JP2022020815A - Method for measuring copper thickness of non-contact type upper/lower layer applied to pcb multilayer board - Google Patents

Method for measuring copper thickness of non-contact type upper/lower layer applied to pcb multilayer board Download PDF

Info

Publication number
JP2022020815A
JP2022020815A JP2021187482A JP2021187482A JP2022020815A JP 2022020815 A JP2022020815 A JP 2022020815A JP 2021187482 A JP2021187482 A JP 2021187482A JP 2021187482 A JP2021187482 A JP 2021187482A JP 2022020815 A JP2022020815 A JP 2022020815A
Authority
JP
Japan
Prior art keywords
detection unit
pcb multilayer
lower layer
multilayer plate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021187482A
Other languages
Japanese (ja)
Other versions
JP7304589B2 (en
Inventor
建璋 陳
Jian Zhang Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Formosa University
Original Assignee
National Formosa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Formosa University filed Critical National Formosa University
Publication of JP2022020815A publication Critical patent/JP2022020815A/en
Application granted granted Critical
Publication of JP7304589B2 publication Critical patent/JP7304589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring the copper thicknesses of non-contact type upper/lower layers applied to the PCB multilayer board.
SOLUTION: A method for measuring the copper thicknesses of non-contact type upper/lower layers applied to the PCB multilayer board comprises steps of: preparing a first detection unit provided on the upper layer of the PCB multilayer board and a second detection unit provided on the lower layer thereof; generating induced electromotive forces or electric fields toward the surfaces of the upper and lower layers by the first and second detection units to form eddy currents or reflection signals by the impedances of the metal surfaces of the upper and lower layers; measuring the eddy currents or the reflection signals by the first and second detection units to acquire first and second impedance values; generating counter electromotive forces or re-reflection signals reflected by the eddy currents or reflection signals of the upper and lower layers to measure the counter electromotive forces or the re-reflection signals by the first and second detection units and acquire third and fourth impedance values; and calculating the thicknesses using the first, second, third and fourth impedance values in a processing unit to acquire the first thickness of the upper layer and the second thickness of the lower layer.
SELECTED DRAWING: Figure 2
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、測量方法に関し、特に、PCB多層板に応用した非接触式上下層銅厚の測量方法に関する。 The present invention relates to a surveying method, and more particularly to a non-contact type upper and lower layer copper thickness surveying method applied to a PCB multilayer plate.

半導体プロセス技術が絶え間なく発展するとともに、金属コーティングプロセスとエッチング又は研磨プロセスの組合せは、集積回路の接続導通を作製することに多く使われていて、既に先進プロセスの重要技術になっている。 With the constant development of semiconductor process technology, the combination of metal coating process and etching or polishing process is often used to create connection conduction of integrated circuits and has already become an important technology of advanced processes.

従来の薄膜測量機器による金属薄膜の厚さの測量の多くは、接触式の測量技術を主とする。しかし、金属薄膜は、光透過性を有していないので、破壊性、接触式の四点プローブ測量方法を用いて塗膜の厚さを測量することが多く、且つ、接触式の測量方式は、金属薄膜に触るので薄膜本体に損傷を与える。したがって、従来の測量技術は、通常まず見本の一部を取って、静的な方式で測量を行う。その上、従来の測量機器の精度は、単一の金属層の薄膜の厚さしか測量できず、多層薄膜構造に対して測量を行うことができない。 Most of the conventional thin film surveying instruments for measuring the thickness of metal thin films are mainly contact-type surveying techniques. However, since the metal thin film does not have light transmittance, the thickness of the coating film is often measured by using a destructive, contact-type four-point probe surveying method, and the contact-type surveying method is used. Since it touches the metal thin film, it damages the thin film body. Therefore, in the conventional surveying technique, a part of the sample is usually taken first and the survey is performed by a static method. Moreover, the accuracy of conventional surveying instruments can only measure the thickness of a single metal layer thin film, not a multi-layered thin film structure.

近年、塗膜の厚さに対して非接触式測量を行う方法は、ますます重視されている。従来の技術には、金属薄膜の特定領域に特定の熱量を与え、金属薄膜の温度変化からその厚さを推算する方法、金属薄膜にパルスエネルギーを与え、生じた音波振幅及び周波数から金属薄膜の厚さを推算する方法、金属薄膜にコイル磁界(magnetic field of Helmholtz coil)を与え、渦電流(eddy current)損
失量から金属薄膜の厚さを推算する方法がある。上述の測量方法は、金属薄膜の厚さを推算するために、完全な理論模型及び比較データベースを確立する必要がある。したがって、如何に多層薄膜構造について、より速やかに且つ正確に測量を行う方法を設計するかが本分野における、現在の重要な課題である。
In recent years, the method of performing non-contact surveying on the thickness of the coating film has been increasingly emphasized. Conventional techniques include a method of applying a specific amount of heat to a specific region of a metal thin film and estimating its thickness from a temperature change of the metal thin film, applying pulse energy to the metal thin film, and using the generated sonic amplitude and frequency to determine the thickness of the metal thin film. There is a method of estimating the thickness, a method of applying a coil magnetic field (magnetic field of Helmholtz coil) to the metal thin film, and a method of estimating the thickness of the metal thin film from the amount of eddy current loss. The above-mentioned surveying method requires the establishment of a complete theoretical model and comparative database in order to estimate the thickness of the metal thin film. Therefore, how to design a method for surveying a multilayer thin film structure more quickly and accurately is an important issue at present in this field.

これに鑑みて、本発明は、PCB多層板に応用した非接触式上下層銅厚の測量方法を提供することを目的とし、以下のステップを含む。 In view of this, the present invention aims to provide a non-contact type upper and lower layer copper thickness measuring method applied to a PCB multilayer plate, and includes the following steps.

まず、PCB多層板の上層に設けられた第一検出ユニット及び該PCB多層板の下層に設けられた第二検出ユニットを用意し、次に、該第一、第二検出ユニットはそれぞれ交番磁界を生じ、該PCB多層板の上、下層表面に誘導起電力を生じ、渦電流を形成し、該第一検出ユニットは該渦電流を測量することにより、該上層の第一インピーダンス値を取得し、該第二検出ユニットは該渦電流を測量することにより、該下層の第二インピーダンス値を取得する。同様の動作を繰り返し、上層の第三インピーダンス値と、下層の第四インピーダンス値を取得する。処理ユニットは該第一、第二検出ユニットと電気的に接続され、該第一検出ユニットが取得した第一インピーダンス値と第三インピーダンス値との差分を用いてPCB多層板の上層の第一の厚さを計算し、第二検出ユニットが取得した第二インピーダンス値と第四インピーダンス値との差分を用いてPCB多層板の下層の第二の厚さを取得する。 First, a first detection unit provided on the upper layer of the PCB multilayer plate and a second detection unit provided on the lower layer of the PCB multilayer plate are prepared, and then the first and second detection units generate alternating magnetic fields, respectively. Generated, an induced electromotive force is generated on the surface of the upper and lower layers of the PCB multilayer plate to form an eddy current, and the first detection unit obtains the first impedance value of the upper layer by measuring the eddy current. The second detection unit acquires the second impedance value of the lower layer by measuring the eddy current. The same operation is repeated to acquire the third impedance value of the upper layer and the fourth impedance value of the lower layer. The processing unit is electrically connected to the first and second detection units, and the difference between the first impedance value and the third impedance value acquired by the first detection unit is used to make the first of the upper layers of the PCB multilayer board. The thickness is calculated, and the difference between the second impedance value and the fourth impedance value acquired by the second detection unit is used to acquire the second thickness of the lower layer of the PCB multilayer plate.

本発明の別の技術手段において、該第一の厚さの計算とは該上層の第一、第三インピーダンス値の差分を該第一、第二検出ユニットの該上層、下層表面に向けて誘導起電力又は電界を生じる作用面積で除することであり、該第二の厚さの計算とは該下層の第二、第四インピーダンス値の差分を該第一、第二検出ユニットの該上層、下層表面に向けて誘導起電力又は電界を生じる作用面積で除することである。 In another technical means of the present invention, the calculation of the first thickness is to guide the difference between the first and third impedance values of the upper layer toward the surface of the upper layer and the lower layer of the first and second detection units. Dividing the electromotive force or electric field by the area of action that produces it, the calculation of the second thickness is the difference between the second and fourth impedance values of the lower layer, the upper layer of the first and second detection units. Dividing by the area of action that produces an induced electromotive force or electric field towards the lower surface.

本発明のもう1つの技術手段において、上記第一検出ユニット及び第二検出ユニットのビーム幅(Beam Width)はXであり、上記第一検出ユニットと該PCB多層板の上層との間隔をd1とし、上記第二検出ユニットと該PCB多層板の下層との間隔をd2とし、電界が該PCB多層板の上層における作用面積A1は、((tan(X/2)×d1)×2)であり、電界が該PCB多層板の下層における作用面積A2は、((tan(X/2)×d2)×2)である。 In another technical means of the present invention, the beam width (Beam Wide) of the first detection unit and the second detection unit is X, and the distance between the first detection unit and the upper layer of the PCB multilayer plate is d1. The distance between the second detection unit and the lower layer of the PCB multilayer plate is d2, and the working area A1 in the upper layer of the PCB multilayer plate is ((tan (X / 2) × d1) × 2) 2 . The working area A2 in the lower layer of the PCB multilayer plate is ((tan (X / 2) × d2) × 2) 2 .

本発明のさらにもう1つの技術手段において、上述の第一、第二検出ユニットのビーム幅Xは61度である。 In yet another technical means of the present invention, the beam width X of the first and second detection units described above is 61 degrees.

本発明の別の技術手段において、上述の第一、第二検出ユニットと該PCB多層板の上、下層との間隔は0.1mm~10mmである。 In another technical means of the present invention, the distance between the above-mentioned first and second detection units and the upper and lower layers of the PCB multilayer plate is 0.1 mm to 10 mm.

本発明のもう1つの技術手段において、上述の第一、第二検出ユニットは該上層、下層の金属層の厚さに対して非接触式測量を行うために用いられたマイクロストリップアンテナであり、第一面及び反対になる第二面を有した基板、該基板の第二面に設けられた金属グラウンド層、該基板の第一面に設けられた輻射体、該基板の第一面に設けられたマイクロストリップライン、及び、送込み部を含み、該輻射体は第一輻射部、第二輻射部、第三輻射部及び第四輻射部を有し、該マイクロストリップラインは第一隔壁及び該第一隔壁と垂直に交わって接続した第二隔壁を有し、該送込み部は該金属グラウンド層に接続された接続端、及び該第一面に位置して且つ該接続端及び該マイクロストリップラインに接続された送込み端を有する。 In another technical means of the present invention, the first and second detection units described above are microstrip antennas used to perform non-contact surveys on the thickness of the upper and lower metal layers. A substrate having a first surface and an opposite second surface, a metal ground layer provided on the second surface of the substrate, a radiator provided on the first surface of the substrate, and provided on the first surface of the substrate. The microstrip line and the feeding part are included, and the radiator has a first radiation part, a second radiation part, a third radiation part and a fourth radiation part, and the microstrip line has a first partition and a fourth radiation part. It has a second partition perpendicularly intersecting and connected to the first partition, the feeding portion is a connection end connected to the metal ground layer, and is located on the first surface and the connection end and the micro. It has a feed end connected to a stripline.

本発明のさらにもう1つの技術手段において、上述の基板はさらに第一辺、該第一辺と対向して設けられた第二辺、該第一辺と第二辺との間に位置した第三辺、及び該第三辺と対向して設けられた第四辺を有し、該マイクロストリップラインの第一隔壁は第一短辺及び対向した第二短辺を有し、該第二隔壁は第三短辺及び対向した第四短辺を有し、該第一短辺は該第一辺に接続しないが、該第二短辺は該第二辺に接続され、該第一、第二隔壁は四つの輻射区を規定し、該第一、第二、第三、第四輻射部は別々に該四つの輻射区に設けられる。 In yet another technical means of the present invention, the above-mentioned substrate is further located on the first side, the second side provided facing the first side, and the second side located between the first side and the second side. It has three sides and a fourth side provided facing the third side, and the first partition wall of the microstrip line has a first short side and a second short side facing the third side, and the second partition wall. Has a third short side and an opposite fourth short side, the first short side does not connect to the first side, but the second short side is connected to the second side and the first, first The two partition walls define four radiation zones, and the first, second, third, and fourth radiation sections are separately provided in the four radiation zones.

本発明の別の技術手段において、上述の第一、第三輻射部の片側及び該第二隔壁の第三短辺から該第三辺までの距離は同じであり、該第二、第四輻射部の片側及び該第二隔壁の第四短辺から該第四辺までの距離は同じであり、該第一隔壁の第一短辺から該第一辺までの距離は該第一、第二輻射部の片側から該第一辺までの距離より大きい。 In another technical means of the present invention, the distance from one side of the above-mentioned first and third radiation portions and the third short side of the second partition wall to the third side is the same, and the second and fourth radiations are the same. The distance from one side of the portion and the fourth short side of the second partition wall to the fourth side is the same, and the distance from the first short side of the first partition wall to the first side is the first and second. It is larger than the distance from one side of the radiating part to the first side.

本発明のもう1つの技術手段において、上述の第一、第三輻射部の片側及び該第三短辺から該第三辺までの距離と該第二、第四輻射部の片側及び該第四短辺から該第四辺までの距離は該第一、第二輻射部の片側から該第一辺までの距離と該第三、四輻射部の片側から該第二辺までの距離より大きい。 In another technical means of the present invention, the distance from one side of the first and third radiating portions and the third short side to the third side and one side of the second and fourth radiating portions and the fourth side are described. The distance from the short side to the fourth side is larger than the distance from one side of the first and second radiating portions to the first side and the distance from one side of the third and fourth radiating portions to the second side.

本発明のさらにもう1つの技術手段において、上述の第一、第二検出ユニットの放射周波数は1MHz~2.5GHzである。 In yet another technical means of the present invention, the radiation frequency of the first and second detection units described above is 1 MHz to 2.5 GHz.

本発明の別の技術手段において、上述のPCB多層板の層数は2層~16層である。 In another technical means of the present invention, the number of layers of the above-mentioned PCB multilayer board is 2 to 16 layers.

本発明のもう1つの技術手段において、上述のPCB多層板の上層、下層構造は金属層であり、且つ該上層は該第一の厚さを有し、該下層は該第二の厚さを有するとともに、順番に内部へ少なくとも一つの絶縁層と少なくとも一つの粘着層から該PCB多層板までの予定層数が積み上げられている。 In another technical means of the present invention, the upper layer and the lower layer structure of the above-mentioned PCB multilayer plate are a metal layer, and the upper layer has the first thickness, and the lower layer has the second thickness. At the same time, at least one insulating layer and at least one adhesive layer to the PCB multilayer board are sequentially stacked inside.

本発明の有利な効果は、該第一、第二検出ユニットが該PCB多層板の二つの表面の金属層の厚さに対して非接触式測量を行い、且つ該PCB多層板の層数は2層~16層であってよいことにより、いろいろな産業の要求を満足する。また、該マイクロストリップアンテナの特殊設計により、該第一、第二検出ユニットの該上層、下層表面に向けて誘導起電力を生じる作用面積に均一性を持たせて、該PCB多層板の上、下層銅厚を正確に測量して計算するという最終目標を達成する。 The advantageous effect of the present invention is that the first and second detection units perform non-contact surveying on the thickness of the metal layers on the two surfaces of the PCB multilayer board, and the number of layers of the PCB multilayer board is. By having 2 to 16 layers, the demands of various industries are satisfied. In addition, due to the special design of the microstrip antenna, the working area that generates the induced electromotive force toward the upper and lower layers of the first and second detection units is made uniform, and the top of the PCB multilayer plate. Achieve the ultimate goal of accurately measuring and calculating the thickness of the underlying copper.

本発明のPCB多層板に応用した非接触式上下層銅厚の測量方法の好ましい実施例を説明する模式図である。It is a schematic diagram explaining a preferable embodiment of the non-contact type upper and lower layer copper thickness measuring method applied to the PCB multilayer board of this invention. この好ましい実施例における流れを説明する工程図である。It is a process drawing explaining the flow in this preferable Example. この好ましい実施例におけるマイクロストリップアンテナの態様を説明する模式図である。It is a schematic diagram explaining the embodiment of the microstrip antenna in this preferred embodiment. 該マイクロストリップアンテナの別の視角態様を説明する模式図である。It is a schematic diagram explaining another viewing angle aspect of the microstrip antenna. 2D輻射パターン模擬図を示す模式図である。It is a schematic diagram which shows the 2D radiation pattern simulation diagram. 3D輻射パターン模擬図を示す模式図である。It is a schematic diagram which shows the 3D radiation pattern simulation diagram.

本発明の関連した請求特許の特徴と技術内容について、以下の図面を参照した好ましい実施例に詳しい且つ明確な説明を行う。 The features and technical contents of the claimed patents related to the present invention will be described in detail and clearly with reference to the following drawings.

図1、図2を参照して、本発明のPCB(Printed Circuit Board、印刷回路板)多層板に応用した非接触式上下層銅厚の測量方法の好ましい実施例は、以下のステップを含む。 With reference to FIGS. 1 and 2, a preferred embodiment of a non-contact upper and lower copper thickness measuring method applied to a PCB (Printed Circuit Board) multilayer board of the present invention includes the following steps.

まず、ステップ91を行い、PCB多層板1の上層11に設けられた第一検出ユニット2及び該PCB多層板1の下層12に設けられた第二検出ユニット3を用意する。本発明の測量方法の測量対象はいろいろな、表面コーティングの材料は金属であるPCB多層板1構造であってよい。 First, step 91 is performed to prepare a first detection unit 2 provided on the upper layer 11 of the PCB multilayer board 1 and a second detection unit 3 provided on the lower layer 12 of the PCB multilayer board 1. The surveying object of the surveying method of the present invention may be various, and the surface coating material may be a PCB multilayer board 1 structure made of metal.

ここで、該PCB多層板1の層数は2層~16層であり、該PCB多層板1の最上層11と最下層12との構造はいずれも金属層であり、その材料は銅、鉄などの導電性材料であってよく、さらに、該上層11は第一の厚さを有し、該下層12は第二の厚さを有し、順番に内部へ少なくとも一つの絶縁層13と少なくとも一つの粘着層14から該PCB多層板1までの予定層数が積み上げられている。 Here, the number of layers of the PCB multilayer plate 1 is 2 to 16 layers, and the structures of the uppermost layer 11 and the lowermost layer 12 of the PCB multilayer plate 1 are both metal layers, and the materials thereof are copper and iron. The upper layer 11 has a first thickness, the lower layer 12 has a second thickness, and in turn has at least one insulating layer 13 and at least one inward. The planned number of layers from one adhesive layer 14 to the PCB multilayer board 1 is stacked.

好ましくは、該第一、第二検出ユニット2、3と該PCB多層板1の上、下層11、12の間隔は0.1mm~10mmである。なお、該第一、第二検出ユニット2、3の放射周波数は1MHz~2.5GHzである。 Preferably, the distance between the first and second detection units 2 and 3 and the upper and lower layers 11 and 12 of the PCB multilayer plate 1 is 0.1 mm to 10 mm. The radiation frequencies of the first and second detection units 2 and 3 are 1 MHz to 2.5 GHz.

この好ましい実施例において、該第一、第二検出ユニット2、3はマイクロストリップアンテナ5であり、該PCB多層板1の最上層11と最下層12との金属層の厚さに対して非接触式測量を行うために用いられ、具体的には、該第一、第二検出ユニット2、3は該PCB多層板1の上層11と該下層12に近付くが触れないように別々に設けられる。 In this preferred embodiment, the first and second detection units 2 and 3 are microstrip antennas 5 and are non-contact with respect to the thickness of the metal layer between the top layer 11 and the bottom layer 12 of the PCB multilayer plate 1. It is used for performing a formula survey, and specifically, the first and second detection units 2 and 3 are separately provided so as to approach but not touch the upper layer 11 and the lower layer 12 of the PCB multilayer plate 1.

再度、図3、図4を参照する。該マイクロストリップアンテナ5は、第一面511及び反対になる第二面512を有する基板51、該基板51の第二面512に設けられた金属グラウンド層52、該基板51の第一面511に設けられた輻射体53、該基板51の第一面511に設けられたマイクロストリップライン54、及び、送込み部55を含む。 Refer to FIGS. 3 and 4 again. The microstrip antenna 5 is attached to a substrate 51 having a first surface 511 and an opposite second surface 512, a metal ground layer 52 provided on the second surface 512 of the substrate 51, and a first surface 511 of the substrate 51. It includes a radiator 53 provided, a microstrip line 54 provided on the first surface 511 of the substrate 51, and a feeding portion 55.

該基板51はDuroid高周波マイクロウェーブ回路板であり、さらに第一辺513、該第一辺513と対向して設けられた第二辺514、該第一、第二辺513、514の間に位置した第三辺515、及び該第三辺515と対向して設けられた第四辺516を有する。該金属グラウンド層52は印刷又はエッチングプロセスで該第二面512に形成されたり、打抜きと彫刻プロセスで該金属グラウンド層52を形成してから該第二面512に設けて全体のグラウンド面としたりすることができる。 The substrate 51 is a Duroid high-frequency microwave circuit board, and is further located between the first side 513, the second side 514 provided facing the first side 513, and the first and second sides 513, 514. It has a third side 515 and a fourth side 516 provided opposite to the third side 515. The metal ground layer 52 may be formed on the second surface 512 by a printing or etching process, or may be provided on the second surface 512 after the metal ground layer 52 is formed by a punching and engraving process to form an entire ground surface. can do.

該輻射体53はそれぞれほぼ立方体をし、第一輻射部531、第二輻射部532、第三輻射部533及び第四輻射部534を有し、該輻射体53は印刷又はエッチングプロセスで該第一面511に設けたり、打抜きと彫刻プロセスとで該輻射体53を形成してから該第一面511に設けたりする。 Each of the radiator 53 is substantially cubic and has a first radiation unit 531 and a second radiation unit 532, a third radiation unit 533 and a fourth radiation unit 534, and the radiation body 53 is the first in a printing or etching process. It may be provided on one surface 511, or the radiator 53 may be formed by punching and engraving process and then provided on the first surface 511.

該マイクロストリップライン54はほぼ十字形をし、第一隔壁541及び該第一隔壁541と垂直に交わって接続する第二隔壁542を有し、該マイクロストリップライン54の第一隔壁541は第一短辺5411及び対向した第二短辺5412を有し、該第二隔壁542は第三短辺5421及び対向した第四短辺5422を有し、該第一短辺5411は該第一辺513と接続せず、該第二短辺5412は該第二辺514と接続し、該第一、第二隔壁541、542は四つの輻射区543を規定し、該第一、第二、第三、第四輻射部531、532、533、534は別々に該四つの輻射区543の中に設けられる。 The microstrip line 54 is substantially cross-shaped and has a first partition wall 541 and a second partition wall 542 that vertically intersects and connects the first partition wall 541, and the first partition wall 541 of the microstrip line 54 is the first. The second partition wall 542 has a third short side 5421 and an opposed fourth short side 5422, and the first short side 5411 has the first side 513. The second short side 5412 is connected to the second side 514, and the first, second partition walls 541, 542 define four radiation zones 543, the first, second, and third. , Fourth radiation unit 531, 532, 533, 534 are separately provided in the four radiation zones 543.

さらに、該第一、第三輻射部531、533の片側及び該第二隔壁542の第三短辺5
421から該第三辺515までの距離は同じであり、該第二、第四輻射部532、534の片側及び該第二隔壁542の第四短辺5422から該第四辺516までの距離は同じであり、該第一隔壁541の第一短辺5411から該第一辺513までの距離は該第一、第二輻射部531、532の片側から該第一辺513までの距離より大きい。
Further, one side of the first and third radiation portions 531 and 533 and the third short side 5 of the second partition wall 542
The distance from 421 to the third side 515 is the same, and the distance from one side of the second and fourth radiation portions 532 and 534 and the fourth short side 5422 of the second partition wall 542 to the fourth side 516 is the same. It is the same, and the distance from the first short side 5411 of the first partition wall 541 to the first side 513 is larger than the distance from one side of the first and second radiation portions 531 and 532 to the first side 513.

次に、ステップ92を行い、該第一、第二検出ユニット2、3はそれぞれ交番磁界を生じ、該PCB多層板1の上、下層11、12の表面に向けて誘導起電力又は電界を生じ、該上層、下層11、12の金属面のインピーダンスは該上層、下層11、12の表面に位置した渦電流又は第一反射信号を形成し、該第一、第二検出ユニット2、3は該渦電流又は第一反射信号を測量して、該上層11に位置した第一インピーダンス値及び該下層12に位置した第二インピーダンス値を取得する。 Next, step 92 is performed, and the first and second detection units 2 and 3 generate alternating magnetic fields, respectively, and generate an induced electromotive force or an electric field toward the surfaces of the upper and lower layers 11 and 12 of the PCB multilayer plate 1. The impedance of the metal surface of the upper layer and the lower layers 11 and 12 forms an eddy current or a first reflected signal located on the surface of the upper layer and the lower layers 11 and 12, and the first and second detection units 2 and 3 form the first reflected signal. The eddy current or the first reflected signal is measured to obtain the first impedance value located in the upper layer 11 and the second impedance value located in the lower layer 12.

該送込み部55は信号を送込むために用いられ、該金属グラウンド層52に接続された接続端551及び該第一面511に位置し且つ該接続端551と該マイクロストリップライン54に接続された送込み端552を有する。 The feed 55 is used to feed a signal, located at a connection end 551 connected to the metal ground layer 52 and the first surface 511, and connected to the connection end 551 and the microstrip line 54. It has a feed end 552.

次に、ステップ92を行い、該第一および第二検出ユニット2、3はそれぞれ交番磁界を生じ、該PCB多層板1の上層および下層11、12の表面に誘導起電力を生じさせ、該上層および下層11、12の表面に渦電流を形成し、該第一および第二検出ユニット2、3は該渦電流を測量して、該上層11の第一インピーダンス値及び該下層12の第二インピーダンス値をそれぞれ取得する。 Next, step 92 is performed, the first and second detection units 2 and 3 generate alternating magnetic fields, respectively, and an induced electromotive force is generated on the surfaces of the upper layer and the lower layers 11 and 12 of the PCB multilayer plate 1, and the upper layer is generated. And eddy currents are formed on the surfaces of the lower layers 11 and 12, and the first and second detection units 2 and 3 measure the eddy currents to measure the eddy currents to obtain the first impedance value of the upper layer 11 and the second impedance of the lower layer 12. Get each value.

そして、ステップ93をステップ92と同様に行い、上層11の第三インピーダンス値及び該下層12の第四インピーダンス値をそれぞれ取得する。 Then, step 93 is performed in the same manner as in step 92 to acquire the third impedance value of the upper layer 11 and the fourth impedance value of the lower layer 12, respectively.

最後に、ステップ94を行い、処理ユニット6は該第一および第二検出ユニット2、3に電気的接続され、該第一および第二検出ユニット2、3が取得した第一、第二、第三、第四インピーダンス値によって厚さの計算を実行して、該PCB多層板1の上層11の第一の厚さ及び該下層12の第二の厚さを取得する。 Finally, step 94 is performed, and the processing unit 6 is electrically connected to the first and second detection units 2, 3 and acquired by the first and second detection units 2, 3 first, second, first. Third, the thickness is calculated by the fourth impedance value to obtain the first thickness of the upper layer 11 of the PCB multilayer plate 1 and the second thickness of the lower layer 12.

その中、該第一の厚さの計算とは該上層11の第一インピーダンス値と、第三インピーダンス値の差分を該第一検出ユニット2の上層11の表面で誘導起電力を生じる作用面積で除することであって、該第二の厚さの厚さ計算とは該下層12の第二インピーダンス値と、第四インピーダンス値の差分を該第二検出ユニット3の該下層12の表面で誘導起電力を生じる作用面積で除することである。 Among them, the calculation of the first thickness is the difference between the first impedance value of the upper layer 11 and the third impedance value by the working area where the induced electromotive force is generated on the surface of the upper layer 11 of the first detection unit 2. The thickness calculation of the second thickness is to derive the difference between the second impedance value of the lower layer 12 and the fourth impedance value on the surface of the lower layer 12 of the second detection unit 3. It is to divide by the working area where the electromotive force is generated.

上述の測量方法によりまず該第一、第二検出ユニット2、3の該上層、下層11、12に対する異なった間隔、異なった厚さ、放射周波数、PCB多層板1の材料などの条件の第一、第二、第三、第四インピーダンス値を測量して、標準曲線数値を取得し、実際操作の時に標準曲線数値はその標準値を当て嵌めることで厚さの計算を行ってよい。 According to the above-mentioned surveying method, first of all, the conditions such as different intervals, different thicknesses, radiation frequencies, materials of the PCB multilayer plate 1 of the first and second detection units 2 and 3 with respect to the upper layer and the lower layers 11 and 12 are first. , The second, third, and fourth impedance values are measured to obtain a standard curve value, and the standard curve value may be applied to the standard value at the time of actual operation to calculate the thickness.

さらに、該第一検出ユニット2と第二検出ユニット3のビーム幅(Beam Width)はXであり、前記第一検出ユニットと該PCB多層板の上層との間隔をd1とし、前記第二検出ユニットと該PCB多層板の下層との間隔をd2とし、電界の該PCB多層板の上層における作用面積A1は、((tan(X/2)×d1)×2)であり、電界の該PCB多層板の下層における作用面積A2は、((tan(X/2)×d2)×2)であり、その中、該第一検出ユニット2と第二検出ユニット3のビーム幅Xは61度である。 Further, the beam width (Beam Wide) of the first detection unit 2 and the second detection unit 3 is X, the distance between the first detection unit and the upper layer of the PCB multilayer plate is d1, and the second detection unit. The distance between the PCB and the lower layer of the PCB multilayer plate is d2, the working area A1 of the electric field in the upper layer of the PCB multilayer plate is ((tan (X / 2) × d1) × 2) 2 , and the PCB of the electric field is The working area A2 in the lower layer of the multilayer plate is ((tan (X / 2) × d2) × 2) 2 , and the beam width X of the first detection unit 2 and the second detection unit 3 is 61 degrees. Is.

該PCB多層板1と該上層、下層11、12との間隔は2mmであることを例にとって、該値を上述の数式((tan30.5°×2mm)×2)2に当て嵌め、得られた該第一検出ユニット2、3の該上層、下層11、12の表面に向けて誘導起電力又は電界を生じる作用面積は約5.12mmであり、該上層11の第一、第三インピーダンス値の差分を該作用面積数値で除して該第一の厚さを取得し、該下層12の第二、第四インピーダンス値の差分を該作用面積数値で除して該第二の厚さを取得する。 Taking the case where the distance between the PCB multilayer plate 1 and the upper layer, the lower layers 11 and 12 is 2 mm as an example, the value is applied to the above-mentioned mathematical formula ((tan 30.5 ° × 2 mm) × 2) 2 and obtained. The working area of the first detection units 2 and 3 for generating an induced electromotive force or an electric field toward the surfaces of the upper layers 11 and 12 is about 5.12 mm, and the first and third impedance values of the upper layer 11 are high. The difference between the two and fourth impedance values of the lower layer 12 is divided by the working area value to obtain the first thickness, and the difference between the second and fourth impedance values is divided by the working area value to obtain the second thickness. get.

図5はY-Z平面の2D輻射パターン模擬図であり、該第一、第二隔壁541、542の設置によって、該マイクロストリップアンテナ5のビーム幅(Beam Width)を61度として、メッセージは反射信号の生じた位相差のため信号の干渉を受けることを低減できて、該PCB多層板1の銅厚測量に有効に応用できる。 FIG. 5 is a simulated 2D radiation pattern on the YZ plane, and the message is reflected with the beam width (Beam Width) of the microstrip antenna 5 being 61 degrees by installing the first and second partition walls 541 and 542. It is possible to reduce the interference of the signal due to the phase difference generated by the signal, and it can be effectively applied to the copper thickness measurement of the PCB multilayer plate 1.

再度、3D輻射パターン模擬図である図6を参照し、該第一、第二隔壁541、542が垂直に交わって十字形のマイクロストリップライン54を形成し且つ別々に該第一、第二、第三、第四輻射部531、532、533、534間に設けられることで、パターン均一の効果を達成できる。従って、該マイクロストリップアンテナ5の特殊設計によって該第一、第二検出ユニット2、3の該上層、下層11、12の表面に向けて誘導起電力又は電界を生じる作用面積に均一性を持たせて、該PCB多層板1の上、下層11、12の銅厚を正確に測量して計算するという最終目標を達成する。 Again, referring to FIG. 6, which is a simulated 3D radiation pattern, the first and second partition walls 541 and 542 vertically intersect to form a cross-shaped microstrip line 54 and separately the first and second partitions. By providing it between the third and fourth radiation units 531, 532, 533, and 534, the effect of pattern uniformity can be achieved. Therefore, by specially designing the microstrip antenna 5, the working area for generating an induced electromotive force or an electric field toward the surfaces of the upper layer, the lower layer 11 and 12 of the first and second detection units 2 and 3 is made uniform. Therefore, the final goal of accurately measuring and calculating the copper thicknesses of the upper and lower layers 11 and 12 of the PCB multilayer plate 1 is achieved.

以上をまとめると、本発明のPCB多層板に応用した非接触式上下層銅厚の測量方法において、該第一、第二検出ユニット2、3は該PCB多層板1の二つの表面の金属層の厚さに対して非接触式測量を行い、該第一、第二検出ユニット2、3が取得した第一、第二、第三、第四インピーダンス値に基づいて厚さの計算を実行して、該PCB多層板1の上層11の第一の厚さと該下層12の第二の厚さを取得し、且つ該PCB多層板1の層数は2層~16層であってよく、いろいろな産業の要求を満足できる上に、速やかに且つ正確に金属層の厚さを取得でき、故に本発明の目的を確実に達成できる。 Summarizing the above, in the non-contact type upper and lower layer copper thickness measuring method applied to the PCB multilayer plate of the present invention, the first and second detection units 2 and 3 are the metal layers on the two surfaces of the PCB multilayer plate 1. A non-contact survey is performed on the thickness of the above, and the thickness is calculated based on the first, second, third, and fourth impedance values acquired by the first and second detection units 2 and 3. Therefore, the first thickness of the upper layer 11 and the second thickness of the lower layer 12 of the PCB multilayer board 1 may be obtained, and the number of layers of the PCB multilayer board 1 may be 2 to 16 layers. In addition to satisfying the demands of various industries, the thickness of the metal layer can be obtained quickly and accurately, and therefore the object of the present invention can be surely achieved.

上述したのは本発明の好ましい実施例に過ぎず、本発明を制限するものではない。本発明の請求範囲と明細書の内容によって行った簡単な同等変化と修飾はいずれも本発明の請求範囲内にある。 The above is only a preferred embodiment of the present invention and does not limit the present invention. Both the claims of the present invention and the simple equivalent changes and modifications made according to the contents of the specification are within the claims of the present invention.

本発明の有利な効果は、該第一、第二検出ユニットが該PCB多層板の二つの表面の金属層の厚さに対して非接触式測量を行い、且つ該PCB多層板の層数は2層~16層であってよいことにより、いろいろな産業の要求を満足する。また、該マイクロストリップアンテナの特殊設計により、該第一、第二検出ユニットの該上層、下層表面に向けて誘導起電力を生じる作用面積に均一性を持たせて、該PCB多層板の上、下層銅厚を正確に測量して計算するという最終目標を達成する。 The advantageous effect of the present invention is that the first and second detection units perform non-contact surveying on the thickness of the metal layers on the two surfaces of the PCB multilayer board, and the number of layers of the PCB multilayer board is. By having 2 to 16 layers, the demands of various industries are satisfied. In addition, due to the special design of the microstrip antenna, the working area that generates the induced electromotive force toward the upper and lower layers of the first and second detection units is made uniform, and the top of the PCB multilayer plate. Achieve the ultimate goal of accurately measuring and calculating the thickness of the underlying copper.

1 PCB多層板
11 上層
12 下層
13 絶縁層
14 粘着層
2 第一検出ユニット
3 第二検出ユニット
5 マイクロストリップアンテナ
51 基板
511 第一面
512 第二面
513 第一辺
514 第二辺
515 第三辺
516 第四辺
52 金属グラウンド層
53 輻射体
531 第一輻射部
532 第二輻射部
533 第三輻射部
534 第四輻射部
54 マイクロストリップライン
541 第一隔壁
5411 第一短辺
5412 第二短辺
542 第二隔壁
5421 第三短辺
5422 第四短辺
543 輻射区
55 送込み部
551 接続端
552 送込み端
6 処理ユニット
91~94 ステップ
1 PCB multilayer plate 11 Upper layer 12 Lower layer 13 Insulation layer 14 Adhesive layer 2 First detection unit 3 Second detection unit 5 Microstrip antenna 51 Board 511 First surface 512 Second surface 513 First side 514 Second side 515 Third side 516 Fourth side 52 Metal ground layer 53 Radiator 531 First radiation part 532 Second radiation part 533 Third radiation part 534 Fourth radiation part 54 Microstrip line 541 First partition wall 5411 First short side 5412 Second short side 542 2nd partition 5421 3rd short side 5422 4th short side 543 Radiation zone 55 Sending part 551 Connection end 552 Sending end 6 Processing unit 91-94 Steps

本発明のもう1つの技術手段において、上記第一検出ユニット及び第二検出ユニットのビーム幅(Beam Width)はXであり、上記第一検出ユニットと該PCB多層板の上層との間隔をd1とし、上記第二検出ユニットと該PCB多層板の下層との間隔をd2とし、電界が該PCB多層板の上層における作用面積A1は、((tan(X/2)×d1)×2) であり、電界が該PCB多層板の下層における作用面積A2は、((ta n(X/2)×d2)×2) である。 In another technical means of the present invention, the beam width (Beam Wide) of the first detection unit and the second detection unit is X, and the distance between the first detection unit and the upper layer of the PCB multilayer plate is d1. The distance between the second detection unit and the lower layer of the PCB multilayer plate is d2, and the working area A1 in the upper layer of the PCB multilayer plate is ((tan (X / 2) × d1) × 2) 2 . The working area A2 in the lower layer of the PCB multilayer plate is ((tan (X / 2) × d2) × 2) 2 .

さらに、該第一検出ユニット2と第二検出ユニット3のビーム幅(Beam Width)はXであり、前記第一検出ユニットと該PCB多層板の上層との間隔をd1とし、前記第二検出ユニットと該PCB多層板の下層との間隔をd2とし、電界の該PCB多層板の上層における作用面積A1は、((tan(X/2)×d1)×2) であり、電界の該PCB多層板の下層における作用面積A2は、((tan(X/2)×d2)×2) であり、その中、該第一検出ユニット2と第二検出ユニット3のビーム幅Xは61度である。

Further, the beam width (Beam Wide) of the first detection unit 2 and the second detection unit 3 is X, the distance between the first detection unit and the upper layer of the PCB multilayer plate is d1, and the second detection unit. The distance between the PCB and the lower layer of the PCB multilayer plate is d2, the working area A1 of the electric field in the upper layer of the PCB multilayer plate is ((tan (X / 2) × d1) × 2) 2 , and the PCB of the electric field is The working area A2 in the lower layer of the multilayer plate is ((tan (X / 2) × d2) × 2) 2 , and the beam width X of the first detection unit 2 and the second detection unit 3 is 61 degrees. Is.

Claims (10)

(A)PCB多層板の上層に設けられた第一検出ユニット及び該PCB多層板の下層に設けられた第二検出ユニットを用意する第1ステップと、
(B)前記第一検出ユニットと第二検出ユニットはそれぞれ交番磁界を生じることにより、前記PCB多層板の上層、下層表面に誘導起電力による渦電流を形成し、該第一検出ユニットは、前記上層の前記渦電流を測量することにより、該上層の第一インピーダンス値を取得し、前記第二検出ユニットは、前記下層の前記渦電流を測量することにより、該下層の第二インピーダンス値を取得する第2ステップと、
(C)前記第2ステップと同様の動作を繰り返し、前記上層の第三インピーダンス値と、前記下層の第四インピーダンス値を取得する第3ステップと、
(D)処理ユニットは該第一検出ユニット、第二検出ユニットと電気的に接続され、該第一検出ユニットが取得した前記第一インピーダンス値と第三インピーダンス値との差分を用いて前記PCB多層板の上層の第一の厚さを計算し、前記第二検出ユニットが取得した前記第二インピーダンス値と第四インピーダンス値との差分を用いて前記PCB多層板の下層の第二の厚さを計算する第4ステップと、
を含み、
前記第一検出ユニットと前記第二検出ユニットは、いずれもマイクロストリップアンテナであり、当該マイクロストリップアンテナは、第一面及び反対になる第二面を有する基板、該基板の第二面に設けられた金属グラウンド層、該基板の第一面に設けられた輻射体、該基板の第一面に設けられたマイクロストリップライン、及び、送込み部を備え、
前記輻射体は、第一輻射部、第二輻射部、第三輻射部及び第四輻射部を有し、
前記マイクロストリップラインは、第一隔壁及び該第一隔壁と垂直に交わって接続する第二隔壁を有し、
前記送込み部は、前記金属グラウンド層に接続された接続端、及び該第一面に位置し且つ該接続端と該マイクロストリップラインに接続された送込み端を有し、
前記第一の厚さの計算とは該上層の第一、第三インピーダンス値の差分を該第一検出ユニット、第二検出ユニットの該上層、下層表面に向けて電界を生じる作用面積で除することであって、該第二の厚さの計算とは該下層の第二、第四インピーダンス値の差分を該第一、第二検出ユニットの該上層、下層表面に向けて電界を生じる作用面積で除することであることを特徴とする、PCB多層板に応用した非接触式上下層銅厚の測量方法。
(A) The first step of preparing a first detection unit provided on the upper layer of the PCB multilayer plate and a second detection unit provided on the lower layer of the PCB multilayer plate.
(B) The first detection unit and the second detection unit generate alternating magnetic fields, respectively, to form eddy currents due to induced electromotive forces on the upper and lower surfaces of the PCB multilayer plate, and the first detection unit is described. The first impedance value of the upper layer is acquired by measuring the eddy current of the upper layer, and the second detection unit acquires the second impedance value of the lower layer by measuring the eddy current of the lower layer. The second step to do and
(C) A third step of acquiring the third impedance value of the upper layer and the fourth impedance value of the lower layer by repeating the same operation as the second step.
(D) The processing unit is electrically connected to the first detection unit and the second detection unit, and the PCB multilayer is used by using the difference between the first impedance value and the third impedance value acquired by the first detection unit. The first thickness of the upper layer of the board is calculated, and the difference between the second impedance value and the fourth impedance value acquired by the second detection unit is used to determine the second thickness of the lower layer of the PCB multilayer board. The 4th step to calculate and
Including
The first detection unit and the second detection unit are both microstrip antennas, and the microstrip antenna is provided on a substrate having a first surface and an opposite second surface, and a second surface of the substrate. It is provided with a metal ground layer, a radiator provided on the first surface of the substrate, a microstrip line provided on the first surface of the substrate, and a feeding portion.
The radiator has a first radiation unit, a second radiation unit, a third radiation unit, and a fourth radiation unit.
The microstrip line has a first partition and a second partition perpendicularly intersecting and connecting to the first partition.
The feeding portion has a connecting end connected to the metal ground layer and a feeding end located on the first surface and connected to the connecting end and the microstrip line.
The calculation of the first thickness is to divide the difference between the first and third impedance values of the upper layer by the area of action that generates an electric field toward the surface of the first detection unit and the upper layer and the lower layer of the second detection unit. That is, the calculation of the second thickness means that the difference between the second and fourth impedance values of the lower layer is directed toward the upper and lower surfaces of the first and second detection units to generate an electric field. A non-contact type upper and lower layer copper thickness measuring method applied to a PCB multilayer plate, which is characterized by being divided by.
前記第一検出ユニット及び第二検出ユニットのビーム幅(Beam Width)はXであり、前記第一検出ユニットと該PCB多層板の上層との間隔をd1とし、前記第二検出ユニットと該PCB多層板の下層との間隔をd2とし、電界の該PCB多層板の上層における作用面積A1は、((tan(X/2)×d1)×2)であり、電界の該PCB多層板の下層における作用面積A2は、((tan(X/2)×d2)×2)である、請求項1に記載のPCB多層板に応用した非接触式上下層銅厚の測量方法。 The beam width (Beam Width) of the first detection unit and the second detection unit is X, the distance between the first detection unit and the upper layer of the PCB multilayer plate is d1, and the second detection unit and the PCB multilayer plate are set to d1. The distance from the lower layer of the plate is d2, the working area A1 of the electric field in the upper layer of the PCB multilayer plate is ((tan (X / 2) × d1) × 2) 2 , and the lower layer of the PCB multilayer plate of the electric field is (tan (X / 2) × d1) × 2) 2. The working area A2 in the above is ((tan (X / 2) × d2) × 2) 2 , which is a non-contact type upper and lower layer copper thickness measuring method applied to the PCB multilayer plate according to claim 1. 該第一検出ユニット、第二検出ユニットのビーム幅Xは61度であることを特徴とする、請求項2に記載のPCB多層板に応用した非接触式上下層銅厚の測量方法。 The non-contact type upper and lower layer copper thickness measuring method applied to the PCB multilayer plate according to claim 2, wherein the beam width X of the first detection unit and the second detection unit is 61 degrees. 該第一検出ユニットと該PCB多層板の上層との間隔は0.1mm~10mmであり、
該第二検出ユニットと該PCB多層板の下層との間隔は0.1mm~10mmであることを特徴とする、請求項2に記載のPCB多層板に応用した非接触式上下層銅厚の測量方法。
The distance between the first detection unit and the upper layer of the PCB multilayer plate is 0.1 mm to 10 mm.
The non-contact type upper and lower copper thickness measurement applied to the PCB multilayer plate according to claim 2, wherein the distance between the second detection unit and the lower layer of the PCB multilayer plate is 0.1 mm to 10 mm. Method.
該基板はさらに第一辺、該第一辺と対向して設けられた第二辺、該第一辺と第二辺との間に位置した第三辺、及び該第三辺と対向して設けられた第四辺を有し、該マイクロストリップラインの第一隔壁は第一短辺及び対向した第二短辺を有し、該第二隔壁は第三短辺及び対向した第四短辺を有し、該第一短辺は該第一辺に接続しないが、該第二短辺は該第二辺に接続され、該第一、第二隔壁は四つの輻射区を規定し、該第一、第二、第三、第四輻射部は別々に該四つの輻射区に設けられる、請求項1に記載のPCB多層板に応用した非接触式上下層銅厚の測量方法。 The substrate is further opposed to the first side, the second side provided facing the first side, the third side located between the first side and the second side, and the third side. The first partition of the microstrip line has a first short side and an opposite second short side, and the second partition has a third short side and an opposite fourth short side. The first short side is not connected to the first side, but the second short side is connected to the second side, and the first and second partition walls define four radiation zones. The non-contact type upper and lower layer copper thickness measuring method applied to the PCB multilayer plate according to claim 1, wherein the first, second, third, and fourth radiation units are separately provided in the four radiation areas. 該第一、第三輻射部の片側及び該第二隔壁の第三短辺から該第三辺までの距離は同じであり、該第二、第四輻射部の片側及び該第二隔壁の第四短辺から該第四辺までの距離は同じであり、該第一隔壁の第一短辺から該第一辺までの距離は該第一、第二輻射部の片側から該第一辺までの距離より大きい、請求項5に記載のPCB多層板に応用した非接触式上下層銅厚の測量方法。 The distance from one side of the first and third radiating portions and the third short side of the second partition wall to the third side is the same, and one side of the second and fourth radiating portions and the second partition wall of the second partition wall are the same. The distance from the four short sides to the fourth side is the same, and the distance from the first short side of the first partition wall to the first side is from one side of the first and second radiating portions to the first side. The non-contact type upper and lower layer copper thickness measuring method applied to the PCB multilayer plate according to claim 5, which is larger than the distance of. 該第一、第三輻射部の片側及び該第三短辺から該第三辺までの距離と該第二、第四輻射部の片側及び該第四短辺から該第四辺までの距離とは、該第一、第二輻射部の片側から該第一辺までの距離と該第三、四輻射部の片側から該第二辺までの距離とより大きい、請求項6に記載のPCB多層板に応用した非接触式上下層銅厚の測量方法。 The distance from one side of the first and third radiating parts and the third short side to the third side and the distance from one side of the second and fourth radiating parts and the fourth short side to the fourth side. 6 is the PCB multilayer according to claim 6, which is larger than the distance from one side of the first and second radiating portions to the first side and the distance from one side of the third and fourth radiating portions to the second side. Non-contact type upper and lower layer copper thickness measurement method applied to plates. 該第一検出ユニット、第二検出ユニットの電界放射周波数は1MHz~2.5GHzである、請求項1に記載のPCB多層板に応用した非接触式上下層銅厚の測量方法。 The non-contact type upper and lower layer copper thickness measuring method applied to the PCB multilayer plate according to claim 1, wherein the field emission frequencies of the first detection unit and the second detection unit are 1 MHz to 2.5 GHz. 該PCB多層板の層数は2層~16層である、請求項1に記載のPCB多層板に応用した非接触式上下層銅厚の測量方法。 The non-contact type upper and lower layer copper thickness measuring method applied to the PCB multilayer plate according to claim 1, wherein the number of layers of the PCB multilayer plate is 2 to 16. 該PCB多層板の上層、下層構造は金属層であり、且つ該上層は該第一の厚さを有し、該下層は該第二の厚さを有するとともに、順番に内部へ少なくとも一つの絶縁層と少なくとも一つの粘着層から該PCB多層板までの予定層数が積み上げられている、請求項1に記載のPCB多層板に応用した非接触式上下層銅厚の測量方法。 The upper and lower structures of the PCB multilayer board are metal layers, and the upper layer has the first thickness, the lower layer has the second thickness, and at least one insulation in order is provided inside. The non-contact type upper and lower layer copper thickness measuring method applied to the PCB multilayer board according to claim 1, wherein the planned number of layers from the layer and at least one adhesive layer to the PCB multilayer board is stacked.
JP2021187482A 2017-12-21 2021-11-18 Non-contact measurement method for upper and lower layer copper thickness applied to PCB multilayer board Active JP7304589B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW106145134 2017-12-21
TW107125759 2018-07-25
TW107125759A TWI681184B (en) 2017-12-21 2018-07-25 Measuring method of non-contact upper and lower copper thickness applied to PCB multilayer board
JP2019041500A JP2020016636A (en) 2017-12-21 2019-03-07 Non-contact type upper/lower layer copper thickness survey method applied to pcb multilayer plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019041500A Division JP2020016636A (en) 2017-12-21 2019-03-07 Non-contact type upper/lower layer copper thickness survey method applied to pcb multilayer plate

Publications (2)

Publication Number Publication Date
JP2022020815A true JP2022020815A (en) 2022-02-01
JP7304589B2 JP7304589B2 (en) 2023-07-07

Family

ID=68049102

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019041500A Pending JP2020016636A (en) 2017-12-21 2019-03-07 Non-contact type upper/lower layer copper thickness survey method applied to pcb multilayer plate
JP2021187482A Active JP7304589B2 (en) 2017-12-21 2021-11-18 Non-contact measurement method for upper and lower layer copper thickness applied to PCB multilayer board

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019041500A Pending JP2020016636A (en) 2017-12-21 2019-03-07 Non-contact type upper/lower layer copper thickness survey method applied to pcb multilayer plate

Country Status (3)

Country Link
JP (2) JP2020016636A (en)
CN (1) CN110779436B (en)
TW (1) TWI681184B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112747705A (en) * 2020-12-25 2021-05-04 悦虎晶芯电路(苏州)股份有限公司 Electro-coppering thickness measuring method and circuit board
CN113295123B (en) * 2021-05-18 2022-11-18 英拓自动化机械(深圳)有限公司 Thickness measuring equipment for PCB (printed circuit board)
CN115164803B (en) * 2022-06-30 2024-07-12 高德(苏州)电子有限公司 Method for rapidly calculating copper thickness of PCB (printed circuit board)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229706A (en) * 1994-02-17 1995-08-29 Cmk Corp Inter-layer thickness measuring method and device for multilayer printed wiring board
JPH08204445A (en) * 1994-07-12 1996-08-09 Ma Com Inc Monopulse transmitter-receiver
JP2011004479A (en) * 2009-05-27 2011-01-06 Cheng Uei Precision Industry Co Ltd Wireless power supply device

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3112827A1 (en) * 1981-03-31 1982-10-14 Elektroteile GmbH, 7772 Uhldingen-Mühlhofen Inductive position detector
JPS5886405A (en) * 1981-11-18 1983-05-24 Nec Corp Angle detector
JPS60138430A (en) * 1983-12-27 1985-07-23 Kawasaki Steel Corp Temperature measuring method of metallic plate by electromagnetic induction
JPS6166104A (en) * 1984-09-07 1986-04-04 Anelva Corp Method for measuring thickness of thin metal film
SU1516945A1 (en) * 1987-10-22 1989-10-23 Московский энергетический институт Portable tester for eddy-current checking of hole walls
US5424633A (en) * 1991-01-22 1995-06-13 Advanced Test Technologies Inc. Contactless test method and system for testing printed circuit boards
JPH0514810U (en) * 1991-07-31 1993-02-26 富山日本電気株式会社 Printed wiring board double input detector
DE4217754C2 (en) * 1992-05-29 1998-04-16 Horst Dr Rettenmaier Method and device for powder coating
JP2002241913A (en) * 2001-02-14 2002-08-28 Mitsubishi Heavy Ind Ltd Plating system
US7309618B2 (en) * 2002-06-28 2007-12-18 Lam Research Corporation Method and apparatus for real time metal film thickness measurement
US6806702B2 (en) * 2002-10-09 2004-10-19 Honeywell International Inc. Magnetic angular position sensor apparatus
GB2397652B (en) * 2002-11-15 2005-12-21 Immobilienges Helmut Fischer Measurement probe for measurement of the thickness of thin layers
JP4455343B2 (en) * 2002-12-19 2010-04-21 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Wall thickness monitoring
TW555009U (en) * 2003-02-24 2003-09-21 Prec Machinery Res & Dev Cent Non-contact thickness measuring apparatus
US7112960B2 (en) * 2003-07-31 2006-09-26 Applied Materials, Inc. Eddy current system for in-situ profile measurement
CN101023369A (en) * 2004-09-16 2007-08-22 皇家飞利浦电子股份有限公司 Magnetic resonance receive coils with compact inductive components
DE102004047189A1 (en) * 2004-09-29 2006-04-06 Robert Bosch Gmbh Sensor for locating metallic objects and method for evaluating measuring signals of such a sensor
JP4894620B2 (en) * 2007-05-23 2012-03-14 株式会社日立製作所 Wire rope flaw detector
JP5495493B2 (en) * 2008-02-07 2014-05-21 株式会社東京精密 Film thickness measuring apparatus and film thickness measuring method
MX2011004130A (en) * 2008-10-17 2011-05-19 Faurecia Bloc Avant Sensor device for detecting an object in a detection area.
US9541526B2 (en) * 2011-04-12 2017-01-10 Honda Motor Co., Ltd. Non-destructive testing device for testing a welded region of a workpiece
TWI463110B (en) * 2011-05-11 2014-12-01 Ind Tech Res Inst Method for thin metal film measurement
TWI472757B (en) * 2011-12-29 2015-02-11 Ind Tech Res Inst Non-contact measurement device with adjustable range
US9335151B2 (en) * 2012-10-26 2016-05-10 Applied Materials, Inc. Film measurement
CN202956085U (en) * 2012-12-06 2013-05-29 南京协力电子科技集团有限公司 Printed circuit board via hole copper thickness tester based on eddy current method
US9697940B2 (en) * 2014-08-20 2017-07-04 Analog Devices Global Apparatus and methods for generating a uniform magnetic field
CN104154852B (en) * 2014-08-20 2017-11-28 中国科学技术大学 Conducting film thickness measurement system and method based on current vortex sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229706A (en) * 1994-02-17 1995-08-29 Cmk Corp Inter-layer thickness measuring method and device for multilayer printed wiring board
JPH08204445A (en) * 1994-07-12 1996-08-09 Ma Com Inc Monopulse transmitter-receiver
JP2011004479A (en) * 2009-05-27 2011-01-06 Cheng Uei Precision Industry Co Ltd Wireless power supply device

Also Published As

Publication number Publication date
JP7304589B2 (en) 2023-07-07
TW201928341A (en) 2019-07-16
TWI681184B (en) 2020-01-01
CN110779436B (en) 2021-07-09
CN110779436A (en) 2020-02-11
JP2020016636A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
JP2022020815A (en) Method for measuring copper thickness of non-contact type upper/lower layer applied to pcb multilayer board
CN111433555B (en) Sensor coil optimization
Liu et al. An extended analytical formulation for fast prediction of shielding effectiveness of an enclosure at different observation points with an off-axis aperture
Schulz et al. The planar multipole resonance probe: Challenges and prospects of a planar plasma sensor
Decrossas et al. Evaluation of 3D printing technology for corrugated horn antenna manufacturing
Singh Ka-band micromachined microstrip patch antenna
CN106707210A (en) Traveling wave calibration method based on near-field probe spatial resolution of transmission line
FI20195349A1 (en) A microwave transformer and a system for fabricating the same
WO2013072993A1 (en) Analytical calculation method, analytical calculation program and recording medium
Štumpf The time-domain contour integral method—An approach to the analysis of double-plane circuits
JP6510263B2 (en) Complex permittivity measurement method
Bringhurst et al. Thin-sample measurements and error analysis of high-temperature coaxial dielectric probes
CN111595232B (en) Method and device for detecting thickness and conductivity of metal coating on surface of metal conductor
Zhiping et al. Research on weld surface notch monitoring based on microstrip antenna sensor array
Hyde et al. Broadband characterization of materials using a dual-ridged waveguide
Pillai et al. Derivation of equivalent circuits for multilayer printed circuit board discontinuities using full wave models
Bianconi et al. Spectral domain characteristic basis function method for efficient simulation of microstrip devices in layered media
TWI740739B (en) Electromagnetic testing element and fabrication method thereof and thickness detection method
Schulz et al. A new approach on advanced compact plasma sensors for industrial plasma applications
CN109460585A (en) A kind of millimetre-wave radar microstrip antenna designs scaling method
Milošević et al. EM Modelling of Microstrip T-Junction with an Open Stub Printed over a Dielectric Cylinder.
Volski et al. Diffraction of a surface wave at the truncation of a dielectric structure
CN108169249A (en) A kind of microwave interdigital structure non-destructive control probe
US20230243878A1 (en) Computer-readable recording medium storing program, information processing apparatus, and obtainment method of conductor loss and dielectric loss
Morcillo et al. Conductor surface-roughness effect in the loss tangent measurement of low-loss organic substrates from 30 GHz to 70 GHz

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R150 Certificate of patent or registration of utility model

Ref document number: 7304589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150