JP2022010435A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2022010435A
JP2022010435A JP2020111038A JP2020111038A JP2022010435A JP 2022010435 A JP2022010435 A JP 2022010435A JP 2020111038 A JP2020111038 A JP 2020111038A JP 2020111038 A JP2020111038 A JP 2020111038A JP 2022010435 A JP2022010435 A JP 2022010435A
Authority
JP
Japan
Prior art keywords
refrigerant
detecting means
indoor
compressor
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020111038A
Other languages
Japanese (ja)
Inventor
義和 川邉
Yoshikazu Kawabe
誠之 飯高
Masayuki Iidaka
晃 鶸田
Akira Iwashida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020111038A priority Critical patent/JP2022010435A/en
Publication of JP2022010435A publication Critical patent/JP2022010435A/en
Pending legal-status Critical Current

Links

Images

Abstract

To solve problems relating to safety or reliability in refrigerant recovery operation of a conventional air conditioner which performs refrigerant recovery operation during stopping or refrigerant leakage.SOLUTION: An air conditioner includes first refrigerant shut-off means, second refrigerant shut-off means, state detecting means for acquiring information for estimating a state of a working refrigerant of an indoor unit, and control means for controlling operation of a device. The state detecting means includes at least two of refrigerant temperature detecting means, refrigerant pressure detecting means, air temperature detecting means, and compressor power detecting means. Timing of closing the second refrigerant shut-off means is determined on the basis of output of the state detecting means when recovering the working refrigerant to the outdoor unit.SELECTED DRAWING: Figure 1

Description

本発明は、冷凍およびヒートポンプサイクルを用いて空気調和を行なう空気調和機において、作動冷媒の漏洩を防ぐ技術に関するものである。 The present invention relates to a technique for preventing leakage of a working refrigerant in an air conditioner that performs air conditioning using a refrigeration and heat pump cycle.

近年は、地球温暖化防止の観点から空気調和機の運転効率を重要視する動きに加え、温暖化係数の大きい冷媒の使用を規制する動きが加速されている。 In recent years, in addition to the movement to emphasize the operating efficiency of air conditioners from the viewpoint of preventing global warming, the movement to regulate the use of refrigerants with a large global warming coefficient has been accelerated.

温暖化係数の小さな冷媒としては、もともと自然界に存在する二酸化炭素、プロパンやブタンのような炭化水素など、人工的に合成されるフロンとしては分子構造に二重結合を有し、大気中では短時間で分解してしまうハイドロフルオロオレフィン(HFO)などが注目されている。HFOとしては、2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)、1,3,3,3-テトラフルオロ-1-プロペン(R1234ze)などが、注目を集めており、一部実用化が始まっている。 As a refrigerant with a small warming coefficient, carbon dioxide, which originally exists in nature, hydrocarbons such as propane and butane, etc., have double bonds in the molecular structure of artificially synthesized chlorofluorocarbons, and are short in the atmosphere. Hydrofluoroolefins (HFOs), which decompose over time, are attracting attention. As HFOs, 2,3,3,3-tetrafluoro-1-propene (R1234yf), 1,3,3,3-tetrafluoro-1-propene (R1234ze), etc. are attracting attention and some of them. Practical use has begun.

しかしながら、二酸化炭素は動作圧力が高く空気調和機として使用するには運転効率の点で難があり、冷媒としての特性が優れているとは言い難い。 However, carbon dioxide has a high operating pressure and is difficult to use as an air conditioner in terms of operating efficiency, and it cannot be said that carbon dioxide has excellent characteristics as a refrigerant.

また、R1234yfやR1234zeなどは、沸点が高く圧力損失も大きいため、ルームエアコンなどの分離型空気調和機に用いるには運転効率の点に難があり、大量の冷媒を使用するビル用マルチエアコンなどでは、微燃性を有する点にも難がある。 In addition, since R1234yf and R1234ze have a high boiling point and a large pressure loss, there is a difficulty in operating efficiency when used in a separate air conditioner such as a room air conditioner, and a multi air conditioner for buildings that uses a large amount of refrigerant, etc. Then, there is also a problem in that it has a slight flammability.

一方、炭化水素、特にプロパンは空気調和機用の冷媒としては優れた特性を有しているが、強燃性を有しているため冷媒漏洩などが発生すると火災や爆発の危険を伴うため、容易には用いることができなかった。 On the other hand, hydrocarbons, especially propane, have excellent characteristics as a refrigerant for air conditioners, but because they have high flame properties, if a refrigerant leaks, there is a risk of fire or explosion. It could not be used easily.

可燃性冷媒を用いたルームエアコンやパッケージエアコンなど分離型空気調和機の安全性を向上させる技術としては、従来から数多くの発明がなされている。 Many inventions have been made conventionally as a technique for improving the safety of a separate air conditioner such as a room air conditioner or a packaged air conditioner using a flammable refrigerant.

その中の一つに、室外機に可燃性冷媒を回収して室内に冷媒が漏洩するのを防ぐ技術がある。冷媒の漏洩防止に関しては、現在使用されているフロンガスにおいても、環境影響の点でとても重要な問題であり、可燃・不燃にかかわらず、空気調和機における冷媒漏洩は回避しなければならない。 One of them is a technology for collecting flammable refrigerant in an outdoor unit to prevent the refrigerant from leaking into the room. Refrigerant leakage prevention is a very important issue in terms of environmental impact even for Freon gas currently in use, and refrigerant leakage in air conditioners must be avoided regardless of whether it is flammable or non-flammable.

特許文献1に記載の分離型空気調和機では、空気調和機の停止中に、室外機内の冷媒回路内に貯留された可燃性ガスからなる冷媒が室内機の冷媒回路に漏洩するのを防ぐことを目的とし、室内機の冷媒入口側および出口側にそれぞれ差圧で作動する弁を内蔵するアクチュエータを配設するとともに圧縮機の吐出ガスを各アクチュエータに導く導圧管にそれぞれ開閉弁を介装している。 In the separate type air conditioner described in Patent Document 1, the refrigerant composed of combustible gas stored in the refrigerant circuit in the outdoor unit is prevented from leaking to the refrigerant circuit of the indoor unit while the air conditioner is stopped. For the purpose of disposing an actuator with a built-in valve that operates at a differential pressure on the refrigerant inlet side and outlet side of the indoor unit, respectively, an on-off valve is interposed in the pressure guiding tube that guides the discharge gas of the compressor to each actuator. ing.

停止指令により、室内機の冷媒入口側のアクチュエータに接続された導圧管の開閉弁を閉として冷媒回収運転を行い、室内機の冷媒回路内の冷媒を室外機の冷媒回路内に貯留した後に室内機の冷媒出口側のアクチュエータに接続された導圧管の開閉弁を閉として圧縮機を停止する。 According to the stop command, the on-off valve of the pressure guiding tube connected to the actuator on the refrigerant inlet side of the indoor unit is closed to perform the refrigerant recovery operation, and the refrigerant in the refrigerant circuit of the indoor unit is stored in the refrigerant circuit of the outdoor unit and then indoors. The on-off valve of the pressure guiding tube connected to the actuator on the refrigerant outlet side of the machine is closed to stop the compressor.

図3は特許文献1に記載の空気調和機の第1の実施例を示すもので、室11に取り付けられた室内機14と室外機10が接続されて冷媒回路を構成しており、室外機10では、圧縮機1により冷媒が圧縮されて高温高圧のガス冷媒となり、室外熱交換器2で放熱して凝縮し高圧の液冷媒となり、絞り3で減圧されて気液二相の冷媒となり室内機14の室内熱交換器4で吸熱、蒸発し、再び圧縮機1へと戻ってくる。 FIG. 3 shows a first embodiment of the air exchanger described in Patent Document 1, in which the indoor unit 14 and the outdoor unit 10 attached to the chamber 11 are connected to form a refrigerant circuit, and the outdoor unit is formed. In No. 10, the refrigerant is compressed by the compressor 1 to become a high-temperature and high-pressure gas refrigerant, dissipates and condenses in the outdoor heat exchanger 2 to become a high-pressure liquid refrigerant, and is decompressed by the throttle 3 to become a gas-liquid two-phase refrigerant in the room. The indoor heat exchanger 4 of the machine 14 absorbs heat and evaporates, and returns to the compressor 1 again.

室内機14の入口側にはアクチュエータ21が、出口側にはアクチュエータ22が配備され、アクチュエータ21には電磁弁15を介して導圧管12から、アクチュエータ22には電磁弁16を介して導圧管13から、圧縮機1の吐出冷媒が供給されることで、アクチュエータ21、アクチュエータ22は開状態となる。 An actuator 21 is provided on the inlet side of the indoor unit 14, and an actuator 22 is provided on the outlet side. The actuator 21 is provided with a pressure guiding tube 12 via a solenoid valve 15, and the actuator 22 is provided with a pressure guiding tube 13 via a solenoid valve 16. By supplying the discharged refrigerant of the compressor 1, the actuator 21 and the actuator 22 are opened.

コントローラ19の指令により電磁弁15あるいは電磁弁16が閉状態となると圧縮機1の吐出冷媒の供給が止まり、アクチュエータ21あるいはアクチュエータ22は閉状態となって室内機14の冷媒回路内に冷媒が流れない構造になっている。 When the solenoid valve 15 or the solenoid valve 16 is closed by the command of the controller 19, the supply of the discharged refrigerant of the compressor 1 is stopped, the actuator 21 or the actuator 22 is closed, and the refrigerant flows in the refrigerant circuit of the indoor unit 14. It has no structure.

そして、空調運転時はコントローラ19が、電磁弁15、電磁弁16を開とすることで、アクチュエータ21、アクチュエータ22が開状態となって、室11を空調することができる。 Then, during the air conditioning operation, the controller 19 opens the solenoid valve 15 and the solenoid valve 16, so that the actuator 21 and the actuator 22 are opened and the chamber 11 can be air-conditioned.

空調を停止する際にコントローラ19は、まず電磁弁15を閉状態としてアクチュエータ21を閉鎖し冷媒回収運転を開始する。冷媒回収が進んで圧縮機1の吸入側圧力が低下すると、圧力センサ7が動作し、これを受けてコントローラ19は電磁弁16を閉状態として、アクチュエータ21を閉鎖し、圧縮機1を停止し冷媒回収運転を終了する。 When stopping the air conditioning, the controller 19 first closes the solenoid valve 15 and closes the actuator 21 to start the refrigerant recovery operation. When the refrigerant recovery progresses and the suction side pressure of the compressor 1 drops, the pressure sensor 7 operates, and in response to this, the controller 19 closes the solenoid valve 16, closes the actuator 21, and stops the compressor 1. The refrigerant recovery operation is terminated.

さらに、室11内には、ガス漏れ検知センサ8が配備されており、空調運転中にガス漏れ検知の信号がコントローラ19に入力されると、コントローラ19は停止指令を出力して冷媒回収運転を行い、圧縮機1が停止すると同時にガス漏れ警報が出力される。 Further, a gas leak detection sensor 8 is provided in the chamber 11, and when a gas leak detection signal is input to the controller 19 during the air conditioning operation, the controller 19 outputs a stop command to perform the refrigerant recovery operation. Then, the gas leak alarm is output at the same time when the compressor 1 is stopped.

特許文献2では、同様の冷媒回収を行うにあたり、装置のコストを低減するため、室内機液側(冷房入口側)、ガス側(冷房出口側)の遮断を、液側は電磁膨張弁、ガス側は遮断弁で行う。そして、冷媒回収運転の方法については、電磁膨張弁を遮断した後、圧縮機を所定の時間運転し、圧縮機を停止するとともに遮断弁を遮断するとしている。 In Patent Document 2, in order to reduce the cost of the device in performing the same refrigerant recovery, the indoor unit liquid side (cooling inlet side) and gas side (cooling outlet side) are shut off, and the liquid side is an electromagnetic expansion valve and gas. The side is a shut-off valve. As for the method of the refrigerant recovery operation, after shutting off the electromagnetic expansion valve, the compressor is operated for a predetermined time, the compressor is stopped, and the shutoff valve is shut off.

特開平8-166171号公報Japanese Unexamined Patent Publication No. 8-166171 特開2000-97527号公報Japanese Unexamined Patent Publication No. 2000-97527

上記従来の特許文献1および特許文献2の空気調和装置は、可燃性冷媒を使用するもので、室内での引火や爆発といった危険を回避するために、運転停止時や冷媒漏れを検知した場合に、冷媒回収運転を行って冷媒を室内側の冷媒回路から排除するものである。 The conventional air conditioners of Patent Document 1 and Patent Document 2 use a flammable refrigerant, and when the operation is stopped or a refrigerant leak is detected in order to avoid danger of ignition or explosion in the room. , The refrigerant recovery operation is performed to remove the refrigerant from the refrigerant circuit on the indoor side.

そして、冷媒回収終了の判断は、特許文献1の場合、圧縮機吸入側の冷媒圧力の低下を検出した時点、特許文献2の場合は、冷媒回収運転開始から所定の時間経過した時点としている。 In the case of Patent Document 1, the determination of the end of the refrigerant recovery is performed when a decrease in the refrigerant pressure on the suction side of the compressor is detected, and in the case of Patent Document 2, a predetermined time has elapsed from the start of the refrigerant recovery operation.

しかしながら、このような冷媒回収終了判定では、運転の状況によっては、室内側の冷媒回路内の可燃性冷媒を十分に排除できない可能性や、圧縮機の吸入側の冷媒の圧力が負圧となり冷媒回路内に空気を導入してしまう可能性がある。 However, in such a refrigerant recovery end determination, depending on the operating conditions, there is a possibility that the flammable refrigerant in the refrigerant circuit on the indoor side cannot be sufficiently excluded, or the pressure of the refrigerant on the suction side of the compressor becomes a negative pressure and the refrigerant becomes negative. There is a possibility of introducing air into the circuit.

その結果、残留冷媒が漏洩して引火したり、圧縮機が可燃性冷媒や冷凍機油と空気の混合物を圧縮して室外機の爆発を招いたりする危険性がある。 As a result, there is a risk that the residual refrigerant may leak and ignite, or the compressor may compress a flammable refrigerant or a mixture of refrigerating machine oil and air, resulting in an explosion of the outdoor unit.

従って本発明は、こうした課題を解決し、冷媒漏洩を防止するため、運転終了時や冷媒漏洩時の冷媒回収運転を行う空気調和機において、冷媒回収運転を適切に行い安全性や、信頼性に優れた装置を提供するものである。 Therefore, in order to solve these problems and prevent refrigerant leakage, the present invention appropriately performs the refrigerant recovery operation in the air conditioner that performs the refrigerant recovery operation at the end of the operation or at the time of the refrigerant leakage, in terms of safety and reliability. It provides an excellent device.

上記従来の課題を解決するために、本発明の空気調和機は、作動冷媒を圧縮して送り出す圧縮機と、室外送風機によって送られた室外空気と前記作動冷媒との間で熱交換する室外熱交換器を有する室外機と、室内送風機によって送られた室内空気と前記作動冷媒との間で熱交換する室内熱交換器を有する室内機とで、冷凍あるいはヒートポンプサイクルを構成する空気調和機であって、前記室外機と前記室内機を接続する第1冷媒経路を遮断する第1冷媒遮断手段と、前記室外機と前記室内機を接続する第2冷媒経路を遮断する第2冷媒遮断手段と、前記室内機の作動冷媒の状態を推定するための情報を取得する状態検知手段と、前記第1冷媒遮断手段と前記第2冷媒遮断手段の動作を含め装置の動作を制御する制御手段を備え、前記状態検知手段は、冷媒温度検知手段、冷媒圧力検知手段、気温検知手段、圧縮機電力検知手段のうち少なくとも2つ以上を備え、前記制御手段は、運転停止若しくは作動冷媒漏洩時に作動冷媒を前記室外機に回収する際に、前記状態検知手段の出力に基づいて前記第2冷媒遮断手段を閉じる時期を判断するものである。 In order to solve the above-mentioned conventional problems, the air conditioner of the present invention has a compressor that compresses and sends out the working refrigerant, and outdoor heat that exchanges heat between the outdoor air sent by the outdoor blower and the working refrigerant. An air conditioner that constitutes a refrigeration or heat pump cycle with an outdoor unit having a exchanger and an indoor unit having an indoor heat exchanger that exchanges heat between the indoor air sent by the indoor blower and the working refrigerant. A first refrigerant blocking means for blocking the first refrigerant path connecting the outdoor unit and the indoor unit, and a second refrigerant blocking means for blocking the second refrigerant path connecting the outdoor unit and the indoor unit. A state detecting means for acquiring information for estimating the state of the operating refrigerant of the indoor unit, and a control means for controlling the operation of the device including the operations of the first refrigerant blocking means and the second refrigerant blocking means are provided. The state detecting means includes at least two or more of a refrigerant temperature detecting means, a refrigerant pressure detecting means, a temperature detecting means, and a compressor power detecting means, and the control means uses the working refrigerant when the operation is stopped or the working refrigerant leaks. When collecting the refrigerant in the outdoor unit, the time to close the second refrigerant blocking means is determined based on the output of the state detecting means.

これにより、前記第2冷媒遮断手段を閉じる時期を適切に判断し、前記室内機の冷媒回路内に適度な量の作動冷媒を残留させて停止することができる。 As a result, it is possible to appropriately determine when to close the second refrigerant blocking means, and to leave an appropriate amount of the working refrigerant in the refrigerant circuit of the indoor unit to stop the second refrigerant.

本発明の空気調和機は、第2冷媒遮断手段を閉じる時期を適切に判断し、室内機の冷媒回路内に適度な量の作動冷媒を残留させて停止することができるので、室内機側で作動冷媒の漏洩が生じても、漏洩量を最小限に抑制するとともに、冷媒回路内に空気を引き込んで圧縮機が爆発するのを回避し、室内機と室外機を接続する配管がわずかな外力で変形するのを防ぎ、環境負荷が小さく、安全で信頼性の高い空気調和機を提供することができる。 Since the air conditioner of the present invention can appropriately determine when to close the second refrigerant shutoff means and leave an appropriate amount of working refrigerant in the refrigerant circuit of the indoor unit to stop the air conditioner, the indoor unit side can stop the air conditioner. Even if the working refrigerant leaks, the amount of leakage is minimized, air is drawn into the refrigerant circuit to prevent the compressor from exploding, and the piping connecting the indoor unit and the outdoor unit has a slight external force. It is possible to provide a safe and highly reliable air conditioner with a small environmental load by preventing the air conditioner from being deformed.

本発明の実施の形態1の空調調和機の構成図Configuration diagram of the air conditioning harmonizer according to the first embodiment of the present invention 本発明の実施の形態1の空調調和機の冷媒回収時の流れ図Flow chart at the time of refrigerant recovery of the air-conditioning harmonizer of Embodiment 1 of this invention 従来の空気調和機の構成図Configuration diagram of a conventional air conditioner

第1の発明は、作動冷媒を圧縮して送り出す圧縮機と、室外送風機によって送られた室外空気と前記作動冷媒との間で熱交換する室外熱交換器を有する室外機と、室内送風機によって送られた室内空気と前記作動冷媒との間で熱交換する室内熱交換器を有する室内機とで、冷凍あるいはヒートポンプサイクルを構成する空気調和機であって、前記室外機と前記室内機を接続する第1冷媒経路を遮断する第1冷媒遮断手段と、前記室外機と前記室内機を接続する第2冷媒経路を遮断する第2冷媒遮断手段と、前記室内機の作動冷媒の状態を推定するための情報を取得する状態検知手段と、前記第1冷媒遮断手段と前記第2冷媒遮断手段の動作を含め装置の動作を制御する制御手段を備え、前記状態検知手段は、冷媒温度検知手段、冷媒圧力検知手段、気温検知手段、圧縮機電力検知手段のうち少なくとも2つ以上を備え、前記制御手段は、運転停止若しくは作動冷媒漏洩時に作動冷媒を前記室外機に回収する際に、前記状態検知手段の出力に基づいて前記第2冷媒遮断手段を閉じる時期を判断するものである。 The first invention comprises a compressor that compresses and sends out the working refrigerant, an outdoor unit having an outdoor heat exchanger that exchanges heat between the outdoor air sent by the outdoor blower and the working refrigerant, and an indoor blower. An air conditioner that constitutes a refrigeration or heat pump cycle with an indoor unit having an indoor heat exchanger that exchanges heat between the indoor air and the working refrigerant, and connects the outdoor unit and the indoor unit. To estimate the state of the operating refrigerant of the indoor unit, the first refrigerant blocking means for blocking the first refrigerant path, the second refrigerant blocking means for blocking the second refrigerant path connecting the outdoor unit and the indoor unit. The state detecting means includes a state detecting means for acquiring the information of the above, and a control means for controlling the operation of the device including the operation of the first refrigerant shutting off means and the second refrigerant shutting off means, and the state detecting means includes a refrigerant temperature detecting means and a refrigerant. The control means includes at least two or more of a pressure detecting means, a temperature detecting means, and a compressor power detecting means, and the control means is said to be a state detecting means when the working refrigerant is collected in the outdoor unit when the operation is stopped or the working refrigerant leaks. The time to close the second refrigerant blocking means is determined based on the output of the above.

これにより、第2冷媒遮断手段を閉じる時期を適切に判断し、室内機の冷媒回路内に適度な量の作動冷媒を残留させて停止することができる。 As a result, the time to close the second refrigerant shutoff means can be appropriately determined, and an appropriate amount of the working refrigerant can be left in the refrigerant circuit of the indoor unit to stop.

従って、室内機側で作動冷媒の漏洩が生じても、漏洩量を最小限に抑制するとともに、冷媒回路内に空気を引き込んで圧縮機が爆発するのを回避し、室内機と室外機を接続する配管がわずかな外力で変形するのを防ぎ、安全で信頼性の高い空気調和機を提供することができる。 Therefore, even if the working refrigerant leaks on the indoor unit side, the amount of leakage is minimized, air is drawn into the refrigerant circuit to prevent the compressor from exploding, and the indoor unit and the outdoor unit are connected. It is possible to prevent the piping to be deformed by a slight external force and provide a safe and reliable air conditioner.

第2の発明は、第1の発明において前記状態検知手段として、前記冷媒温度検知手段と前記冷媒圧力検知手段を使用し、前記冷媒温度検知手段と前記冷媒圧力検知手段は、いずれも前記第1冷媒遮断手段と前記第2冷媒遮断手段とで遮断された冷媒回路の室内側に配備されるものである。 The second invention uses the refrigerant temperature detecting means and the refrigerant pressure detecting means as the state detecting means in the first invention, and the refrigerant temperature detecting means and the refrigerant pressure detecting means are both the first. It is installed on the indoor side of the refrigerant circuit cut off by the refrigerant cutoff means and the second refrigerant cutoff means.

これにより、室内機側の作動冷媒の状態を正確に推定することができる。 This makes it possible to accurately estimate the state of the operating refrigerant on the indoor unit side.

従って、室内機の冷媒回路内に残留させる作動冷媒の量を精度よく決定できる。 Therefore, the amount of the working refrigerant remaining in the refrigerant circuit of the indoor unit can be accurately determined.

第3の発明は、第1および第2の発明において、前記制御手段は、前記冷媒圧力検知手段の出力に応じて前記圧縮機の回転数を制御するものである。 According to a third aspect of the invention, in the first and second inventions, the control means controls the rotation speed of the compressor according to the output of the refrigerant pressure detecting means.

これにより、冷媒回収運転終了間近に作動冷媒の回収速度を落として、遮断時期の判定精度を高くすることができる。 As a result, the recovery speed of the working refrigerant can be reduced near the end of the refrigerant recovery operation, and the accuracy of determining the shutoff time can be improved.

従って、室内機の冷媒回路内の残留作動冷媒量の再現性を向上させることができる。 Therefore, it is possible to improve the reproducibility of the amount of residual working refrigerant in the refrigerant circuit of the indoor unit.

第4の発明は、第1、第2、第3の発明において、前記作動冷媒が可燃性冷媒である。 In the fourth invention, in the first, second, and third inventions, the working refrigerant is a flammable refrigerant.

これにより、オゾン層の破壊や温暖化への影響を最小限にすることができる。 As a result, the impact on ozone layer depletion and global warming can be minimized.

従って、安全で環境負荷の小さな空気調和機を提供することができる。 Therefore, it is possible to provide an air conditioner that is safe and has a small environmental load.

以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1は、本発明の実施の形態1における空気調和機の構成図を示すものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 shows a configuration diagram of an air conditioner according to the first embodiment of the present invention.

図1に示すように、第1の実施の形態における空気調和機は、室外機101と、室内機107を配管で環状に接続して作動冷媒を循環させ、冷房あるいは暖房を行なう装置である。 As shown in FIG. 1, the air conditioner in the first embodiment is a device in which an outdoor unit 101 and an indoor unit 107 are connected in a ring shape by a pipe to circulate an operating refrigerant to perform cooling or heating.

図2は、本発明の実施の形態1における空気調和機が冷媒回収を行う際の制御の概略を示す流れ図である。 FIG. 2 is a flow chart showing an outline of control when the air conditioner according to the first embodiment of the present invention recovers the refrigerant.

室外機101は、作動冷媒を圧縮する圧縮機102と、圧縮機102から吐出された作動冷媒の流れを切換える四方弁103と、室外送風機105によって送られてきた室外空気と作動冷媒との間で熱交換する室外熱交換器104と、高圧の作動冷媒を減圧膨張させる膨張弁106が備えられている。ちなみに、圧縮機102はインバータ駆動方式の圧縮機で、状況に応じて運転回転数を変更することが可能である。 The outdoor unit 101 is between a compressor 102 that compresses the working refrigerant, a four-way valve 103 that switches the flow of the working refrigerant discharged from the compressor 102, and the outdoor air and the working refrigerant sent by the outdoor blower 105. An outdoor heat exchanger 104 that exchanges heat and an expansion valve 106 that decompresses and expands a high-pressure working refrigerant are provided. Incidentally, the compressor 102 is an inverter drive type compressor, and the operating rotation speed can be changed according to the situation.

室内機107には、室内送風機109によって送られてきた室内空気と作動冷媒の間で熱交換を行う室内熱交換器108を備えていて、室内を快適な状態にするため冷房や暖房が行われる。 The indoor unit 107 is provided with an indoor heat exchanger 108 that exchanges heat between the indoor air sent by the indoor blower 109 and the working refrigerant, and cools and heats the room in order to make the room comfortable. ..

使用する作動冷媒について、特に限定はなく、相変化に伴う吸放熱を利用し、圧縮機を用いて冷凍あるいはヒートポンプを構成できる作動冷媒であれば使用可能である。 The working refrigerant to be used is not particularly limited, and any working refrigerant that can be used for freezing or forming a heat pump by using a compressor by utilizing endothermic heat absorption due to a phase change can be used.

そして、室内機107は、室外機101の液側接続口110、ガス側接続口111で配管接続され、基本的な冷媒回路を構成している。加えて、快適な空調、円滑な運転を行うために、室温センサ116、室内冷媒温度センサ117、外気温センサ118、圧縮機電力センサ119、制御手段として制御装置120が備えられている。 The indoor unit 107 is connected by piping at the liquid side connection port 110 and the gas side connection port 111 of the outdoor unit 101 to form a basic refrigerant circuit. In addition, in order to perform comfortable air conditioning and smooth operation, a room temperature sensor 116, an indoor refrigerant temperature sensor 117, an outside air temperature sensor 118, a compressor power sensor 119, and a control device 120 as control means are provided.

制御装置120は、すべてのセンサの出力を受けて、すべての動作要素に動作指令を出力するもので、図1では、センサ出力123、動作指令124の矢印で代表して図示し、個別の対応は省略している。制御手段は、例えば、液側遮断弁112、ガス側遮断弁113、圧縮機102を制御することが出来る。 The control device 120 receives the output of all the sensors and outputs an operation command to all the operation elements. In FIG. 1, the sensor output 123 and the operation command 124 are represented by arrows, and the individual correspondence is shown. Is omitted. The control means can control, for example, the liquid side shutoff valve 112, the gas side shutoff valve 113, and the compressor 102.

図1の空気調和機は、状態検知手段を有しており、状態検知手段は、室内機の作動冷媒の状態を推定するための検知手段であればよく、例えば、冷媒温度検知手段、冷媒圧力検知手段、気温検知手段、圧縮機電力検知手段が挙げられ、好ましくは、それらが少なくとも2つ以上が設置されている。冷媒温度検知手段は冷媒回路中を流れる作動冷媒の温度を検知する手段であり、図1で言えば、冷媒温度センサ114や室内冷媒温度センサ117がこれにあたる。冷媒圧力検知手段は冷媒回路中の作動冷媒の圧力を検知する手段であり、図1においては圧力センサ115がこれにあたる。気温検知手段は室外機101や室内機107の雰囲気温度を検知する手段であり、図1においては外気温センサ118と室温センサ116がこれにあたる。圧縮機電力検知手段は圧縮機102の消費電力を検知する手段であり、図1においては圧縮機電力センサ119がこれにあたる。 The air conditioner of FIG. 1 has a state detecting means, and the state detecting means may be any detecting means for estimating the state of the operating refrigerant of the indoor unit, for example, a refrigerant temperature detecting means and a refrigerant pressure. Examples thereof include a detecting means, a temperature detecting means, and a compressor power detecting means, and preferably, at least two or more of them are installed. The refrigerant temperature detecting means is a means for detecting the temperature of the working refrigerant flowing in the refrigerant circuit, and in FIG. 1, the refrigerant temperature sensor 114 and the indoor refrigerant temperature sensor 117 correspond to this. The refrigerant pressure detecting means is a means for detecting the pressure of the operating refrigerant in the refrigerant circuit, and in FIG. 1, the pressure sensor 115 corresponds to this. The air temperature detecting means is a means for detecting the atmospheric temperature of the outdoor unit 101 or the indoor unit 107, and in FIG. 1, the outdoor air temperature sensor 118 and the room temperature sensor 116 correspond to this. The compressor power detecting means is a means for detecting the power consumption of the compressor 102, and in FIG. 1, the compressor power sensor 119 corresponds to this.

さらに、図1の空気調和機は、作動冷媒の漏洩を最小限に止めて安全性の向上や環境負荷低減を図るため、運転停止時、例えば運転終了時や作動冷媒漏洩時に冷媒回収運転を適切に行う。そのために、冷媒遮断手段が備えられており、第1冷媒経路である膨張弁106と液側接続口110の間に、第1冷媒遮断手段として液側遮断弁112が配置され、液側遮断弁112と液側接続口110の間に、冷媒温度センサ114配置されている。加えて、第2冷媒経路であるガス側接続口111と四方弁103の間に、第2冷媒遮断手段としてガス側遮断弁113が配置され、ガス側接続口111とガス側遮断弁113の間に圧力センサ115が配置され、室内機107には冷媒センサ125が配置される。 Further, in the air conditioner of FIG. 1, in order to minimize the leakage of the working refrigerant to improve safety and reduce the environmental load, the refrigerant recovery operation is appropriate when the operation is stopped, for example, at the end of the operation or when the working refrigerant leaks. To do. Therefore, a refrigerant shutoff means is provided, and a liquid side shutoff valve 112 is arranged as a first refrigerant shutoff means between the expansion valve 106 which is the first refrigerant path and the liquid side connection port 110, and the liquid side shutoff valve is provided. A refrigerant temperature sensor 114 is arranged between the 112 and the liquid side connection port 110. In addition, a gas side shutoff valve 113 is arranged as a second refrigerant shutoff means between the gas side connection port 111 and the four-way valve 103, which are the second refrigerant paths, and is between the gas side connection port 111 and the gas side shutoff valve 113. A pressure sensor 115 is arranged in the indoor unit 107, and a refrigerant sensor 125 is arranged in the indoor unit 107.

図1において四方弁103は、冷房運転、除霜運転あるいは冷媒回収運転時の状態となっており、圧縮機102から吐出された作動冷媒は、四方弁103から室外熱交換器104へ、その後、膨張弁106、液側遮断弁112、液側接続口110、室内熱交換器108へと流れる冷凍サイクルを構成している。 In FIG. 1, the four-way valve 103 is in a state during cooling operation, defrosting operation, or refrigerant recovery operation, and the working refrigerant discharged from the compressor 102 is sent from the four-way valve 103 to the outdoor heat exchanger 104 and then to the outdoor heat exchanger 104. It constitutes a refrigeration cycle that flows to the expansion valve 106, the liquid side shutoff valve 112, the liquid side connection port 110, and the indoor heat exchanger 108.

暖房運転の場合は、圧縮機102から吐出された作動冷媒は、四方弁103からガス側遮断弁113、ガス側接続口111を経て室内熱交換器108へ、その後、液側接続口110、液側遮断弁112、室外熱交換器104へと流れるヒートポンプサイクルを構成している。 In the case of heating operation, the working refrigerant discharged from the compressor 102 is sent from the four-way valve 103 to the indoor heat exchanger 108 via the gas side shutoff valve 113 and the gas side connection port 111, and then to the liquid side connection port 110 and the liquid. It constitutes a heat pump cycle that flows to the side shutoff valve 112 and the outdoor heat exchanger 104.

圧縮機102を使って作動冷媒を室外機101へ回収するためには、冷凍サイクルを構成して運転する必要がある。 In order to recover the working refrigerant to the outdoor unit 101 using the compressor 102, it is necessary to configure and operate the refrigeration cycle.

図2に示すように、冷媒回収運転が制御装置120から指示されると、圧縮機102の回転数を所定の値に設定して、冷媒回収運転を行う。暖房運転中は一旦停止した後、四方弁103の設定を冷房運転時と同様に設定して冷媒回収運転を開始する。冷房運転や、除霜運転など冷媒が圧縮機102から室外熱交換器104を経て室内熱交換器108の順に流れる冷凍サイクルで運転中は、停止せずに連続して冷媒回収運転を進める。 As shown in FIG. 2, when the refrigerant recovery operation is instructed by the control device 120, the rotation speed of the compressor 102 is set to a predetermined value, and the refrigerant recovery operation is performed. After temporarily stopping during the heating operation, the setting of the four-way valve 103 is set in the same manner as during the cooling operation, and the refrigerant recovery operation is started. During the refrigerating cycle in which the refrigerant flows from the compressor 102 through the outdoor heat exchanger 104 to the indoor heat exchanger 108 in this order, such as in the cooling operation and the defrosting operation, the refrigerant recovery operation is continuously advanced without stopping.

冷媒回収運転に移行して所定の時間経過後、液側遮断弁112を閉じると、室内機107の冷媒回路内への作動冷媒供給は止まり、圧縮機102は引き続き運転を続けるので、室内機107の冷媒回路内の作動冷媒は吸引され、室外機101の冷媒回路内へ回収され、その多くは室外熱交換器104で凝縮して貯留される。 When the liquid side shutoff valve 112 is closed after shifting to the refrigerant recovery operation and a predetermined time has elapsed, the supply of the working refrigerant into the refrigerant circuit of the indoor unit 107 is stopped, and the compressor 102 continues to operate. The working refrigerant in the refrigerant circuit of the above is sucked and collected in the refrigerant circuit of the outdoor unit 101, and most of them are condensed and stored in the outdoor heat exchanger 104.

冷媒回収運転が進行するにつれて、圧力センサ115の出力は低下し、冷媒温度センサ114、室内冷媒温度センサ117の出力は低下していくが検知部の液冷媒がなくなると上昇に転じ、雰囲気温度を上限にゆっくり上昇していく。 As the refrigerant recovery operation progresses, the output of the pressure sensor 115 decreases, and the outputs of the refrigerant temperature sensor 114 and the indoor refrigerant temperature sensor 117 decrease, but when the liquid refrigerant in the detection unit runs out, the output starts to increase and the ambient temperature is increased. It slowly rises to the upper limit.

冷媒温度センサ114、室内冷媒温度センサ117の出力の変化は、室内冷媒温度センサ117のほうが早く進行し、先に最低値に到達し上昇に転ずる。冷媒温度センサ114は、圧縮機102の吸入口から最も遠く、出力変化は最も遅くに最低値に到達する。 The change in the output of the refrigerant temperature sensor 114 and the indoor refrigerant temperature sensor 117 proceeds faster in the indoor refrigerant temperature sensor 117, reaches the lowest value first, and starts to rise. The refrigerant temperature sensor 114 is the furthest from the suction port of the compressor 102, and the output change reaches the lowest value at the latest.

圧力センサ115の出力だけでは、圧力の低下は検知することができるが、室内機107の冷媒回路内にどれだけの液冷媒が残っているかは、設置状態や室温の違いなどにより必ずしも同じではない。 Although a decrease in pressure can be detected only by the output of the pressure sensor 115, how much liquid refrigerant remains in the refrigerant circuit of the indoor unit 107 is not always the same depending on the installation state and the difference in room temperature. ..

冷媒温度センサ114あるいは室内冷媒温度センサ117の1つのセンサ出力だけでも、判断が難しく、室内冷媒温度センサ117の出力値で判別しても、液側接続配管121の設置状態や運転状況によって、液側接続配管121から液側遮断弁112までの間にどれだけの液冷媒が残留しているか判断するのは難しい。冷媒温度センサ114の出力のみで判断する場合、出力最低値を確認してからでは室内機107の冷媒回路内が負圧になってしまう可能性が高い。 It is difficult to make a judgment only by the output of one of the refrigerant temperature sensor 114 or the indoor refrigerant temperature sensor 117, and even if it is determined by the output value of the indoor refrigerant temperature sensor 117, the liquid depends on the installation state and operating condition of the liquid side connection pipe 121. It is difficult to determine how much liquid refrigerant remains between the side connection pipe 121 and the liquid side shutoff valve 112. When judging only by the output of the refrigerant temperature sensor 114, there is a high possibility that the inside of the refrigerant circuit of the indoor unit 107 becomes a negative pressure after confirming the minimum output value.

液冷媒が多量に残留してしまうと、漏洩した場合に引火の危険性があり、逆に冷媒回路内が負圧なってしまうと、空気の混入が生じ、圧縮機102内でディーゼル爆発を起こしたり、酸素や水分が装置の信頼性に悪影響を与えたり、負圧になった液側接続配管121やガス側接続配管122に何らかの作業などにより外力が加わった場合に、容易に変形を生じてしまう危険性がある。 If a large amount of liquid refrigerant remains, there is a risk of ignition if it leaks, and conversely, if the pressure inside the refrigerant circuit becomes negative, air will be mixed in and a diesel explosion will occur inside the compressor 102. Or, if oxygen or moisture adversely affects the reliability of the device, or if an external force is applied to the liquid side connection pipe 121 or gas side connection pipe 122 that has become negative pressure due to some work, deformation easily occurs. There is a risk of getting rid of it.

そこで、単一のセンサ出力で冷媒回収終了タイミングを決定するのではなく、複数のセンサ出力から総合的に判断して冷媒回収終了タイミングを決定すると、室内機107の冷媒回路内の冷媒残留量を正確に制御することができる。 Therefore, instead of determining the refrigerant recovery end timing with a single sensor output, if the refrigerant recovery end timing is determined comprehensively from a plurality of sensor outputs, the residual amount of refrigerant in the refrigerant circuit of the indoor unit 107 can be determined. It can be controlled accurately.

また、実施の形態1においては、圧縮機102には、圧縮機電力センサ119が設けられており、冷媒回収運転が進行すると、圧縮機102の回転数が一定であっても圧縮機電力センサ119の出力は低下する。圧縮機電力センサ119は、精度的には劣るものの、圧縮機102の保護制御上搭載されるケースも多く、安価に構成することができる。 Further, in the first embodiment, the compressor 102 is provided with the compressor power sensor 119, and when the refrigerant recovery operation proceeds, the compressor power sensor 119 is provided even if the rotation speed of the compressor 102 is constant. The output of is reduced. Although the compressor power sensor 119 is inferior in accuracy, it is often mounted on the compressor 102 for protection control, and can be configured at low cost.

また、圧力センサ115を用いている場合でも、圧力センサ115に不具合が生じても圧縮機電力センサ119が代わりを務めることができ、高い信頼性を得ることができる。 Further, even when the pressure sensor 115 is used, the compressor power sensor 119 can serve as a substitute even if a defect occurs in the pressure sensor 115, and high reliability can be obtained.

ここで、センサの組み合わせや、冷媒回収動作の実例を挙げて説明を行う。 Here, a combination of sensors and an actual example of the refrigerant recovery operation will be described.

まず、基本的な組み合わせとして、冷媒圧力検知手段として圧力センサ115と、冷媒温度検知手段として冷媒温度センサ114あるいは室内冷媒温度センサ117の組み合わせが考えられる。 First, as a basic combination, a combination of the pressure sensor 115 as the refrigerant pressure detecting means and the refrigerant temperature sensor 114 or the indoor refrigerant temperature sensor 117 as the refrigerant temperature detecting means can be considered.

冷媒回収運転開始後、圧力センサ115の出力は徐々に低下していく。この時、冷媒回収運転は、圧力センサ115の出力が負圧になる前に、室内機107内の冷媒回路中の液冷媒を極力減らして終了するのが基本である。 After the start of the refrigerant recovery operation, the output of the pressure sensor 115 gradually decreases. At this time, the refrigerant recovery operation is basically completed by reducing the amount of liquid refrigerant in the refrigerant circuit in the indoor unit 107 as much as possible before the output of the pressure sensor 115 becomes a negative pressure.

冷媒回収運転が進むと、圧力センサ115の出力が低下し、冷媒温度センサ114あるいは室内冷媒温度センサ117の出力も低下していく。圧力センサ115の出力が負圧になる前で、冷媒温度センサ114あるいは室内冷媒温度センサ117の出力が上昇に転じたところで、圧力センサ115の出力が所定の値に到達したら冷媒回収終了とし、ガス側遮断弁113を閉じ、圧縮機102、室外送風機105、室内送風機109を停止する。 As the refrigerant recovery operation progresses, the output of the pressure sensor 115 decreases, and the output of the refrigerant temperature sensor 114 or the indoor refrigerant temperature sensor 117 also decreases. Before the output of the pressure sensor 115 becomes negative pressure, when the output of the refrigerant temperature sensor 114 or the indoor refrigerant temperature sensor 117 starts to rise, when the output of the pressure sensor 115 reaches a predetermined value, the refrigerant recovery is completed and the gas is recovered. The side shutoff valve 113 is closed, and the compressor 102, the outdoor blower 105, and the indoor blower 109 are stopped.

冷媒温度センサ114と室内冷媒温度センサ117とでは、冷媒回収を精度良く行うという観点では、冷媒温度センサ114が優れているが、室内冷媒温度センサ117は一般に空気調和機の制御目的で配置される配管温度センサで代用することも可能であり、多くの場合、コストの増加を抑えることができる。 The refrigerant temperature sensor 114 and the indoor refrigerant temperature sensor 117 are superior from the viewpoint of accurately recovering the refrigerant, but the indoor refrigerant temperature sensor 117 is generally arranged for the purpose of controlling the air conditioner. It is also possible to substitute a pipe temperature sensor, and in many cases, the increase in cost can be suppressed.

また、圧力センサ115の代わりに圧縮機電力検知手段として圧縮機電力センサ119を使用すると、冷媒圧力の検出精度は落ちるものの、DCブラシレスモータを使用するような圧縮機ではその制御に電流値を利用しており、特別にコストをかけずとも検出が可能であるため、コストの増加を抑えることができる。 Further, if the compressor power sensor 119 is used as the compressor power detection means instead of the pressure sensor 115, the detection accuracy of the refrigerant pressure is lowered, but the current value is used for the control in the compressor such as the one using the DC brushless motor. Since it can be detected without any special cost, it is possible to suppress the increase in cost.

冷媒回収運転開始直後の、室外機101への冷媒回収がまだ進んでおらず、圧縮機102の吸入冷媒の圧力が高い状態では、圧縮機102の電力もまた高くなっているが、冷媒回収が進んで圧縮機102の吸入冷媒の圧力が低下すると、圧縮機の電力もまた低下する。従って、圧力センサ115の出力を圧縮機電力センサ119の出力に置きかえることが可能で、同様に冷媒回収の進捗状態が推定できる。 Immediately after the start of the refrigerant recovery operation, the refrigerant recovery to the outdoor unit 101 has not yet progressed, and when the pressure of the suction refrigerant of the compressor 102 is high, the power of the compressor 102 is also high, but the refrigerant recovery is performed. If the pressure of the suction refrigerant of the compressor 102 decreases, the power of the compressor also decreases. Therefore, the output of the pressure sensor 115 can be replaced with the output of the compressor power sensor 119, and the progress state of the refrigerant recovery can be estimated in the same manner.

さらに、圧力センサ115あるいは圧縮機電力センサ119と、気温検知手段として室温センサ116と外気温センサ118と、冷媒温度センサ114あるいは室内冷媒温度センサ117を使用して適切な冷媒回収運転を行うことが可能である。 Further, an appropriate refrigerant recovery operation can be performed by using the pressure sensor 115 or the compressor power sensor 119, the room temperature sensor 116 and the outside air temperature sensor 118 as the temperature detecting means, and the refrigerant temperature sensor 114 or the indoor refrigerant temperature sensor 117. It is possible.

室温センサ116と外気温センサ118の出力を使用すると、圧縮機102の回転数と合わせて、室外室内での作動冷媒の温度が推定でき、圧縮機102の消費電力が推定できる。 By using the outputs of the room temperature sensor 116 and the outside air temperature sensor 118, the temperature of the working refrigerant in the outdoor room can be estimated together with the rotation speed of the compressor 102, and the power consumption of the compressor 102 can be estimated.

空気調和機が正常であれば、圧縮機電力センサ119の出力値は消費電力の推定値とおおむね一致するが、冷媒の循環が止まったり、室内あるいは室外の空気との熱交換が妨げられたりすると、大きな齟齬が生じる。 If the air conditioner is normal, the output value of the compressor power sensor 119 generally matches the estimated value of power consumption, but if the circulation of the refrigerant is stopped or the heat exchange with the indoor or outdoor air is hindered. , A big discrepancy occurs.

冷媒回収時は、液側遮断弁112で冷媒の循環が止まるため、冷媒回収が進むにつれて、圧縮機電力センサ119の出力値は低下し、推定値よりも小さくなっていく。 At the time of refrigerant recovery, the circulation of the refrigerant is stopped by the liquid side shutoff valve 112, so that the output value of the compressor power sensor 119 decreases and becomes smaller than the estimated value as the refrigerant recovery progresses.

この推定した圧縮機102の消費電力と、圧縮機電力センサ119の出力値を比較することで、冷媒回収の進捗度がより正確に推定できる。 By comparing the estimated power consumption of the compressor 102 with the output value of the compressor power sensor 119, the progress of refrigerant recovery can be estimated more accurately.

ここで、室内冷媒温度センサ117や冷媒温度センサ114の取り付け部の形状を、例えば垂直に立下った後、垂直に立ち上がるような形状とし、液冷媒が貯まりやすい構造とすると、液冷媒の蒸発完了をより正確に検知することができる。 Here, if the shape of the mounting portion of the indoor refrigerant temperature sensor 117 and the refrigerant temperature sensor 114 is such that, for example, the refrigerant falls vertically and then rises vertically, and the structure is such that the liquid refrigerant can easily be stored, the evaporation of the liquid refrigerant is completed. Can be detected more accurately.

加えて、冷媒温度センサ114や圧力センサ115は、冷媒回収を正確に行うという目的から、第1冷媒遮断手段としての液側遮断弁112と第2冷媒遮断手段としてのガス側遮断弁113とで遮断された冷媒回路の室内機107側に配置されるのが好ましい。そして、冷媒温度センサ114の取り付け位置は、液冷媒が最後まで残留場所、つまり、液側接続口110と液側遮断弁112の間に配置されると、最後の液冷媒が蒸発する瞬間をとらえることができる。圧力センサ115については、室内機107の冷媒回路側で、圧縮機102の吸入口に最も近い、ガス側接続口111とガス側遮断弁113の間に設置することで、最低圧力を検出することができる。 In addition, the refrigerant temperature sensor 114 and the pressure sensor 115 include a liquid side shutoff valve 112 as a first refrigerant shutoff means and a gas side shutoff valve 113 as a second refrigerant shutoff means for the purpose of accurately recovering the refrigerant. It is preferably arranged on the indoor unit 107 side of the cut-off refrigerant circuit. The mounting position of the refrigerant temperature sensor 114 captures the moment when the final liquid refrigerant evaporates when the liquid refrigerant remains until the end, that is, between the liquid side connection port 110 and the liquid side shutoff valve 112. be able to. The pressure sensor 115 is installed on the refrigerant circuit side of the indoor unit 107 between the gas side connection port 111 and the gas side shutoff valve 113, which are closest to the suction port of the compressor 102, to detect the minimum pressure. Can be done.

つまり、冷媒温度センサ114や圧力センサ115は、図1に示す位置に配置することにより、最も正確に冷媒回収を行うことができる。 That is, by arranging the refrigerant temperature sensor 114 and the pressure sensor 115 at the positions shown in FIG. 1, the refrigerant can be recovered most accurately.

また、冷媒回収時の圧縮機102の回転数について考慮すると、回転数が高ければ冷媒回収運転を短時間で終わらせることが可能であるが、冷媒回収終了指令のタイミングが、適切な終了タイミングからわずかにずれただけでも、室内機107側の冷媒回路中の作動冷媒残量が大きくばらついてしまう。 Further, considering the rotation speed of the compressor 102 at the time of refrigerant recovery, if the rotation speed is high, the refrigerant recovery operation can be completed in a short time, but the timing of the refrigerant recovery end command is from an appropriate end timing. Even a slight deviation causes a large variation in the remaining amount of working refrigerant in the refrigerant circuit on the indoor unit 107 side.

一方、回転数が低ければ、作動冷媒の回収がゆっくりと行われるため、冷媒回収終了指令のタイミングが、適切な終了タイミングからずれにくくなり、室内機107側の冷媒回路中の作動冷媒残量を適切に保つことが容易になるが、冷媒回収に要する時間が長くなってしまい好ましくない。 On the other hand, if the rotation speed is low, the working refrigerant is slowly recovered, so that the timing of the refrigerant recovery end command is less likely to deviate from the appropriate end timing, and the remaining amount of the working refrigerant in the refrigerant circuit on the indoor unit 107 side is reduced. It is easy to keep it properly, but it is not preferable because it takes a long time to recover the refrigerant.

従って、高くも低くもない適切な回転数を設定してもよい。好ましくは、冷媒回収運転開始時は高い回転数で圧縮機102を駆動し、冷媒回収が進んで運転終了が近づいたら、回転数を落として運転する。それにより、冷媒回収運転の所要時間を抑えつつ室内機107側の冷媒回路中の作動冷媒残量を適切に保つことが容易にできる。 Therefore, an appropriate rotation speed that is neither high nor low may be set. Preferably, the compressor 102 is driven at a high rotation speed at the start of the refrigerant recovery operation, and when the refrigerant recovery progresses and the end of the operation is approaching, the rotation speed is reduced. As a result, it is possible to easily maintain the remaining amount of the working refrigerant in the refrigerant circuit on the indoor unit 107 side while suppressing the time required for the refrigerant recovery operation.

そして、図1の実施の形態1に示す空気調和機は、いかなる作動冷媒を使用する場合も、作動冷媒の漏洩を最小限に止め、空気の吸引を防ぎ、安全性の向上や環境負荷低減することが可能であるが、R32、R1234yf、R1234ze、プロパンやブタンなどの炭化水素など、可燃性冷媒を使用する場合には、引火などの危険回避することにつながり、その効果は大きい。 The air conditioner shown in the first embodiment of FIG. 1 minimizes leakage of the working refrigerant, prevents air suction, improves safety, and reduces the environmental load when any working refrigerant is used. However, when a flammable refrigerant such as R32, R1234yf, R1234ze, or a hydrocarbon such as propane or butane is used, it leads to avoiding danger such as ignition, and its effect is great.

中でも、プロパンについては、温暖化影響が小さいだけでなく冷媒としての性能も優れており、引火の危険性を低減できる本発明の意義は極めて高い。 Among them, propane has not only a small influence on global warming but also excellent performance as a refrigerant, and the significance of the present invention capable of reducing the risk of ignition is extremely high.

以上のように、本発明にかかる空気調和機は、冷凍およびヒートポンプサイクルを用いて空気調和を行なう空気調和機において、冷媒の漏洩を防ぐもので、その技術は空気調和機だけに止まらず、給湯機やショーケースや冷凍機などにも広く適用することができ、効果をもたらすものである。 As described above, the air conditioner according to the present invention is an air conditioner that performs air conditioning using a refrigerating and heat pump cycle to prevent leakage of a refrigerant, and the technique thereof is not limited to the air conditioner and supplies hot water. It can be widely applied to machines, showcases, refrigerators, etc., and has an effect.

101 室外機
102 圧縮機
103 四方弁
104 室外熱交換器
105 室外送風機
106 膨張弁
107 室内機
108 室内熱交換器
109 室内送風機
110 液側接続口
111 ガス側接続口
112 液側遮断弁
113 ガス側遮断弁
114 冷媒温度センサ
115 圧力センサ
116 室温センサ
117 室内冷媒温度センサ
118 外気温センサ
119 圧縮機電力センサ
120 制御装置
121 液側接続配管
122 ガス側接続配管
123 センサ出力
124 動作指令
101 Outdoor unit 102 Compressor 103 Four-way valve 104 Outdoor heat exchanger 105 Outdoor blower 106 Expansion valve 107 Indoor unit 108 Indoor heat exchanger 109 Indoor blower 110 Liquid side connection port 111 Gas side connection port 112 Liquid side shutoff valve 113 Gas side shutoff Valve 114 Refrigerant temperature sensor 115 Pressure sensor 116 Room temperature sensor 117 Indoor refrigerant temperature sensor 118 Outside temperature sensor 119 Compressor power sensor 120 Control device 121 Liquid side connection pipe 122 Gas side connection pipe 123 Sensor output 124 Operation command

Claims (4)

作動冷媒を圧縮して送り出す圧縮機と、室外送風機によって送られた室外空気と前記作動冷媒との間で熱交換する室外熱交換器を有する室外機と、
室内送風機によって送られた室内空気と前記作動冷媒との間で熱交換する室内熱交換器を有する室内機とで、
冷凍あるいはヒートポンプサイクルを構成する空気調和機であって、
前記室外機と前記室内機を接続する第1冷媒経路を遮断する第1冷媒遮断手段と、
前記室外機と前記室内機を接続する第2冷媒経路を遮断する第2冷媒遮断手段と、
前記室内機の作動冷媒の状態を推定するための情報を取得する状態検知手段と、
前記第1冷媒遮断手段と前記第2冷媒遮断手段の動作を含め装置の動作を制御する制御手段を備え、
前記状態検知手段は、冷媒温度検知手段、冷媒圧力検知手段、気温検知手段、圧縮機電力検知手段のうち少なくとも2つ以上を備え、
前記制御手段は、運転停止若しくは作動冷媒漏洩時に作動冷媒を前記室外機に回収する際に、前記状態検知手段の出力に基づいて前記第2冷媒遮断手段を閉じる時期を判断することを特徴とする空気調和機。
A compressor that compresses and sends out the working refrigerant, and an outdoor unit having an outdoor heat exchanger that exchanges heat between the outdoor air sent by the outdoor blower and the working refrigerant.
An indoor unit having an indoor heat exchanger that exchanges heat between the indoor air sent by the indoor blower and the working refrigerant.
An air conditioner that constitutes a freezing or heat pump cycle.
A first refrigerant blocking means for blocking the first refrigerant path connecting the outdoor unit and the indoor unit,
A second refrigerant blocking means for blocking the second refrigerant path connecting the outdoor unit and the indoor unit,
A state detecting means for acquiring information for estimating the state of the operating refrigerant of the indoor unit, and
A control means for controlling the operation of the device including the operation of the first refrigerant shutoff means and the second refrigerant shutoff means is provided.
The state detecting means includes at least two or more of a refrigerant temperature detecting means, a refrigerant pressure detecting means, a temperature detecting means, and a compressor power detecting means.
The control means is characterized in that when the working refrigerant is collected in the outdoor unit when the operation is stopped or the working refrigerant leaks, the time to close the second refrigerant blocking means is determined based on the output of the state detecting means. Air conditioner.
前記冷媒温度検知手段、前記冷媒圧力検知手段が、前記第1冷媒遮断手段と前記第2冷媒遮断手段とで遮断された冷媒回路の室内側に配備されることを特徴とする請求項1に記載の空気調和機。 The first aspect of claim 1, wherein the refrigerant temperature detecting means and the refrigerant pressure detecting means are provided on the indoor side of a refrigerant circuit cut off by the first refrigerant blocking means and the second refrigerant blocking means. Air conditioner. 前記制御手段は、前記冷媒圧力検知手段の出力に応じて前記圧縮機の回転数を制御することを特徴とする請求項1または請求項2のいずれかに記載の空気調和機。 The air conditioner according to claim 1 or 2, wherein the control means controls the rotation speed of the compressor according to the output of the refrigerant pressure detecting means. 前記作動冷媒が、可燃性冷媒であることを特徴とする請求項1から請求項3のいずれかに記載の空気調和機。 The air conditioner according to any one of claims 1 to 3, wherein the working refrigerant is a flammable refrigerant.
JP2020111038A 2020-06-29 2020-06-29 Air conditioner Pending JP2022010435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020111038A JP2022010435A (en) 2020-06-29 2020-06-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020111038A JP2022010435A (en) 2020-06-29 2020-06-29 Air conditioner

Publications (1)

Publication Number Publication Date
JP2022010435A true JP2022010435A (en) 2022-01-17

Family

ID=80147477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020111038A Pending JP2022010435A (en) 2020-06-29 2020-06-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP2022010435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157580A1 (en) * 2022-02-18 2023-08-24 サンデン株式会社 Heat pump system, and method for controlling heat pump system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157580A1 (en) * 2022-02-18 2023-08-24 サンデン株式会社 Heat pump system, and method for controlling heat pump system

Similar Documents

Publication Publication Date Title
JP6935720B2 (en) Refrigeration equipment
US11274871B2 (en) Refrigeration apparatus
KR101698261B1 (en) Air conditioner and control method thereof
US11015852B2 (en) Refrigeration apparatus
CN111164360B (en) Air conditioning apparatus
JP3109500B2 (en) Refrigeration equipment
US7886550B2 (en) Refrigerating machine
WO2006085557A1 (en) Freezing cycle device
JPH04369370A (en) Air conditioner
EP1893928A1 (en) Method and control for preventing flooded starts in a heat pump
EP2476973A1 (en) Refrigeration cycle device
JP2010007998A (en) Indoor unit of air conditioner and air conditioner including it
JP6749471B2 (en) Air conditioner
WO2019053771A1 (en) Air conditioning device
JP2022010435A (en) Air conditioner
JP2000097527A (en) Air conditioner and its control method
JP2014055771A (en) Air conditioner
WO2019093210A1 (en) Refrigerating and air-conditioning apparatus
JP5283560B2 (en) Air conditioner
JP2022024289A (en) Air conditioner
JP2022024290A (en) Air conditioner
JP7078724B2 (en) Refrigeration cycle device and its control method
JP6238202B2 (en) Air conditioner
JP5535359B2 (en) Air conditioner
JP2016156569A (en) Freezer

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240227