JP2013160492A - Fluid heating device - Google Patents

Fluid heating device Download PDF

Info

Publication number
JP2013160492A
JP2013160492A JP2012025811A JP2012025811A JP2013160492A JP 2013160492 A JP2013160492 A JP 2013160492A JP 2012025811 A JP2012025811 A JP 2012025811A JP 2012025811 A JP2012025811 A JP 2012025811A JP 2013160492 A JP2013160492 A JP 2013160492A
Authority
JP
Japan
Prior art keywords
conductor tube
voltage
fluid heating
layers
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012025811A
Other languages
Japanese (ja)
Other versions
JP5947048B2 (en
Inventor
Toru Tonomura
徹 外村
Yasuhiro Fujimoto
泰広 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuden Co Ltd Kyoto
Original Assignee
Tokuden Co Ltd Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuden Co Ltd Kyoto filed Critical Tokuden Co Ltd Kyoto
Priority to JP2012025811A priority Critical patent/JP5947048B2/en
Priority to CN2013200676388U priority patent/CN203258845U/en
Priority to CN201310047091.XA priority patent/CN103245048B/en
Priority to CN201710537776.0A priority patent/CN107255362B/en
Priority to KR1020130013947A priority patent/KR102000299B1/en
Priority to TW102104817A priority patent/TWI608204B/en
Publication of JP2013160492A publication Critical patent/JP2013160492A/en
Application granted granted Critical
Publication of JP5947048B2 publication Critical patent/JP5947048B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Resistance Heating (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a circuit power factor to enhance efficiency of facility, in a fluid heating device that energizes and heats by applying an ac volatge across conductor pipes in which a fluid flows in the interior.SOLUTION: A fluid heating device includes a fluid heating part 3 composed of one conductor pipe 2 or a plurality of conductor pipes 2 electrically connected to each other, and is configured such that an ac voltage from an ac power source 4 is applied across both ends of even numbers of divided elements 3a, 3b formed by dividing an impedance value of the fluid heating part 3 into equal even number parts, and electric currents flowing through the divided elements 3a, 3b are made reverse relative to each other, thus magnetic fluxes generated on each of the even numbers of the divided elements 3a, 3b are cancelled each other as a whole.

Description

本発明は、流体加熱装置に関するものである。   The present invention relates to a fluid heating apparatus.

流体加熱装置としては、特許文献1に示すように、中空導体管を通電加熱して、当該導体管の内部を流れる流体を加熱して加熱流体を発生するものがある。この流体加熱装置では、導体管の両端部に設けた電極から交流電圧が印加されて、導体管の側壁に交流電流が流れることにより、導体管の内部抵抗により発生するジュール熱によって導体管が自己発熱する。この導体管の自己発熱によって、当該導体管を流れる流体が加熱される。   As a fluid heating device, as shown in Patent Document 1, there is a device that energizes and heats a hollow conductor tube and heats a fluid flowing inside the conductor tube to generate a heated fluid. In this fluid heating apparatus, an AC voltage is applied from the electrodes provided at both ends of the conductor tube, and an AC current flows through the side wall of the conductor tube, so that the conductor tube is self-generated by Joule heat generated by the internal resistance of the conductor tube. Fever. The fluid flowing through the conductor tube is heated by the self-heating of the conductor tube.

しかしながら、導体管の両端部に交流電圧を印加するものでは、導体管が有するインダクタンスによって電圧降下が生じ、当該導体管に交流電圧を印加する回路の力率が低下するという問題がある。   However, when the AC voltage is applied to both ends of the conductor tube, there is a problem that a voltage drop occurs due to the inductance of the conductor tube, and the power factor of the circuit that applies the AC voltage to the conductor tube is reduced.

特開2011−86443号公報JP 2011-86443 A

そこで本発明は、上記問題点を一挙に解決するためになされたものであり、内部に流体が流れる導体管に交流電圧を印加して通電加熱する流体加熱装置において、回路力率を改善して設備効率を向上させることをその主たる所期課題とするものである。   Accordingly, the present invention has been made to solve the above-mentioned problems at once, and in a fluid heating apparatus that applies an AC voltage to a conductor tube in which a fluid flows and heats the current by improving the circuit power factor. Increasing equipment efficiency is the main desired issue.

すなわち本発明に係る流体加熱装置は、内部に流体が流れる導体管に交流電圧を印加して通電加熱し、前記導体管内を流れる流体を加熱する流体加熱装置であって、1つの導体管又は電気的に互いに接続された複数の導体管からなる流体加熱部を備えており、前記流体加熱部のインピーダンス値を偶数等分して形成される偶数個の分割要素の両端部に交流電源からの交流電圧を印加するとともに、前記分割要素に流れる電流が互いに逆向きとされて、偶数個の分割要素それぞれに生じる磁束が全体として打ち消し合うように構成されていることを特徴とする。   That is, the fluid heating device according to the present invention is a fluid heating device that heats a fluid flowing in the conductor tube by applying an AC voltage to the conductor tube in which the fluid flows, and heating the fluid flowing in the conductor tube. Provided with a fluid heating section composed of a plurality of conductor tubes connected to each other, and an alternating current from an AC power source is provided at both ends of an even number of dividing elements formed by dividing the impedance value of the fluid heating section into an even number. While applying a voltage, the electric current which flows into the said division | segmentation element is made into the reverse direction mutually, It is comprised so that the magnetic flux which arises in each of an even number of division | segmentation elements may mutually cancel.

このようなものであれば、流体加熱部のインピーダンス値を偶数に略等分して形成される複数の分割要素それぞれに流れる電流が互いに逆向きとされて、全体として打ち消し合うように構成されているので、導体管が有するインダクタンスによる電圧降下を抑制して力率を改善することができる。したがって、流体加熱装置の設備効率を向上させることができる。   If this is the case, the current flowing in each of the plurality of divided elements formed by dividing the impedance value of the fluid heating unit into an even number is approximately equal to each other, and is configured to cancel each other out as a whole. Therefore, the power factor can be improved by suppressing the voltage drop due to the inductance of the conductor tube. Therefore, the equipment efficiency of the fluid heating device can be improved.

前記導体管の具体的な実施の態様としては、前記導体管が螺旋状に巻回されていることが望ましい。これならば、以下に示すように、種々の構成により、インダクタンスによる電圧降下を抑制して力率を改善することができる。   As a specific embodiment of the conductor tube, it is desirable that the conductor tube is wound spirally. In this case, as shown below, the power factor can be improved by suppressing the voltage drop due to the inductance by various configurations.

前記偶数個の分割要素が、前記導体管を螺旋状に巻回して構成された偶数の導体管層であり、前記複数の導体管層それぞれのインピーダンス値が互いに略等しくなるように構成されており、前記偶数の導体管層が、互いに隣接する導体管層の巻き方向が互いに逆方向となるように同心円状に配置されており、前記各導体管層の一端側に、交流電圧の正負2つの極性のうち一方の極性の電圧が印加され、前記各導体管層の他端側に、交流電圧の正負2つの極性のうち他方の極性の電圧が印加されることが望ましい。これならば、偶数の導体管層の全てにおいて一端側を一方の極性に接続し、他端側を他方の極性に接続すればよいので、回路構成を簡単にすることができる。   The even number of dividing elements is an even numbered conductor tube layer formed by spirally winding the conductor tube, and the impedance values of the plurality of conductor tube layers are configured to be substantially equal to each other. The even-numbered conductor tube layers are arranged concentrically so that the winding directions of adjacent conductor tube layers are opposite to each other, and one end of each conductor tube layer has two positive and negative AC voltages. It is desirable that a voltage having one of the polarities is applied, and a voltage having the other of the two positive and negative polarities of the AC voltage is applied to the other end of each conductor tube layer. If this is the case, it is only necessary to connect one end side to one polarity and connect the other end side to the other polarity in all of the even-numbered conductor tube layers, so that the circuit configuration can be simplified.

前記偶数個の分割要素が、前記導体管を螺旋状に巻回して構成された偶数の導体管層であり、前記複数の導体管層それぞれのインピーダンス値が互いに略等しくなるように構成されており、前記偶数の導体管層が、互いに隣接する導体管層の巻き方向が同一方向となるように同心円状に配置されており、互いに隣接する導体管層のうち一方の導体管層の一端側に、交流電圧の正負2つの極性のうち一方の極性の電圧が印加されるとともに、当該一方の導体管層の他端側に、交流電圧の正負2つの極性のうち他方の極性の電圧が印加され、前記互いに隣接する導体管層のうち他方の導体管層の他端側に、交流電圧の正負2つの極性のうち一方の極性の電圧が印加されるとともに、当該他方の導体管層の一端側に、交流電圧の正負2つの極性のうち他方の極性の電圧が印加されることが望ましい。このような構成のものであっても、インダクタンスによる電圧降下を抑制して力率を改善することができる。   The even number of dividing elements is an even numbered conductor tube layer formed by spirally winding the conductor tube, and the impedance values of the plurality of conductor tube layers are configured to be substantially equal to each other. The even-numbered conductor tube layers are arranged concentrically so that the winding directions of the adjacent conductor tube layers are the same direction, and are arranged on one end side of one of the adjacent conductor tube layers. The voltage of one of the two positive and negative polarities of the AC voltage is applied, and the voltage of the other of the two positive and negative polarities of the AC voltage is applied to the other end of the one conductor tube layer. A voltage of one of the two positive and negative polarities of the AC voltage is applied to the other end of the other conductor tube layer among the adjacent conductor tube layers, and one end side of the other conductor tube layer The AC voltage has two positive and negative polarities It is desirable that the voltage of the other polarity is applied. Even with such a configuration, the power factor can be improved by suppressing the voltage drop due to the inductance.

前記偶数個の分割要素が、前記導体管を螺旋状に巻回して構成された偶数の導体管層であり、前記複数の導体管層それぞれのインピーダンス値が互いに略等しくなるように構成されており、前記偶数の導体管層が、互いに隣接する導体管層の巻き方向が同一方向となるように同心円状に連続して巻回されており、前記各導体管層の一端側に、交流電圧の正負2つの極性のうち一方の極性の電圧が印加され、前記各導体管層の他端側に、交流電圧の正負2つの極性のうち他方の極性の電圧が印加されることが望ましい。これならば、1つの導体管を多重に巻回して1つの構成要素により流体加熱部を構成することができ、部品点数を削減し、取り扱いを容易にすることができる。   The even number of dividing elements is an even numbered conductor tube layer formed by spirally winding the conductor tube, and the impedance values of the plurality of conductor tube layers are configured to be substantially equal to each other. The even-numbered conductor tube layers are continuously wound concentrically so that the winding directions of the adjacent conductor tube layers are the same direction, and one end side of each conductor tube layer has an AC voltage applied thereto. It is desirable that a voltage having one of the two positive and negative polarities is applied, and a voltage having the other of the two positive and negative polarities of the AC voltage is applied to the other end of each conductor tube layer. If this is the case, one conductor tube can be wound multiple times to form a fluid heating unit with one component, and the number of parts can be reduced and handling can be facilitated.

また、本発明に係る流体加熱装置は、内部に流体が流れる導体管に交流電圧を印加して通電加熱し、前記導体管内を流れる流体を加熱する流体加熱装置であって、1つの導体管又は電気的に互いに接続された複数の導体管からなる流体加熱部を備えており、前記流体加熱部のインピーダンス値を偶数等分して形成される偶数個の分割要素を、当該分割要素に流れる電流が互いに逆向きとなり、偶数個の分割要素それぞれに生じる磁束が全体として打ち消し合うように構成されていることを特徴とする。   The fluid heating device according to the present invention is a fluid heating device that heats a fluid flowing in the conductor tube by applying an AC voltage to the conductor tube in which the fluid flows, and heating the fluid flowing in the conductor tube. A fluid heating section comprising a plurality of conductor tubes electrically connected to each other, and an even number of divided elements formed by evenly dividing the impedance value of the fluid heating section into a current flowing through the divided elements Are opposite to each other, and the magnetic flux generated in each of the even number of divided elements cancels out as a whole.

このようなものであれば、流体加熱部のインピーダンス値を偶数に略等分して形成される複数の分割要素それぞれに流れる電流が互いに逆向きとされて、全体として打ち消し合うように構成されているので、導体管が有するインダクタンスによる電圧降下を抑制して力率を改善することができる。したがって、流体加熱装置の設備効率を向上させることができる。   If this is the case, the current flowing in each of the plurality of divided elements formed by dividing the impedance value of the fluid heating unit into an even number is approximately equal to each other, and is configured to cancel each other out as a whole. Therefore, the power factor can be improved by suppressing the voltage drop due to the inductance of the conductor tube. Therefore, the equipment efficiency of the fluid heating device can be improved.

前記偶数個の分割要素が、前記導体管を螺旋状に巻回して構成された偶数の導体管層であり、前記複数の導体管層それぞれのインピーダンス値が互いに略等しくなるように構成されており、前記偶数の導体管層が、互いに隣接する導体管層の巻き方向が同一方向となるように同心円状に配置されており、前記偶数の導体管層を電気的に直列となるように接続するとともに、直列接続された偶数の導体管層の一端側に、交流電圧の正負2つの極性のうち一方の極性の電圧が印加され、直列接続された偶数の導体管層の他端側に、交流電圧の正負2つの極性のうち他方の極性の電圧が印加されることが望ましい。これならば、直列接続された偶数の導体管層の一端側及び他端側に交流電源を接続すればよく、回路構成を簡単化することができる。   The even number of dividing elements is an even numbered conductor tube layer formed by spirally winding the conductor tube, and the impedance values of the plurality of conductor tube layers are configured to be substantially equal to each other. The even-numbered conductor tube layers are arranged concentrically so that the winding directions of the adjacent conductor tube layers are the same direction, and the even-numbered conductor tube layers are electrically connected in series. In addition, a voltage of one of the two positive and negative polarities of the AC voltage is applied to one end side of the even-numbered conductor tube layers connected in series, and an AC voltage is applied to the other end side of the even-numbered conductor tube layers connected in series. It is desirable to apply a voltage having the other polarity of two positive and negative voltages. In this case, an AC power source may be connected to one end side and the other end side of the even-numbered conductor tube layers connected in series, and the circuit configuration can be simplified.

螺旋状に巻回された導体管層の巻芯中空部及び導体管層の外側の少なくとも一方に磁気回路用磁性体が設けられていることが望ましい。これならば、導体管層を通電することにより生じる磁束を磁性体に沿って通すことができ、各導体管層を通電することにより生じる磁束を互いに打ち消し易くすることができる。   It is desirable that a magnetic body for a magnetic circuit is provided in at least one of the core hollow portion of the conductor tube layer wound spirally and the outside of the conductor tube layer. In this case, the magnetic flux generated by energizing the conductor tube layer can be passed along the magnetic body, and the magnetic flux generated by energizing each conductor tube layer can be easily canceled out.

導体管は螺旋状をなすものに限られず、前記導体管が直管状をなすものであっても良い。これならば、導体管の構成を極めて簡単にすることができる。   The conductor tube is not limited to a spiral shape, and the conductor tube may be a straight tube shape. In this case, the configuration of the conductor tube can be extremely simplified.

このように構成した本発明によれば、内部に流体が流れる導体管に交流電圧を印加して通電加熱する流体加熱装置において、回路力率を改善して設備効率を向上させることができる。   According to the present invention configured as described above, in a fluid heating apparatus that applies an AC voltage to a conductor tube in which a fluid flows inside and heats the current by conduction, the circuit power factor can be improved and the equipment efficiency can be improved.

本実施形態に係る流体加熱装置の構成を模式的に示す図。The figure which shows typically the structure of the fluid heating apparatus which concerns on this embodiment. 同実施形態における流体加熱装置の流体加熱部の構成を示す図。The figure which shows the structure of the fluid heating part of the fluid heating apparatus in the embodiment. 同実施形態における流体加熱装置の流体加熱部の構成を示す図。The figure which shows the structure of the fluid heating part of the fluid heating apparatus in the embodiment. 同実施形態における流体加熱装置の流体加熱部の構成を示す図。The figure which shows the structure of the fluid heating part of the fluid heating apparatus in the embodiment. 同実施形態における流体加熱装置の流体加熱部の構成を示す図。The figure which shows the structure of the fluid heating part of the fluid heating apparatus in the embodiment. 1層巻の螺旋状コイル試験の回路構成及び試験結果を示す図。The figure which shows the circuit structure and test result of the spiral coil test of 1 layer winding. 2層巻の螺旋状コイル試験の回路構成及び試験結果を示す図。The figure which shows the circuit structure and test result of a spiral coil test of two-layer winding. 2段2層巻の螺旋状コイル試験の回路構成及び試験結果を示す図。The figure which shows the circuit structure and test result of the spiral coil test of 2 steps | paragraphs 2 layers winding. 直管状導体管試験の回路構成及び試験結果を示す図。The figure which shows the circuit structure and test result of a straight tubular conductor tube test.

以下に本発明に係る流体加熱装置の一実施形態について図面を参照して説明する。   Hereinafter, an embodiment of a fluid heating device according to the present invention will be described with reference to the drawings.

本実施形態に係る流体加熱装置100は、図1に示すように、内部に流体が流れる中空の導体管2に交流電源4からの交流電圧を印加して直接通電し、導体管2の内部抵抗により発生するジュール熱によって導体管2を加熱することにより、当該導体管2を流れる流体を加熱するものである。   As shown in FIG. 1, the fluid heating apparatus 100 according to the present embodiment applies an AC voltage from an AC power supply 4 to a hollow conductor tube 2 in which a fluid flows, and directly energizes the hollow conductor tube 2. The fluid flowing through the conductor tube 2 is heated by heating the conductor tube 2 with Joule heat generated by the above.

具体的にこのものは、1つの導体管2又は電気的に互いに接続された複数の導体管2からなる流体加熱部3を備えている。   Specifically, this includes a fluid heating unit 3 including one conductor tube 2 or a plurality of conductor tubes 2 electrically connected to each other.

この流体加熱部3は、図2〜図5に示すように種々の構成とすることができる。   The fluid heating unit 3 can have various configurations as shown in FIGS.

図2に示す流体加熱部3は、交流電源4を含む交流回路により電気的に接続された2つの導体管2から構成されるものであり、流体加熱部3全体のインピーダンス値を偶数等分して形成される偶数個(本実施形態では2個)の分割要素3a、3bの両端部に交流電源4からの交流電圧が印加される。   The fluid heating unit 3 shown in FIG. 2 is composed of two conductor tubes 2 that are electrically connected by an AC circuit including an AC power source 4, and divides the impedance value of the entire fluid heating unit 3 into an even number. The alternating voltage from the alternating current power source 4 is applied to both ends of the even number (two in the present embodiment) of the dividing elements 3a and 3b.

各分割要素3a、3bは、加熱対象の流体が流入又は流出する流体出入口2Px、2Pyを両端に有する導体管2を螺旋状に巻回して構成された導体管層である。そして、2つの分割要素である2つの導体管層3a、3bのインピーダンス値は、巻回数、管長、管径、肉厚、巻径及び巻高さを調整して、互いに略等しくなるように構成されている。本実施形態では、各導体管層3a、3bを構成する導体管2の管径及び肉厚及び巻回数等を同一にすることによって構成されている。   Each of the dividing elements 3a and 3b is a conductor tube layer formed by spirally winding a conductor tube 2 having fluid inlets 2Px and 2Py at both ends into which a fluid to be heated flows in or out. The impedance values of the two conductor tube layers 3a and 3b, which are two divided elements, are configured to be substantially equal to each other by adjusting the number of windings, the tube length, the tube diameter, the wall thickness, the winding diameter, and the winding height. Has been. In this embodiment, it is comprised by making the pipe diameter of the conductor pipe | tube 2 which comprises each conductor pipe | tube layer 3a, 3b, the thickness, the frequency | count of winding, etc. the same.

また、導体管2は、1巻き毎に絶縁物又は空隙によって絶縁される。例えば、外側周面に絶縁層を設ける等の絶縁加工が施された導体管2を用いることが考えられる。あるいは、数回巻き毎にブロック分けして、各ブロック毎に絶縁するように構成しても良い。なお、前記ブロック数は、導体管2に流れる電流値によって決定する。   Further, the conductor tube 2 is insulated by an insulator or a gap for each turn. For example, it is conceivable to use a conductor tube 2 that has been subjected to insulation processing such as providing an insulating layer on the outer peripheral surface. Or you may comprise so that it may divide into blocks every several turns and it may insulate for every block. The number of blocks is determined by the value of current flowing through the conductor tube 2.

そして、2個の導体管層3a、3bは、それぞれの巻き方向が互いに逆方向となるように同心円状に2層に配置されている。なお、導体管層が4以上の偶数個の場合には、互いに隣接する導体管層の巻き方向が互いに逆方向となるように同心円状に配置される。ここで、内側の導体管層3aの巻芯中空部及び外側の導体管層3bの外側の少なくとも一方に磁気回路用磁性体を設けることが望ましい。   The two conductor tube layers 3a and 3b are concentrically arranged in two layers so that the respective winding directions are opposite to each other. When the number of conductor tube layers is an even number of 4 or more, the conductor tube layers are arranged concentrically so that the winding directions of adjacent conductor tube layers are opposite to each other. Here, it is desirable to provide a magnetic body for a magnetic circuit in at least one of the core hollow portion of the inner conductor tube layer 3a and the outer side of the outer conductor tube layer 3b.

このように構成された流体加熱部3において、各導体管層3a、3bを構成する導体管2の流体出入口2Px、2Pyが、一端側(図2では上端側)及び他端側(図2では下端側)に位置する構成となる。なお、流体出入口2Px、2Pyは、外部の配管を接続するためのフランジ部を有する。   In the fluid heating section 3 configured as described above, the fluid inlets / outlets 2Px and 2Py of the conductor pipes 2 constituting the conductor pipe layers 3a and 3b are arranged at one end side (upper end side in FIG. 2) and the other end side (in FIG. 2). The configuration is located on the lower end side. The fluid inlet / outlet 2Px, 2Py has a flange portion for connecting an external pipe.

そして、この流体加熱部3において、各導体管層3a、3bの一端側(図2では上端側)に、交流電圧の正負2つの極性のうち一方の極性の電圧(図2ではプラス電圧)が印加され、各導体管層3a、3bの他端側(図2では下端側)に、交流電圧の正負2つの極性のうち他方の極性の電圧(図2ではマイナス電圧)が印加される。   And in this fluid heating part 3, the voltage of one polarity (plus voltage in FIG. 2) of two positive and negative polarities of AC voltage is applied to one end side (upper end side in FIG. 2) of each conductor tube layer 3a, 3b. The voltage of the other polarity (negative voltage in FIG. 2) of the two positive and negative AC voltages is applied to the other end side (lower end side in FIG. 2) of each conductor tube layer 3a, 3b.

つまり、各導体管層3a、3bを構成する導体管2における一端側の流体出入口2Pxを構成する一端部又はその近傍に、交流電源4からの交流電圧の一方の極性の電圧を印加するための接続端子(不図示)が接続される。また、各導体管層3a、3bを構成する導体管2における他端側の流体出入口2Pyを構成する他端部又はその近傍に、交流電源4からの交流電圧の他方の極性の電圧を印加するための接続端子(不図示)が接続される。   That is, for applying a voltage of one polarity of the AC voltage from the AC power supply 4 to one end portion or the vicinity thereof constituting the fluid inlet / outlet port 2Px on one end side in the conductor tube 2 constituting each conductor tube layer 3a, 3b. A connection terminal (not shown) is connected. Further, a voltage of the other polarity of the AC voltage from the AC power supply 4 is applied to the other end of the fluid inlet / outlet port 2Py on the other end side of the conductor tube 2 constituting each of the conductor tube layers 3a and 3b. For this purpose, a connection terminal (not shown) is connected.

このように各導体管層3a、3bに交流電圧を印加することによって、各導電体層3a、3bに流れる電流が互いに逆向きとなり、一方の導体管層3aを通電した際に生じる磁束と、他方の導体管層3bを通電した際に生じる磁束とが互いに逆向きとなり、互いに打ち消し合うことになる。   In this way, by applying an alternating voltage to each conductor tube layer 3a, 3b, the currents flowing in each conductor layer 3a, 3b are opposite to each other, and magnetic flux generated when one conductor tube layer 3a is energized, Magnetic fluxes generated when the other conductor tube layer 3b is energized are opposite to each other and cancel each other.

図3に示す流体加熱部3は、上述した図2等の流体加熱部3に対して、2つの分割要素である導電体層3a、3bの構成は同じであるが、各導電体層3a、3bの巻き方向の向き及び交流電圧の印加方法が異なる。   The fluid heating unit 3 shown in FIG. 3 has the same configuration of the conductor layers 3a and 3b, which are two divided elements, with respect to the fluid heating unit 3 in FIG. The direction of the winding direction of 3b and the application method of the alternating voltage are different.

つまり、2個の導体管層3a、3bが、それぞれの巻き方向が互いに同一方向となるように同心円状に2層に配置されている。なお、導体管層が4以上の偶数個の場合も同様にそれぞれの巻き方向が互いに同一方向となるように同心円状に配置される。   That is, the two conductor tube layers 3a and 3b are arranged in two layers concentrically so that their winding directions are the same as each other. In the case where the number of conductor tube layers is an even number of 4 or more, they are similarly arranged concentrically so that their winding directions are the same.

このように構成された流体加熱部3において、2つの導体管層3a、3bのうち一方の導体管層3aの一端側に、交流電圧の正負2つの極性のうち一方の極性の電圧(図3ではプラス電圧)が印加され、一方の導体管層3aの他端側に、交流電圧の正負2つの極性のうち他方の極性の電圧(図3ではマイナス電圧)が印加される。また、2つの導体管層3a、3bのうち他方の導体管層3bの他端側に、交流電圧の正負2つの極性のうち一方の極性の電圧(図3ではプラス電圧)が印加され、他方の導体管層3bの一端側に、交流電圧の正負2つの極性のうち他方の極性の電圧(図3ではマイナス電圧)が印加される。つまり、一方の導体管層3aの一端側と他方の導体管層3bの他端側とは同一極性の電圧が印加され、一方の導体管層3aの他端側と他方の導体管層3bの一端側とは同一極性の電圧が印加される。   In the fluid heating unit 3 configured as described above, one of the two conductor tube layers 3a and 3b is connected to one end of the conductor tube layer 3a. Is applied to the other end of one of the conductor tube layers 3a, and a voltage having the other of the two positive and negative polarities of the AC voltage (a negative voltage in FIG. 3) is applied. In addition, a voltage having one of the two positive and negative polarities of the AC voltage (positive voltage in FIG. 3) is applied to the other end of the other conductor tube layer 3b of the two conductor tube layers 3a and 3b. One of the two positive and negative polarities of the AC voltage is applied to one end of the conductor tube layer 3b (negative voltage in FIG. 3). That is, the same polarity voltage is applied to one end side of one conductor tube layer 3a and the other end side of the other conductor tube layer 3b, and the other end side of one conductor tube layer 3a and the other conductor tube layer 3b A voltage having the same polarity is applied to one end side.

つまり、一方の導体管層3aを構成する導体管2の一端側の流体出入口2Pxを構成する一端部又はその近傍に、交流電源4からの交流電圧の一方の極性の電圧を印加するための接続端子(不図示)が接続され、一方の導体管層3aを構成する導体管2の他端側の流体出入口2Pyを構成する他端部又はその近傍に、交流電源4からの交流電圧の他方の極性の電圧を印加するための接続端子(不図示)が接続される。また、他方の導体管層3bを構成する導体管2の他端側の流体出入口2Pyを構成する他端部又はその近傍に、交流電源4からの交流電圧の一方の極性の電圧を印加するための接続端子(不図示)が接続され、他方の導体管層3bを構成する導体管2の一端側の流体出入口2Pxを構成する一端部又はその近傍に、交流電源4からの交流電圧の他方の極性の電圧を印加するための接続端子(不図示)が接続される。   That is, a connection for applying a voltage of one polarity of the AC voltage from the AC power supply 4 to one end of the fluid inlet / outlet port 2Px on one end side of the conductor tube 2 constituting one conductor tube layer 3a or the vicinity thereof. A terminal (not shown) is connected, and the other end of the fluid inlet / outlet 2Py on the other end of the conductor tube 2 constituting one conductor tube layer 3a is connected to the other end of the fluid inlet / outlet 2Py or the vicinity thereof. A connection terminal (not shown) for applying a polarity voltage is connected. Also, in order to apply a voltage of one polarity of the AC voltage from the AC power supply 4 to the other end portion of the fluid inlet / outlet port 2Py on the other end side of the conductor tube 2 constituting the other conductor tube layer 3b or the vicinity thereof. Are connected to one end of the fluid inlet / outlet port 2Px on one end side of the conductor tube 2 constituting the other conductor tube layer 3b, and the other end of the AC voltage from the AC power source 4 is connected to the other end of the fluid inlet / outlet 2Px. A connection terminal (not shown) for applying a polarity voltage is connected.

このように各導体管層3a、3bに交流電圧を印加することによって、各導電体層3a、3bに流れる電流が互いに逆向きとなり、一方の導体管層3aを通電した際に生じる磁束と、他方の導体管層3bを通電した際に生じる磁束とが互いに逆向きとなり、互いに打ち消し合うことになる。   In this way, by applying an alternating voltage to each conductor tube layer 3a, 3b, the currents flowing in each conductor layer 3a, 3b are opposite to each other, and magnetic flux generated when one conductor tube layer 3a is energized, Magnetic fluxes generated when the other conductor tube layer 3b is energized are opposite to each other and cancel each other.

図4に示す流体加熱部3は、交流電源4を含む交流回路により電気的に接続された1つの導体管2から構成されるものであり、流体加熱部3全体のインピーダンス値を偶数等分して形成される偶数個(本実施形態では2個)の分割要素3a、3bの両端部に交流電源4からの交流電圧が印加される。   The fluid heating unit 3 shown in FIG. 4 is composed of one conductor tube 2 electrically connected by an AC circuit including an AC power source 4, and divides the impedance value of the entire fluid heating unit 3 into an even number. The alternating voltage from the alternating current power source 4 is applied to both ends of the even number (two in the present embodiment) of the dividing elements 3a and 3b.

2つの分割要素3a、3bは、1つの導体管2を一端側から他端側に螺旋状に巻回して構成された内側の導体管層3aと、当該導体管層3aの他端に連続して、他端側から一端側に前記内側の導体管層3aの巻き方向と同一方向に螺旋状に巻回して構成された外側の導体管層3bとからなる。これら導体管層3a、3bのインピーダンス値は、互いに略等しくなるように構成されている。本実施形態では、各導体管層3a、3bの巻回数等を同一にすることによって構成されている。   The two split elements 3a and 3b are connected to the inner conductor tube layer 3a formed by spirally winding one conductor tube 2 from one end side to the other end side, and to the other end of the conductor tube layer 3a. The outer conductor tube layer 3b is formed by spirally winding from the other end side to the one end side in the same direction as the winding direction of the inner conductor tube layer 3a. The impedance values of the conductor tube layers 3a and 3b are configured to be substantially equal to each other. In this embodiment, the conductor tube layers 3a and 3b are configured to have the same number of turns.

このように2個の導体管層3a、3bは、それぞれの巻き方向が互いに同一方向となるように同心円状に連続して2層に巻回されて構成されている。つまり、このように構成された流体加熱部は、2個の導体管層3a、3bが連続して一体に構成されるものである。なお、導体管層が4以上の偶数個の場合には、1つの導体管2を巻き方向を同一方向にして、一端側から他端側へ、次に、他端側から一端側へと連続的に同心円状に巻回して構成される。   In this way, the two conductor tube layers 3a and 3b are configured to be concentrically wound in two layers so that the respective winding directions are the same. In other words, the fluid heating unit configured in this manner is configured such that the two conductor tube layers 3a and 3b are continuously integrated. When the number of conductor tube layers is an even number of 4 or more, one conductor tube 2 is wound in the same direction, continuously from one end side to the other end side, and then continuously from the other end side to the one end side. It is constructed by winding concentrically.

このように構成された流体加熱部3において、導体管層の数に関わらず、2つの流体出入口2Px、2Pyが、一端側(図4では上端側)に位置する構成となる。   In the fluid heating unit 3 configured as described above, the two fluid inlets / outlets 2Px and 2Py are positioned on one end side (the upper end side in FIG. 4) regardless of the number of conductor tube layers.

そして、この流体加熱部3において、各導体管層3a、3bの一端側(図4では上端側)に、交流電圧の正負2つの極性のうち一方の極性の電圧(図4ではプラス電圧)が印加され、各導体管層3a、3bの他端側において各導体管層3a、3bが連続している折り返し部分、つまり、2つの流体出入口の間の中間位置に、交流電圧の正負2つの極性のうち他方の極性の電圧(図4ではマイナス電圧)が印加される。このように、2つの導体管層3a、3bの隣接する端部(分割要素を分割する箇所)に共通の電圧を印加する構成としている。   And in this fluid heating part 3, the voltage of one polarity (plus voltage in FIG. 4) of two positive and negative polarities of AC voltage is applied to one end side (upper end side in FIG. 4) of each conductor tube layer 3a, 3b. Applied to the folded portion where the conductor tube layers 3a and 3b are continuous on the other end side of the conductor tube layers 3a and 3b, that is, at an intermediate position between the two fluid inlets and outlets. The voltage of the other polarity (minus voltage in FIG. 4) is applied. In this way, a common voltage is applied to the adjacent ends of the two conductor tube layers 3a and 3b (locations where the dividing elements are divided).

つまり、各導体管層3a、3bを構成する導体管2の一方の流体出入口2Pxを構成する端部又はその近傍に、交流電源4からの交流電圧の一方の極性の電圧を印加するための接続端子(不図示)が接続され、各導体管層3a、3bを構成する導体管2の他方の流体出入口2Pyを構成する端部又はその近傍に、交流電源4からの交流電圧の一方の極性の電圧を印加するための接続端子(不図示)が接続される。また、各導体管層3a、3bの他端側において各導体管層3a、3bが連続した折り返し部分に、交流電源4からの交流電圧の他方の極性の電圧を印加するための接続端子(不図示)が接続される。なお、図4における符号31は、折り返し部分(中間位置)に設けられて、前記交流電源4の接続端子が接続される接続片である。   That is, a connection for applying a voltage of one polarity of the AC voltage from the AC power source 4 to the end portion or the vicinity thereof constituting one fluid inlet / outlet port 2Px of the conductor tube 2 constituting each conductor tube layer 3a, 3b. A terminal (not shown) is connected to one end of the other fluid inlet / outlet port 2Py of the conductor tube 2 constituting each of the conductor tube layers 3a and 3b, or in the vicinity thereof, with one polarity of the AC voltage from the AC power source 4 A connection terminal (not shown) for applying a voltage is connected. In addition, a connection terminal (not connected) for applying the voltage of the other polarity of the AC voltage from the AC power source 4 to the folded portion where the conductor tube layers 3a and 3b are continuous on the other end side of the conductor tube layers 3a and 3b. Are connected. In addition, the code | symbol 31 in FIG. 4 is a connection piece provided in the folding | turning part (intermediate position) and the connection terminal of the said AC power supply 4 is connected.

このように各導体管層に交流電圧を印加することによって、各導電体層3a、3bに流れる電流が互いに逆向きとなり、一方の導体管層3aを通電した際に生じる磁束と、他方の導体管層3bを通電した際に生じる磁束とが互いに逆向きとなり、互いに打ち消し合うことになる。   By applying an alternating voltage to each conductor tube layer in this way, the currents flowing through the conductor layers 3a and 3b are opposite to each other, and the magnetic flux generated when one conductor tube layer 3a is energized and the other conductor The magnetic fluxes generated when the tube layer 3b is energized are opposite to each other and cancel each other.

図5に示す流体加熱部3は、上述した図2の流体加熱部3に対して、2つの分割要素である導電体層3a、3bの構成は同じであるが、各導電体層3a、3bの巻き方向の向き、接続方法及び交流電圧の印加方法が異なる。   The fluid heating unit 3 shown in FIG. 5 has the same configuration of the conductor layers 3a and 3b, which are two divided elements, as compared to the fluid heating unit 3 in FIG. 2 described above, but each of the conductor layers 3a and 3b. The direction of the winding direction, the connection method, and the application method of the AC voltage are different.

つまり、2個の導体管層3a、3bが、それぞれの巻き方向が互いに同一方向となるように同心円状に2層に配置されるとともに、交流電源4に対して、電気的に直列となるように接続されている。具体的には、図5に示すように、各導体管層3a、3bの他端側を導電部材5により接続して短絡させることにより、一方の導体管層3aの他端部と、他方の導体管層3bの他端部とを電気的に接続するように構成している。なお、導体管層が4以上の偶数個の場合には、互いに隣接する導体管層の一端側同士又は他端側同士を電気的に接続することによって直列接続する。   That is, the two conductor tube layers 3a and 3b are arranged in two layers concentrically so that the respective winding directions are the same direction, and are electrically in series with the AC power source 4. It is connected to the. Specifically, as shown in FIG. 5, the other end side of each conductor tube layer 3a, 3b is connected and short-circuited by the conductive member 5, whereby the other end portion of one conductor tube layer 3a and the other The other end of the conductor tube layer 3b is electrically connected. When the number of conductor tube layers is an even number of 4 or more, one end sides or the other end sides of the adjacent conductor tube layers are electrically connected in series.

そして、この流体加熱部3において、直列接続された2個の導体管層3a、3bの一端側、つまり一方の導体管層3aの一端側に、交流電圧の正負2つの極性のうち一方の極性の電圧(図5ではプラス電圧)が印加され、直列接続された2個の導体管層3a、3bの他端側、つまり他方の導体管層3bの一端側に、交流電圧の正負2つの極性のうち他方の極性の電圧(図5ではマイナス電圧)が印加される。   In the fluid heating unit 3, one of the two positive and negative polarities of the AC voltage is applied to one end of the two conductor tube layers 3a and 3b connected in series, that is, one end of the one conductor tube layer 3a. (Plus voltage in FIG. 5) is applied, and two polarities of the AC voltage are applied to the other end side of the two conductor tube layers 3a and 3b connected in series, that is, one end side of the other conductor tube layer 3b. The voltage of the other polarity (minus voltage in FIG. 5) is applied.

つまり、一方の導体管層3aを構成する導体管2の一端側の流体出入口2Pxを構成する一端部又はその近傍に、交流電源からの交流電圧の一方の極性の電圧を印加するための接続端子(不図示)が接続され、他方の導体管層3bを構成する導体管2の一端側の流体出入口2Pxを構成する一端部又はその近傍に、交流電源からの交流電圧の他方の極性の電圧を印加するための接続端子(不図示)が接続される。   That is, a connection terminal for applying a voltage of one polarity of the AC voltage from the AC power source to one end of the fluid inlet / outlet 2Px on one end side of the conductor tube 2 constituting one conductor tube layer 3a or the vicinity thereof. (Not shown) is connected, and the voltage of the other polarity of the AC voltage from the AC power source is applied to one end of the fluid inlet / outlet port 2Px on one end side of the conductor tube 2 constituting the other conductor tube layer 3b or in the vicinity thereof. A connection terminal (not shown) for applying is connected.

このように各導体管層3a、3bに交流電圧を印加することによって、各導電体層3a、3bに流れる電流が互いに逆向きとなり、一方の導体管層を通電した際に生じる磁束と、他方の導体管層を通電した際に生じる磁束とが互いに逆向きとなり、互いに打ち消し合うことになる。   Thus, by applying an alternating voltage to each conductor pipe layer 3a, 3b, the electric current which flows into each conductor layer 3a, 3b becomes a mutually reverse direction, the magnetic flux which arises when one conductor pipe layer is energized, and the other The magnetic fluxes generated when the conductive tube layers are energized are opposite to each other and cancel each other.

次にこのように構成した流体加熱装置100の力率改善を示す試験について説明する。なお、以下の試験においては、比較傾向を顕著に表すために、周波数800Hzの単相交流電源を用いたが、実際の流体加熱装置では、商用周波数の50Hz又は60Hzの単相交流電源を用いることが考えられ、以下に示す力率よりも高くなる。   Next, the test which shows the power factor improvement of the fluid heating apparatus 100 comprised in this way is demonstrated. In the following tests, a single-phase AC power source with a frequency of 800 Hz was used to express the comparative tendency prominently. However, in an actual fluid heating device, a single-phase AC power source with a commercial frequency of 50 Hz or 60 Hz should be used. Can be considered, and is higher than the power factor shown below.

図6には、断面積8.042mm、直径3.2mmの銅線を螺旋状に60回巻いて構成したコイル要素に単相交流電圧を印加した場合(試験No.1、図6(1))と、前記銅線を螺旋状に30回巻いて構成したコイル要素を軸方向に2つ配置するとともに、一方のコイル要素の他端側及び他方のコイル要素の一端側に単相交流電圧の正負2つの極性のうち一方の極性を印加し、一方のコイル要素の一端側及び他方のコイル要素の他端側に単相交流電圧の正負2つの極性のうち他方の極性を印加した場合(試験No.2、図6(2))との回路構成を示す。 6 shows a case where a single-phase AC voltage is applied to a coil element formed by winding a copper wire having a cross-sectional area of 8.042 mm 2 and a diameter of 3.2 mm in a spiral manner 60 times (test No. 1 and FIG. )) And two coil elements formed by spirally winding the copper wire in the axial direction, and a single-phase AC voltage on the other end side of one coil element and one end side of the other coil element. When applying one of the two positive and negative polarities and applying the other of the two positive and negative polarities of the single-phase AC voltage to one end of one coil element and the other end of the other coil element ( A circuit configuration with test No. 2 and FIG.

このとき、図6の下表に示すように、試験No.1の場合には、力率が0.039であったのに対して、試験No.2の場合には、試験No.1と同等容量において、力率が0.048であった。このように、図6(2)の場合には、各導体管層に生じる磁束が打ち消し合うことから電圧降下が抑制されて力率が改善したと考えられる。   At this time, as shown in the lower table of FIG. In the case of 1, the power factor was 0.039, whereas the test No. In the case of 2, test no. At the same capacity as 1, the power factor was 0.048. In this way, in the case of FIG. 6B, it is considered that the power factor is improved by suppressing the voltage drop because the magnetic fluxes generated in the respective conductor tube layers cancel each other.

次に、図7には、断面積8.042mm、直径3.2mmの銅線を螺旋状に巻き方向が同一方向となるように一端側から他端側に60巻きしてコイル層を形成し、他端側から一端側に60巻きしてコイル層を形成した2層のコイル要素の両端に単相交流電圧を印加した場合(試験No.1、図7(1))と、前記コイル要素の一端側に単相交流電圧の正負2つの極性のうち一方の極性を印加し、前記コイル要素の他端側に単相交流電圧の正負2つの極性のうち他方の極性を印加した場合(試験No.2、図7(2))との回路構成を示す。 Next, in FIG. 7, a coil layer is formed by winding 60 turns of a copper wire having a cross-sectional area of 8.042 mm 2 and a diameter of 3.2 mm spirally from one end side to the other end side so that the winding direction is the same direction. When a single-phase AC voltage is applied to both ends of a two-layered coil element formed by winding 60 from one end side to the other end side to form a coil layer (Test No. 1, FIG. 7 (1)), the coil When one polarity of two positive and negative polarities of the single-phase AC voltage is applied to one end of the element, and the other polarity of two positive and negative polarities of the single-phase AC voltage is applied to the other end of the coil element ( A circuit configuration with test No. 2 and FIG.

このとき、図7の下表に示すように、試験No.1の場合には、力率が0.026であったのに対して、試験No.2の場合には、試験No.1と同等容量において、力率が0.225であった。このように、図7(2)の場合には、各導体管層に生じる磁束が打ち消し合うことから電圧降下が抑制されて力率が改善したと考えられる。なお、商用周波数60Hzの単相交流電源としたときの力率は、試験No.1の場合は、0.324であり、試験No.1の場合は、0.951である。   At this time, as shown in the lower table of FIG. In the case of 1, the power factor was 0.026, whereas the test No. In the case of 2, test no. At a capacity equivalent to 1, the power factor was 0.225. In this way, in the case of FIG. 7B, it is considered that the power factor is improved by suppressing the voltage drop because the magnetic fluxes generated in the respective conductor tube layers cancel each other. The power factor when a single-phase AC power source with a commercial frequency of 60 Hz is used is the test number. In the case of No. 1, it is 0.324. In the case of 1, it is 0.951.

次に、図8には、断面積8.042mm、直径3.2mmの銅線を螺旋状に巻き方向が同一方向となるように一端側から他端側に60巻きしてコイル層を形成し、他端側から一端側に60巻きしてコイル層を形成した2層のコイル要素において、コイル要素の一端及び他端の中央位置に単相交流電圧の正負2つの極性のうち一方の極性を印加し、コイル要素の一端側及び他端側に単相交流電圧の正負2つの極性のうち他方の極性を印加した場合の回路構成を示す。 Next, in FIG. 8, a coil layer is formed by winding 60 turns of a copper wire having a cross-sectional area of 8.042 mm 2 and a diameter of 3.2 mm spirally from one end to the other so that the winding direction is the same direction. In the two-layer coil element in which the coil layer is formed by winding 60 from the other end side to the one end side, one polarity of the positive and negative two polarities of the single-phase AC voltage at the center position of one end and the other end of the coil element Is shown, and the other one of the positive and negative polarities of the single-phase AC voltage is applied to one end and the other end of the coil element.

このとき、図8の下表に示すように、図7(2)に示す試験No.2と同等容量において、力率が0.248であった。このように、図8の場合には、図7(2)に示す場合に比べて力率が改善している。なお、商用周波数60Hzの単相交流電源としたときの力率は、0.960である。   At this time, as shown in the lower table of FIG. At a capacity equivalent to 2, the power factor was 0.248. Thus, in the case of FIG. 8, the power factor is improved as compared with the case shown in FIG. The power factor when a single-phase AC power source with a commercial frequency of 60 Hz is 0.960.

このように構成した本実施形態に係る流体加熱装置100によれば、流体加熱部のインピーダンス値を偶数に略等分して形成される複数の分割要素3a、3bそれぞれに流れる電流が互いに逆向きとされて、全体として打ち消し合うように構成されているので、導体管2が有するインダクタンスによる電圧降下を抑制して力率を改善することができる。したがって、流体加熱装置100の設備効率を向上させることができる。   According to the fluid heating apparatus 100 according to the present embodiment configured as described above, the currents flowing in the plurality of divided elements 3a and 3b formed by dividing the impedance value of the fluid heating unit substantially evenly into directions are opposite to each other. Therefore, the power factor can be improved by suppressing the voltage drop due to the inductance of the conductor tube 2. Therefore, the equipment efficiency of the fluid heating apparatus 100 can be improved.

<その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。
<Other modified embodiments>
The present invention is not limited to the above embodiment.

例えば、前記実施形態では、分割要素が導体管を螺旋状に巻回して構成されたものであったが、流体加熱部が直管状をなす導体管からなり、分割要素が直管状をなすものであっても良い。この場合、2つの流体出入口2Pは導体管2の軸方向端部にそれぞれ位置する。   For example, in the above-described embodiment, the dividing element is configured by winding a conductor tube in a spiral shape. However, the fluid heating unit includes a conductor tube having a straight tube shape, and the dividing element has a straight tube shape. There may be. In this case, the two fluid inlets / outlets 2P are located at the axial ends of the conductor tube 2, respectively.

このように直管状に形成した分割要素からなる流体加熱部を有する流体加熱装置の力率改善を示す試験を図9に示す。   FIG. 9 shows a test showing the power factor improvement of the fluid heating apparatus having the fluid heating unit composed of the divided elements formed in the straight tube shape as described above.

図9には、直径34mm、管長さ2200mm、管の肉厚1.65mmのステンレス管の両端部に単相交流電圧を印加した場合(試験No.1、図9(1))と、前記ステンレス管を2等分して、ステンレス管の両端部に単相交流電圧の正負2つの極性のうち一方の極性を印加し、ステンレス管の中間位置(2つの分割要素の境界位置)に単相交流電圧の正負2つの極性のうち他方の極性を印加した場合(試験No.2、図9(2))との回路構成を示す。   9 shows a case where a single-phase AC voltage is applied to both ends of a stainless steel tube having a diameter of 34 mm, a tube length of 2200 mm, and a tube thickness of 1.65 mm (test No. 1, FIG. 9 (1)), and the stainless steel Divide the tube into two equal parts, apply one of the two positive and negative polarities of the single-phase AC voltage to both ends of the stainless steel tube, and single-phase AC at the intermediate position of the stainless steel tube (the boundary between the two split elements) The circuit configuration when the other polarity of two positive and negative voltages is applied (test No. 2, FIG. 9 (2)) is shown.

このとき、図9の下表に示すように、試験No.1の場合には、力率が0.1715あったのに対して、試験No.2の場合には、試験No.1と同等容量において、力率が0.1985であった。このように、図9(2)の場合には、2つの分割要素に生じる磁束が打ち消し合うことから電圧降下が抑制されて力率が改善したと考えられる。   At this time, as shown in the lower table of FIG. In the case of 1, the power factor was 0.1715, whereas the test No. In the case of 2, test no. At the same capacity as 1, the power factor was 0.1985. Thus, in the case of FIG. 9 (2), it is considered that the power factor is improved by suppressing the voltage drop because the magnetic fluxes generated in the two split elements cancel each other.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

100・・・流体加熱装置
2・・・導体管
3・・・流体加熱部
3a、3b・・・分割要素(導体管層)
DESCRIPTION OF SYMBOLS 100 ... Fluid heating apparatus 2 ... Conductor tube 3 ... Fluid heating part 3a, 3b ... Dividing element (conductor tube layer)

Claims (9)

内部に流体が流れる導体管に交流電圧を印加して通電加熱し、前記導体管内を流れる流体を加熱する流体加熱装置であって、
1つの導体管又は電気的に互いに接続された複数の導体管からなる流体加熱部を備えており、前記流体加熱部のインピーダンス値を偶数等分して形成される偶数個の分割要素の両端部に交流電源からの交流電圧を印加するとともに、
前記分割要素に流れる電流が互いに逆向きとされて、偶数個の分割要素それぞれに生じる磁束が全体として打ち消し合うように構成されている流体加熱装置。
A fluid heating device that heats an electric current by applying an AC voltage to a conductor tube in which a fluid flows, and heats the fluid flowing in the conductor tube,
Both ends of an even number of divided elements, each having a fluid heating portion comprising a single conductor tube or a plurality of conductor tubes electrically connected to each other, and formed by equally dividing the impedance value of the fluid heating portion While applying the AC voltage from the AC power source to
A fluid heating apparatus configured such that currents flowing through the dividing elements are opposite to each other, and magnetic fluxes generated in the even number of dividing elements cancel each other as a whole.
前記導体管が螺旋状に巻回されている請求項1記載の流体加熱装置。   The fluid heating apparatus according to claim 1, wherein the conductor tube is wound spirally. 前記偶数個の分割要素が、前記導体管を螺旋状に巻回して構成された偶数の導体管層であり、
前記複数の導体管層それぞれのインピーダンス値が互いに略等しくなるように構成されており、
前記偶数の導体管層が、互いに隣接する導体管層の巻き方向が互いに逆方向となるように同心円状に配置されており、
前記各導体管層の一端側に、交流電圧の正負2つの極性のうち一方の極性の電圧が印加され、前記各導体管層の他端側に、交流電圧の正負2つの極性のうち他方の極性の電圧が印加される請求項1又は2記載の流体加熱装置。
The even-numbered dividing element is an even-numbered conductor tube layer formed by spirally winding the conductor tube;
The impedance values of each of the plurality of conductor tube layers are configured to be substantially equal to each other,
The even-numbered conductor tube layers are arranged concentrically so that the winding directions of the conductor tube layers adjacent to each other are opposite to each other,
One of the two positive and negative polarities of the AC voltage is applied to one end of each conductor tube layer, and the other of the two positive and negative polarities of the AC voltage is applied to the other end of each of the conductor tube layers. The fluid heating apparatus according to claim 1, wherein a polarity voltage is applied.
前記偶数個の分割要素が、前記導体管を螺旋状に巻回して構成された偶数の導体管層であり、
前記複数の導体管層それぞれのインピーダンス値が互いに略等しくなるように構成されており、
前記偶数の導体管層が、互いに隣接する導体管層の巻き方向が同一方向となるように同心円状に配置されており、
互いに隣接する導体管層のうち一方の導体管層の一端側に、交流電圧の正負2つの極性のうち一方の極性の電圧が印加されるとともに、当該一方の導体管層の他端側に、交流電圧の正負2つの極性のうち他方の極性の電圧が印加され、
前記互いに隣接する導体管層のうち他方の導体管層の他端側に、交流電圧の正負2つの極性のうち一方の極性の電圧が印加されるとともに、当該他方の導体管層の一端側に、交流電圧の正負2つの極性のうち他方の極性の電圧が印加される請求項1又は2記載の流体加熱装置。
The even-numbered dividing element is an even-numbered conductor tube layer formed by spirally winding the conductor tube;
The impedance values of each of the plurality of conductor tube layers are configured to be substantially equal to each other,
The even-numbered conductor tube layers are arranged concentrically so that the winding directions of the conductor tube layers adjacent to each other are the same direction,
A voltage of one of the two positive and negative polarities of the alternating voltage is applied to one end of one of the adjacent conductor tube layers, and the other end of the one conductor tube layer is The voltage of the other of the two positive and negative polarities of the AC voltage is applied,
A voltage of one of the two positive and negative polarities of the AC voltage is applied to the other end of the other conductor tube layer of the adjacent conductor tube layers, and one end of the other conductor tube layer The fluid heating device according to claim 1 or 2, wherein a voltage having the other polarity of the positive and negative AC voltages is applied.
前記偶数個の分割要素が、前記導体管を螺旋状に巻回して構成された偶数の導体管層であり、
前記複数の導体管層それぞれのインピーダンス値が互いに略等しくなるように構成されており、
前記偶数の導体管層が、互いに隣接する導体管層の巻き方向が同一方向となるように同心円状に連続して巻回されており、
前記各導体管層の一端側に、交流電圧の正負2つの極性のうち一方の極性の電圧が印加され、前記各導体管層の他端側に、交流電圧の正負2つの極性のうち他方の極性の電圧が印加される請求項1又は2記載の流体加熱装置。
The even-numbered dividing element is an even-numbered conductor tube layer formed by spirally winding the conductor tube;
The impedance values of each of the plurality of conductor tube layers are configured to be substantially equal to each other,
The even-numbered conductor tube layers are continuously wound concentrically so that the winding directions of adjacent conductor tube layers are the same direction,
One of the two positive and negative polarities of the AC voltage is applied to one end of each conductor tube layer, and the other of the two positive and negative polarities of the AC voltage is applied to the other end of each of the conductor tube layers. The fluid heating apparatus according to claim 1, wherein a polarity voltage is applied.
内部に流体が流れる導体管に交流電圧を印加して通電加熱し、前記導体管内を流れる流体を加熱する流体加熱装置であって、
1つの導体管又は電気的に互いに接続された複数の導体管からなる流体加熱部を備えており、前記流体加熱部のインピーダンス値を偶数等分して形成される偶数個の分割要素を、当該分割要素に流れる電流が互いに逆向きとなり、偶数個の分割要素それぞれに生じる磁束が全体として打ち消し合うように構成されている流体加熱装置。
A fluid heating device that heats an electric current by applying an AC voltage to a conductor tube in which a fluid flows, and heats the fluid flowing in the conductor tube,
A fluid heating unit comprising a single conductor tube or a plurality of conductor tubes electrically connected to each other, and an even number of divided elements formed by evenly dividing the impedance value of the fluid heating unit; A fluid heating apparatus configured such that currents flowing through the dividing elements are opposite to each other, and magnetic fluxes generated in each of the even number of dividing elements cancel each other as a whole.
前記偶数個の分割要素が、前記導体管を螺旋状に巻回して構成された偶数の導体管層であり、
前記複数の導体管層それぞれのインピーダンス値が互いに略等しくなるように構成されており、
前記偶数の導体管層が、互いに隣接する導体管層の巻き方向が同一方向となるように同心円状に配置されており、
前記偶数の導体管層を電気的に直列となるように接続するとともに、直列接続された偶数の導体管層の一端側に、交流電圧の正負2つの極性のうち一方の極性の電圧が印加され、直列接続された偶数の導体管層の他端側に、交流電圧の正負2つの極性のうち他方の極性の電圧が印加される請求項6記載の流体加熱装置。
The even-numbered dividing element is an even-numbered conductor tube layer formed by spirally winding the conductor tube;
The impedance values of each of the plurality of conductor tube layers are configured to be substantially equal to each other,
The even-numbered conductor tube layers are arranged concentrically so that the winding directions of the conductor tube layers adjacent to each other are the same direction,
The even-numbered conductor tube layers are connected in series so that one end of the even-numbered conductor tube layers connected in series is applied with a voltage having one of two positive and negative polarities of the AC voltage. The fluid heating device according to claim 6, wherein a voltage of the other of the two positive and negative polarities of the AC voltage is applied to the other end of the even-numbered conductor tube layers connected in series.
螺旋状に巻回された導体管層の巻芯中空部及び導体管層の外側の少なくとも一方に磁気回路用磁性体が設けられている請求項1乃至7の何れかに記載の流体加熱装置。   The fluid heating device according to any one of claims 1 to 7, wherein a magnetic body for a magnetic circuit is provided on at least one of a hollow core portion of the conductor tube layer wound spirally and an outer side of the conductor tube layer. 前記導体管が直管状をなすものである請求項1又は6記載の流体加熱装置。   The fluid heating apparatus according to claim 1, wherein the conductor tube has a straight tubular shape.
JP2012025811A 2012-02-09 2012-02-09 Fluid heating device Expired - Fee Related JP5947048B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012025811A JP5947048B2 (en) 2012-02-09 2012-02-09 Fluid heating device
CN2013200676388U CN203258845U (en) 2012-02-09 2013-02-05 Fluid heating device
CN201310047091.XA CN103245048B (en) 2012-02-09 2013-02-05 Fluid heater
CN201710537776.0A CN107255362B (en) 2012-02-09 2013-02-05 Fluid heating device
KR1020130013947A KR102000299B1 (en) 2012-02-09 2013-02-07 Fluid heating apparatus
TW102104817A TWI608204B (en) 2012-02-09 2013-02-07 Fluid heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012025811A JP5947048B2 (en) 2012-02-09 2012-02-09 Fluid heating device

Publications (2)

Publication Number Publication Date
JP2013160492A true JP2013160492A (en) 2013-08-19
JP5947048B2 JP5947048B2 (en) 2016-07-06

Family

ID=49172881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012025811A Expired - Fee Related JP5947048B2 (en) 2012-02-09 2012-02-09 Fluid heating device

Country Status (1)

Country Link
JP (1) JP5947048B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016018179A1 (en) * 2014-08-01 2016-02-04 Геннадий Яковлевич ВАЙГАНДТ Electric heater (variants)
JP2017191680A (en) * 2016-04-12 2017-10-19 トクデン株式会社 Fluid heating device
JP2018051848A (en) * 2016-09-27 2018-04-05 トクデン株式会社 Heat medium flowing roller apparatus
FR3092463A1 (en) * 2019-02-04 2020-08-07 Valeo Systemes Thermiques Heating body for electric heating device and liquid circulation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148843A (en) * 1975-05-12 1976-12-21 Tuomo Halonen Oy Fluid heater
JPS57144840A (en) * 1981-03-04 1982-09-07 Chisso Eng Kk Direct energization fluid heating pipe device
JPS58201281A (en) * 1982-05-18 1983-11-24 日本鋼管株式会社 Method of electrically heating pipeline
JPH10255957A (en) * 1997-03-14 1998-09-25 Matsushita Electric Works Ltd Thermosensitive heating wire and wide area heating device using it
JP2002323260A (en) * 2001-04-25 2002-11-08 Fuji Electric Co Ltd Instantaneous water-heating equipment
JP2007080715A (en) * 2005-09-15 2007-03-29 Omron Corp Electromagnetic induction fluid heating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148843A (en) * 1975-05-12 1976-12-21 Tuomo Halonen Oy Fluid heater
JPS57144840A (en) * 1981-03-04 1982-09-07 Chisso Eng Kk Direct energization fluid heating pipe device
JPS58201281A (en) * 1982-05-18 1983-11-24 日本鋼管株式会社 Method of electrically heating pipeline
JPH10255957A (en) * 1997-03-14 1998-09-25 Matsushita Electric Works Ltd Thermosensitive heating wire and wide area heating device using it
JP2002323260A (en) * 2001-04-25 2002-11-08 Fuji Electric Co Ltd Instantaneous water-heating equipment
JP2007080715A (en) * 2005-09-15 2007-03-29 Omron Corp Electromagnetic induction fluid heating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016018179A1 (en) * 2014-08-01 2016-02-04 Геннадий Яковлевич ВАЙГАНДТ Electric heater (variants)
EA035917B1 (en) * 2014-08-01 2020-08-31 Геннадий Яковлевич ВАЙГАНДТ Electric heater (embodiments)
JP2017191680A (en) * 2016-04-12 2017-10-19 トクデン株式会社 Fluid heating device
JP2018051848A (en) * 2016-09-27 2018-04-05 トクデン株式会社 Heat medium flowing roller apparatus
FR3092463A1 (en) * 2019-02-04 2020-08-07 Valeo Systemes Thermiques Heating body for electric heating device and liquid circulation
WO2020161416A1 (en) * 2019-02-04 2020-08-13 Valeo Systemes Thermiques Heating body for a device for electrically heating and circulating a liquid

Also Published As

Publication number Publication date
JP5947048B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
KR102000299B1 (en) Fluid heating apparatus
JP4752879B2 (en) Planar coil
JP5947048B2 (en) Fluid heating device
JP2016122830A (en) Filter assembly and method
JP2010071624A (en) Fluid heating device
TWI822843B (en) Superheated steam generator
JP5317284B2 (en) Fluid heating device
JP2011187600A (en) Electromagnetic coil device and transformer
JP6162473B2 (en) Fluid heating device
JP2022096731A (en) Induction heating type heat treatment apparatus for winding iron core and heat treatment method therefor
JP2014072197A (en) Low-voltage coil for instrument transformer, instrument transformer and winding method of low-voltage coil for instrument transformer
KR102195785B1 (en) Power circuit, iron core for scott connected transformer, scott connected transformer and superheated steam generator
JP2018527703A (en) Inductors and inductor assemblies
JP6043608B2 (en) Fluid heating device
JP7256539B2 (en) Superheated steam generator
TWI608204B (en) Fluid heating apparatus
JP7079970B2 (en) Transformer for high frequency induction heating device
ES2862550T3 (en) Electromagnetic induction device
JP2016065706A (en) Fluid heating device
JP6077356B2 (en) Electric heating device
US822332A (en) Induction-coil.
JP2014049681A (en) Transformer
JP6746136B2 (en) Fluid heating device
JP2014086240A (en) Induction heating coil, method of manufacturing the same, and induction heating cooker using the induction heating coil
CN108369851B (en) Device for electrically connecting at least four electrical conductors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160602

R150 Certificate of patent or registration of utility model

Ref document number: 5947048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees