WO2019093210A1 - Refrigerating and air-conditioning apparatus - Google Patents

Refrigerating and air-conditioning apparatus Download PDF

Info

Publication number
WO2019093210A1
WO2019093210A1 PCT/JP2018/040568 JP2018040568W WO2019093210A1 WO 2019093210 A1 WO2019093210 A1 WO 2019093210A1 JP 2018040568 W JP2018040568 W JP 2018040568W WO 2019093210 A1 WO2019093210 A1 WO 2019093210A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
compressor
sensor
mixing
pressure
Prior art date
Application number
PCT/JP2018/040568
Other languages
French (fr)
Japanese (ja)
Inventor
貴裕 仲田
伊藤 裕
誠司 岡
智春 芦澤
幸正 矢野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2019093210A1 publication Critical patent/WO2019093210A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to a refrigeration air conditioner.
  • the refrigeration air conditioning system includes a refrigerant circuit to which a compressor is connected. If the operation of the compressor is continued while the air is mixed in the refrigerant circuit for some reason, the temperature inside the compressor may abnormally increase, and the compressor may be damaged.
  • the refrigeration air conditioner air conditioner
  • mixing of air into the refrigerant circuit is likely to occur during pump-down operation when the low pressure side pressure is lower than atmospheric pressure.
  • the end of the pump-down operation is specifically abnormal when the operation state in which the possibility of air mixing is suspected in the pump-down operation is detected. In the case of prolonged operation, measures have been taken to forcibly stop the operation of the compressor.
  • Patent Document 1 can detect the mixing of air in the normal air conditioning operation because it is a method of determining the mixing of air from the change of the operating condition in the pump-down operation. Not only was it impossible, but there was also the possibility of false detection.
  • An object of the present disclosure is to provide a refrigeration air conditioner capable of directly detecting the entry of air into a refrigerant circuit.
  • a refrigeration air conditioner includes a refrigerant circuit including a compressor, an outdoor heat exchanger, a pressure reducing mechanism, a liquid side shut-off valve, an indoor heat exchanger, and a gas side shut-off valve, and a suction side circuit of the compressor.
  • An air sensor attached to the refrigerant circuit for detecting the mixture of air in the refrigerant circuit, and the operation of the compressor being stopped when the air sensor detects the mixture of air in the refrigerant circuit And a safe operation control unit that controls the operation of the compressor.
  • the “freeze and air conditioning operation” refers to an air conditioning operation that adjusts the temperature, humidity, etc. of air in a living room such as a general household or office building or a work place in a factory, a cooling operation to cool the inside of a refrigerator, This refers to an operation in which a refrigeration cycle is applied, such as a freezing operation for freezing the inside of a freezer and a cooling operation for cooling lubricating oil of a machine tool.
  • a “freezer-air-conditioning apparatus” means the apparatus which performs a freezing air-conditioning operation which was illustrated here.
  • the “air sensor” may be any sensor that can detect the mixture of air in the refrigerant circuit, and by detecting oxygen gas, carbon dioxide gas, nitrogen gas, etc., which are components of air, It may be something which detects the mixing of air.
  • the air sensor is preferably one capable of detecting the concentration of air contained in the refrigerant in the refrigerant circuit.
  • the mixing of air into the refrigerant circuit is directly detected regardless of whether the normal refrigeration air conditioning operation or the pump down operation, and the operation of the compressor is stopped. it can.
  • the air sensor is attached to the suction side circuit of the compressor, it can sensitively detect air mixing.
  • the refrigerant circuit has a four-way switching valve capable of reversibly switching the refrigerant flow direction.
  • the suction side circuit of the compressor has an accumulator.
  • the air sensor is attached to a suction pipe that connects the accumulator and the four-way switching valve.
  • the accumulator is often mounted close to the compressor because it is a device associated with the compressor. In most cases, there is little extra space around the piping connecting the compressor and the accumulator. Therefore, it is difficult to secure a space for mounting the air sensor around the pipe connecting the compressor and the accumulator.
  • the appendage of the four-way switching valve to the compressor is not as strong as that of the accumulator. Therefore, it is easy to secure an air sensor mounting space between the accumulator and the four-way switching valve in many cases where there is ample space.
  • the compressor and the pressure reducing mechanism are controlled to perform pump-down operation.
  • the system further includes a pump down operation control unit configured to perform.
  • the safe operation control unit is configured to stop the operation of the compressor when the air sensor detects air mixing in any of the normal refrigeration air-conditioning operation and the pump-down operation. .
  • the operation of the compressor is controlled so that the operation of the compressor is stopped when the air sensor detects the presence of air in any of the normal refrigeration air conditioning operation and the pump down operation.
  • damage to the compressor can be suppressed.
  • the safe operation control unit is configured to immediately stop the operation of the compressor when the air sensor detects air mixing. According to this refrigeration air conditioning system, since the operation of the compressor is immediately stopped when the air sensor detects the presence of air, damage to the compressor can be further suppressed.
  • the refrigeration air conditioning system of the first to third aspects further includes a pressure sensor that detects a low pressure side pressure.
  • the safe operation control unit is configured to stop the operation of the compressor when the low pressure side pressure is detected by the pressure sensor to be lower than the atmospheric pressure and the air sensor detects mixing of air. It is configured.
  • the mixing of air into the refrigerant circuit can not occur unless a portion below the atmospheric pressure is generated in the refrigerant circuit. Therefore, if it is added that the low pressure side pressure is lower than the atmospheric pressure as a condition for detecting the mixing of air and stopping the compressor as in this refrigeration air conditioner, false detection of air mixing by the air sensor is more It can be further suppressed.
  • the refrigeration air conditioning system further includes a pump down operation control unit and an air mixing amount calculation unit.
  • the pump-down operation control unit is configured to perform the pump-down operation by controlling the compressor and the pressure reducing mechanism in a state where the liquid side shut-off valve is closed and the gas side shut-off valve is opened. Ru.
  • the air mixing amount calculation unit accumulates the amount of air mixed in the refrigerant circuit based on the air concentration in the refrigerant circuit measured by the air sensor and the rotational speed of the compressor in the case of the pump-down operation. It is configured to calculate a value.
  • the safe operation control unit is configured to stop the operation of the compressor when a normal refrigeration air conditioning operation is performed when the air sensor detects air mixing, and the air sensor (28) When the pump down operation is performed when the air mixing is detected, the operation of the compressor is stopped when the air mixing amount calculating unit calculates the mixed air amount equal to or more than a preset threshold value. Is configured as.
  • the operation of the compressor is stopped when the air sensor detects mixing of air during normal refrigeration air conditioning operation. Further, during the pump down operation, the operation of the compressor is stopped only when the accumulated air mixing amount becomes equal to or more than a preset threshold value. Therefore, it is possible to suppress useless system down due to false detection.
  • the refrigeration air conditioning system further includes a pressure sensor that detects a low pressure side pressure.
  • the safe operation control unit stops the operation of the compressor when the normal operation is performed when the pressure sensor detects that the pressure is lower than the atmospheric pressure and the air sensor detects the mixing of air.
  • the pressure sensor (29) detects that the pressure is lower than the atmospheric pressure and the air sensor (28) detects mixing of air, and when the pump-down operation is performed, the air
  • the compressor is configured to stop the operation when the mixing amount calculation unit calculates the mixing air amount equal to or more than a preset threshold value.
  • the pressure sensor detects that the pressure is lower than the atmospheric pressure, and when the air sensor detects air mixing, the operation of the compressor is stopped. Further, in the pump down operation, the operation of the compressor is stopped only when the accumulated air mixing amount becomes equal to or more than a preset threshold value. Therefore, it is possible to suppress useless system down due to false detection.
  • FIG. 2 is a refrigerant circuit diagram of the refrigeration air conditioning system according to the first embodiment.
  • the block diagram which shows the peripheral device connected to the control apparatus of the same freezing air conditioning system. Correlation figure of aeration amount and possibility of compressor damage.
  • FIG. 8 is a block diagram showing peripheral devices connected to the control device of the refrigeration air conditioning system according to Embodiment 2.
  • the flowchart of the air mixing detection operation in the same refrigeration air conditioning system. 10 is a flowchart of an air mixing detection operation in the refrigeration air conditioning system according to the modification of the first embodiment.
  • 16 is a flowchart of an air mixing detection operation in the refrigeration air conditioning system according to the modification of the second embodiment.
  • Embodiment 1 As shown in FIG. 1, in the air conditioner as the refrigeration air conditioning system according to the first embodiment, the indoor unit 1 installed indoors and the outdoor unit 2 installed outdoors are connected with the liquid side communication pipe L1. It is connected and constituted by gas side connecting piping L2.
  • the air conditioner is a pair-type air conditioner in which the indoor unit 1 and the outdoor unit 2 are connected in a one-to-one manner.
  • the indoor unit 1 is equipped with an indoor heat exchanger 11, an indoor fan 12, and an electric expansion valve 13 as an example of a pressure reducing mechanism.
  • a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, a liquid side closing valve 24, a gas side closing valve 25, an accumulator 26, an outdoor fan 27 and the like are mounted.
  • the liquid side shutoff valve 24 and the gas side shutoff valve 25 are manual on-off valves.
  • an air sensor 28 and a pressure sensor 29 are provided in a suction pipe that connects the accumulator 26 and the four-way switching valve 22.
  • the four-way switching valve 22 is configured to switch the refrigerant circuit between the cooling cycle and the heating cycle in a reversible manner.
  • the air conditioner performs a cooling operation in the cooling cycle and performs a heating operation in the heating cycle. That is, during the cooling operation, as indicated by solid arrows in FIG. 1, the compressor 21, the four-way switching valve 22, the outdoor heat exchanger 23, the liquid side shutoff valve 24, the liquid side communication pipe L1, the electric expansion valve 13, A refrigerant circuit is formed that forms a cooling cycle in which the refrigerant is circulated in the order of the indoor heat exchanger 11, the gas side communication pipe L2, the gas side shut-off valve 25, the four-way switching valve 22, the accumulator 26, and the compressor 21.
  • a refrigerant circuit is formed that forms a heating cycle in which the refrigerant is circulated in the order of the liquid side communication pipe L1, the liquid side shut-off valve 24, the outdoor heat exchanger 23, the four-way switching valve 22, the accumulator 26, and the compressor 21.
  • the outdoor heat exchanger 23 acts as a condenser, and the indoor heat exchanger 11 acts as an evaporator, whereby room air circulated by the indoor fan 12 is cooled and dehumidified. , The room is cooled.
  • the outdoor heat exchanger 23 acts as an evaporator, and the indoor heat exchanger 11 acts as a condenser, so that the indoor air circulated by the indoor fan 12 is heated. And the room is heated.
  • the air sensor 28 and the pressure sensor 29 are provided in a suction pipe that connects the accumulator 26 and the four-way switching valve 22 in the refrigerant circuit configured as described above.
  • the air sensor 28 detects oxygen which is a component of air, that is, is an oxygen sensor, and detects the mixing of air by detecting oxygen in the intake gas.
  • the pressure sensor 29 detects the refrigerant pressure of the suction pipe, that is, the low pressure side pressure.
  • control device 30 for controlling various operations as shown in FIG.
  • the control device 30 is actually formed by the control unit mounted on the indoor unit 1 and the control unit mounted on the outdoor unit 2, since the control unit 30 operates functionally as one unit, Express and explain as an element.
  • a compressor 21, a four-way switching valve 22, an electric expansion valve 13, an outdoor fan 27, an indoor fan 12, a liquid side closing valve 24 and a gas side closing valve 25 are connected to the control device 30.
  • drive units of these devices are connected to the control device 30.
  • the control device 30 includes an outdoor heat exchanger temperature sensor 41 and an outdoor air temperature sensor 42, an indoor heat exchanger temperature sensor 43, an indoor temperature sensor 44, an operation / stop switch 45, the aforementioned air sensor 28, and a pressure sensor. 29 are connected.
  • a remote controller 35 is connected to the control device 30 wirelessly.
  • the outdoor heat exchanger temperature sensor 41 is installed in the outdoor heat exchanger 23, and detects the temperature of the outdoor heat exchanger 23.
  • the outside air temperature sensor 42 is installed in the outdoor unit 2 to detect the temperature of the outside air.
  • the indoor heat exchanger temperature sensor 43 is installed in the indoor heat exchanger 11 and detects the temperature of the indoor heat exchanger 11.
  • the indoor temperature sensor 44 is installed in the indoor unit 1 to detect the indoor air temperature.
  • the operation / stop switch 45 is a switch for starting and stopping the pump down operation.
  • the remote control 35 functions as a drive operation unit for the air conditioner, and includes a drive switch for turning on and off the drive of the air conditioner, a drive mode selection unit, a setting unit for setting the set temperature of the indoor air, and normal heating
  • the air volume setting part which sets the air volume of the indoor fan 12 at the time of driving
  • the remote controller 35 is configured to wirelessly transmit the selected or set driving operation information to the control device 30.
  • the control device 30 includes a microcomputer, an input / output circuit and the like, and functionally configures the normal operation control unit 31, the pump-down operation control unit 32, and the safe operation control unit 33 by these functional components.
  • the normal operation control unit 31 detects an instruction from the remote control 35, an outdoor heat exchanger temperature detected by the outdoor heat exchanger temperature sensor 41, an outside air temperature detected by the outside air temperature sensor 42, and an indoor heat exchanger temperature sensor 43 Based on the indoor heat exchanger temperature, the indoor temperature detected by the indoor temperature sensor 44, and the like, arithmetic processing and judgment processing are performed to control the normal operation of the air conditioner.
  • the command from the remote controller 35 includes an operation start command, an indoor temperature setting command, and the like.
  • the pump down operation control unit 32 controls the electric expansion valve 13 and the compressor 21 to perform the pump down operation when receiving a pump down operation command issued from the operation / stop switch 45.
  • a pump-down operation is performed.
  • the pump-down operation control unit 32 of the control device 30 can be operated by pressing and holding the operation / stop switch 45 (see FIG. 2) provided in the indoor unit 1 or the outdoor unit 2. The start of forced operation is commanded.
  • the worker closes the liquid side shut-off valve 24 and opens the gas side shut-off valve 25.
  • the motor-operated expansion valve 13 is fully opened by the pump-down operation control unit 32, the four-way switching valve 22 is switched to the cooling cycle side, and then the compressor 21 is driven at a predetermined frequency (for example, 50 Hz).
  • a pump down operation is performed to recover the refrigerant on the indoor unit 1 side to the outdoor unit 2 side.
  • the pump-down is substantially ended. It is judged that When the pump-down is substantially completed, the refrigerant in the indoor heat exchanger 11 becomes lean and substantially no heat exchange takes place. As a result, the temperature difference between the indoor temperature and the temperature of the indoor heat exchanger 11 falls below the predetermined temperature difference.
  • the operator is notified by a command from the pump-down operation control unit 32 that the substantial end of the pump-down is performed by lighting the end lamp (not shown) or the like. Is operated at a predetermined frequency. Then, the worker closes the gas side shut-off valve 25 and operates the operation / stop switch 45 to stop the compressor 21. Thus, the pump down operation is completed.
  • the safe operation control unit 33 operates the compressor 21 so as to avoid damage to the compressor 21 based on at least the low pressure side pressure detected by the pressure sensor 29 and the presence or absence of air mixing by the air sensor 28. Control.
  • the safe operation control unit 33 operates at the same time when the operation is started, and the operation of detecting air mixing in the refrigerant circuit and the coping operation at the time of air mixing detection are performed.
  • the pressure sensor 29 monitors the low pressure side pressure in the suction pipe of the compressor 21 and detects whether the low pressure side pressure has become lower than atmospheric pressure (step S11).
  • the lowest refrigerant pressure in the refrigerant circuit is the low pressure side pressure in the suction pipe of the compressor 21. Therefore, the aeration of the refrigerant circuit may occur usually after the low pressure side pressure becomes lower than the atmospheric pressure.
  • step S11 when the low pressure side pressure becomes lower than the atmospheric pressure (in the case of YES in step S11), the safe operation control unit 33 proceeds to the next step S12. In the case where the low pressure side pressure exceeds the atmospheric pressure (in the case of NO in step S11), there is no possibility of air mixing into the refrigerant circuit, so the check as to whether the low pressure side pressure is lower than atmospheric pressure is repeated. .
  • the safe operation control unit 33 determines whether air mixing is detected in the suction side circuit of the compressor 21 by the air sensor 28.
  • the suction side circuit of the compressor 21 is a circuit extending from the four-way switching valve 22 to the compressor 21 as shown in FIG.
  • the detection of aeration by the air sensor 28 is performed by determining whether or not the intake gas refrigerant contains oxygen.
  • the safe operation control unit 33 immediately stops the operation of the compressor 21 and forces the normal operation. End control and end control.
  • the detection operation of air mixing in the refrigerant circuit by the safe operation control unit 33 described above and the coping operation at the time of air mixing detection are started simultaneously with the start of the refrigeration air conditioning operation. Then, it is performed in parallel with the control of the refrigeration air conditioning operation by the normal operation control unit 31. In addition, it is comprised so that it may operate
  • the air sensor 28 is attached to the suction side circuit of the compressor 21, it is possible to sensitively detect air mixing.
  • the air sensor 28 is attached around the pipe connecting the compressor 21 and the accumulator 26, it is easy to secure a mounting space for the air sensor 28.
  • the air conditioner according to the second embodiment relates to the detection operation of air mixing into the refrigerant circuit and the coping operation upon air mixing detection, in the detection operation and coping operation after the detection during the normal operation and the pump down operation.
  • the contents are different.
  • the operation in the normal operation is the same, but the operation in the pump-down operation is different.
  • a major difference from the first embodiment is that the control device 30 is provided with the aeration amount calculation unit 34.
  • the aeration amount calculation unit 34 calculates the amount of refrigerant sucked into the compressor 21 in consideration of changes in the rotational speed and low pressure side pressure of the compressor 21, and further, in the gas refrigerant sucked into the compressor 21. Air concentration calculated from oxygen concentration is grasped including its change.
  • the air mixing amount calculation unit 34 is configured to calculate the cumulative air mixing amount accumulated in the outdoor unit 2 based on these pieces of information.
  • the pump-down operation control unit 32 outputs the information on the rotational speed of the compressor 21 and the low pressure side pressure of the refrigerant circuit to the aeration amount calculation unit 34 in order to enable the calculation in the aeration amount calculation unit 34.
  • the oxygen sensor as the air sensor 28, one capable of detecting the oxygen concentration in the inhaled gas is used.
  • the oxygen concentration detected by the air sensor 28 is output to the aeration amount calculation unit 34 via the safe operation control unit 33.
  • the low pressure side pressure in the suction piping of the compressor 21 is monitored by the pressure sensor 29 simultaneously with the start of the refrigeration air conditioning as in the case of the first embodiment, and the low pressure side pressure is below atmospheric pressure. It is detected whether it has become (step S21).
  • the safe operation control unit 33 proceeds to the next step S22.
  • the low pressure side pressure exceeds the atmospheric pressure (in the case of NO at step S21)
  • the check of whether the low pressure side pressure is equal to or less than the atmospheric pressure is repeated.
  • the safe operation control unit 33 checks whether the air sensor 28 detects air mixing in the suction side circuit of the compressor 21. In this embodiment, the detection of aeration by the air sensor 28 is performed by determining whether oxygen is contained in the suction gas refrigerant and measuring the oxygen concentration in the suction gas. If the air sensor 28 does not detect the mixing of air into the refrigerant circuit (NO in step S22), the safe operation control unit 33 returns to step S21. On the other hand, when the air sensor 28 detects mixing of air into the refrigerant circuit (in the case of YES at step S22), the safe operation control unit 33 proceeds to step S23 to determine whether it is a pump down operation or a normal operation. Do.
  • step S23 When it is determined in step S23 that the normal operation is performed, the safe operation control unit 33 immediately stops the compressor 21 as in the case of the first embodiment (step S26). Therefore, when mixing of air is detected in normal operation, it becomes substantially the same as that of the first embodiment. However, if it is determined in step S23 that the pump-down operation is being performed, there is no mixing of air during the normal operation, but the current operation enters the pump-down operation and the low pressure side pressure of the compressor 21 is It is presumed that the pump down operation has advanced to such an extent that the pressure is lower than the atmospheric pressure. Moreover, it is inferred that the infiltration of air arose after becoming in this state.
  • the aeration amount calculation unit 34 includes the number of revolutions of the compressor 21, the low pressure side pressure of the compressor 21, the oxygen concentration in the intake gas detected by the air sensor 28, The accumulated amount of air is calculated from the passage of time (step S24). Then, when the accumulated mixing amount exceeds a preset threshold (in the case of YES in step S25), the safe operation control unit 33 stops the operation of the compressor 21 (step S26).
  • step S25 if the accumulated mixing amount of air does not exceed the preset threshold value, it is determined that there is no mixing of air that would damage the compressor 21, and the operation of the compressor 21 continues as it is (In the case of NO at step S25).
  • the low pressure side pressure is reduced, and the air sensor 28 detects that air is mixed in the refrigerant circuit, and the accumulated amount of air mixed in the refrigerant circuit is set in advance. It may exceed the threshold value. In such a case, since the operation of the compressor 21 is stopped on the assumption that the mixing of air into the refrigerant circuit has been confirmed, the risk of erroneous detection is reduced.
  • the detection operation of air mixing and the coping operation at the time of air mixing detection omit the detection of the low-pressure side pressure in step S11 in the procedure in the first embodiment shown in FIG. Just follow the steps. That is, as shown in FIG. 7, when the air sensor 28 detects air mixing into the refrigerant circuit (YES in step S12), the operation of the compressor 21 is immediately stopped (step S13). The operation may be forced to end. In this case, the attachment of the pressure sensor 29 itself can be omitted.
  • the detection operation of air mixing and the coping operation at the time of air mixing detection omit the detection of the low-pressure side pressure in step S21 in the procedure in the second embodiment shown in FIG. Just follow the steps. That is, as shown in FIG. 8, when mixing of air into the refrigerant circuit is detected by the air sensor 28 (YES in step S22), it is determined whether the current operation is the pump down operation or the normal operation ( Step S23). If it is determined in step S23 that the current operation is the normal operation, the compressor 21 is immediately stopped (step S26).
  • step S23 if it is determined in step S23 that the current operation is pump-down operation, compression is performed if the cumulative amount of air mixed into the refrigerant circuit exceeds a preset threshold (YES in step S25). The operation of the machine 21 is stopped (step S26). In this case, the attachment of the pressure sensor 29 itself can be omitted.
  • the oxygen sensor is used as the air sensor 28, but the air sensor 28 may detect carbon dioxide or nitrogen gas which is an air component.
  • the mounting position of the air sensor 28 is a low-pressure pipe connecting the four-way switching valve 22 and the accumulator 26.
  • the accumulator 26 and the compressor 21 can be used. It may be a suction pipe to be connected. In this case, since the mixing of air is detected at a position closer to the suction port of the compressor 21, the mixing of air into the refrigerant circuit can be detected more accurately.
  • the refrigeration air conditioner is an integrated air conditioner, a cooling device for cooling the inside of a refrigerator, and a freezing device for freezing the inside of a freezer, It may be a device that performs other types of refrigeration cycle application operation such as a cooling device that cools the lubricating oil of a machine tool.

Abstract

This refrigerating and air-conditioning apparatus comprises: a refrigerant circuit that has a compressor (21), an outdoor heat exchanger, a pressure reducing mechanism (13), a liquid side stop valve, an indoor heat exchanger, and a gas side shutoff valve; an air sensor (28) that is attached to a suction side circuit of the compressor (21) and detects the entry of air into the refrigerant circuit; and a safe operation control unit (33) that controls the operation of the compressor (21) so as to stop the operation of the compressor (21) when the air sensor (28) detects the entry of air into the refrigerant circuit.

Description

冷凍空調装置Refrigeration air conditioner
 本開示は、冷凍空調装置に関する。 The present disclosure relates to a refrigeration air conditioner.
 冷凍空調装置は、圧縮機の接続された冷媒回路を備える。何らかの理由により冷媒回路内に空気が混入した状態のまま圧縮機の運転を継続すると、圧縮機内部の温度が異常に上昇し、圧縮機が損傷する可能性がある。冷媒回路内への空気の混入は、例えば特許文献1記載の冷凍空調装置(空気調和機)のように、低圧側圧力が大気圧以下になるポンプダウン運転時に生じ易い。このため特許文献1記載の従来の冷凍空調装置には、ポンプダウン運転時において空気混入の疑いが持たれるような運転状態が検出された場合に、具体的にはポンプダウン運転の終了が異常に長引くような場合に、圧縮機の運転を強制停止する方策が講じられていた。 The refrigeration air conditioning system includes a refrigerant circuit to which a compressor is connected. If the operation of the compressor is continued while the air is mixed in the refrigerant circuit for some reason, the temperature inside the compressor may abnormally increase, and the compressor may be damaged. As in the case of the refrigeration air conditioner (air conditioner) described in, for example, Patent Document 1, mixing of air into the refrigerant circuit is likely to occur during pump-down operation when the low pressure side pressure is lower than atmospheric pressure. For this reason, in the conventional refrigeration air conditioner described in Patent Document 1, the end of the pump-down operation is specifically abnormal when the operation state in which the possibility of air mixing is suspected in the pump-down operation is detected. In the case of prolonged operation, measures have been taken to forcibly stop the operation of the compressor.
特開2016-90223号公報JP, 2016-90223, A
 しかしながら、上記特許文献1に記載の従来の空気調和機は、ポンプダウン運転においては運転状態の変化から空気の混入を判断する方式のため、通常の空調運転においては空気の混入を検出することができないばかりでなく、誤検出される可能性もあった。 However, the conventional air conditioner described in Patent Document 1 can detect the mixing of air in the normal air conditioning operation because it is a method of determining the mixing of air from the change of the operating condition in the pump-down operation. Not only was it impossible, but there was also the possibility of false detection.
 本開示の目的は、冷媒回路内への空気の混入を直接的に検出可能とした冷凍空調装置を提供することにある。 An object of the present disclosure is to provide a refrigeration air conditioner capable of directly detecting the entry of air into a refrigerant circuit.
 第1の観点に係る冷凍空調装置は、圧縮機、室外熱交換器、減圧機構、液側閉鎖弁、室内熱交換器、及びガス側閉鎖弁を有する冷媒回路と、前記圧縮機の吸入側回路に取り付けられた、前記冷媒回路内への空気の混入を検出する空気センサと、前記空気センサが前記冷媒回路内への空気の混入を検出した場合に、前記圧縮機の運転を停止するように前記圧縮機の運転を制御する安全運転制御部とを備えている。 A refrigeration air conditioner according to a first aspect includes a refrigerant circuit including a compressor, an outdoor heat exchanger, a pressure reducing mechanism, a liquid side shut-off valve, an indoor heat exchanger, and a gas side shut-off valve, and a suction side circuit of the compressor. An air sensor attached to the refrigerant circuit for detecting the mixture of air in the refrigerant circuit, and the operation of the compressor being stopped when the air sensor detects the mixture of air in the refrigerant circuit And a safe operation control unit that controls the operation of the compressor.
 本明細書において「冷凍空調運転」とは、一般家庭、事務所ビルなどの居住室内や工場の作業場などの空気の温度、湿度等の調整を行う空気調和運転、冷蔵庫内を冷却する冷却運転、冷凍庫内を冷凍する冷凍運転、工作機械の潤滑油を冷却する冷却運転などの如く冷凍サイクルを応用した運転をいう。また、「冷凍空調装置」とは、ここに例示されたような冷凍空調運転を行う装置のことをいう。 In the present specification, the “freeze and air conditioning operation” refers to an air conditioning operation that adjusts the temperature, humidity, etc. of air in a living room such as a general household or office building or a work place in a factory, a cooling operation to cool the inside of a refrigerator, This refers to an operation in which a refrigeration cycle is applied, such as a freezing operation for freezing the inside of a freezer and a cooling operation for cooling lubricating oil of a machine tool. Moreover, a "freezer-air-conditioning apparatus" means the apparatus which performs a freezing air-conditioning operation which was illustrated here.
 また、本明細書において「空気センサ」とは、冷媒回路への空気の混入を検知できるものであればよく、空気の成分である酸素ガス、二酸化炭素ガス、窒素ガスなどを検出することにより、空気の混入を検出するものでよい。また、空気センサは、冷媒回路内の冷媒中に含まれる空気の濃度を検出できるものが好ましい。 Further, in the present specification, the “air sensor” may be any sensor that can detect the mixture of air in the refrigerant circuit, and by detecting oxygen gas, carbon dioxide gas, nitrogen gas, etc., which are components of air, It may be something which detects the mixing of air. The air sensor is preferably one capable of detecting the concentration of air contained in the refrigerant in the refrigerant circuit.
 前記第1の観点の冷凍空調装置によれば、通常の冷凍空調運転かポンプダウン運転かに拘わらず冷媒回路内への空気の混入を直接的に検出し、圧縮機の運転を停止することができる。また、空気センサは、圧縮機の吸入側回路に取り付けられているので、空気混入を敏感に検出できる。 According to the refrigeration air conditioning system of the first aspect, the mixing of air into the refrigerant circuit is directly detected regardless of whether the normal refrigeration air conditioning operation or the pump down operation, and the operation of the compressor is stopped. it can. In addition, since the air sensor is attached to the suction side circuit of the compressor, it can sensitively detect air mixing.
 第2の観点に係る冷凍空調装置によれば、前記冷媒回路は、冷媒流通方向を可逆に切換え可能な四路切換弁を有する。前記圧縮機の吸入側回路は、アキュムレータを有する。前記空気センサは、前記アキュムレータと前記四路切換弁とを接続する吸入配管に取り付けられている。 According to the refrigeration air conditioning system pertaining to the second aspect, the refrigerant circuit has a four-way switching valve capable of reversibly switching the refrigerant flow direction. The suction side circuit of the compressor has an accumulator. The air sensor is attached to a suction pipe that connects the accumulator and the four-way switching valve.
 一般に、アキュムレータは、圧縮機に付随する装置であることから圧縮機に近接して取り付けられることが多い。多くの場合、圧縮機とアキュムレータとを接続する配管周りに、余分なスペースは少ない。したがって、圧縮機とアキュムレータとを接続する配管周りには、空気センサを取り付けるスペースを確保することが難しい。これに対し、四路切換弁の圧縮機に対する付随性は、アキュムレータの圧縮機に対する付随性ほど強くない。そのため、アキュムレータと四路切換弁との間には、スペースに余裕のある場合が多く空気センサの取付けスペースを確保することが容易である。 In general, the accumulator is often mounted close to the compressor because it is a device associated with the compressor. In most cases, there is little extra space around the piping connecting the compressor and the accumulator. Therefore, it is difficult to secure a space for mounting the air sensor around the pipe connecting the compressor and the accumulator. On the other hand, the appendage of the four-way switching valve to the compressor is not as strong as that of the accumulator. Therefore, it is easy to secure an air sensor mounting space between the accumulator and the four-way switching valve in many cases where there is ample space.
 第3の観点に係る冷凍空調装置によれば、前記液側閉鎖弁が閉鎖されるとともに前記ガス側閉鎖弁が開放された状態で、前記圧縮機及び前記減圧機構を制御してポンプダウン運転を行うように構成されたポンプダウン運転制御部をさらに含む。前記安全運転制御部は、通常の冷凍空調運転及び前記ポンプダウン運転の何れの場合においても、前記空気センサが空気の混入を検出した場合に前記圧縮機の運転を停止するように構成されている。 According to the refrigeration air conditioner pertaining to the third aspect, in a state in which the liquid side shut-off valve is closed and the gas side shut-off valve is opened, the compressor and the pressure reducing mechanism are controlled to perform pump-down operation. The system further includes a pump down operation control unit configured to perform. The safe operation control unit is configured to stop the operation of the compressor when the air sensor detects air mixing in any of the normal refrigeration air-conditioning operation and the pump-down operation. .
 この冷凍空調装置によれば、通常の冷凍空調運転及びポンプダウン運転の何れの場合においても、空気センサが空気の存在を検出したときに圧縮機の運転を停止するように圧縮機の運転を制御するので、圧縮機の損傷を抑制することができる。 According to this refrigeration air conditioning system, the operation of the compressor is controlled so that the operation of the compressor is stopped when the air sensor detects the presence of air in any of the normal refrigeration air conditioning operation and the pump down operation. Thus, damage to the compressor can be suppressed.
 第4の観点に係る冷凍空調装置によれば、前記安全運転制御部は、前記空気センサが空気の混入を検出した場合に直ちに前記圧縮機の運転を停止するように構成されている。
 この冷凍空調装置によれば、空気センサが空気の存在を検出した場合に直ちに圧縮機の運転を停止するので、圧縮機の損傷をより抑制することができる。
According to the refrigeration air conditioning system of the fourth aspect, the safe operation control unit is configured to immediately stop the operation of the compressor when the air sensor detects air mixing.
According to this refrigeration air conditioning system, since the operation of the compressor is immediately stopped when the air sensor detects the presence of air, damage to the compressor can be further suppressed.
 第5の観点に係る冷凍空調装置によれば、前記第1~第3の観点に係る冷凍空調装置において、低圧側圧力を検出する圧力センサをさらに含む。前記安全運転制御部は、前記圧力センサにより低圧側圧力が大気圧以下であることが検出されるとともに前記空気センサにより空気の混入が検出された場合に、前記圧縮機の運転を停止するように構成されている。 According to the refrigeration air conditioning system of the fifth aspect, the refrigeration air conditioning system of the first to third aspects further includes a pressure sensor that detects a low pressure side pressure. The safe operation control unit is configured to stop the operation of the compressor when the low pressure side pressure is detected by the pressure sensor to be lower than the atmospheric pressure and the air sensor detects mixing of air. It is configured.
 冷媒回路内への空気の混入は、冷媒回路内に大気圧以下の部分が発生しない限り起こりえない。したがって、この冷凍空調装置のように、空気の混入を検出して圧縮機を停止させる場合の条件として低圧側圧力が大気圧以下であることを付加すると、空気センサによる空気混入の誤検出をより一層抑制することができる。 The mixing of air into the refrigerant circuit can not occur unless a portion below the atmospheric pressure is generated in the refrigerant circuit. Therefore, if it is added that the low pressure side pressure is lower than the atmospheric pressure as a condition for detecting the mixing of air and stopping the compressor as in this refrigeration air conditioner, false detection of air mixing by the air sensor is more It can be further suppressed.
 第6の観点に係る冷凍空調装置によれば、ポンプダウン運転制御部と、空気混入量算出部とをさらに含む。前記ポンプダウン運転制御部は、前記液側閉鎖弁が閉鎖されるとともに前記ガス側閉鎖弁が開放された状態で、前記圧縮機及び前記減圧機構を制御してポンプダウン運転を行うように構成される。前記空気混入量算出部は、前記ポンプダウン運転の場合に、前記空気センサにより測定される前記冷媒回路中の空気濃度と前記圧縮機の回転数とから前記冷媒回路内への混入空気量の累積値を算出するように構成される。前記安全運転制御部は、前記空気センサが空気の混入を検出した場合において通常の冷凍空調運転が行われているときには、前記圧縮機の運転を停止するように構成され、前記空気センサ(28)が空気の混入を検出した場合において前記ポンプダウン運転が行われているときには、前記空気混入量算出部が予め設定された閾値以上の混入空気量を算出した場合に前記圧縮機の運転を停止するように構成されている。 The refrigeration air conditioning system according to the sixth aspect further includes a pump down operation control unit and an air mixing amount calculation unit. The pump-down operation control unit is configured to perform the pump-down operation by controlling the compressor and the pressure reducing mechanism in a state where the liquid side shut-off valve is closed and the gas side shut-off valve is opened. Ru. The air mixing amount calculation unit accumulates the amount of air mixed in the refrigerant circuit based on the air concentration in the refrigerant circuit measured by the air sensor and the rotational speed of the compressor in the case of the pump-down operation. It is configured to calculate a value. The safe operation control unit is configured to stop the operation of the compressor when a normal refrigeration air conditioning operation is performed when the air sensor detects air mixing, and the air sensor (28) When the pump down operation is performed when the air mixing is detected, the operation of the compressor is stopped when the air mixing amount calculating unit calculates the mixed air amount equal to or more than a preset threshold value. Is configured as.
 この冷凍空調装置によれば、通常の冷凍空調運転時は空気センサが空気の混入を検出した場合に圧縮機の運転が停止される。また、ポンプダウン運転時においては、累積空気混入量が予め設定された閾値以上になった場合にのみ圧縮機の運転を停止するようにしている。従って、誤検出による無駄なシステムダウンを抑制することができる。 According to this refrigeration air conditioning system, the operation of the compressor is stopped when the air sensor detects mixing of air during normal refrigeration air conditioning operation. Further, during the pump down operation, the operation of the compressor is stopped only when the accumulated air mixing amount becomes equal to or more than a preset threshold value. Therefore, it is possible to suppress useless system down due to false detection.
 第7の観点に係る冷凍空調装置によれば、前記第1及び第2の観点に係る冷凍空調装置において、前記冷凍空調装置は、低圧側圧力を検出する圧力センサをさらに含む。前記安全運転制御部は、前記圧力センサが大気圧以下であることを検出するとともに前記空気センサが空気の混入を検出した場合において通常運転が行われているときには、前記圧縮機の運転を停止するように構成され、前記圧力センサ(29)が大気圧以下であることを検出するとともに前記空気センサ(28)が空気の混入を検出した場合において前記ポンプダウン運転が行われているときには、前記空気混入量算出部が予め設定された閾値以上の混入空気量を算出した場合に前記圧縮機の運転を停止するように構成されている。 According to the refrigeration air conditioning system of the seventh aspect, in the refrigeration air conditioning system of the first and second aspects, the refrigeration air conditioning system further includes a pressure sensor that detects a low pressure side pressure. The safe operation control unit stops the operation of the compressor when the normal operation is performed when the pressure sensor detects that the pressure is lower than the atmospheric pressure and the air sensor detects the mixing of air. Configured such that the pressure sensor (29) detects that the pressure is lower than the atmospheric pressure and the air sensor (28) detects mixing of air, and when the pump-down operation is performed, the air The compressor is configured to stop the operation when the mixing amount calculation unit calculates the mixing air amount equal to or more than a preset threshold value.
 この冷凍空調装置によれば、通常運転時は圧力センサが大気圧以下であることを検出するとともに空気センサが空気の混入を検出した場合に圧縮機の運転が停止される。また、ポンプダウン運転時においては累積空気混入量が予め設定された閾値以上になった場合にのみ圧縮機の運転を停止するようにしている。従って、誤検出による無駄なシステムダウンを抑制することができる。 According to this refrigeration air conditioning system, during normal operation, the pressure sensor detects that the pressure is lower than the atmospheric pressure, and when the air sensor detects air mixing, the operation of the compressor is stopped. Further, in the pump down operation, the operation of the compressor is stopped only when the accumulated air mixing amount becomes equal to or more than a preset threshold value. Therefore, it is possible to suppress useless system down due to false detection.
実施の形態1に係る冷凍空調装置の冷媒回路図。FIG. 2 is a refrigerant circuit diagram of the refrigeration air conditioning system according to the first embodiment. 同冷凍空調装置の制御装置に接続される周辺機器を示すブロック図。The block diagram which shows the peripheral device connected to the control apparatus of the same freezing air conditioning system. 空気混入量と圧縮機損傷の可能性との相関図。Correlation figure of aeration amount and possibility of compressor damage. 同冷凍空調装置における空気混入検出動作のフローチャート。The flowchart of the air mixing detection operation in the same refrigeration air conditioning system. 実施の形態2に係る冷凍空調装置の制御装置に接続される周辺機器を示すブロック図。FIG. 8 is a block diagram showing peripheral devices connected to the control device of the refrigeration air conditioning system according to Embodiment 2. 同冷凍空調装置における空気混入検出動作のフローチャート。The flowchart of the air mixing detection operation in the same refrigeration air conditioning system. 実施の形態1の変形例に係る冷凍空調装置における空気混入検出動作のフローチャート。10 is a flowchart of an air mixing detection operation in the refrigeration air conditioning system according to the modification of the first embodiment. 実施の形態2の変形例に係る冷凍空調装置における空気混入検出動作のフローチャート。16 is a flowchart of an air mixing detection operation in the refrigeration air conditioning system according to the modification of the second embodiment.
 以下、本開示の実施の形態に係る冷凍空調装置について説明する。なお、本開示は、以下に記載する例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。 Hereinafter, a refrigeration air conditioner according to an embodiment of the present disclosure will be described. It is to be noted that the present disclosure is not limited to the examples described below, is shown by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims. Ru.
 (実施の形態1)
 実施の形態1に係る冷凍空調装置としての空気調和機は、図1に示すように、室内に設置される室内機1と、室外に設置される室外機2とが、液側連絡配管L1とガス側連絡配管L2とによって接続されて構成されている。本空気調和機は、室内機1と室外機2とが一対一で接続されるペア型の空気調和機である。そして、室内機1には、室内熱交換器11、室内ファン12、減圧機構の一例としての電動膨張弁13等が搭載されている。また、室外機2には、圧縮機21、四路切換弁22、室外熱交換器23、液側閉鎖弁24、ガス側閉鎖弁25、アキュムレータ26、室外ファン27等が搭載されている。液側閉鎖弁24及びガス側閉鎖弁25は手動の開閉弁である。また、アキュムレータ26と四路切換弁22とを接続する吸入配管には、空気センサ28と圧力センサ29とが設けられている。
Embodiment 1
As shown in FIG. 1, in the air conditioner as the refrigeration air conditioning system according to the first embodiment, the indoor unit 1 installed indoors and the outdoor unit 2 installed outdoors are connected with the liquid side communication pipe L1. It is connected and constituted by gas side connecting piping L2. The air conditioner is a pair-type air conditioner in which the indoor unit 1 and the outdoor unit 2 are connected in a one-to-one manner. The indoor unit 1 is equipped with an indoor heat exchanger 11, an indoor fan 12, and an electric expansion valve 13 as an example of a pressure reducing mechanism. In the outdoor unit 2, a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, a liquid side closing valve 24, a gas side closing valve 25, an accumulator 26, an outdoor fan 27 and the like are mounted. The liquid side shutoff valve 24 and the gas side shutoff valve 25 are manual on-off valves. Further, an air sensor 28 and a pressure sensor 29 are provided in a suction pipe that connects the accumulator 26 and the four-way switching valve 22.
 四路切換弁22は、冷媒回路を冷房サイクルと暖房サイクルとに可逆に切換えるように構成される。本空気調和機は、前記冷房サイクルにより冷房運転を行い、前記暖房サイクルにより暖房運転を行う。すなわち、冷房運転時は、図1に実線矢印にて示すように圧縮機21、四路切換弁22、室外熱交換器23、液側閉鎖弁24、液側連絡配管L1、電動膨張弁13、室内熱交換器11、ガス側連絡配管L2、ガス側閉鎖弁25、四路切換弁22、アキュムレータ26、圧縮機21の順に冷媒を循環させる冷房サイクルを成す冷媒回路が形成される。また、暖房運転時は、図1に破線矢印にて示すように圧縮機21、四路切換弁22、ガス側閉鎖弁25、ガス側連絡配管L2、室内熱交換器11、電動膨張弁13、液側連絡配管L1、液側閉鎖弁24、室外熱交換器23、四路切換弁22、アキュムレータ26、圧縮機21の順に冷媒を循環させる暖房サイクルを成す冷媒回路が形成される。 The four-way switching valve 22 is configured to switch the refrigerant circuit between the cooling cycle and the heating cycle in a reversible manner. The air conditioner performs a cooling operation in the cooling cycle and performs a heating operation in the heating cycle. That is, during the cooling operation, as indicated by solid arrows in FIG. 1, the compressor 21, the four-way switching valve 22, the outdoor heat exchanger 23, the liquid side shutoff valve 24, the liquid side communication pipe L1, the electric expansion valve 13, A refrigerant circuit is formed that forms a cooling cycle in which the refrigerant is circulated in the order of the indoor heat exchanger 11, the gas side communication pipe L2, the gas side shut-off valve 25, the four-way switching valve 22, the accumulator 26, and the compressor 21. Further, during the heating operation, as shown by the broken line arrows in FIG. 1, the compressor 21, the four-way switching valve 22, the gas side shut-off valve 25, the gas side communication pipe L 2, the indoor heat exchanger 11, the electric expansion valve 13, A refrigerant circuit is formed that forms a heating cycle in which the refrigerant is circulated in the order of the liquid side communication pipe L1, the liquid side shut-off valve 24, the outdoor heat exchanger 23, the four-way switching valve 22, the accumulator 26, and the compressor 21.
 本空気調和機は、冷房サイクルにおいては、室外熱交換器23が凝縮器として作用し、室内熱交換器11が蒸発器として作用することにより、室内ファン12により循環される室内空気が冷却除湿され、室内が冷房される。また、本空気調和機は、暖房サイクルにおいては、室外熱交換器23が蒸発器として作用し、室内熱交換器11が凝縮器として作用することにより、室内ファン12により循環される室内空気が加熱され、室内が暖房される。 In the air conditioner, in the cooling cycle, the outdoor heat exchanger 23 acts as a condenser, and the indoor heat exchanger 11 acts as an evaporator, whereby room air circulated by the indoor fan 12 is cooled and dehumidified. , The room is cooled. In the air conditioner, in the heating cycle, the outdoor heat exchanger 23 acts as an evaporator, and the indoor heat exchanger 11 acts as a condenser, so that the indoor air circulated by the indoor fan 12 is heated. And the room is heated.
 空気センサ28及び圧力センサ29は、上記構成の冷媒回路におけるアキュムレータ26と四路切換弁22とを接続する吸入配管に設けられている。空気センサ28は、空気の成分である酸素を検出するもの、すなわち、酸素センサであって、吸入ガス中の酸素を検出することにより空気の混入を検出するものである。圧力センサ29は、吸入配管の冷媒圧力、すなわち低圧側圧力を検出する。 The air sensor 28 and the pressure sensor 29 are provided in a suction pipe that connects the accumulator 26 and the four-way switching valve 22 in the refrigerant circuit configured as described above. The air sensor 28 detects oxygen which is a component of air, that is, is an oxygen sensor, and detects the mixing of air by detecting oxygen in the intake gas. The pressure sensor 29 detects the refrigerant pressure of the suction pipe, that is, the low pressure side pressure.
 また、本空気調和機は、図2に示すような、各種動作を制御する制御装置30を搭載している。制御装置30は、実際には室内機1に搭載される制御部と室外機2に搭載される制御部とにより形成されるが、機能的には一体のものとして動作するので、ここでは一つの要素として表現し説明する。 Further, the present air conditioner is equipped with a control device 30 for controlling various operations as shown in FIG. Although the control device 30 is actually formed by the control unit mounted on the indoor unit 1 and the control unit mounted on the outdoor unit 2, since the control unit 30 operates functionally as one unit, Express and explain as an element.
 図2に示すように、制御装置30には、圧縮機21、四路切換弁22、電動膨張弁13、室外ファン27、室内ファン12、液側閉鎖弁24及びガス側閉鎖弁25が接続されている。より具体的には、これら機器の駆動部が制御装置30に接続されている。また、制御装置30には、室外熱交換器温度センサ41および外気温度センサ42、室内熱交換器温度センサ43、室内温度センサ44、運転/停止スイッチ45、並びに、前述の空気センサ28及び圧力センサ29が接続されている。さらに、制御装置30には、リモコン35が無線で接続されている。 As shown in FIG. 2, a compressor 21, a four-way switching valve 22, an electric expansion valve 13, an outdoor fan 27, an indoor fan 12, a liquid side closing valve 24 and a gas side closing valve 25 are connected to the control device 30. ing. More specifically, drive units of these devices are connected to the control device 30. In addition, the control device 30 includes an outdoor heat exchanger temperature sensor 41 and an outdoor air temperature sensor 42, an indoor heat exchanger temperature sensor 43, an indoor temperature sensor 44, an operation / stop switch 45, the aforementioned air sensor 28, and a pressure sensor. 29 are connected. Further, a remote controller 35 is connected to the control device 30 wirelessly.
 上記において、室外熱交換器温度センサ41は、室外熱交換器23に設置されて、室外熱交換器23の温度を検出する。外気温度センサ42は、室外機2内に設置されて、外気の温度を検知する。室内熱交換器温度センサ43は、室内熱交換器11に設置されて、室内熱交換器11の温度を検出する。室内温度センサ44は、室内機1内に設置されて、室内空気温度を検知する。運転/停止スイッチ45は、ポンプダウン運転を始動及び停止するスイッチである。 In the above, the outdoor heat exchanger temperature sensor 41 is installed in the outdoor heat exchanger 23, and detects the temperature of the outdoor heat exchanger 23. The outside air temperature sensor 42 is installed in the outdoor unit 2 to detect the temperature of the outside air. The indoor heat exchanger temperature sensor 43 is installed in the indoor heat exchanger 11 and detects the temperature of the indoor heat exchanger 11. The indoor temperature sensor 44 is installed in the indoor unit 1 to detect the indoor air temperature. The operation / stop switch 45 is a switch for starting and stopping the pump down operation.
 リモコン35は、空気調和機に対し運転操作部として機能するものであって、空気調和機の運転をオンオフする運転スイッチ、運転モード選択部、室内空気の設定温度を設定する設定部、通常の暖房運転時における室内ファン12の風量を設定する風量設定部、室内温度や室内ファン12の風量を表示する表示部等を備えている。リモコン35は、選択または設定された運転操作情報を制御装置30に無線送信できるように構成されている。 The remote control 35 functions as a drive operation unit for the air conditioner, and includes a drive switch for turning on and off the drive of the air conditioner, a drive mode selection unit, a setting unit for setting the set temperature of the indoor air, and normal heating The air volume setting part which sets the air volume of the indoor fan 12 at the time of driving | operation, the display part which displays indoor temperature, the air volume of the indoor fan 12, etc. are provided. The remote controller 35 is configured to wirelessly transmit the selected or set driving operation information to the control device 30.
 制御装置30は、マイクロコンピュータや入出力回路等を含んでおり、これらの機能部品によって、通常運転制御部31、ポンプダウン運転制御部32及び安全運転制御部33を機能的に構成する。 The control device 30 includes a microcomputer, an input / output circuit and the like, and functionally configures the normal operation control unit 31, the pump-down operation control unit 32, and the safe operation control unit 33 by these functional components.
 通常運転制御部31は、リモコン35からの指令、室外熱交換器温度センサ41で検知された室外熱交換器温度、外気温度センサ42で検知された外気温度、室内熱交換器温度センサ43で検知された室内熱交換器温度、室内温度センサ44で検知された室内温度等に基づいて、演算処理や判断処理等を行って本空気調和機の通常運転を制御する。リモコン35からの指令には、運転開始指令や室内温度設定指令等が含まれる。 The normal operation control unit 31 detects an instruction from the remote control 35, an outdoor heat exchanger temperature detected by the outdoor heat exchanger temperature sensor 41, an outside air temperature detected by the outside air temperature sensor 42, and an indoor heat exchanger temperature sensor 43 Based on the indoor heat exchanger temperature, the indoor temperature detected by the indoor temperature sensor 44, and the like, arithmetic processing and judgment processing are performed to control the normal operation of the air conditioner. The command from the remote controller 35 includes an operation start command, an indoor temperature setting command, and the like.
 ポンプダウン運転制御部32は、運転/停止スイッチ45から発せられるポンプダウン運転の指令受けたときに、ポンプダウン運転を行うよう電動膨張弁13、圧縮機21を制御する。 The pump down operation control unit 32 controls the electric expansion valve 13 and the compressor 21 to perform the pump down operation when receiving a pump down operation command issued from the operation / stop switch 45.
 すなわち、上記冷媒回路において、室内機1で冷媒漏れが生じた場合や、空気調和機の移設や修理等を行う場合には、ポンプダウン運転が行われる。ポンプダウン運転を行う場合は、室内機1又は室外機2に設けられた運転/停止スイッチ45(図2を参照)を長押しすることにより、制御装置30のポンプダウン運転制御部32に対して強制運転の開始が指令される。一方、作業者が液側閉鎖弁24を閉鎖する一方、ガス側閉鎖弁25を開放する。そうすると、ポンプダウン運転制御部32により、電動膨張弁13が全開にされ、四路切換弁22が冷房サイクル側に切り換えられ、その後、圧縮機21が所定の周波数(例えば50Hz)で駆動されて、室内機1側の冷媒を室外機2側に回収するポンプダウン運転が行われる。 That is, in the refrigerant circuit, when a refrigerant leak occurs in the indoor unit 1, or when relocation or repair of the air conditioner is performed, a pump-down operation is performed. When performing the pump-down operation, the pump-down operation control unit 32 of the control device 30 can be operated by pressing and holding the operation / stop switch 45 (see FIG. 2) provided in the indoor unit 1 or the outdoor unit 2. The start of forced operation is commanded. On the other hand, the worker closes the liquid side shut-off valve 24 and opens the gas side shut-off valve 25. Then, the motor-operated expansion valve 13 is fully opened by the pump-down operation control unit 32, the four-way switching valve 22 is switched to the cooling cycle side, and then the compressor 21 is driven at a predetermined frequency (for example, 50 Hz). A pump down operation is performed to recover the refrigerant on the indoor unit 1 side to the outdoor unit 2 side.
 こうしてポンプダウン運転が行われることにより、室内温度と室内熱交換器11の温度との温度差が所定温度差を下回った状態が所定時間以上継続している場合に、ポンプダウンが実質的に終了していると判断される。ポンプダウンが実質的に終了した場合には、室内熱交換器11内の冷媒が希薄になり、実質的に熱交換が行われなくなる。これにより、室内温度と室内熱交換器11の温度との温度差が所定温度差を下回った状態となる。このような状態になったときは、ポンプダウン運転制御部32からの指令により、ポンプダウンの実質的終了が終了ランプ(図示せず)の点灯等により作業者に知らされるとともに、圧縮機21が所定周波数で運転される。そこで、作業者が、ガス側閉鎖弁25を閉鎖し、運転/停止スイッチ45の操作により圧縮機21を停止する。これにより、ポンプダウン運転が終了する。 In this way, when the temperature difference between the room temperature and the temperature of the indoor heat exchanger 11 continues to fall below the predetermined temperature difference by performing the pump-down operation, the pump-down is substantially ended. It is judged that When the pump-down is substantially completed, the refrigerant in the indoor heat exchanger 11 becomes lean and substantially no heat exchange takes place. As a result, the temperature difference between the indoor temperature and the temperature of the indoor heat exchanger 11 falls below the predetermined temperature difference. When such a state is reached, the operator is notified by a command from the pump-down operation control unit 32 that the substantial end of the pump-down is performed by lighting the end lamp (not shown) or the like. Is operated at a predetermined frequency. Then, the worker closes the gas side shut-off valve 25 and operates the operation / stop switch 45 to stop the compressor 21. Thus, the pump down operation is completed.
 安全運転制御部33は、少なくとも圧力センサ29により検出された低圧側圧力と、空気センサ28による空気の混入の有無とを受けて、圧縮機21の損傷を回避するように圧縮機21の運転を制御する。 The safe operation control unit 33 operates the compressor 21 so as to avoid damage to the compressor 21 based on at least the low pressure side pressure detected by the pressure sensor 29 and the presence or absence of air mixing by the air sensor 28. Control.
 冷媒回路内へ空気が混入された状態のまま圧縮機21の運転を継続すると、圧縮機21内部の温度が上昇する。図3に示すように、圧縮機損傷の可能性は、冷媒回路中の酸素量が多くなるほど大きくなる。そこで、本空気調和機においては、運転開始と同時に安全運転制御部33が作動し、冷媒回路内への空気混入の検出動作及び空気混入検出時の対処動作が行われる。 If the operation of the compressor 21 is continued with the air being mixed into the refrigerant circuit, the temperature inside the compressor 21 rises. As shown in FIG. 3, the potential for compressor damage increases as the amount of oxygen in the refrigerant circuit increases. Therefore, in the present air conditioner, the safe operation control unit 33 operates at the same time when the operation is started, and the operation of detecting air mixing in the refrigerant circuit and the coping operation at the time of air mixing detection are performed.
 次に、本実施の形態に係る空気調和機の作用として、安全運転制御部33による冷媒回路内への空気混入の検出動作及び空気混入検出時の対処動作について、図4に基づき詳細に説明する。 Next, as an operation of the air conditioner according to the present embodiment, a detection operation of air mixing into the refrigerant circuit by the safe operation control unit 33 and a coping operation upon air mixing detection will be described in detail based on FIG. .
 図4に示すように、冷凍空調運転の開始と同時に、圧力センサ29は、圧縮機21の吸入配管における低圧側圧力を監視し、低圧側圧力が大気圧以下になったかどうかを検出する(ステップS11)。冷媒回路内において最も低い冷媒圧力は、圧縮機21の吸入配管における低圧側圧力である。従って、冷媒回路内への空気混入は、通常は低圧側圧力が大気圧以下になった後に発生する可能性がある。 As shown in FIG. 4, simultaneously with the start of the refrigeration air conditioning operation, the pressure sensor 29 monitors the low pressure side pressure in the suction pipe of the compressor 21 and detects whether the low pressure side pressure has become lower than atmospheric pressure (step S11). The lowest refrigerant pressure in the refrigerant circuit is the low pressure side pressure in the suction pipe of the compressor 21. Therefore, the aeration of the refrigerant circuit may occur usually after the low pressure side pressure becomes lower than the atmospheric pressure.
 そして、低圧側圧力が大気圧以下になった場合(ステップS11でYESの場合)、安全運転制御部33は、次のステップS12に進む。なお、低圧側圧力が大気圧を超える場合(ステップS11でNOの場合)では、冷媒回路内への空気混入の可能性がないので、そのまま低圧側圧力が大気圧以下かどうかのチェックが繰り返される。 Then, when the low pressure side pressure becomes lower than the atmospheric pressure (in the case of YES in step S11), the safe operation control unit 33 proceeds to the next step S12. In the case where the low pressure side pressure exceeds the atmospheric pressure (in the case of NO in step S11), there is no possibility of air mixing into the refrigerant circuit, so the check as to whether the low pressure side pressure is lower than atmospheric pressure is repeated. .
 次のステップS12では、冷媒回路内への空気混入の可能性が存在することに鑑み、安全運転制御部33は、空気センサ28により圧縮機21の吸入側回路において空気混入が検出されたかどうかをチェックする。なお、圧縮機21の吸入側回路とは、図1に示すように四路切換弁22から圧縮機21に延びる回路である。この実施の形態においては、空気センサ28による空気混入の検出は、吸入ガス冷媒中に酸素が含まれているかどうかを判断することにより行われる。そして、空気センサ28により冷媒回路内への空気の混入が検出された場合(ステップS12でYESの場合)、安全運転制御部33は、直ちに圧縮機21の運転を停止し、通常運転を強制的に終了させて制御を終了する。 In the next step S12, in view of the possibility of air mixing into the refrigerant circuit, the safe operation control unit 33 determines whether air mixing is detected in the suction side circuit of the compressor 21 by the air sensor 28. To check. The suction side circuit of the compressor 21 is a circuit extending from the four-way switching valve 22 to the compressor 21 as shown in FIG. In this embodiment, the detection of aeration by the air sensor 28 is performed by determining whether or not the intake gas refrigerant contains oxygen. When the air sensor 28 detects that air is mixed in the refrigerant circuit (YES in step S12), the safe operation control unit 33 immediately stops the operation of the compressor 21 and forces the normal operation. End control and end control.
 以上説明した安全運転制御部33による冷媒回路内への空気混入の検出動作及び空気混入検出時の対処動作は、冷凍空調運転の開始と同時にスタートされる。そして、通常運転制御部31による冷凍空調運転の制御と並行して行われる。なお、通常の運転中にポンプダウン運転制御部32により制御されるポンプダウン運転が開始された場合にも、並行して動作するように構成されている。従って、仮に、このポンプダウン運転において、空気センサ28により空気が検出された場合(ステップS12でYESの場合)、安全運転制御部33は、直ちに圧縮機21の運転を停止し(ステップS13)、通常運転を強制的に終了させて、制御を終了する。 The detection operation of air mixing in the refrigerant circuit by the safe operation control unit 33 described above and the coping operation at the time of air mixing detection are started simultaneously with the start of the refrigeration air conditioning operation. Then, it is performed in parallel with the control of the refrigeration air conditioning operation by the normal operation control unit 31. In addition, it is comprised so that it may operate | move in parallel, also when the pump down driving | operation controlled by the pump down driving | operation control part 32 is started during normal driving | operating. Therefore, if air is detected by the air sensor 28 in this pump-down operation (YES in step S12), the safe operation control unit 33 immediately stops the operation of the compressor 21 (step S13), The normal operation is forcibly ended and the control is ended.
 (実施の形態1の有利な効果)
 実施の形態1に係る冷凍空調装置としての空気調和機は、以上のように構成されているので、次のような効果を奏することができる。
(Advantages of Embodiment 1)
The air conditioner as the refrigeration air conditioning system according to the first embodiment is configured as described above, so that the following effects can be obtained.
 (1)本空気調和機によれば、通常の冷凍空調運転かポンプダウン運転かに拘わらず、圧縮機21の低圧側圧力が大気圧以下の場合において、冷媒回路内への空気の混入を検出した場合には、圧縮機21の運転を停止するので圧縮機21の損傷を抑制することができる。 (1) According to the present air conditioner, regardless of whether the normal refrigeration air conditioning operation or the pump down operation, when the low pressure side pressure of the compressor 21 is lower than the atmospheric pressure, the mixing of air into the refrigerant circuit is detected In this case, since the operation of the compressor 21 is stopped, damage to the compressor 21 can be suppressed.
 (2)また、空気センサ28は、圧縮機21の吸入側回路に取り付けられているので、空気混入を敏感に検出することができる。
 (3)空気センサ28は、圧縮機21とアキュムレータ26とを接続する配管周りに取り付けられているので、空気センサ28の取付けスペースを確保することが容易である。
(2) Moreover, since the air sensor 28 is attached to the suction side circuit of the compressor 21, it is possible to sensitively detect air mixing.
(3) Since the air sensor 28 is attached around the pipe connecting the compressor 21 and the accumulator 26, it is easy to secure a mounting space for the air sensor 28.
 (4)空気の混入を検出して圧縮機21を停止させる場合の条件として、空気センサ28による空気混入の検出以外に、圧力センサ29により低圧側圧力が大気圧以下であることを加えているので、空気混入の検出を空気センサ28のみで行う場合と比較すると誤検出の可能性が少なくなる。 (4) As a condition for detecting the mixing of air and stopping the compressor 21, in addition to the detection of the mixing of air by the air sensor 28, it is added that the low pressure side pressure is lower than the atmospheric pressure by the pressure sensor 29. Therefore, the possibility of false detection is reduced as compared with the case where the detection of air mixing is performed by the air sensor 28 alone.
 (実施の形態2)
 次に、実施の形態2に係る冷凍空調装置としての空気調和機について、図5及び図6に基づき説明する。
Second Embodiment
Next, an air conditioner as a refrigeration air conditioner according to Embodiment 2 will be described based on FIGS. 5 and 6.
 実施の形態2に係る空気調和機は、冷媒回路内への空気混入の検出動作及び空気混入検出時の対処動作に関し、通常運転時とポンプダウン運転時とで検出動作及び検出後の対処動作の内容を異ならせている。実施の形態1の場合と比較すると、通常運転時の動作は同一であるが、ポンプダウン運転時の動作は異ならせている。何故ならば、ポンプダウン運転時には、低圧側圧力が大気圧以下となるまで運転が行われるため、圧力センサ29による低圧側圧力の検出を、圧縮機21を停止させる条件として付加するのみでは殆ど意味がなくなるからである。そこで、本空気調和機は、さらに確実性を増すために、冷媒回路に混入した累積空気量が一定値以上になることを確認して誤検出を排除するようにしている。 The air conditioner according to the second embodiment relates to the detection operation of air mixing into the refrigerant circuit and the coping operation upon air mixing detection, in the detection operation and coping operation after the detection during the normal operation and the pump down operation. The contents are different. Compared to the case of the first embodiment, the operation in the normal operation is the same, but the operation in the pump-down operation is different. Because, in the pump-down operation, the operation is performed until the low pressure side pressure becomes lower than the atmospheric pressure, and therefore, the detection of the low pressure side pressure by the pressure sensor 29 is almost only meaningful as a condition to stop the compressor 21 Because there is no Therefore, in the air conditioner, in order to further increase the certainty, it is confirmed that the cumulative amount of air mixed in the refrigerant circuit becomes equal to or more than a predetermined value, and erroneous detection is eliminated.
 実施の形態2に係る構成として、実施の形態1との相違点を説明する。
 図5に示すように、実施の形態1との大きな相違点は、制御装置30に空気混入量算出部34が設けられていることである。空気混入量算出部34は、圧縮機21の回転数及び低圧側圧力の変化を加味して圧縮機21に吸入される冷媒量を算出し、さらに、圧縮機21に吸入されるガス冷媒中の酸素濃度から算出される空気濃度をその変化も含めて把握する。空気混入量算出部34は、これらの情報に基づいて室外機2に蓄積される累積の空気混入量を演算するように構成される。そこで、空気混入量算出部34における演算を可能とするために、ポンプダウン運転制御部32は、圧縮機21の回転数及び冷媒回路の低圧側圧力の情報を空気混入量算出部34に出力するように構成される。また、吸入ガス中の酸素濃度を検出するために、空気センサ28としての酸素センサには、吸入ガス中の酸素濃度を検出できるものが使用される。空気センサ28で検出された酸素濃度が安全運転制御部33を介して空気混入量算出部34に出力されている。
As a configuration according to the second embodiment, differences from the first embodiment will be described.
As shown in FIG. 5, a major difference from the first embodiment is that the control device 30 is provided with the aeration amount calculation unit 34. The aeration amount calculation unit 34 calculates the amount of refrigerant sucked into the compressor 21 in consideration of changes in the rotational speed and low pressure side pressure of the compressor 21, and further, in the gas refrigerant sucked into the compressor 21. Air concentration calculated from oxygen concentration is grasped including its change. The air mixing amount calculation unit 34 is configured to calculate the cumulative air mixing amount accumulated in the outdoor unit 2 based on these pieces of information. Therefore, the pump-down operation control unit 32 outputs the information on the rotational speed of the compressor 21 and the low pressure side pressure of the refrigerant circuit to the aeration amount calculation unit 34 in order to enable the calculation in the aeration amount calculation unit 34. Configured as. Further, in order to detect the oxygen concentration in the inhaled gas, for the oxygen sensor as the air sensor 28, one capable of detecting the oxygen concentration in the inhaled gas is used. The oxygen concentration detected by the air sensor 28 is output to the aeration amount calculation unit 34 via the safe operation control unit 33.
 次に、以上のように構成される実施の形態2に係る作用として、冷媒回路内への空気混入の検出動作及び空気混入検出時の対処動作について図6に基づき詳細に説明する。
 図6に示すように、実施の形態1の場合と同様に、冷凍空調運転の開始と同時に圧力センサ29により圧縮機21の吸入配管における低圧側圧力が監視され、低圧側圧力が大気圧以下になったかどうか検出される(ステップS21)。
Next, as the operation according to the second embodiment configured as described above, the operation of detecting air mixing in the refrigerant circuit and the coping operation at the time of detecting air mixing will be described in detail based on FIG.
As shown in FIG. 6, the low pressure side pressure in the suction piping of the compressor 21 is monitored by the pressure sensor 29 simultaneously with the start of the refrigeration air conditioning as in the case of the first embodiment, and the low pressure side pressure is below atmospheric pressure. It is detected whether it has become (step S21).
 そして、低圧側圧力が大気圧以下になった場合には(ステップS21でYESの場合)、安全運転制御部33は次のステップS22に進む。なお、低圧側圧力が大気圧を超える場合では(ステップS21でNOの場合)、低圧側圧力が大気圧以下かどうかのチェックが繰り返される。 When the low pressure side pressure becomes lower than the atmospheric pressure (YES in step S21), the safe operation control unit 33 proceeds to the next step S22. When the low pressure side pressure exceeds the atmospheric pressure (in the case of NO at step S21), the check of whether the low pressure side pressure is equal to or less than the atmospheric pressure is repeated.
 次のステップS22では、安全運転制御部33は、空気センサ28により圧縮機21の吸入側回路において空気の混入が検出されたかどうかをチェックする。この実施の形態においては、空気センサ28による空気混入の検出は、吸入ガス冷媒中に酸素が含まれているかを判定すると共に、吸入ガス中の酸素濃度を測定することにより行われる。空気センサ28が冷媒回路内への空気の混入を検出しなかった場合(ステップS22でNOの場合)、安全運転制御部33はステップS21へ戻る。一方、空気センサ28が冷媒回路内への空気の混入を検出した場合(ステップS22でYESの場合)、安全運転制御部33は、ステップS23に移行してポンプダウン運転か或いは通常運転かを判断する。 In the next step S22, the safe operation control unit 33 checks whether the air sensor 28 detects air mixing in the suction side circuit of the compressor 21. In this embodiment, the detection of aeration by the air sensor 28 is performed by determining whether oxygen is contained in the suction gas refrigerant and measuring the oxygen concentration in the suction gas. If the air sensor 28 does not detect the mixing of air into the refrigerant circuit (NO in step S22), the safe operation control unit 33 returns to step S21. On the other hand, when the air sensor 28 detects mixing of air into the refrigerant circuit (in the case of YES at step S22), the safe operation control unit 33 proceeds to step S23 to determine whether it is a pump down operation or a normal operation. Do.
 このステップS23において通常運転と判断された場合は、安全運転制御部33は、実施の形態1の場合と同様に直ちに圧縮機21を停止する(ステップS26)。従って、通常運転において空気の混入が検出された場合は、実施の形態1と実質的に同一となる。しかし、このステップS23においてポンプダウン運転中であると判断された場合は、通常運転中においては空気の混入がなかったが、現在の運転がポンプダウン運転に入り、圧縮機21の低圧側圧力が大気圧以下になる程度にポンプダウン運転が進んだ状態にあると推測される。また、この状態になった後に空気の浸入が生じたと推測される。ここで、空気センサ28の検出結果のみに基づく場合には、空気センサ28の誤検出に基づき圧縮機停止の判断を誤る恐れがあり得る。このような事情を鑑み、本実施形態では、空気混入量算出部34は、圧縮機21の回転数、圧縮機21の低圧側圧力、空気センサ28により検出される吸入ガス中の酸素濃度、及び時間の経過から空気の累積混入量を計算する(ステップS24)。そして、この累積混入量が予め設定された閾値を超えた場合に(ステップS25でYESの場合に)、安全運転制御部33は、圧縮機21の運転を停止する(ステップS26)。なお、ステップS25において空気の累積混入量が予め設定された閾値を超えない状態では、圧縮機21に損傷を与えるほどの量の空気の混入がないと判断され、そのまま圧縮機21の運転が継続される(ステップS25でNOの場合)。 When it is determined in step S23 that the normal operation is performed, the safe operation control unit 33 immediately stops the compressor 21 as in the case of the first embodiment (step S26). Therefore, when mixing of air is detected in normal operation, it becomes substantially the same as that of the first embodiment. However, if it is determined in step S23 that the pump-down operation is being performed, there is no mixing of air during the normal operation, but the current operation enters the pump-down operation and the low pressure side pressure of the compressor 21 is It is presumed that the pump down operation has advanced to such an extent that the pressure is lower than the atmospheric pressure. Moreover, it is inferred that the infiltration of air arose after becoming in this state. Here, when based only on the detection result of the air sensor 28, there is a possibility that the determination of the compressor stop may be mistaken based on the erroneous detection of the air sensor 28. In view of such circumstances, in the present embodiment, the aeration amount calculation unit 34 includes the number of revolutions of the compressor 21, the low pressure side pressure of the compressor 21, the oxygen concentration in the intake gas detected by the air sensor 28, The accumulated amount of air is calculated from the passage of time (step S24). Then, when the accumulated mixing amount exceeds a preset threshold (in the case of YES in step S25), the safe operation control unit 33 stops the operation of the compressor 21 (step S26). It should be noted that in step S25, if the accumulated mixing amount of air does not exceed the preset threshold value, it is determined that there is no mixing of air that would damage the compressor 21, and the operation of the compressor 21 continues as it is (In the case of NO at step S25).
 (実施の形態2の有利な効果)
 実施の形態2に係る冷凍空調装置としての空気調和機は、以上のように構成されているので、次のような効果を奏する他、前記(2)、(3)の効果をも奏することができる。
(Advantages of Embodiment 2)
Since the air conditioner as the refrigeration air conditioner according to Embodiment 2 is configured as described above, in addition to the following effects, the effects of (2) and (3) can also be exhibited. it can.
 (5)通常運転中に、低圧側圧力が低下するとともに、空気センサ28により冷媒回路内への空気の混入を検出した場合は、直ちに圧縮機21の運転を停止するので、圧縮機21の損傷を抑制することができる。また、空気混入の検出を空気センサ28のみで行う場合と比較すると誤検出の可能性が少なくなる。 (5) During normal operation, when the low pressure side pressure decreases and the air sensor 28 detects mixing of air into the refrigerant circuit, the operation of the compressor 21 is immediately stopped, so damage to the compressor 21 is caused. Can be suppressed. Further, the possibility of erroneous detection is reduced as compared with the case where the detection of air mixing is performed by the air sensor 28 alone.
 (6)ポンプダウン運転中は、低圧側圧力が低下し、さらに、空気センサ28により冷媒回路内への空気の混入が検出された場合であって、冷媒回路に混入した累積空気量が予め設定された閾値を超える場合がある。このような場合に、冷媒回路内への空気の混入が確認できたものと考えて圧縮機21の運転を停止するので、誤検出の恐れが少なくなる。 (6) During the pump down operation, the low pressure side pressure is reduced, and the air sensor 28 detects that air is mixed in the refrigerant circuit, and the accumulated amount of air mixed in the refrigerant circuit is set in advance. It may exceed the threshold value. In such a case, since the operation of the compressor 21 is stopped on the assumption that the mixing of air into the refrigerant circuit has been confirmed, the risk of erroneous detection is reduced.
 (変形例)
 上記の各実施の形態に関する説明は、本開示に従う冷凍空調装置が取り得る形態の例示であり、その形態に制限されるものではない。なお、相互に矛盾しない少なくとも二つの変形例を組み合わせた形態としてもよい。
(Modification)
The above description of each embodiment is an exemplification of a form which the refrigeration and air conditioning device according to the present disclosure can take, and is not limited to the form. Note that at least two modifications that do not contradict each other may be combined.
 ・前記実施の形態1において、冷媒回路内への空気混入の検出条件として、低圧側圧力が大気圧以下になることを省略することもできる。この場合の空気混入の検出動作及び空気混入検出時の対処動作は、図4に示す実施の形態1における手順においてステップS11の低圧側圧力の検出を省略し、実施の形態1におけるステップS12以降の手順を行えばよい。すなわち、図7に示すように、空気センサ28により冷媒回路内への空気の混入が検出された場合(ステップS12でYESの場合)、直ちに圧縮機21の運転を停止し(ステップS13)、通常運転を強制的に終了させるようにすればよい。なお、この場合は、圧力センサ29自体の取付を省略することもできる。 In the first embodiment, as a detection condition of air mixing into the refrigerant circuit, it can be omitted that the low pressure side pressure becomes equal to or less than the atmospheric pressure. In this case, the detection operation of air mixing and the coping operation at the time of air mixing detection omit the detection of the low-pressure side pressure in step S11 in the procedure in the first embodiment shown in FIG. Just follow the steps. That is, as shown in FIG. 7, when the air sensor 28 detects air mixing into the refrigerant circuit (YES in step S12), the operation of the compressor 21 is immediately stopped (step S13). The operation may be forced to end. In this case, the attachment of the pressure sensor 29 itself can be omitted.
 ・また、実施の形態2において、冷媒回路内への空気混入の検出条件として、低圧側圧力が大気圧以下になることを省略することもできる。この場合の空気混入の検出動作及び空気混入検出時の対処動作は、図6に示す実施の形態2における手順においてステップS21の低圧側圧力の検出を省略し、実施の形態2におけるステップS22以降の手順を行えばよい。すなわち、図8に示すように、空気センサ28により冷媒回路内への空気の混入が検出された場合(ステップS22でYESの場合)、現在の運転がポンプダウン運転か或いは通常運転か判断する(ステップS23)。ステップS23において現在の運転が通常運転と判断された場合は、直ちに圧縮機21を停止する(ステップS26)。一方、ステップS23において現在の運転がポンプダウン運転と判断された場合は、冷媒回路内への空気の累積混入量が予め設定された閾値を超えた場合(ステップS25でYESの場合)に、圧縮機21の運転が停止される(ステップS26)。なお、この場合は、圧力センサ29自体の取付を省略することもできる。 In the second embodiment, as a detection condition of air mixing into the refrigerant circuit, it can be omitted that the low pressure side pressure becomes lower than the atmospheric pressure. In this case, the detection operation of air mixing and the coping operation at the time of air mixing detection omit the detection of the low-pressure side pressure in step S21 in the procedure in the second embodiment shown in FIG. Just follow the steps. That is, as shown in FIG. 8, when mixing of air into the refrigerant circuit is detected by the air sensor 28 (YES in step S22), it is determined whether the current operation is the pump down operation or the normal operation ( Step S23). If it is determined in step S23 that the current operation is the normal operation, the compressor 21 is immediately stopped (step S26). On the other hand, if it is determined in step S23 that the current operation is pump-down operation, compression is performed if the cumulative amount of air mixed into the refrigerant circuit exceeds a preset threshold (YES in step S25). The operation of the machine 21 is stopped (step S26). In this case, the attachment of the pressure sensor 29 itself can be omitted.
 ・前記実施の形態においては、空気センサ28として酸素センサを用いていたが、空気センサ28は空気成分である二酸化炭素或いは窒素ガスを検出するものでもよい。
 ・前記実施の形態1においては、空気センサ28の取付位置を、四路切換弁22とアキュムレータ26とを接続する低圧配管としていたが、スペース的に可能であればアキュムレータ26と圧縮機21とを接続する吸入配管としてもよい。この方が、圧縮機21の吸入口により近い位置で空気の混入を検出するので、より的確に冷媒回路内への空気の混入を検出することができる。
In the embodiment described above, the oxygen sensor is used as the air sensor 28, but the air sensor 28 may detect carbon dioxide or nitrogen gas which is an air component.
In the first embodiment, the mounting position of the air sensor 28 is a low-pressure pipe connecting the four-way switching valve 22 and the accumulator 26. However, if space permits, the accumulator 26 and the compressor 21 can be used. It may be a suction pipe to be connected. In this case, since the mixing of air is detected at a position closer to the suction port of the compressor 21, the mixing of air into the refrigerant circuit can be detected more accurately.
 ・前記実施の形態においては、冷凍空調装置としてセパレート型空気調和機を掲げていたが、冷凍空調装置は、一体型空気調和機、冷蔵庫内を冷却する冷却装置、冷凍庫内を冷凍する冷凍装置、工作機械の潤滑油を冷却する冷却装置など他の種類の冷凍サイクル応用運転を行う装置であってもよい。 -In the above embodiment, although a separate type air conditioner was listed as a refrigeration air conditioner, the refrigeration air conditioner is an integrated air conditioner, a cooling device for cooling the inside of a refrigerator, and a freezing device for freezing the inside of a freezer, It may be a device that performs other types of refrigeration cycle application operation such as a cooling device that cools the lubricating oil of a machine tool.
 以上、実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 While the embodiments have been described above, it will be appreciated that various changes in form and detail may be made without departing from the spirit and scope of the claims.

Claims (7)

  1.  圧縮機(21)、室外熱交換器(23)、減圧機構(13)、液側閉鎖弁(24)、室内熱交換器(11)、及びガス側閉鎖弁(25)を有する冷媒回路と、
     前記圧縮機(21)の吸入側回路に取り付けられた、前記冷媒回路内への空気の混入を検出する空気センサ(28)と、
     前記空気センサ(28)が前記冷媒回路内への空気の混入を検出した場合に、前記圧縮機(21)の運転を停止するように前記圧縮機(21)の運転を制御する安全運転制御部(33)とを備えている
     冷凍空調装置。
    A refrigerant circuit having a compressor (21), an outdoor heat exchanger (23), a pressure reducing mechanism (13), a liquid side shutoff valve (24), an indoor heat exchanger (11), and a gas side shutoff valve (25);
    An air sensor (28) attached to a suction side circuit of the compressor (21) for detecting air mixing in the refrigerant circuit;
    A safety operation control unit for controlling the operation of the compressor (21) to stop the operation of the compressor (21) when the air sensor (28) detects the mixing of air into the refrigerant circuit (33) and a refrigeration air conditioner.
  2.  前記冷媒回路は、冷媒流通方向を可逆に切換え可能な四路切換弁(22)を有し、
     前記圧縮機(21)の吸入側回路は、アキュムレータ(26)を有し、
     前記空気センサ(28)は、前記アキュムレータ(26)と前記四路切換弁(22)とを接続する吸入配管に取り付けられている
     請求項1記載の冷凍空調装置。
    The refrigerant circuit has a four-way switching valve (22) capable of reversibly switching the refrigerant flow direction,
    The suction circuit of the compressor (21) comprises an accumulator (26)
    The refrigeration air conditioning system according to claim 1, wherein the air sensor (28) is attached to a suction pipe that connects the accumulator (26) and the four-way switching valve (22).
  3.  請求項1又は請求項2に記載の冷凍空調装置において、
     前記液側閉鎖弁(24)が閉鎖されるとともに前記ガス側閉鎖弁(25)が開放された状態で、前記圧縮機(21)及び前記減圧機構(13)を制御してポンプダウン運転を行うように構成されたポンプダウン運転制御部(32)をさらに備え、
     前記安全運転制御部(33)は、通常の冷凍空調運転及び前記ポンプダウン運転の何れの場合においても、前記空気センサ(28)が空気の混入を検出した場合に前記圧縮機(21)の運転を停止するように構成されている
     冷凍空調装置。
    The refrigeration air conditioner according to claim 1 or 2
    With the liquid side shutoff valve (24) closed and the gas side shutoff valve (25) opened, the pump (21) and the pressure reducing mechanism (13) are controlled to perform a pump-down operation. Further comprising a pump down operation control unit (32) configured as
    The safe operation control unit (33) operates the compressor (21) when the air sensor (28) detects the mixing of air in either the normal refrigeration air conditioning operation or the pump down operation. A refrigeration air conditioner that is configured to stop.
  4.  前記安全運転制御部(33)は、前記空気センサ(28)が空気の混入を検出した場合に直ちに前記圧縮機(21)の運転を停止するように構成されている
     請求項1~請求項3の何れか1項に記載の冷凍空調装置。
    The safe operation control unit (33) is configured to immediately stop the operation of the compressor (21) when the air sensor (28) detects the mixing of air. Refrigeration air conditioner according to any one of the above.
  5.  請求項1~請求項3の何れか1項に記載の冷凍空調装置において、
     低圧側圧力を検出する圧力センサ(29)をさらに備え、
     前記安全運転制御部(33)は、前記圧力センサ(29)により低圧側圧力が大気圧以下であることが検出されるとともに前記空気センサ(28)により空気の混入が検出された場合に、前記圧縮機(21)の運転を停止するように構成されている
     冷凍空調装置。
    The refrigeration air conditioner according to any one of claims 1 to 3.
    It further comprises a pressure sensor (29) for detecting the low pressure side pressure,
    When the low pressure side pressure is detected by the pressure sensor (29) to be lower than the atmospheric pressure and the air sensor (28) detects that the air is mixed, the safe operation control unit (33) Refrigerating air conditioner configured to stop operation of a compressor (21).
  6.  請求項1又は請求項2に記載の冷凍空調装置において、
     前記液側閉鎖弁(24)が閉鎖されるとともに前記ガス側閉鎖弁(25)が開放された状態で、前記圧縮機(21)及び前記減圧機構(13)を制御してポンプダウン運転を行うように構成されたポンプダウン運転制御部(32)と、
     前記ポンプダウン運転の場合に、前記空気センサ(28)により測定される前記冷媒回路中の空気濃度と前記圧縮機(21)の回転数とから前記冷媒回路内への混入空気量の累積値を算出するように構成された空気混入量算出部(34)と
     をさらに備え、
     前記安全運転制御部(33)は、前記空気センサ(28)が空気の混入を検出した場合において通常の冷凍空調運転が行われているときには、前記圧縮機(21)の運転を停止するように構成され、前記空気センサ(28)が空気の混入を検出した場合において前記ポンプダウン運転が行われているときには、前記空気混入量算出部(34)が予め設定された閾値以上の混入空気量を算出した場合に前記圧縮機(21)の運転を停止するように構成されている
     冷凍空調装置。
    The refrigeration air conditioner according to claim 1 or 2
    With the liquid side shutoff valve (24) closed and the gas side shutoff valve (25) opened, the pump (21) and the pressure reducing mechanism (13) are controlled to perform a pump-down operation. A pump down operation control unit (32) configured as
    In the case of the pump-down operation, the cumulative value of the amount of air mixed in the refrigerant circuit is calculated from the air concentration in the refrigerant circuit measured by the air sensor (28) and the rotational speed of the compressor (21). Further comprising an aeration amount calculation unit (34) configured to calculate
    The safe operation control unit (33) is configured to stop the operation of the compressor (21) when the normal refrigeration air conditioning operation is performed when the air sensor (28) detects the mixing of air. When the pump down operation is performed when the air sensor (28) detects air mixing, the air mixing amount calculation unit (34) sets the amount of mixed air equal to or greater than a preset threshold value. Refrigerated air conditioner configured to stop operation of the compressor (21) when calculated.
  7.  請求項6記載の冷凍空調装置において、
     低圧側圧力を検出する圧力センサ(29)をさらに備え、
     前記安全運転制御部(33)は、前記圧力センサ(29)が大気圧以下であることを検出するとともに前記空気センサ(28)が空気の混入を検出した場合において通常運転が行われているときには、前記圧縮機(21)の運転を停止するように構成され、前記圧力センサ(29)が大気圧以下であることを検出するとともに前記空気センサ(28)が空気の混入を検出した場合において前記ポンプダウン運転が行われているときには、前記空気混入量算出部(34)が予め設定された閾値以上の混入空気量を算出した場合に前記圧縮機(21)の運転を停止するように構成されている
     冷凍空調装置。
    In the refrigeration air conditioner according to claim 6,
    It further comprises a pressure sensor (29) for detecting the low pressure side pressure,
    The normal operation is performed when the safe operation control unit (33) detects that the pressure sensor (29) is lower than atmospheric pressure and the air sensor (28) detects mixing of air. The pressure sensor (29) detects that the pressure is lower than the atmospheric pressure and the air sensor (28) detects mixing of air, and the operation of the compressor (21) is stopped. When the pump-down operation is being performed, the operation of the compressor (21) is configured to be stopped when the air mixing amount calculation unit (34) calculates the amount of mixed air equal to or greater than a preset threshold. A refrigeration air conditioner.
PCT/JP2018/040568 2017-11-09 2018-10-31 Refrigerating and air-conditioning apparatus WO2019093210A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017216736A JP7048880B2 (en) 2017-11-09 2017-11-09 Refrigeration and air conditioning equipment
JP2017-216736 2017-11-09

Publications (1)

Publication Number Publication Date
WO2019093210A1 true WO2019093210A1 (en) 2019-05-16

Family

ID=66437752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040568 WO2019093210A1 (en) 2017-11-09 2018-10-31 Refrigerating and air-conditioning apparatus

Country Status (2)

Country Link
JP (1) JP7048880B2 (en)
WO (1) WO2019093210A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110542176A (en) * 2019-09-19 2019-12-06 重庆美的通用制冷设备有限公司 Defrosting control system and method for air conditioner, air conditioner and readable storage medium
JP7337278B2 (en) 2020-07-20 2023-09-01 三菱電機株式会社 Cold heat source unit and refrigeration cycle device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038423A (en) * 1996-07-24 1998-02-13 Matsushita Refrig Co Ltd Freezing system
JP2015045487A (en) * 2013-08-29 2015-03-12 三菱電機株式会社 Air conditioner
JP2016090223A (en) * 2014-10-30 2016-05-23 ダイキン工業株式会社 Air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4890459A (en) * 1988-12-08 1990-01-02 Thermo King Corporation Monitor for refrigeration system
JPH0719680A (en) * 1993-06-30 1995-01-20 Daikin Ind Ltd Operation controller for refrigerator
JP6588645B2 (en) * 2016-07-21 2019-10-09 三菱電機株式会社 Refrigeration cycle equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038423A (en) * 1996-07-24 1998-02-13 Matsushita Refrig Co Ltd Freezing system
JP2015045487A (en) * 2013-08-29 2015-03-12 三菱電機株式会社 Air conditioner
JP2016090223A (en) * 2014-10-30 2016-05-23 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
JP7048880B2 (en) 2022-04-06
JP2019086260A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
WO2018181173A1 (en) Freezer
JP6274277B2 (en) Refrigeration equipment
JP6935720B2 (en) Refrigeration equipment
CN107560112B (en) A kind of control method of air conditioner refrigerating high temperature-proof protection
US10168066B2 (en) Air conditioner with outdoor fan control in accordance with suction pressure and suction superheating degree of a compressor
WO2018216127A1 (en) Air conditioning system
WO2009119023A1 (en) Freezing apparatus
JPH04369370A (en) Air conditioner
WO2018181567A1 (en) Indoor unit of refrigeration device
US10598413B2 (en) Air-conditioning apparatus
JP2016125694A (en) Air conditioner indoor unit
WO2019093210A1 (en) Refrigerating and air-conditioning apparatus
JP2016125732A (en) Air conditioning device
WO2017138167A1 (en) Cooler and air conditioner
JP5693704B2 (en) Air conditioner
KR20090051479A (en) An air conditioner and control method thereof
KR20120050325A (en) Method for removing water of air conditioner
JP2022024290A (en) Air conditioner
JP2022010435A (en) Air conditioner
JP5535359B2 (en) Air conditioner
WO2020217380A1 (en) Indoor unit of air conditioner and air conditioner
JP2016156569A (en) Freezer
JPH07174386A (en) Separate type air-conditioning machine
WO2022264399A1 (en) Air-conditioning device
JP2022024289A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875877

Country of ref document: EP

Kind code of ref document: A1