetic flux lines generated in the first heat generating bent tube 10A and the second heat generating bent tube 10B. Therefore, it contributes to heat exchange in most of the first exothermic bent tube 10A and the second exothermic bent tube 10B in the magnetic field, and as a result, greatly improves the heat exchange efficiency for the fluid to be heated. Can do.

また、第2の実施の形態によれば、第1発熱曲管10Aで発生する電磁誘導電力の電力方向及び、第2発熱曲管10Bで発生する電磁誘導電力の電力方向が同相となるように、加熱コイル4に対して第1発熱曲管10A及び第2発熱曲管10Bを配置したので、第1発熱曲管10A及び第2発熱曲管10Bに電磁誘導電力で発生した磁束線が打ち消しあうことなく、第1発熱曲管10A及び第2発熱曲管10B同士に電磁誘導電力を発生させることになるため、磁界内の第1発熱曲管10A及び第2発熱曲管10Bの大部分の部位で熱交換に寄与し、その結果、被加熱流体に対する熱交換効率を大幅に向上させることができる。   Further, according to the second embodiment, the power direction of the electromagnetic induction power generated in the first heat generating bent tube 10A and the power direction of the electromagnetic induction power generated in the second heat generating bent tube 10B are in phase. Since the first heat generating bent tube 10A and the second heat generating bent tube 10B are arranged with respect to the heating coil 4, the magnetic flux lines generated by electromagnetic induction power cancel each other in the first heat generating bent tube 10A and the second heat generating bent tube 10B. Therefore, electromagnetic induction power is generated between the first heat generating bent tube 10A and the second heat generating bent tube 10B, so that most of the first heat generating bent tube 10A and the second heat generating bent tube 10B in the magnetic field. This contributes to heat exchange, and as a result, the heat exchange efficiency for the fluid to be heated can be greatly improved.

また、第2の実施の形態によれば、短絡部6を、第1発熱曲管10Aの一端部2A及び他端部2B同士を電気的に接続する第1短絡部6Aと、第2発熱曲管10Bの一端部2A及び他端部2B同士を電気的に接続する第2短絡部6Bとで構成し、第1発熱曲管10A及び第1短絡部6A間、第2発熱曲管10B及び第2短絡部6B間で閉回路を夫々形成するようにしたので、第1発熱曲管10A及び第2発熱曲管10Bも夫々発熱することになるため、熱交換効率が大幅に向上させることができる。   In addition, according to the second embodiment, the short-circuit portion 6 includes the first short-circuit portion 6A that electrically connects the one end portion 2A and the other end portion 2B of the first heat-generating bent tube 10A, and the second heat-generation curve. The first end 2A and the second end 2B of the tube 10B are electrically connected to each other, and the second short circuit 6B is electrically connected to each other. The first exothermic bent tube 10A and the first short circuit 6A, the second exothermic bent tube 10B and the second Since the closed circuit is formed between the two short-circuit portions 6B, the first heat generating bent tube 10A and the second heat generating bent tube 10B also generate heat, so that the heat exchange efficiency can be greatly improved. .

尚、本実施の形態に示す電磁誘導流体加熱装置1(1A)においては、第1発熱曲管10A及び第2発熱曲管10Bに流通する被加熱流体を同一目標温度に加熱維持することを目的とするため、これら第1発熱曲管10A及び第2発熱曲管10Bに流通する被加熱流体が同一の流体であることが望ましい。   In the electromagnetic induction fluid heating apparatus 1 (1A) shown in the present embodiment, the object is to maintain the heated fluid flowing through the first exothermic bent tube 10A and the second exothermic bent tube 10B at the same target temperature. Therefore, it is desirable that the fluids to be heated flowing through the first heat generating bent tube 10A and the second heat generating bent tube 10B are the same fluid.

また、上記実施の形態の電磁誘導流体加熱装置1(1A)においては、第1発熱曲管10A及び第2発熱曲管10Bの一端2A側から他端2B側へ被加熱流体を流通させることが望ましいが、例えば第1発熱曲管10Aでは一端側2Aから他端2B側に、第2発熱曲管10Bでは他端2B側から一端2A側へ被加熱流体を流通させるようにしても同様の効果が得られることは言うまでもない。   In the electromagnetic induction fluid heating device 1 (1A) of the above embodiment, the fluid to be heated is circulated from the one end 2A side to the other end 2B side of the first exothermic bent tube 10A and the second exothermic bent tube 10B. Desirably, for example, the same effect can be obtained by flowing the heated fluid from the one end side 2A to the other end 2B side in the first exothermic bent tube 10A, and from the other end 2B side to the one end 2A side in the second exothermic bent tube 10B. It goes without saying that can be obtained.

また、上記実施の形態においては、例えば第1発熱曲管10Aの第1螺旋状部11Aの間に第2発熱曲管10Bの第2螺旋状部11Bを介在させるように発熱管2を構成し、又は例えば第1発熱曲管10Aの第1螺旋状部11Aで挿通孔12を形成し、この挿通孔12内に第2発熱曲管10Bの第2螺旋状部11Bを挿通するように発熱管2を構成するようにしたが、加熱コイル4で発生する磁束線が第1発熱曲管10A及び第2発熱曲管10Bで鎖交するのであれば、これら配置構成の限りではなく、様々な配置構成が考えることは言うまでもない。   Moreover, in the said embodiment, the heat_generation | fever pipe | tube 2 is comprised so that the 2nd spiral part 11B of the 2nd heat_generation | fever curved pipe | tube 10B may be interposed between the 1st spiral part 11A of the 1st heat_generation | fever bent tube 10A, for example. Alternatively, for example, the insertion hole 12 is formed by the first spiral portion 11A of the first exothermic bent tube 10A, and the exothermic tube is inserted into the insertion hole 12 through the second spiral portion 11B of the second exothermic bent tube 10B. However, if the magnetic flux lines generated in the heating coil 4 are linked with each other in the first exothermic bent tube 10A and the second exothermic bent tube 10B, not only these arrangement configurations but also various arrangements are possible. It goes without saying that the composition is considered.

また、上記実施の形態においては、発熱管2を第1発熱曲管10A及び第2発熱曲管10Bの2本の発熱曲管で構成するようにしたが、3本以上の発熱曲管で構成するようにしても、同様の効果が得られることは言うまでもない。   Moreover, in the said embodiment, although the heat_generation | fever tube 2 was comprised with two heat_generation | fever bent tubes, 10A of 1st heat generation bent tubes, and the 2nd heat_generation | fever bent tube 10B, it comprised with three or more heat generation bent tubes. Needless to say, the same effect can be obtained.

本発明の電磁誘導流体加熱装置によれば、発熱管を少なくとも2本の発熱曲管で構成し、一方の発熱曲管の略中央部を螺旋状に捩回して第1螺旋状部を形成すると共に、他方の発熱曲管の略中央部を螺旋状に捩回して第2螺旋状部を形成し、加熱コイルに対して高周波電力を供給すると、前記加熱コイルで発生する磁束線が前記2本の発熱曲管に鎖交するように、前記加熱コイルに対して前記少なくとも2本の発熱曲管を配置するようにしたので、前記加熱コイルで発生した磁束線で前記一方の発熱曲管及び前記他方の発熱曲管に電磁誘導電力を発生させ、さらに、これら発熱曲管で発生した磁束線で発熱曲管同士に電磁誘導電力を発生させることになるため、磁界内の一方の発熱曲管及び他方の発熱曲管の大部分の部位で熱交換に寄与し、その結果、被加熱流体に対する熱交換効率を大幅に向上させることができるため、例えば窒素ガス等の気体やアルコール等の液体等の被加熱流体を電磁誘導的に加熱する、例えば半導体製造装置に有用である。   According to the electromagnetic induction fluid heating device of the present invention, the heat generating tube is constituted by at least two heat generating bent tubes, and the first spiral portion is formed by spirally twisting the substantially central portion of one heat generating bent tube. At the same time, when the second spiral portion is formed by spirally twisting the substantially central portion of the other heat generating bent tube, and the high frequency power is supplied to the heating coil, the two magnetic flux lines generated in the heating coil Since the at least two heat generating bent tubes are arranged with respect to the heating coil so as to be linked to the heat generating bent tube, the one heat generating bent tube and the one of the heat generating bent tubes are formed by magnetic flux lines generated in the heating coil. Since electromagnetic induction power is generated in the other heat generating bent tube, and further, electromagnetic induction power is generated between the heat generating bent tubes by the magnetic flux lines generated in these heat generating bent tubes, one heat generating bent tube in the magnetic field and Contributing to heat exchange in most parts of the other exothermic bent tube, As a result, the heat exchange efficiency with respect to the fluid to be heated can be greatly improved. For example, the fluid to be heated such as a gas such as nitrogen gas or a liquid such as alcohol is electromagnetically heated. It is.

本発明の第1の実施の形態を示す電磁誘導流体加熱装置の内部構造を端的に示す説明図である。It is explanatory drawing which shows directly the internal structure of the electromagnetic induction fluid heating apparatus which shows the 1st Embodiment of this invention. 第1の実施の形態を示す電磁誘導流体加熱装置の内部構造の一部を断面にした説明図である。It is explanatory drawing which made a part of internal structure of the electromagnetic induction fluid heating apparatus which shows 1st Embodiment a cross section. 第1の実施の形態を示す電磁誘導流体加熱装置内部の加熱コイル、第1発熱曲管及び第2発熱曲管、第1短絡部及び第2短絡部の電気的関係を端的に示す説明図である。It is explanatory drawing which shows simply the electrical relationship of the heating coil in the electromagnetic induction fluid heating apparatus which shows 1st Embodiment, a 1st heat_generation | fever bent tube, a 2nd heat_generation | fever bent tube, a 1st short circuit part, and a 2nd short circuit part. is there. 第1の実施の形態を示す電磁誘導流体加熱装置内部の第1発熱曲管、第2発熱曲管、第1短絡部及び第2短絡部の関係を直流抵抗見地から端的に示す説明図である。It is explanatory drawing which shows directly the relationship between the 1st heat_generation | fever bent tube, the 2nd heat_generation | fever bent tube, a 1st short circuit part, and a 2nd short circuit part inside the electromagnetic induction fluid heating apparatus which shows 1st Embodiment from a DC resistance standpoint. . 第2の実施の形態を示す電磁誘導流体加熱装置の内部構造を端的に示す説明図である。It is explanatory drawing which shows directly the internal structure of the electromagnetic induction fluid heating apparatus which shows 2nd Embodiment. 第2の実施の形態を示す電磁誘導流体加熱装置の内部構造の一部を断面にした説明図である。It is explanatory drawing which made a part of internal structure of the electromagnetic induction fluid heating apparatus which shows 2nd Embodiment the cross section. 従来の電磁誘導流体加熱装置内部の加熱コイル、発熱管及び短絡部の電気的関係を端的に示す説明図である。It is explanatory drawing which shows simply the electrical relationship of the heating coil in a conventional electromagnetic induction fluid heating apparatus, a heat generating pipe, and a short circuit part. 従来の電磁誘導流体加熱装置内部の発熱管及び短絡部の電気的関係を直流抵抗見地から端的に示す説明図である。It is explanatory drawing which shows directly the electrical relationship of the heat generating tube and short circuit part inside the conventional electromagnetic induction fluid heating apparatus from a DC resistance standpoint.

符号の説明Explanation of symbols

1(1A) 電磁誘導流体加熱装置
2 発熱管
4 加熱コイル
5 高周波電源部
6 短絡部
6A 第1短絡部
6B 第2短絡部
10A 第1発熱曲管(一方の発熱曲管)
10B 第2発熱曲管(他方の発熱曲管)
11A 第1螺旋状部
11B 第2螺旋状部
12 挿通孔
1 (1A) Electromagnetic induction fluid heating device 2 Heating tube 4 Heating coil 5 High frequency power supply unit 6 Short circuit 6A First short circuit 6B Second short circuit 10A First heat generation curved tube (one heat generation curved tube)
10B 2nd exothermic curved pipe (other exothermic curved pipe)
11A 1st spiral part 11B 2nd spiral part 12 Insertion hole

Claims (6)

被加熱流体が流通する導電性材料の発熱管と、螺旋状に巻回して前記発熱管を取り囲むように配置する加熱コイルと、この加熱コイルに対して高周波電力を供給する高周波電源部とを有し、前記加熱コイルに対して高周波電力を供給することで発生する磁束線で前記発熱管に電磁誘導電力を発生させ、この電磁誘導電力で同発熱管を加熱する電磁誘導流体加熱装置であって、
前記発熱管を少なくとも2本の発熱曲管で構成し、一方の発熱曲管の略中央部を螺旋状に捩回して第1螺旋状部を形成すると共に、他方の発熱曲管の略中央部を螺旋状に捩回して第2螺旋状部を形成し、前記加熱コイルに対して高周波電力を供給すると、前記加熱コイルで発生する磁束線が前記少なくとも2本の発熱曲管に鎖交するように、前記加熱コイルに対して前記2本の発熱曲管を配置したことを特徴とする電磁誘導流体加熱装置。
A heating tube made of a conductive material through which a fluid to be heated flows, a heating coil that is spirally wound and arranged to surround the heating tube, and a high-frequency power supply unit that supplies high-frequency power to the heating coil are provided. An electromagnetic induction fluid heating device that generates electromagnetic induction power in the heat generation tube by magnetic flux lines generated by supplying high-frequency power to the heating coil, and heats the heat generation tube by the electromagnetic induction power. ,
The exothermic tube is composed of at least two exothermic bent tubes, and a substantially central portion of one exothermic bent tube is spirally twisted to form a first spiral portion, and an approximately central portion of the other exothermic bent tube When a high frequency power is supplied to the heating coil, the magnetic flux lines generated in the heating coil are linked to the at least two heat generating bent tubes. Further, the electromagnetic induction fluid heating apparatus is characterized in that the two heat generating bent tubes are arranged with respect to the heating coil.
前記一方の発熱曲管で発生する電磁誘導電力の電力方向及び、前記他方の発熱曲管で発生する電磁誘導電力の電力方向が同相となるように、前記加熱コイルに対して前記少なくとも2本の発熱曲管を配置したことを特徴とする請求項1記載の電磁誘導流体加熱装置。 The power direction of the electromagnetic induction power generated in the one heat generating bent tube and the power direction of the electromagnetic induction power generated in the other heat generating bent tube are in phase with each other with respect to the heating coil. 2. The electromagnetic induction fluid heating device according to claim 1, further comprising a heat generating bent tube. 前記第1螺旋状部の間に前記第2螺旋状部を介在させるように、前記加熱コイルに対して前記少なくとも2本の発熱曲管を配置したことを特徴とする請求項1又は2記載の電磁誘導流体加熱装置。 The said at least 2 heat_generation | fever bent tube is arrange | positioned with respect to the said heating coil so that the said 2nd spiral part may be interposed between the said 1st spiral part, The Claim 1 or 2 characterized by the above-mentioned. Electromagnetic induction fluid heating device. 前記第1螺旋状部で構成する挿通孔に前記第2螺旋状部を挿通するように、前記加熱コイルに対して前記少なくとも2本の発熱曲管を配置したことを特徴とする請求項1又は2記載の電磁誘導流体加熱装置。 The at least two exothermic curved tubes are arranged with respect to the heating coil so that the second spiral portion is inserted through an insertion hole formed by the first spiral portion. 3. The electromagnetic induction fluid heating device according to 2. 前記発熱管の両端部同士を電気的に接続する短絡部を有することを特徴とする請求項1、2、3又は4記載の電磁誘導流体加熱装置。 5. The electromagnetic induction fluid heating apparatus according to claim 1, further comprising a short-circuit portion that electrically connects both end portions of the heat generating tube. 前記短絡部は、
前記一方の発熱曲管の両端部同士を電気的に接続する第1短絡部と、
前記他方の発熱曲管の両端部同士を電気的に接続する第2短絡部とで構成することを特徴とする請求項5記載の電磁誘導流体加熱装置。
The short-circuit part is
A first short-circuit portion that electrically connects both end portions of the one heat generating bent tube;
6. The electromagnetic induction fluid heating device according to claim 5, comprising a second short-circuit portion that electrically connects both end portions of the other heat generating bent tube.
JP2005268091A 2005-09-15 2005-09-15 Electromagnetic induction fluid heating device Pending JP2007080715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005268091A JP2007080715A (en) 2005-09-15 2005-09-15 Electromagnetic induction fluid heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005268091A JP2007080715A (en) 2005-09-15 2005-09-15 Electromagnetic induction fluid heating device

Publications (1)

Publication Number Publication Date
JP2007080715A true JP2007080715A (en) 2007-03-29

Family

ID=37940782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005268091A Pending JP2007080715A (en) 2005-09-15 2005-09-15 Electromagnetic induction fluid heating device

Country Status (1)

Country Link
JP (1) JP2007080715A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145085A (en) * 2006-12-13 2008-06-26 Omron Corp Semiconductor chemical solution heating device
JP2013160492A (en) * 2012-02-09 2013-08-19 Tokuden Co Ltd Fluid heating device
JP2017191680A (en) * 2016-04-12 2017-10-19 トクデン株式会社 Fluid heating device
JP2018051848A (en) * 2016-09-27 2018-04-05 トクデン株式会社 Heat medium flowing roller apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141749U (en) * 1974-09-06 1976-03-27
JPS5494949U (en) * 1977-12-15 1979-07-05
JPH05129070A (en) * 1991-11-01 1993-05-25 Toshiba Mach Co Ltd Heating device
JPH0735413A (en) * 1993-06-30 1995-02-07 Seta Giken:Kk Electromagnetic induction heat exchanger
JPH113770A (en) * 1997-06-11 1999-01-06 Matsushita Electric Ind Co Ltd Heating device
JPH11233245A (en) * 1998-02-10 1999-08-27 Kogi Corp Gaseous mass body heating device
JP2001235228A (en) * 2000-02-24 2001-08-31 Omron Corp Fluid heater
JP2002270351A (en) * 2001-03-07 2002-09-20 Dai Ichi High Frequency Co Ltd Fluid heating equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141749U (en) * 1974-09-06 1976-03-27
JPS5494949U (en) * 1977-12-15 1979-07-05
JPH05129070A (en) * 1991-11-01 1993-05-25 Toshiba Mach Co Ltd Heating device
JPH0735413A (en) * 1993-06-30 1995-02-07 Seta Giken:Kk Electromagnetic induction heat exchanger
JPH113770A (en) * 1997-06-11 1999-01-06 Matsushita Electric Ind Co Ltd Heating device
JPH11233245A (en) * 1998-02-10 1999-08-27 Kogi Corp Gaseous mass body heating device
JP2001235228A (en) * 2000-02-24 2001-08-31 Omron Corp Fluid heater
JP2002270351A (en) * 2001-03-07 2002-09-20 Dai Ichi High Frequency Co Ltd Fluid heating equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145085A (en) * 2006-12-13 2008-06-26 Omron Corp Semiconductor chemical solution heating device
JP2013160492A (en) * 2012-02-09 2013-08-19 Tokuden Co Ltd Fluid heating device
JP2017191680A (en) * 2016-04-12 2017-10-19 トクデン株式会社 Fluid heating device
JP2018051848A (en) * 2016-09-27 2018-04-05 トクデン株式会社 Heat medium flowing roller apparatus

Similar Documents

Publication Publication Date Title
EP2213140B1 (en) Flow-through induction heater
JP5240987B2 (en) Superheated steam generator, superheated steam generator, and superheated steam generation method
JPH05508698A (en) fluid heating device
JP2010071624A (en) Fluid heating device
CA2560420A1 (en) Portable induction heating tool for soldering pipes
JP5654791B2 (en) Superheated steam generator
EP2959746A1 (en) Induction heating head
KR101705118B1 (en) The apparatus for controlling temperature of heating roller used in fusing device of image forming apparatus
JP2007080715A (en) Electromagnetic induction fluid heating device
JP2008270123A (en) Fluid temperature rising apparatus
KR20200029988A (en) Superheated Steam Generator
ES2632629T3 (en) Self-regulating temperature welder with removable tip
JP2009041885A (en) Fluid heating device
JP2003317915A (en) Fluid heating apparatus
JP4255466B2 (en) Magnetic flux irradiation device for internal living body heating
JP2005222781A (en) Fluid substance heating device using induction heating
JP2002323260A (en) Instantaneous water-heating equipment
JP4555838B2 (en) Induction heating device
TWI791488B (en) Superheated steam generating device and method of manufacturing conductor pipe used in the device
KR101133589B1 (en) A device to generate heat by induction heating type
JP2007294207A (en) High-frequency induction heating apparatus and its heating method
JP4987565B2 (en) Cooker
JP2019129192A (en) Output transformer for induction heating
JP2006090587A (en) Superheated steam generator
JP2021034294A (en) Superheated steam producing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110816