JP2015045487A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2015045487A
JP2015045487A JP2013178291A JP2013178291A JP2015045487A JP 2015045487 A JP2015045487 A JP 2015045487A JP 2013178291 A JP2013178291 A JP 2013178291A JP 2013178291 A JP2013178291 A JP 2013178291A JP 2015045487 A JP2015045487 A JP 2015045487A
Authority
JP
Japan
Prior art keywords
temperature
compressor
heat exchanger
current value
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013178291A
Other languages
Japanese (ja)
Other versions
JP6061819B2 (en
Inventor
紘一 梅津
Koichi Umezu
紘一 梅津
斎藤 直
Sunao Saito
直 斎藤
浩司 吉川
Koji Yoshikawa
浩司 吉川
大輔 杉山
Daisuke Sugiyama
大輔 杉山
章 瀬田
Akira Seta
章 瀬田
喜敬 海野
Yoshitaka Unno
喜敬 海野
友美 東川
Tomomi Higashikawa
友美 東川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013178291A priority Critical patent/JP6061819B2/en
Publication of JP2015045487A publication Critical patent/JP2015045487A/en
Application granted granted Critical
Publication of JP6061819B2 publication Critical patent/JP6061819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an air conditioner which stops an operation of a compressor by determining a state in which air is mixed in a refrigeration cycle and the inside of the compressor becomes high temperature and high pressure, and which can continue the operation without erroneous detection in a normal state.SOLUTION: An air conditioner 1 includes: a compressor 2; an indoor heat exchanger 6; a refrigerant decompression device 5; an outdoor heat exchanger 4; an indoor temperature sensor 11 for detecting an indoor air temperature; an indoor heat exchanger temperature sensor 10 for detecting a temperature of the indoor heat exchanger; compressor input current detection means 16 for detecting an input current value (I) of the compressor 2; and control means. The control means stops an operation of the compressor 2 when a temperature difference between the indoor air temperature and the temperature of the indoor heat exchanger 6 is equal to or less than a first specified temperature difference (Ta), and the input current value (I) is equal to or more than a first specified current value (I0).

Description

本発明は、圧縮機の破損防止制御を有する空気調和機に関するものである。   The present invention relates to an air conditioner having control for preventing breakage of a compressor.

空気調和機の冷凍サイクルにおいて、循環する冷媒回路の一部が閉塞している場合や、開閉弁を閉めて冷房運転を行い室外機に冷媒回収する場合の様に冷凍サイクルの冷媒回路の一部が閉止しているとき、冷媒回路の配管折損部や室内機と室外機とを接続する接続配管が取り外され空気が混入する状態の開閉弁などから冷媒回路内に大量の空気が混入し、圧縮機内で空気圧縮が起こり、圧縮機内が高温高圧になることで圧縮機が破損する可能性がある。
このような圧縮機の破損を回避するために、室内熱交換器の最高温度と最低温度との差を検出し、温度差が所定温度差以下となったときに圧縮機の運転を停止する空気調和機の圧縮機保護制御が提案されている(例えば、特許文献1を参照)。
In a refrigeration cycle of an air conditioner, when a part of the circulating refrigerant circuit is blocked, or when a cooling operation is performed with the on-off valve closed to recover the refrigerant to the outdoor unit, a part of the refrigerant circuit of the refrigeration cycle When the valve is closed, a large amount of air is mixed into the refrigerant circuit from the on-off valve or the like in a state where the pipe breakage part of the refrigerant circuit or the connecting pipe that connects the indoor unit to the outdoor unit is removed and air enters. Air compression occurs in the machine, and there is a possibility that the compressor is damaged due to high temperature and high pressure in the compressor.
In order to avoid such damage to the compressor, an air that detects the difference between the maximum temperature and the minimum temperature of the indoor heat exchanger and stops the operation of the compressor when the temperature difference becomes a predetermined temperature difference or less. A compressor protection control for a harmonic machine has been proposed (see, for example, Patent Document 1).

特開2008−138893号公報JP 2008-138893 A

従来の空気調和機は、熱交換器の温度を監視することで、対象とする熱交換器に冷媒が流れていないことを判断することは可能である。しかし、冷凍サイクルの一部が閉塞して運転中に冷媒回路の配管折損部や室内機と室外機とを接続する接続配管が取り外され空気が混入する状態の開閉弁などから冷媒回路内に大量の空気が混入することで熱交換器の温度差がつかない状態、かつ、圧縮機内に大量に空気が混入し圧縮機内が高温高圧になり圧縮機が破損する可能性がある状態なのか、または単に冷凍サイクル内の冷媒量の不足や冷媒回収運転から熱交換器の温度差がつかない状態となっているのかを判別することができない。   The conventional air conditioner can determine that the refrigerant is not flowing through the target heat exchanger by monitoring the temperature of the heat exchanger. However, a large amount of refrigeration cycle is blocked in the refrigerant circuit from the on-off valve or the like in a state where a part of the refrigeration cycle is blocked and the pipe breakage part of the refrigerant circuit or the connection pipe connecting the indoor unit to the outdoor unit is removed The temperature of the heat exchanger cannot be changed due to the mixed air, and there is a possibility that the compressor may be damaged due to a large amount of air mixed in the compressor and high temperature and pressure inside the compressor, or It is simply not possible to determine whether the temperature difference of the heat exchanger is not reached due to the shortage of the refrigerant amount in the refrigeration cycle or the refrigerant recovery operation.

また、空調負荷が低い場合または室内温度が安定しているときには、圧縮機の回転数が最小で運転され、室内熱交換器の最高温度と最低温度に差が出ないこともあり、製品に問題がなくても圧縮機の運転が停止して異常であると誤判定してしまう可能性がある。   In addition, when the air conditioning load is low or the room temperature is stable, the compressor operates at the minimum speed, and there may be no difference between the maximum temperature and the minimum temperature of the indoor heat exchanger. Even if there is no, there is a possibility that the operation of the compressor stops and it is erroneously determined that it is abnormal.

本発明は、上記のような課題を解決するためになされたもので、圧縮機内の異常状態を判断して圧縮機の運転を停止すると共に、正常な状態では誤検知なく運転を続けることができる空気調和機を得ることを目的とする。   The present invention has been made in order to solve the above-described problems, and can stop the operation of the compressor by judging an abnormal state in the compressor, and can continue the operation without a false detection in a normal state. The purpose is to obtain an air conditioner.

本発明に係る空気調和機は、圧縮機と、室内熱交換器と、冷媒減圧装置と、室外熱交換器と、室内空気温度を検出する室内温度センサと、前記室内熱交換器の温度を検出する室内熱交換器温度センサと、前記圧縮機の入力電流値を検出する圧縮機入力電流検出手段と、制御手段と、を備えた空気調和機であって、前記制御手段は、前記室内空気温度と前記室内熱交換器の温度との温度差が第1規定温度差以下であり、かつ、前記入力電流値が第1規定電流値以上である時に、前記圧縮機の運転を停止するものである。   An air conditioner according to the present invention includes a compressor, an indoor heat exchanger, a refrigerant decompression device, an outdoor heat exchanger, an indoor temperature sensor that detects an indoor air temperature, and a temperature of the indoor heat exchanger. An indoor heat exchanger temperature sensor, a compressor input current detection means for detecting an input current value of the compressor, and a control means, wherein the control means includes the indoor air temperature And the temperature of the indoor heat exchanger are not more than a first specified temperature difference, and the operation of the compressor is stopped when the input current value is not less than the first specified current value. .

本発明に係る空気調和機によれば、制御手段が、室内空気温度と室内熱交換器の温度との温度差が第1規定温度差以下であり、かつ、入力電流値が第1規定電流値以上である時に、圧縮機の運転を停止するので、冷凍サイクル内に空気が混入して圧縮機内が高温高圧となった状態を異常状態と判断し、圧縮機の破損を防止するために運転の停止をすると共に、正常な状態では誤検知なく運転を続けることができる。   According to the air conditioner of the present invention, the control means has a temperature difference between the indoor air temperature and the temperature of the indoor heat exchanger equal to or less than the first specified temperature difference, and the input current value is the first specified current value. Since the compressor operation is stopped when the above is true, it is determined that the compressor is at a high temperature and high pressure due to air being mixed into the refrigeration cycle, and the operation of the compressor is prevented to prevent damage to the compressor. In addition to stopping, it is possible to continue driving without a false detection in a normal state.

本実施の形態1に係る空気調和機の冷凍サイクル図である。It is a refrigeration cycle diagram of the air conditioner according to the first embodiment. 本実施の形態1に係る空気調和機の制御系を表すブロック図である。It is a block diagram showing the control system of the air conditioner concerning this Embodiment 1. FIG. 本実施の形態1に係る空気調和機の制御を表すフローチャート図である。It is a flowchart figure showing control of the air conditioner concerning this Embodiment 1. FIG. 本実施の形態2に係る空気調和機の制御を表すフローチャート図である。It is a flowchart figure showing control of the air conditioner concerning this Embodiment 2. FIG. 本実施の形態3に係る空気調和機の制御を表すフローチャート図である。It is a flowchart figure showing control of the air conditioner concerning this Embodiment 3. FIG. 本実施の形態4に係る空気調和機の制御を表すフローチャート図である。It is a flowchart figure showing control of the air conditioner concerning this Embodiment 4. FIG. 本実施の形態5に係る空気調和機の制御を表すフローチャート図である。It is a flowchart figure showing control of the air conditioner concerning this Embodiment 5. FIG. 本実施の形態6に係る空気調和機の制御を表すフローチャート図である。It is a flowchart figure showing control of the air conditioner concerning this Embodiment 6. FIG. 本実施の形態7に係る空気調和機の制御を表すフローチャート図である。It is a flowchart figure showing control of the air conditioner concerning this Embodiment 7.

実施の形態1.
図1は、本実施の形態1に係る空気調和機1の冷凍サイクル図である。
図2は、本実施の形態1に係る空気調和機1の制御系を表すブロック図である。
図3は、本実施の形態1に係る空気調和機1の制御を表すフローチャート図である。
Embodiment 1 FIG.
FIG. 1 is a refrigeration cycle diagram of the air conditioner 1 according to the first embodiment.
FIG. 2 is a block diagram illustrating a control system of the air conditioner 1 according to the first embodiment.
FIG. 3 is a flowchart showing the control of the air conditioner 1 according to the first embodiment.

空気調和機1は、図1に示すように、圧縮機2、四方弁3、室外熱交換器4、冷媒減圧装置5、室内熱交換器6を備え、これらを冷媒配管で接続して冷凍サイクルを形成している。また、室外熱交換器4には室外送風機7を、室内熱交換器6には室内送風機8をそれぞれ設置している。
また、室外機1aには、外気温度を検出する外気温度センサ12と、室外熱交換器4の温度を検出する室外熱交換器温度センサ13と、圧縮機2の入力電流値Iを検出する圧縮機入力電流検出手段16と、が設置されている。
室内機1bには、室内熱交換器6の温度を検出する室内熱交換器温度センサ10と、室内温度を検出する室内温度センサ11と、が設置され、これらの温度情報を室外制御部9に送る室内制御部14が設けられている。
As shown in FIG. 1, the air conditioner 1 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, a refrigerant pressure reducing device 5, and an indoor heat exchanger 6, which are connected by a refrigerant pipe to form a refrigeration cycle. Is forming. The outdoor heat exchanger 4 is provided with an outdoor fan 7, and the indoor heat exchanger 6 is provided with an indoor fan 8.
Further, the outdoor unit 1 a includes an outdoor temperature sensor 12 that detects the outdoor temperature, an outdoor heat exchanger temperature sensor 13 that detects the temperature of the outdoor heat exchanger 4, and a compression that detects the input current value I of the compressor 2. Machine input current detection means 16 is installed.
The indoor unit 1b is provided with an indoor heat exchanger temperature sensor 10 that detects the temperature of the indoor heat exchanger 6 and an indoor temperature sensor 11 that detects the indoor temperature. The temperature information is sent to the outdoor control unit 9. The indoor control part 14 to send is provided.

次に、図2にて図1に示した空気調和機1の制御系の構成を説明する。
図2に示すように、空気調和機1は、室内制御部14と室外制御部9とを有し、室内制御部14と室外制御部9とは接続線17にて接続されている。電源は、例えば室内制御部14に交流電源として供給され、室内制御部14を介して室外制御部9に供給されている。
また、室内制御部14と室外制御部9とは接続線17にて互いにデータ及び制御信号のやり取りを行う。
Next, the configuration of the control system of the air conditioner 1 shown in FIG. 1 will be described with reference to FIG.
As shown in FIG. 2, the air conditioner 1 includes an indoor control unit 14 and an outdoor control unit 9, and the indoor control unit 14 and the outdoor control unit 9 are connected by a connection line 17. For example, the power is supplied to the indoor control unit 14 as an AC power supply and is supplied to the outdoor control unit 9 via the indoor control unit 14.
The indoor control unit 14 and the outdoor control unit 9 exchange data and control signals with each other through the connection line 17.

室内制御部14には、室内温度センサ11からの室内空気温度を表す信号、及び、室内熱交換器温度センサ10からの室内熱交換器6の温度を表す信号が入力する。
そして、室内制御部14は、室外制御部9にこれらの制御情報を出力すると共に、室内送風機8を制御し、表示部15に運転状況や設定状況の表示を行う。
A signal representing the indoor air temperature from the indoor temperature sensor 11 and a signal representing the temperature of the indoor heat exchanger 6 from the indoor heat exchanger temperature sensor 10 are input to the indoor control unit 14.
The indoor control unit 14 outputs the control information to the outdoor control unit 9, controls the indoor blower 8, and displays the operation status and the setting status on the display unit 15.

室外制御部9には、外気温度センサ12からの室外空気温度を表す信号、及び、室外熱交換器温度センサ13からの室外熱交換器4の温度を表す信号が入力する。また、圧縮機入力電流検出手段16からの圧縮機2の入力電流値Iが入力している。
そして、室外制御部9は、自身が収集した制御信号と室内制御部14からの制御信号とに従って圧縮機2、四方弁3、冷媒減圧装置5、室外送風機7を制御する。
なお、室外制御部9と室内制御部14とは、図示しないCPU、ROMやRAM、不揮発性メモリ等で構成される様々な演算を行う制御基板を備えている。
A signal representing the outdoor air temperature from the outdoor temperature sensor 12 and a signal representing the temperature of the outdoor heat exchanger 4 from the outdoor heat exchanger temperature sensor 13 are input to the outdoor control unit 9. Further, the input current value I of the compressor 2 from the compressor input current detecting means 16 is inputted.
The outdoor control unit 9 controls the compressor 2, the four-way valve 3, the refrigerant decompression device 5, and the outdoor blower 7 according to the control signal collected by itself and the control signal from the indoor control unit 14.
The outdoor control unit 9 and the indoor control unit 14 include a control board that performs various operations including a CPU, a ROM, a RAM, a nonvolatile memory, and the like (not shown).

次に、図3にて実施の形態1に係る空気調和機1の冷凍サイクル内に空気が混入した場合に、圧縮機2内の高温高圧な状態を判断して圧縮機2の停止を行うまでの制御を説明する。
はじめに、ステップS1−1にて運転開始から所定時間t0を計時する。例えばt0は5分とする。
Next, when air is mixed in the refrigeration cycle of the air conditioner 1 according to Embodiment 1 in FIG. 3, until the high temperature and high pressure state in the compressor 2 is determined and the compressor 2 is stopped. The control of will be described.
First, a predetermined time t0 is measured from the start of operation in step S1-1. For example, t0 is 5 minutes.

所定時間t0が経過するとステップS1−2に移る。ステップS1−2では、室内温度センサ11からの室内空気温度と室内熱交換器温度センサ10からの室内熱交換器6の温度との温度差を室内制御部14が演算し、その温度差ΔTiと規定温度差Ta(例えば3度)を比較してΔTi≦Taの関係が成立した場合に、室内機1bの室内熱交換器6に何らかの原因により冷媒が正常に流れていないと判断する。
ステップS1−2においてΔTi≦Taの関係が成立した場合でも、例えば開閉弁を閉止した冷房運転による冷媒回収運転をしている場合もあるため、この時点では圧縮機2の停止は行わない。
When the predetermined time t0 has elapsed, the process proceeds to step S1-2. In step S1-2, the indoor controller 14 calculates the temperature difference between the indoor air temperature from the indoor temperature sensor 11 and the temperature of the indoor heat exchanger 6 from the indoor heat exchanger temperature sensor 10, and the temperature difference ΔTi When a relationship of ΔTi ≦ Ta is established by comparing a specified temperature difference Ta (for example, 3 degrees), it is determined that the refrigerant does not normally flow through the indoor heat exchanger 6 of the indoor unit 1b for some reason.
Even when the relationship of ΔTi ≦ Ta is established in step S1-2, for example, the refrigerant recovery operation by the cooling operation in which the on-off valve is closed may be performed, so the compressor 2 is not stopped at this time.

次に、ステップS1−3にて室内空気温度と室内熱交換器6の温度との温度差ΔTiがΔTi≦Taの状態で圧縮機2の入力電流値Iを測定する。そして入力電流値Iが規定電流値I0以上(I≧I0)となった際にステップS1−4にて圧縮機2を停止する。   Next, in step S1-3, the input current value I of the compressor 2 is measured in a state where the temperature difference ΔTi between the indoor air temperature and the temperature of the indoor heat exchanger 6 is ΔTi ≦ Ta. When the input current value I becomes equal to or greater than the specified current value I0 (I ≧ I0), the compressor 2 is stopped in step S1-4.

圧縮機2の入力電流値Iを監視する理由は、例えば冷凍サイクル内の冷媒不足や冷媒回収運転の場合、圧縮機2が回転しても駆動負荷が小さく、入力電流値Iは通常運転時よりも低い。これに対して、通常運転時に冷凍サイクル内の冷媒流路の一部が閉塞している場合などに冷媒回路内に空気が混入すると、圧縮機2内で空気が圧縮され高温高圧となり駆動負荷が増加することで入力電流値Iが上昇する。よって、冷媒回路の閉塞による回路内への空気の混入を検出することが可能となり、確実な圧縮機2の保護制御が可能となるためである。   The reason for monitoring the input current value I of the compressor 2 is, for example, in the case of refrigerant shortage in the refrigeration cycle or refrigerant recovery operation, the driving load is small even when the compressor 2 rotates, and the input current value I is higher than that during normal operation. Is also low. On the other hand, if air enters the refrigerant circuit when, for example, part of the refrigerant flow path in the refrigeration cycle is blocked during normal operation, the air is compressed in the compressor 2 to become high temperature and high pressure, and the driving load is increased. By increasing, the input current value I increases. Therefore, it is possible to detect the mixing of air into the circuit due to the blockage of the refrigerant circuit, and the protection control of the compressor 2 can be surely performed.

なお、空気調和機1の運転が一度停止され、再び運転が開始された場合は図3のフローチャートの先頭から再スタートする。また、図3のフローチャートでは、ステップS1−1からステップS1−3までが順番に判断されるようになっているが、この順序は問わず、ステップS1−1、S1−2、S1−3の条件がすべて同時に成立した際に冷凍サイクルの異常と判断して圧縮機2を停止する制御フローとしてもよい。   When the operation of the air conditioner 1 is stopped once and then started again, the operation is restarted from the top of the flowchart of FIG. Further, in the flowchart of FIG. 3, steps S1-1 to S1-3 are determined in order, but the order of steps S1-1, S1-2, and S1-3 is not limited. It is good also as a control flow which judges that it is abnormal in a refrigerating cycle and stops the compressor 2 when all the conditions are satisfied simultaneously.

実施の形態2.
図4は、本実施の形態2に係る空気調和機1の制御を表すフローチャート図である。
本実施の形態2では、空気調和機1の圧縮機2が容量可変型である場合、すなわち回転数制御が可能である例を示す。
容量可変の圧縮機2の場合、回転数が上昇することによって圧縮機2の入力電流値Iが上昇するため、規定電流値I0の設定次第では圧縮機2内の高温高圧状態を的確に判断することができずに、冷媒回路内に空気が混入していない場合にも空気が混入していると誤判断してしまう可能性がある。
Embodiment 2. FIG.
FIG. 4 is a flowchart showing the control of the air conditioner 1 according to the second embodiment.
In the second embodiment, an example is shown in which the compressor 2 of the air conditioner 1 is a variable capacity type, that is, the rotational speed control is possible.
In the case of the variable capacity compressor 2, since the input current value I of the compressor 2 increases as the rotational speed increases, the high temperature and high pressure state in the compressor 2 is accurately determined depending on the setting of the specified current value I0. If the air is not mixed in the refrigerant circuit, it may be erroneously determined that the air is mixed.

そこで実施の形態2では図4のフローチャートのように、運転開始からステップS2−1とステップS2−2までは実施の形態1と同様にフローが進むが、ステップS2−2において、ΔTi≦Taの関係が成立した場合にステップS2−3で圧縮機2の回転数を一旦固定する。
ここで、圧縮機2の固定回転数は、その時点で運転していた回転数で固定しても、別の所定回転数で固定してもよい。
Therefore, in the second embodiment, the flow proceeds from the start of operation to steps S2-1 and S2-2 as in the first embodiment as in the flowchart of FIG. 4, but in step S2-2, ΔTi ≦ Ta. When the relationship is established, the rotational speed of the compressor 2 is temporarily fixed in step S2-3.
Here, the fixed rotation speed of the compressor 2 may be fixed at the rotation speed that was operating at that time, or may be fixed at another predetermined rotation speed.

ステップS2−3にて圧縮機2の回転数を固定した際に、その時点の入力電流値Iを固定時入力電流値Ia0として室外制御部9内のメモリに記憶する。
その後、回転数を固定した状態で運転を継続し、ステップS2−4にて入力電流値Iが規定電流値I0以上(I≧I0)となり、さらに、ステップS2−5にて入力電流値Iからメモリに記憶した圧縮機固定時の固定時入力電流値Ia0を減算した値が、電流値の差の規定電流値Ia以上([I−Ia0]≧Ia)となった場合にステップS2−6にて圧縮機2の運転を停止する。
When the rotation speed of the compressor 2 is fixed in step S2-3, the input current value I at that time is stored as a fixed input current value Ia0 in the memory in the outdoor control unit 9.
Thereafter, the operation is continued with the rotation speed fixed, and the input current value I becomes equal to or greater than the specified current value I0 (I ≧ I0) in step S2-4, and further, from the input current value I in step S2-5. If the value obtained by subtracting the fixed input current value Ia0 when the compressor is fixed stored in the memory is equal to or greater than the specified current value Ia of the difference in current values ([I−Ia0] ≧ Ia), the process proceeds to step S2-6. The operation of the compressor 2 is stopped.

このように容量可変の圧縮機2を採用した場合に、回転数を一旦固定してから圧縮機固定時の固定時入力電流値Ia0を記憶し、入力電流値Iから圧縮機固定時の固定時入力電流値Ia0を減算してその差から入力電流値Iの上昇分を判断するため、不適切な規定電流値I0の設定で圧縮機2の状態について誤判断の少ない保護制御を行うことができる。   When the variable capacity compressor 2 is adopted as described above, the rotation speed is temporarily fixed, and then the fixed input current value Ia0 when the compressor is fixed is stored. From the input current value I when the compressor is fixed Since the input current value Ia0 is subtracted and the increase of the input current value I is determined from the difference, protection control with less misjudgment regarding the state of the compressor 2 can be performed with an inappropriate setting of the specified current value I0. .

なお、ステップS2−1及びS2−2が成立し圧縮機2の回転数を固定した後、ステップS2−2で温度差ΔTi≦Taの条件が成立しなくなった場合、室内熱交換器6に冷媒が流れており圧縮機2内が高温高圧な状態ではないと判断し、圧縮機2の回転数の固定を解除し、ステップS2−2へ戻る制御としてもよい。   In addition, after steps S2-1 and S2-2 are established and the rotation speed of the compressor 2 is fixed, if the condition of the temperature difference ΔTi ≦ Ta is not established in step S2-2, the refrigerant is supplied to the indoor heat exchanger 6. It may be determined that the compressor 2 is not in a high-temperature and high-pressure state, the rotation speed of the compressor 2 is fixed, and the control returns to step S2-2.

実施の形態3.
図5は、本実施の形態3に係る空気調和機1の制御を表すフローチャート図である。
本実施の形態3は、実施の形態2に係る圧縮機2が可変容量型であって、空気調和機1の冷媒減圧装置5が電子膨張弁等であり、絞りの開度を可変に制御する例を示す。
Embodiment 3 FIG.
FIG. 5 is a flowchart showing the control of the air conditioner 1 according to the third embodiment.
In the third embodiment, the compressor 2 according to the second embodiment is a variable capacity type, the refrigerant pressure reducing device 5 of the air conditioner 1 is an electronic expansion valve, and the opening degree of the throttle is variably controlled. An example is shown.

実施の形態3では、図5のフローチャートのように、運転開始からステップS3−1とステップS3−2までは実施の形態1、2と同様にフローが進むが、ステップS3−2において、ΔTi≦Taの関係が成立した場合にステップS3−3で圧縮機2の回転数を固定するとともに冷媒減圧装置5の開度をそれまでの開度より大きくする。
ここで、開度の増加量は一定開度の増加であっても、最大開度に設定してもよい。
ステップS3−2において、ΔTi≦Taの関係が成立した場合に冷媒減圧装置5の開度が最大開度であった場合は最大開度を維持する。
In the third embodiment, as in the flowchart of FIG. 5, the flow proceeds from the start of operation to steps S3-1 and S3-2 in the same manner as in the first and second embodiments. However, in step S3-2, ΔTi ≦ When the relationship of Ta is established, the rotational speed of the compressor 2 is fixed in step S3-3, and the opening of the refrigerant decompression device 5 is made larger than the opening so far.
Here, the increase amount of the opening may be set to the maximum opening even if it is an increase of a certain opening.
In step S3-2, when the relationship of ΔTi ≦ Ta is established, when the opening of the refrigerant decompression device 5 is the maximum opening, the maximum opening is maintained.

次にステップS3−3にて圧縮機2の回転数を固定した際に、その時点の入力電流値Iを固定時入力電流値Ia0として室外制御部9内のメモリに記憶する。
その後、回転数を固定した状態で運転を継続し、ステップS3−4にて入力電流値Iが規定電流値I0以上(I≧I0)となり、さらに、ステップS3−5にて入力電流値Iからメモリに記憶した圧縮機固定時の固定時入力電流値Ia0を減算した値が、電流値の差の規定電流値Ia以上([I−Ia0]≧Ia)となった場合にステップS3−6にて圧縮機2の運転を停止する。
Next, when the rotation speed of the compressor 2 is fixed in step S3-3, the input current value I at that time is stored in the memory in the outdoor control unit 9 as the fixed input current value Ia0.
Thereafter, the operation is continued with the rotation speed fixed, and the input current value I becomes equal to or greater than the specified current value I0 (I ≧ I0) in step S3-4, and further, from the input current value I in step S3-5. If the value obtained by subtracting the fixed input current value Ia0 when the compressor is fixed stored in the memory is equal to or greater than the specified current value Ia of the difference in current values ([I−Ia0] ≧ Ia), the process proceeds to step S3-6. The operation of the compressor 2 is stopped.

このように圧縮機2の回転数を固定するとともに冷媒減圧装置5の開度をそれまでの開度より大きくする制御を行うことで、冷凍サイクル内の冷媒不足や冷媒回収運転の場合など冷媒回路内に閉塞ではない場合に、圧縮機2への駆動負荷を減らし入力電流値Iを下げることができるため誤判断が少ない圧縮機2の保護制御を行うことができる。
なお、上記実施の形態3では、容量可変の圧縮機2を採用した例を示したが、実施の形態1に示した容量固定型の空気調和機1でも開度可変の冷媒減圧装置5の制御を採用することができる。
In this way, the refrigerant circuit such as a shortage of refrigerant in the refrigeration cycle or a refrigerant recovery operation is performed by fixing the rotation speed of the compressor 2 and controlling the opening of the refrigerant decompression device 5 to be larger than the previous opening. When it is not closed, the driving load on the compressor 2 can be reduced and the input current value I can be lowered, so that the protection control of the compressor 2 with few misjudgments can be performed.
In the third embodiment, an example in which the variable capacity compressor 2 is employed has been described. However, even in the fixed capacity type air conditioner 1 described in the first embodiment, the control of the refrigerant pressure reducing device 5 having a variable opening degree is possible. Can be adopted.

また、ステップS3−1及びS3−2が成立し圧縮機2の回転数を固定した後、ステップS3−2で温度差ΔTi≦Taの条件が成立しなくなった場合、室内熱交換器6に冷媒が流れており圧縮機2内が高温高圧な状態ではないと判断し、圧縮機2の回転数の固定を解除し、ステップS3−2へ戻る制御としてもよい。   In addition, after steps S3-1 and S3-2 are established and the rotation speed of the compressor 2 is fixed, if the condition of the temperature difference ΔTi ≦ Ta is not established in step S3-2, the refrigerant is supplied to the indoor heat exchanger 6. It may be determined that the compressor 2 is not in a high-temperature and high-pressure state, the rotation speed of the compressor 2 is fixed, and the control returns to step S3-2.

実施の形態4.
図6は、本実施の形態4に係る空気調和機1の制御を表すフローチャート図である。
本実施の形態4は、実施の形態2に係る圧縮機2が可変容量型であって、冷凍サイクル内の冷媒不足や冷媒回収運転の場合など冷媒回路内に閉塞ではない場合に通常運転へ戻る場合の制御を示す。
Embodiment 4 FIG.
FIG. 6 is a flowchart showing the control of the air conditioner 1 according to the fourth embodiment.
The fourth embodiment returns to the normal operation when the compressor 2 according to the second embodiment is of a variable capacity type and is not blocked in the refrigerant circuit, such as a refrigerant shortage in the refrigeration cycle or a refrigerant recovery operation. The control of the case is shown.

実施の形態4では図6のフローチャートのように、運転開始からステップS4−3までは実施の形態2と同様にフローが進むが、ステップS4−4において、圧縮機2の回転数を固定後、規定時間t1経過しても入力電流値Iが上昇せず入力電流値I<I0、かつ、I−Ia0<IaでステップS4−5及びS4−6が成立しない場合、冷媒回路内に空気が混入していないと判断し、圧縮機2の回転数の固定を解除し、通常の運転へ戻る。
なお、ステップS4−5からステップS4−7に進んで圧縮機2を停止するまでのフローは実施の形態2と同様である。
In the fourth embodiment, as in the flowchart of FIG. 6, the flow proceeds from the start of operation to step S4-3 in the same manner as in the second embodiment, but in step S4-4, after fixing the rotation speed of the compressor 2, If the input current value I does not increase even after the lapse of the specified time t1, the input current value I <I0, and I-Ia0 <Ia and Steps S4-5 and S4-6 are not established, air enters the refrigerant circuit. It is determined that the compressor 2 has not been fixed, the rotation speed of the compressor 2 is released, and the operation returns to normal operation.
The flow from step S4-5 to step S4-7 until the compressor 2 is stopped is the same as in the second embodiment.

このようにステップS4−3の圧縮機回転数の固定運転を時限付きで行い、冷凍サイクルの異常を判断するので、異常の無い場合には速やかに通常運転に復旧し、空気調和機1による快適性を損なわずに圧縮機2の保護制御を行うことができる。   As described above, the compressor rotation speed fixing operation in step S4-3 is performed with a time limit, and abnormality of the refrigeration cycle is determined. Therefore, when there is no abnormality, the normal operation is promptly restored and the air conditioner 1 is comfortable. Thus, protection control of the compressor 2 can be performed without impairing the performance.

実施の形態5.
図7は、本実施の形態5に係る空気調和機1の制御を表すフローチャート図である。
本実施の形態5は、実施の形態2に係る圧縮機2が可変容量型であって、室内空気温度と室内熱交換器6の温度との温度差ΔTiについて、その検知精度を向上させるためのものである。
Embodiment 5 FIG.
FIG. 7 is a flowchart showing the control of the air conditioner 1 according to the fifth embodiment.
In the fifth embodiment, the compressor 2 according to the second embodiment is a variable capacity type, and the temperature difference ΔTi between the indoor air temperature and the temperature of the indoor heat exchanger 6 is improved for detecting accuracy. Is.

実施の形態5では図7のフローチャートのように、実施の形態2と同様にフローが進むが、ステップS5−2において、室内空気温度と室内熱交換器6の温度との温度差ΔTiと規定温度差Taを比較してΔTi≦Taの関係が成立した状態が規定時間t2の間維持された場合に圧縮機2の回転数を固定する。
これは、空気調和機1の制御上の過渡期や、外乱等によって短い時間の間、室内空気温度と室内熱交換器6の温度との温度差ΔTiが小さくなる場合があるが、このような誤検知を考慮し、規定時間t2の間連続して温度差ΔTiが小さい状態が維持されることを確認し、圧縮機2の回転数を固定することで正確な温度差ΔTiに基づいて圧縮機2の保護制御を行うことができる。
In the fifth embodiment, as in the flowchart of FIG. 7, the flow proceeds as in the second embodiment. However, in step S5-2, the temperature difference ΔTi between the indoor air temperature and the temperature of the indoor heat exchanger 6 and the specified temperature. When the state in which the relationship of ΔTi ≦ Ta is established by comparing the difference Ta is maintained for a specified time t2, the rotation speed of the compressor 2 is fixed.
This is because the temperature difference ΔTi between the indoor air temperature and the temperature of the indoor heat exchanger 6 may be small during a short period of time due to a transitional period in the control of the air conditioner 1 or due to disturbance or the like. In consideration of false detection, it is confirmed that the temperature difference ΔTi is continuously kept small for the specified time t2, and the compressor is fixed based on the accurate temperature difference ΔTi by fixing the rotation speed of the compressor 2. 2 protection control can be performed.

実施の形態6.
図8は、本実施の形態6に係る空気調和機1の制御を表すフローチャート図である。
本実施の形態6は、実施の形態2に係る圧縮機2が可変容量型であって、室内空気温度と室内熱交換器6の温度との温度差ΔTiによる状態検出に加え、室外熱交換器4の温度も検出して、検知精度を向上させるためのものである。
Embodiment 6 FIG.
FIG. 8 is a flowchart showing the control of the air conditioner 1 according to the sixth embodiment.
In the sixth embodiment, the compressor 2 according to the second embodiment is a variable capacity type, and in addition to detecting the state by the temperature difference ΔTi between the indoor air temperature and the temperature of the indoor heat exchanger 6, the outdoor heat exchanger The temperature of 4 is also detected to improve detection accuracy.

実施の形態6では図8のフローチャートのように、実施の形態2と同様にフローが進むが、ステップS6−3において、外気温度と室外熱交換器4との温度差ΔToを算出し、ΔToが規定温度差Tb以下の場合(ΔTo≦Tb)に、圧縮機2の回転数を固定する。
これは、室内熱交換器6への冷媒循環を検出するステップS6−2に加えて室外熱交換器4への冷媒循環も検出対象とすることで、冷凍サイクルの閉塞の状態を判断し、誤判断が少ない圧縮機2の保護制御を行うことができる。
In the sixth embodiment, as in the flowchart of FIG. 8, the flow proceeds as in the second embodiment. However, in step S6-3, the temperature difference ΔTo between the outside air temperature and the outdoor heat exchanger 4 is calculated, and ΔTo is When the temperature difference is equal to or less than the specified temperature difference Tb (ΔTo ≦ Tb), the rotational speed of the compressor 2 is fixed.
This is because the refrigerant circulation to the outdoor heat exchanger 4 is also detected in addition to the step S6-2 for detecting the refrigerant circulation to the indoor heat exchanger 6, thereby determining the blockage state of the refrigeration cycle. Protection control of the compressor 2 with few judgments can be performed.

実施の形態7.
図9は、本実施の形態7に係る空気調和機1の制御を表すフローチャート図である。
本実施の形態7は、実施の形態2に係る圧縮機2が可変容量型であって、室内空気温度と室内熱交換器6の温度との温度差ΔTiについて、その検知精度を向上させるためのものである。
Embodiment 7 FIG.
FIG. 9 is a flowchart showing the control of the air conditioner 1 according to the seventh embodiment.
In the seventh embodiment, the compressor 2 according to the second embodiment is of a variable capacity type, and the temperature difference ΔTi between the indoor air temperature and the temperature of the indoor heat exchanger 6 is improved in detecting accuracy. Is.

実施の形態7に係る室内機1bは、室内熱交換器6の温度を測定している室内熱交換器温度センサ10を複数個有している。ここで、例えば室内熱交換器温度センサ10が2個の場合、室内空気温度と室内熱交換器6の温度との温度差は2箇所で測定され、ΔTi1とΔTi2で表される。また、室内熱交換器6の2つの室内熱交換器温度センサ10同士の温度差をΔTi3として表す。   The indoor unit 1b according to Embodiment 7 includes a plurality of indoor heat exchanger temperature sensors 10 that measure the temperature of the indoor heat exchanger 6. Here, for example, when there are two indoor heat exchanger temperature sensors 10, the temperature difference between the indoor air temperature and the temperature of the indoor heat exchanger 6 is measured at two locations, and is represented by ΔTi1 and ΔTi2. Further, the temperature difference between the two indoor heat exchanger temperature sensors 10 of the indoor heat exchanger 6 is expressed as ΔTi3.

そして、図9のフローチャートのように、実施の形態2と同様に制御フローが進むが、運転開始から所定時間t0経過後に、ステップS7−2において、室内空気温度と室内熱交換器6との温度差ΔTi1とΔTi2が全て規定温度差Ta以下(ΔTi1≦Ta、ΔTi2≦Ta)となり、かつ、複数の室内熱交換器温度センサ10同士の温度差ΔTi3が規定温度差Te以下(ΔTi3≦Te)となるか判断し、条件を満たす場合は圧縮機2の回転数を固定する。   Then, as in the flowchart of FIG. 9, the control flow proceeds as in the second embodiment, but after a predetermined time t0 has elapsed from the start of operation, in step S7-2, the indoor air temperature and the temperature of the indoor heat exchanger 6 The differences ΔTi1 and ΔTi2 are all equal to or less than the specified temperature difference Ta (ΔTi1 ≦ Ta, ΔTi2 ≦ Ta), and the temperature difference ΔTi3 between the plurality of indoor heat exchanger temperature sensors 10 is equal to or less than the specified temperature difference Te (ΔTi3 ≦ Te). If the condition is satisfied, the rotational speed of the compressor 2 is fixed.

これは、空気調和機1の制御上の過渡期や、外乱等によって室内熱交換器6の温度分布が均一ではない場合にも室内熱交換器6の複数点の温度を測定することで、検出値の精度を向上させることができるためである。また、複数の室内熱交換器温度センサ10の検出結果が互いにかけ離れていないことも確認することでセンサ異常を防止するものである。
このような判断手順をふむことで冷凍サイクルの閉塞の状態の判断精度を向上させ、誤判断が少ない圧縮機2の保護制御を行うことができる。
This is detected by measuring the temperature of a plurality of points of the indoor heat exchanger 6 even when the temperature distribution of the indoor heat exchanger 6 is not uniform due to a transition period in the control of the air conditioner 1 or due to disturbance or the like. This is because the accuracy of the value can be improved. In addition, the sensor abnormality is prevented by confirming that the detection results of the plurality of indoor heat exchanger temperature sensors 10 are not separated from each other.
By including such a determination procedure, it is possible to improve the determination accuracy of the closed state of the refrigeration cycle, and to perform protection control of the compressor 2 with few erroneous determinations.

なお、上記実施の形態1〜7は、それぞれ単独の制御フローとして適用することも可能であるが、それらの制御フローを組み合わせることで、さらに誤判断が少ない圧縮機2の保護制御を行うことも可能である。   In addition, although the said Embodiment 1-7 can also be applied as each independent control flow, it can also perform protection control of the compressor 2 with few misjudgments by combining those control flows. Is possible.

1 空気調和機、1a 室外機、1b 室内機、2 圧縮機、3 四方弁、4 室外熱交換器、5 冷媒減圧装置、6 室内熱交換器、7 室外送風機、8 室内送風機、9 室外制御部、10 室内熱交換器温度センサ、11 室内温度センサ、12 外気温度センサ、13 室外熱交換器温度センサ、14 室内制御部、15 表示部、16 圧縮機入力電流検出手段、17 接続線。   DESCRIPTION OF SYMBOLS 1 Air conditioner, 1a Outdoor unit, 1b Indoor unit, 2 Compressor, 3 Four way valve, 4 Outdoor heat exchanger, 5 Refrigerant decompression device, 6 Indoor heat exchanger, 7 Outdoor blower, 8 Indoor blower, 9 Outdoor control part DESCRIPTION OF SYMBOLS 10 Indoor heat exchanger temperature sensor, 11 Indoor temperature sensor, 12 Outdoor air temperature sensor, 13 Outdoor heat exchanger temperature sensor, 14 Indoor control part, 15 Display part, 16 Compressor input electric current detection means, 17 Connection line.

Claims (7)

圧縮機と、室内熱交換器と、冷媒減圧装置と、室外熱交換器と、室内空気温度を検出する室内温度センサと、前記室内熱交換器の温度を検出する室内熱交換器温度センサと、前記圧縮機の入力電流値(I)を検出する圧縮機入力電流検出手段と、制御手段と、を備えた空気調和機であって、
前記制御手段は、前記室内空気温度と前記室内熱交換器の温度との温度差(ΔTi)が第1規定温度差(Ta)以下であり、かつ、前記入力電流値(I)が第1規定電流値(I0)以上である時に、前記圧縮機の運転を停止することを特徴とする空気調和機。
A compressor, an indoor heat exchanger, a refrigerant decompression device, an outdoor heat exchanger, an indoor temperature sensor for detecting indoor air temperature, an indoor heat exchanger temperature sensor for detecting the temperature of the indoor heat exchanger, An air conditioner comprising compressor input current detection means for detecting an input current value (I) of the compressor, and control means,
The control means has a temperature difference (ΔTi) between the room air temperature and the temperature of the indoor heat exchanger equal to or less than a first specified temperature difference (Ta), and the input current value (I) is a first specified value. The air conditioner characterized by stopping the operation of the compressor when the current value (I0) or more.
圧縮機と、室内熱交換器と、冷媒減圧装置と、室外熱交換器と、室内空気温度を検出する室内温度センサと、前記室内熱交換器の温度を検出する室内熱交換器温度センサと、前記圧縮機の入力電流値(I)を検出する圧縮機入力電流検出手段と、制御手段と、を備えた空気調和機であって、
前記圧縮機は、運転回転数を変更可能な容量可変型であり、
前記制御手段は、前記室内空気温度と前記室内熱交換器の温度との温度差(ΔTi)が第1規定温度差(Ta)以下となった際に前記圧縮機の回転数を固定するとともに、前記圧縮機の回転数を固定した時点の前記入力電流値(I)を固定時入力電流値(Ia0)として記憶し、
前記圧縮機の回転数の固定後、前記入力電流値(I)が第1規定電流値(I0)以上であり、かつ、前記入力電流値(I)から前記固定時入力電流値(Ia0)を減算した値が第2規定電流値(Ia)以上であるときに前記圧縮機の運転を停止することを特徴とする空気調和機。
A compressor, an indoor heat exchanger, a refrigerant decompression device, an outdoor heat exchanger, an indoor temperature sensor for detecting indoor air temperature, an indoor heat exchanger temperature sensor for detecting the temperature of the indoor heat exchanger, An air conditioner comprising compressor input current detection means for detecting an input current value (I) of the compressor, and control means,
The compressor is a variable capacity type capable of changing the operating rotational speed,
The control means fixes the rotational speed of the compressor when a temperature difference (ΔTi) between the indoor air temperature and the temperature of the indoor heat exchanger becomes equal to or less than a first specified temperature difference (Ta), The input current value (I) at the time when the rotation speed of the compressor is fixed is stored as a fixed input current value (Ia0),
After the rotation speed of the compressor is fixed, the input current value (I) is equal to or greater than a first specified current value (I0), and the fixed input current value (Ia0) is calculated from the input current value (I). An air conditioner characterized by stopping the operation of the compressor when the subtracted value is equal to or greater than a second specified current value (Ia).
前記冷媒減圧装置は開度が可変の機構を備えており、
前記制御手段は、前記圧縮機の回転数を固定した際に前記冷媒減圧装置の開度を増加させることを特徴とする請求項2に記載の空気調和機。
The refrigerant pressure reducing device includes a mechanism with a variable opening.
The air conditioner according to claim 2, wherein the control means increases the opening of the refrigerant decompression device when the rotation speed of the compressor is fixed.
前記制御手段は、前記圧縮機の回転数の固定後、第1規定時間(t1)が経過しても前記入力電流値(I)が前記第1規定電流値(I0)未満であり、かつ、前記入力電流値(I)から前記固定時入力電流値(Ia0)を減算した値が第2規定電流値(Ia)未満であるときには前記圧縮機の回転数の固定を解除することを特徴とする請求項2または3に記載の空気調和機。   The control means is configured such that the input current value (I) is less than the first specified current value (I0) even after the first specified time (t1) has elapsed after fixing the rotation speed of the compressor, and When the value obtained by subtracting the fixed input current value (Ia0) from the input current value (I) is less than a second specified current value (Ia), the rotation speed of the compressor is released. The air conditioner according to claim 2 or 3. 前記制御手段は、前記室内空気温度と前記室内熱交換器の温度との温度差(ΔTi)が第2規定時間(t2)以上の間、前記第1規定温度差(Ta)以下に維持されたときに圧縮機の回転数を固定することを特徴とする請求項2〜4のいずれか1項に記載の空気調和機。   The control means maintains a temperature difference (ΔTi) between the indoor air temperature and the temperature of the indoor heat exchanger at or below the first specified temperature difference (Ta) for a second specified time (t2) or more. The air conditioner according to any one of claims 2 to 4, wherein the rotation speed of the compressor is sometimes fixed. 外気温度を検出する外気温度センサと、前記室外熱交換器の温度を検出する室外熱交換器温度センサとをさらに備え、
前記制御手段は、前記室内空気温度と前記室内熱交換器の温度との温度差(ΔTi)が前記第1規定温度差(Ta)以下となり、かつ、前記外気温度と前記室外熱交換器の温度との温度差(ΔTo)が第2規定温度差(Tb)以下となった際に前記圧縮機の回転数を固定することを特徴とする請求項2〜5のいずれか1項に記載の空気調和機。
An outdoor air temperature sensor for detecting an outdoor air temperature, and an outdoor heat exchanger temperature sensor for detecting the temperature of the outdoor heat exchanger,
The control means has a temperature difference (ΔTi) between the indoor air temperature and the temperature of the indoor heat exchanger equal to or less than the first specified temperature difference (Ta), and the outside air temperature and the temperature of the outdoor heat exchanger. The air according to any one of claims 2 to 5, wherein the rotational speed of the compressor is fixed when the temperature difference (ΔTo) with respect to the air pressure becomes equal to or less than the second specified temperature difference (Tb). Harmony machine.
前記室内熱交換器の温度を検出する室内熱交換器温度センサを複数備え、
前記制御手段は、前記室内空気温度と前記複数の室内熱交換器温度センサの検出温度との温度差(ΔTi)の全てが前記第1規定温度差(Ta)以下となり、かつ、前記複数の室内熱交換器温度センサの検出温度の温度差が互いに第3規定温度差(Te)以下となったときに前記圧縮機の回転数を固定することを特徴とする請求項2〜6のいずれか1項に記載の空気調和機。
A plurality of indoor heat exchanger temperature sensors for detecting the temperature of the indoor heat exchanger;
The control means is such that all of the temperature differences (ΔTi) between the indoor air temperature and the detected temperatures of the plurality of indoor heat exchanger temperature sensors are equal to or less than the first specified temperature difference (Ta), and the plurality of indoor The rotation speed of the compressor is fixed when the temperature difference of the temperature detected by the heat exchanger temperature sensor becomes a third specified temperature difference (Te) or less. The air conditioner described in the paragraph.
JP2013178291A 2013-08-29 2013-08-29 Air conditioner Active JP6061819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013178291A JP6061819B2 (en) 2013-08-29 2013-08-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013178291A JP6061819B2 (en) 2013-08-29 2013-08-29 Air conditioner

Publications (2)

Publication Number Publication Date
JP2015045487A true JP2015045487A (en) 2015-03-12
JP6061819B2 JP6061819B2 (en) 2017-01-18

Family

ID=52671114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013178291A Active JP6061819B2 (en) 2013-08-29 2013-08-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP6061819B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017083060A (en) * 2015-10-27 2017-05-18 ダイキン工業株式会社 Air conditioner
JP2018004201A (en) * 2016-07-05 2018-01-11 パナソニックIpマネジメント株式会社 Notification system, notification program, and notification method
WO2019093210A1 (en) * 2017-11-09 2019-05-16 ダイキン工業株式会社 Refrigerating and air-conditioning apparatus
CN110617606A (en) * 2019-09-23 2019-12-27 芜湖美智空调设备有限公司 Air conditioner and control method and system thereof
CN111397135A (en) * 2020-04-02 2020-07-10 青岛海尔空调电子有限公司 Fluorine-lack detection control method of air conditioner and air conditioner
CN111771091A (en) * 2018-03-05 2020-10-13 松下知识产权经营株式会社 Refrigeration cycle device
CN112594885A (en) * 2019-04-19 2021-04-02 青岛海尔空调器有限总公司 Air conditioner and control method thereof
JPWO2022044321A1 (en) * 2020-08-31 2022-03-03
CN114135986A (en) * 2020-09-04 2022-03-04 广东美的制冷设备有限公司 Air conditioner, method of controlling the same, and computer-readable storage medium
CN114322236A (en) * 2021-12-06 2022-04-12 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, air conditioner and storage medium
CN115235097A (en) * 2022-08-08 2022-10-25 宁波奥克斯电气股份有限公司 Control method of air conditioner and air conditioner
WO2022249386A1 (en) * 2021-05-27 2022-12-01 三菱電機株式会社 Refrigeration cycle device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349665A (en) * 1986-08-19 1988-03-02 三菱電機株式会社 Controller for air conditioner
JPH08128765A (en) * 1994-10-31 1996-05-21 Matsushita Electric Ind Co Ltd Compressor protective controller for air conditioner
JP2000105033A (en) * 1998-09-28 2000-04-11 Daikin Ind Ltd Air conditioner
JP2003139418A (en) * 2001-10-31 2003-05-14 Daikin Ind Ltd Air conditioner
US20060130504A1 (en) * 2004-12-17 2006-06-22 Agrawal Nityanand J Method and apparatus for control of a variable speed compressor
JP2007212023A (en) * 2006-02-08 2007-08-23 Matsushita Electric Ind Co Ltd Air conditioning system
JP2010107058A (en) * 2008-10-28 2010-05-13 Panasonic Corp Air conditioner
JP2011158121A (en) * 2010-01-29 2011-08-18 Panasonic Corp Air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349665A (en) * 1986-08-19 1988-03-02 三菱電機株式会社 Controller for air conditioner
JPH08128765A (en) * 1994-10-31 1996-05-21 Matsushita Electric Ind Co Ltd Compressor protective controller for air conditioner
JP2000105033A (en) * 1998-09-28 2000-04-11 Daikin Ind Ltd Air conditioner
JP2003139418A (en) * 2001-10-31 2003-05-14 Daikin Ind Ltd Air conditioner
US20060130504A1 (en) * 2004-12-17 2006-06-22 Agrawal Nityanand J Method and apparatus for control of a variable speed compressor
JP2007212023A (en) * 2006-02-08 2007-08-23 Matsushita Electric Ind Co Ltd Air conditioning system
JP2010107058A (en) * 2008-10-28 2010-05-13 Panasonic Corp Air conditioner
JP2011158121A (en) * 2010-01-29 2011-08-18 Panasonic Corp Air conditioner

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017083060A (en) * 2015-10-27 2017-05-18 ダイキン工業株式会社 Air conditioner
JP2018004201A (en) * 2016-07-05 2018-01-11 パナソニックIpマネジメント株式会社 Notification system, notification program, and notification method
JP2021101149A (en) * 2016-07-05 2021-07-08 パナソニックIpマネジメント株式会社 Notification system and program
JP7048880B2 (en) 2017-11-09 2022-04-06 ダイキン工業株式会社 Refrigeration and air conditioning equipment
WO2019093210A1 (en) * 2017-11-09 2019-05-16 ダイキン工業株式会社 Refrigerating and air-conditioning apparatus
JP2019086260A (en) * 2017-11-09 2019-06-06 ダイキン工業株式会社 Refrigeration air conditioner
CN111771091A (en) * 2018-03-05 2020-10-13 松下知识产权经营株式会社 Refrigeration cycle device
CN111771091B (en) * 2018-03-05 2021-12-17 松下知识产权经营株式会社 Refrigeration cycle device
CN112594885A (en) * 2019-04-19 2021-04-02 青岛海尔空调器有限总公司 Air conditioner and control method thereof
CN112594885B (en) * 2019-04-19 2022-09-06 青岛海尔空调器有限总公司 Air conditioner and control method thereof
CN110617606A (en) * 2019-09-23 2019-12-27 芜湖美智空调设备有限公司 Air conditioner and control method and system thereof
CN110617606B (en) * 2019-09-23 2021-09-21 芜湖美智空调设备有限公司 Air conditioner and control method and system thereof
CN111397135A (en) * 2020-04-02 2020-07-10 青岛海尔空调电子有限公司 Fluorine-lack detection control method of air conditioner and air conditioner
WO2022044321A1 (en) * 2020-08-31 2022-03-03 三菱電機株式会社 Refrigeration cycle system
JPWO2022044321A1 (en) * 2020-08-31 2022-03-03
JP7334865B2 (en) 2020-08-31 2023-08-29 三菱電機株式会社 refrigeration cycle system
CN114135986A (en) * 2020-09-04 2022-03-04 广东美的制冷设备有限公司 Air conditioner, method of controlling the same, and computer-readable storage medium
CN114135986B (en) * 2020-09-04 2023-06-30 广东美的制冷设备有限公司 Air conditioner, control method thereof and computer readable storage medium
WO2022249386A1 (en) * 2021-05-27 2022-12-01 三菱電機株式会社 Refrigeration cycle device
CN114322236A (en) * 2021-12-06 2022-04-12 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, air conditioner and storage medium
CN114322236B (en) * 2021-12-06 2023-09-19 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, air conditioner and storage medium
CN115235097A (en) * 2022-08-08 2022-10-25 宁波奥克斯电气股份有限公司 Control method of air conditioner and air conditioner
CN115235097B (en) * 2022-08-08 2023-09-01 宁波奥克斯电气股份有限公司 Air conditioner control method and air conditioner

Also Published As

Publication number Publication date
JP6061819B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6061819B2 (en) Air conditioner
JP5405161B2 (en) Air conditioner and energy equipment
US10816248B2 (en) Refrigeration cycle apparatus
WO2016159152A1 (en) Indoor air conditioning unit
US11193686B2 (en) Determination of stuck reversing valve
US11293659B2 (en) Detection of a reversing valve fault
JP2016050680A (en) Refrigeration air conditioner
CN105299841A (en) Multi-split air conditioning system and fault detection method of heat exchange valve bodies of outdoor heat exchanger of multi-split air conditioning system
US11639803B2 (en) System and method for identifying causes of HVAC system faults
US11193685B2 (en) System and method for distinguishing HVAC system faults
US11788753B2 (en) HVAC system fault prognostics and diagnostics
CN109282424A (en) Air-conditioner control method, air conditioner controlling device
CN108885022B (en) Air conditioner outlet air temperature estimation device and computer readable recording medium
JP2019184150A (en) Air conditioner
US11774151B1 (en) Heat pump reversing valve fault detection system
JP5577276B2 (en) Engine-driven air conditioner
JP7350151B2 (en) Refrigeration cycle equipment
JP6042024B2 (en) Air conditioner
JP5663345B2 (en) Refrigerant circuit with compressor abnormality detection function
JPH10170052A (en) Air conditioner
CN115200194B (en) Control method and device of outdoor unit of multi-split air conditioner, air conditioner and medium
KR101235455B1 (en) Abnormality detecting method of the amount of flowing air by fan in the indoor unit of air-conditioner
JP2009041831A (en) Multi-room type air conditioner
JP2004019949A (en) Refrigerator
JPH10238844A (en) Multitype air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161213

R150 Certificate of patent or registration of utility model

Ref document number: 6061819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250