JP2022024289A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2022024289A
JP2022024289A JP2020121044A JP2020121044A JP2022024289A JP 2022024289 A JP2022024289 A JP 2022024289A JP 2020121044 A JP2020121044 A JP 2020121044A JP 2020121044 A JP2020121044 A JP 2020121044A JP 2022024289 A JP2022024289 A JP 2022024289A
Authority
JP
Japan
Prior art keywords
refrigerant
indoor
air conditioner
working
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020121044A
Other languages
Japanese (ja)
Other versions
JP7470897B2 (en
Inventor
義和 川邉
Yoshikazu Kawabe
誠之 飯高
Masayuki Iidaka
晃 鶸田
Akira Iwashida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020121044A priority Critical patent/JP7470897B2/en
Publication of JP2022024289A publication Critical patent/JP2022024289A/en
Application granted granted Critical
Publication of JP7470897B2 publication Critical patent/JP7470897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

To solve a problem of a conventional air conditioner performing refrigerant recovery operation at stopping or at refrigerant leakage that sufficient safety and reliability of the refrigerant recovery operation cannot be attained.SOLUTION: An air conditioner includes first refrigerant shut-off means, second refrigerant shut-off means, state detecting means for acquiring information for estimating a state of a refrigerant in an indoor unit, refrigerant storage means disposed between an expansion valve and the first refrigerant shut-off means, and control means for controlling operation of the device. After the refrigerant is recovered in an outdoor unit and the second refrigerant shut-off means is closed, the expansion valve is closed, and after the first refrigerant shut-off means is opened, the first refrigerant shut-off means is closed again.SELECTED DRAWING: Figure 1

Description

本発明は、冷凍およびヒートポンプサイクルを用いて空気調和を行なう空気調和機において、作動冷媒の漏洩を防ぐ技術に関するものである。 The present invention relates to a technique for preventing leakage of a working refrigerant in an air conditioner that performs air conditioning using a refrigeration and heat pump cycle.

近年は、地球温暖化防止の観点から空気調和機の運転効率を重要視する動きに加え、温暖化係数の大きい冷媒の使用を規制する動きが加速されている。 In recent years, in addition to the movement to emphasize the operating efficiency of air conditioners from the viewpoint of preventing global warming, the movement to regulate the use of refrigerants with a large global warming coefficient has been accelerated.

温暖化係数の小さな冷媒としては、もともと自然界に存在する二酸化炭素、プロパンやブタンのような炭化水素など、人工的に合成されるフロンとしては、分子構造に二重結合を有し、大気中では短時間で分解してしまうハイドロフルオロオレフィン(HFO)などが注目されている。HFOとしては、2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)、1,3,3,3-テトラフルオロ-1-プロペン(R1234ze)などが、注目を集めており、一部実用化が始まっている。 As a refrigerant with a small warming coefficient, carbon dioxide, which originally exists in nature, and hydrocarbons such as propane and butane, which are artificially synthesized, have a double bond in the molecular structure and have a double bond in the atmosphere. Hydrofluoroolefins (HFOs), which decompose in a short time, are attracting attention. As HFOs, 2,3,3,3-tetrafluoro-1-propene (R1234yf), 1,3,3,3-tetrafluoro-1-propene (R1234ze), etc. are attracting attention and some of them. Practical use has begun.

しかしながら、二酸化炭素は動作圧力が高く空気調和機として使用するには運転効率の点で難があり冷媒としての特性が優れているとは言い難い。 However, carbon dioxide has a high operating pressure and is difficult to use as an air conditioner in terms of operating efficiency, and it cannot be said that carbon dioxide has excellent characteristics as a refrigerant.

また、R1234yfやR1234zeなどは、沸点が高く圧力損失も大きいため、ルームエアコンなどの空気調和機に用いるには運転効率の点に難があり、大量の冷媒を使用するビル用マルチエアコンなどでは、微燃性を有する点にも難がある。 Further, since R1234yf and R1234ze have a high boiling point and a large pressure loss, there is a difficulty in operating efficiency when used in an air conditioner such as a room air conditioner. There is also a problem in that it has a slight flammability.

一方、炭化水素、特にプロパンは空気調和機用の冷媒としては優れた特性を有しているが、強燃性を有しているため冷媒漏洩などが発生すると火災や爆発の危険を伴うため、容易には用いることができなかった。 On the other hand, hydrocarbons, especially propane, have excellent characteristics as a refrigerant for air conditioners, but because they have high flame properties, if a refrigerant leaks, there is a risk of fire or explosion. It could not be used easily.

その中の一つに、室外機に可燃性冷媒を回収して室内に冷媒が漏洩するのを防ぐ技術がある。冷媒の漏洩防止に関しては、可燃性冷媒に限らず、現在使用されているフロンガスにおいても、環境影響の点でとても重要な問題であり、可燃・不燃にかかわらず空気調和機における冷媒漏洩は回避しなければならない。 One of them is a technology for collecting flammable refrigerant in an outdoor unit to prevent the refrigerant from leaking into the room. Regarding the prevention of refrigerant leakage, not only combustible refrigerants but also chlorofluorocarbons currently in use are very important issues in terms of environmental impact, and refrigerant leakage in air conditioners is avoided regardless of whether they are flammable or non-flammable. There must be.

特許文献1に記載の分離型空気調和機では、空気調和機の停止中に、室外機内の冷媒回路内に貯留された可燃性ガスからなる冷媒が室内機の冷媒回路に漏洩するのを防ぐことを目的とし、室内機の冷媒入口側および出口側にそれぞれ差圧で作動する弁を内蔵するアクチュエータを配設するとともに圧縮機の吐出ガスを各アクチュエータに導く導圧管にそれぞれ開閉弁を介装している。 In the separate type air conditioner described in Patent Document 1, the refrigerant composed of combustible gas stored in the refrigerant circuit in the outdoor unit is prevented from leaking to the refrigerant circuit of the indoor unit while the air conditioner is stopped. For the purpose of disposing an actuator with a built-in valve that operates at a differential pressure on the refrigerant inlet side and outlet side of the indoor unit, respectively, an on-off valve is interposed in the pressure guiding tube that guides the discharge gas of the compressor to each actuator. ing.

停止指令により、室内機の冷媒入口側のアクチュエータに接続された導圧管の開閉弁を閉として冷媒回収運転を行い、室内機の冷媒回路内の冷媒を室外機の冷媒回路内に貯留した後に室内機の冷媒出口側のアクチュエータに接続された導圧管の開閉弁を閉として圧縮機を停止する。 According to the stop command, the on-off valve of the pressure guiding tube connected to the actuator on the refrigerant inlet side of the indoor unit is closed to perform the refrigerant recovery operation, and the refrigerant in the refrigerant circuit of the indoor unit is stored in the refrigerant circuit of the outdoor unit and then indoors. The on-off valve of the pressure guiding tube connected to the actuator on the refrigerant outlet side of the machine is closed to stop the compressor.

図2は特許文献1に記載の空気調和機の第1の実施例を示すもので、室11に取り付けられた室内機14と室外機10が接続されて冷媒回路を構成しており、室外機10では、圧縮機1により冷媒が圧縮されて高温高圧のガス冷媒となり、室外熱交換器2で放熱して凝縮し高圧の液冷媒となり、絞り3で減圧されて気液二相の冷媒となり室内機14の室内熱交換器4で吸熱、蒸発し、再び圧縮機1へと戻ってくる。 FIG. 2 shows a first embodiment of the air exchanger described in Patent Document 1, in which an indoor unit 14 attached to a chamber 11 and an outdoor unit 10 are connected to form a refrigerant circuit, and the outdoor unit is formed. In No. 10, the refrigerant is compressed by the compressor 1 to become a high-temperature and high-pressure gas refrigerant, dissipates and condenses in the outdoor heat exchanger 2 to become a high-pressure liquid refrigerant, and is decompressed by the throttle 3 to become a gas-liquid two-phase refrigerant in the room. The indoor heat exchanger 4 of the machine 14 absorbs heat and evaporates, and returns to the compressor 1 again.

室内機14の入口側にはアクチュエータ21が、出口側にはアクチュエータ22が配備され、アクチュエータ21には電磁弁15を介して導圧管12から、アクチュエータ22には電磁弁16を介して導圧管13から、圧縮機1の吐出冷媒が供給されることで、アクチュエータ21、アクチュエータ22は開状態となる。 An actuator 21 is provided on the inlet side of the indoor unit 14, and an actuator 22 is provided on the outlet side. The actuator 21 is provided with a pressure guiding tube 12 via a solenoid valve 15, and the actuator 22 is provided with a pressure guiding tube 13 via a solenoid valve 16. By supplying the discharged refrigerant of the compressor 1, the actuator 21 and the actuator 22 are opened.

コントローラ19の指令により電磁弁15あるいは電磁弁16が閉状態となると圧縮機1の吐出冷媒の供給が止まり、アクチュエータ21あるいはアクチュエータ22は閉状態となって室内機14の冷媒回路内に冷媒が流れない構造になっている。 When the solenoid valve 15 or the solenoid valve 16 is closed by the command of the controller 19, the supply of the discharged refrigerant of the compressor 1 is stopped, the actuator 21 or the actuator 22 is closed, and the refrigerant flows in the refrigerant circuit of the indoor unit 14. It has no structure.

そして、空調運転時はコントローラ19が、電磁弁15、電磁弁16を開とすることで、アクチュエータ21、アクチュエータ22が開状態となって、室11を空調することができる。 Then, during the air conditioning operation, the controller 19 opens the solenoid valve 15 and the solenoid valve 16, so that the actuator 21 and the actuator 22 are opened and the chamber 11 can be air-conditioned.

空調を停止する際にコントローラ19は、まず電磁弁15を閉状態としてアクチュエータ21を閉鎖しポンプダウン運転を開始する。冷媒回収が進んで圧縮機1の吸入側圧力が低下すると、圧力センサ7の動作し、これを受けてコントローラ19は電磁弁16を閉状態として、アクチュエータ21を閉鎖し、圧縮機1を停止し冷媒回収運転を終了する。 When stopping the air conditioning, the controller 19 first closes the solenoid valve 15 and closes the actuator 21 to start the pump-down operation. When the refrigerant recovery progresses and the suction side pressure of the compressor 1 drops, the pressure sensor 7 operates, and in response to this, the controller 19 closes the solenoid valve 16, closes the actuator 21, and stops the compressor 1. The refrigerant recovery operation is terminated.

さらに、室11内には、ガス漏れ検知センサ8が配備されており、空調運転中にガス漏れ検知の信号がコントローラ19に入力されると、コントローラ19は停止指令を出力して冷媒回収運転を行い、圧縮機1が停止すると同時にガス漏れ警報が出力される。 Further, a gas leak detection sensor 8 is provided in the chamber 11, and when a gas leak detection signal is input to the controller 19 during the air conditioning operation, the controller 19 outputs a stop command to perform the refrigerant recovery operation. At the same time as the compressor 1 is stopped, a gas leak alarm is output.

特許文献2では、同様の冷媒回収を行うにあたり、装置のコストを低減するため、室内機液側(冷房入口側)、ガス側(冷房出口側)の遮断を、液側は電磁膨張弁、ガス側は遮断弁で行う。そして、冷媒回収運転方法については、電磁膨張弁を遮断した後、圧縮機を所定の時間運転し、圧縮機を停止するとともに遮断弁を遮断するとしている。 In Patent Document 2, in order to reduce the cost of the device in performing the same refrigerant recovery, the indoor unit liquid side (cooling inlet side) and gas side (cooling outlet side) are shut off, and the liquid side is an electromagnetic expansion valve and gas. The side is a shut-off valve. As for the refrigerant recovery operation method, after shutting off the electromagnetic expansion valve, the compressor is operated for a predetermined time, the compressor is stopped, and the shutoff valve is shut off.

特開平8-166171号公報Japanese Unexamined Patent Publication No. 8-166171 特開2000-97527号公報Japanese Unexamined Patent Publication No. 2000-97527

上記従来の特許文献1および特許文献2の空気調和装置は、可燃性冷媒を使用するもので、室内での引火や爆発といった危険を回避するために、運転停止時や冷媒漏れを検知した場合に、冷媒回収運転を行って冷媒を室内側の冷媒回路から排除するものである。 The conventional air conditioners of Patent Document 1 and Patent Document 2 use a flammable refrigerant, and when the operation is stopped or a refrigerant leak is detected in order to avoid danger of ignition or explosion in the room. , The refrigerant recovery operation is performed to remove the refrigerant from the refrigerant circuit on the indoor side.

そして、冷媒回収終了の判断は、特許文献1の場合、圧縮機吸入側の冷媒圧力の低下を検出した時点、特許文献2の場合は、冷媒回収運転開始から所定の時間経過した時点としている。 In the case of Patent Document 1, the determination of the end of the refrigerant recovery is determined when a decrease in the refrigerant pressure on the suction side of the compressor is detected, and in the case of Patent Document 2, a predetermined time has elapsed from the start of the refrigerant recovery operation.

しかしながら、このような冷媒回収終了判定では、運転の状況によっては、室内側の冷媒回路内の可燃性冷媒を十分に排除できない可能性や、圧縮機の吸入側の冷媒の圧力が負圧となり冷媒回路内に空気を導入してしまう可能性がある。 However, in such a refrigerant recovery end determination, depending on the operating conditions, there is a possibility that the flammable refrigerant in the refrigerant circuit on the indoor side cannot be sufficiently excluded, or the pressure of the refrigerant on the suction side of the compressor becomes a negative pressure and the refrigerant becomes negative. There is a possibility of introducing air into the circuit.

その結果、残留冷媒が漏洩して引火したり、圧縮機が可燃性冷媒や冷凍機油と空気の混合物を圧縮して室外機の爆発を招いたりする危険性がある。 As a result, there is a risk that the residual refrigerant may leak and ignite, or the compressor may compress a flammable refrigerant or a mixture of refrigerating machine oil and air, resulting in an explosion of the outdoor unit.

従って本発明は、こうした課題を解決し、冷媒漏洩を防止するため、運転終了時や冷媒漏洩時の冷媒回収運転を行う空気調和機において、冷媒回収運転を適切に行い安全性や、信頼性に優れた装置を提供するものである。 Therefore, in order to solve these problems and prevent refrigerant leakage, the present invention appropriately performs the refrigerant recovery operation in the air conditioner that performs the refrigerant recovery operation at the end of the operation or at the time of the refrigerant leakage, in terms of safety and reliability. It provides an excellent device.

上記従来の課題を解決するために、本発明の空気調和機は、作動冷媒を圧縮して送り出す圧縮機と、室外送風機によって送られた室外空気と前記作動冷媒との間で熱交換する室外熱交換器と、前記作動冷媒を減圧膨張させる膨張弁を有する室外機と、室内送風機によって送られた室内空気と前記作動冷媒との間で熱交換する室内熱交換器を有する室内機とで、冷凍あるいはヒートポンプサイクルを構成する空気調和機であって、前記室外機と前記室内機を接続する第1冷媒経路を遮断する第1冷媒遮断手段と、前記室外機と前記室内機を接続する第2冷媒経路を遮断する第2冷媒遮断手段と、前記室内機の作動冷媒の状態を推定するための状態検知手段と、前記膨張弁と前記第1冷媒遮断手段との間に配置された冷媒貯留手段と、前記第1冷媒遮断手段と前記第2冷媒遮断手段の動作を含め装置の動作を制御する制御手段を備え、運転停止時に前記第1冷媒遮断手段を閉めて作動冷媒を前記室外機に回収し、前記第2冷媒遮断手段を閉めた後、前記膨張弁を閉状態とし、続いて前記第1冷媒遮断手段を開状態とした後、再び前記第1冷媒遮断手段を閉状態とするものである。 In order to solve the above-mentioned conventional problems, the air conditioner of the present invention has a compressor that compresses and sends out the working refrigerant, and outdoor heat that exchanges heat between the outdoor air sent by the outdoor blower and the working refrigerant. Refrigeration is performed by a exchanger, an outdoor unit having an expansion valve for decompressing and expanding the working refrigerant, and an indoor unit having an indoor heat exchanger that exchanges heat between the indoor air sent by the indoor blower and the working refrigerant. Alternatively, an air conditioner constituting the heat pump cycle, the first refrigerant blocking means for blocking the first refrigerant path connecting the outdoor unit and the indoor unit, and the second refrigerant connecting the outdoor unit and the indoor unit. A second refrigerant blocking means for blocking the path, a state detecting means for estimating the state of the operating refrigerant of the indoor unit, and a refrigerant storage means arranged between the expansion valve and the first refrigerant blocking means. A control means for controlling the operation of the device including the operation of the first refrigerant blocking means and the second refrigerant blocking means is provided, and the first refrigerant blocking means is closed when the operation is stopped to collect the operating refrigerant in the outdoor unit. After closing the second refrigerant shutoff means, the expansion valve is closed, then the first refrigerant shutoff means is opened, and then the first refrigerant shutoff means is closed again. ..

これにより、作動冷媒を回収後に、冷媒貯留手段に貯留された所定量の作動冷媒を放出し、室内機の冷媒回路内に適度な量の冷媒を残留させて停止することができる。 As a result, after the working refrigerant is recovered, a predetermined amount of working refrigerant stored in the refrigerant storage means can be discharged, and an appropriate amount of refrigerant can be left in the refrigerant circuit of the indoor unit to stop.

本発明の空気調和機は、作動冷媒を回収後に冷媒貯留手段に貯留された所定量の作動冷媒を放出し、室内機の冷媒回路内に適度な量の作動冷媒を残留させて停止することができるので、室内側で作動冷媒の漏洩が生じても、漏洩量を最小限に抑制するとともに、冷媒回路内に空気を引き込んで圧縮機が爆発するのを回避し、室内機と室外機を接続する配管がわずかな外力で変形するのを防ぎ、環境負荷が小さく、安全で信頼性の高い空気調和機を提供することができる。 The air conditioner of the present invention may release a predetermined amount of the working refrigerant stored in the refrigerant storage means after recovering the working refrigerant, leaving an appropriate amount of the working refrigerant in the refrigerant circuit of the indoor unit and stopping. Therefore, even if the working refrigerant leaks on the indoor side, the amount of leakage is minimized, air is drawn into the refrigerant circuit to prevent the compressor from exploding, and the indoor unit and the outdoor unit are connected. It is possible to prevent the piping to be deformed by a slight external force, provide a safe and highly reliable air conditioner with a small environmental load.

本発明の実施の形態1の空調調和機の構成図Configuration diagram of the air conditioner harmonizer according to the first embodiment of the present invention 従来の空気調和機の構成図Configuration diagram of a conventional air conditioner

第1の発明は、作動冷媒を圧縮して送り出す圧縮機と、室外送風機によって送られた室外空気と前記作動冷媒との間で熱交換する室外熱交換器と、前記作動冷媒を減圧膨張させる膨張弁を有する室外機と、室内送風機によって送られた室内空気と前記作動冷媒との間で熱交換する室内熱交換器を有する室内機とで、冷凍あるいはヒートポンプサイクルを構成する空気調和機であって、前記室外機と前記室内機を接続する第1冷媒経路を遮断する第1冷媒遮断手段と、前記室外機と前記室内機を接続する第2冷媒経路を遮断する第2冷媒遮断手段と、前記室内機の作動冷媒の状態を推定するための状態検知手段と、前記膨張弁と前記第1冷媒遮断手段との間に配置された冷媒貯留手段と、前記第1冷媒遮断手段と前記第2冷媒遮断手段の動作を含め装置の動作を制御する制御手段を備え、運転停止時に前記第1冷媒遮断手段を閉めて作動冷媒を前記室外機に回収し、前記第2冷媒遮断手段を閉めた後、前記膨張弁を閉状態とし、続いて前記第1冷媒遮断手段を開状態とした後、再び前記第1冷媒遮断手段を閉状態とするものである。 The first invention comprises a compressor that compresses and sends out the working refrigerant, an outdoor heat exchanger that exchanges heat between the outdoor air sent by the outdoor blower and the working refrigerant, and expansion that decompresses and expands the working refrigerant. An air conditioner that constitutes a refrigeration or heat pump cycle with an outdoor unit having a valve and an indoor unit having an indoor heat exchanger that exchanges heat between the indoor air sent by the indoor blower and the working refrigerant. The first refrigerant blocking means for blocking the first refrigerant path connecting the outdoor unit and the indoor unit, the second refrigerant blocking means for blocking the second refrigerant path connecting the outdoor unit and the indoor unit, and the above. A state detecting means for estimating the state of the operating refrigerant of the indoor unit, a refrigerant storage means arranged between the expansion valve and the first refrigerant blocking means, the first refrigerant blocking means and the second refrigerant. A control means for controlling the operation of the device including the operation of the shutoff means is provided, the first refrigerant shutoff means is closed when the operation is stopped, the operating refrigerant is collected in the outdoor unit, and the second refrigerant shutoff means is closed. The expansion valve is closed, the first refrigerant shutoff means is opened, and then the first refrigerant shutoff means is closed again.

これにより、作動冷媒を回収後に所定量の作動冷媒を放出し、室内機の冷媒回路内に適度な量の作動冷媒を残留させて停止することができる。 As a result, after the working refrigerant is recovered, a predetermined amount of working refrigerant can be discharged, and an appropriate amount of working refrigerant can be left in the refrigerant circuit of the indoor unit to stop.

従って、室内側で作動冷媒の漏洩が生じても、漏洩量を最小限に抑制するとともに、室内機と室外機を接続する配管がわずかな外力で変形するのを防ぎ、安全で信頼性の高い空気調和機を提供することができる。 Therefore, even if the working refrigerant leaks on the indoor side, the amount of leakage is minimized, and the piping connecting the indoor unit and the outdoor unit is prevented from being deformed by a slight external force, which is safe and reliable. An air conditioner can be provided.

第2の発明は、第1の発明において、前記状態検知手段は、冷媒圧力検知手段と、室内冷媒温度検知手段で構成され、前記制御手段は、前記状態検知手段の出力に基づいて前記第1冷媒遮断手段、前記第2冷媒遮断手段または前記膨張弁を制御するものである。 A second aspect of the invention is the first aspect of the invention, wherein the state detecting means is composed of a refrigerant pressure detecting means and an indoor refrigerant temperature detecting means, and the controlling means is based on the output of the state detecting means. It controls the refrigerant shutoff means, the second refrigerant shutoff means, or the expansion valve.

これにより、室内側作動冷媒の回収終了を素早く判断することができる。 As a result, it is possible to quickly determine the end of recovery of the working refrigerant on the indoor side.

従って、室内側冷媒の回収運転時間を短縮し、室内側回路内が長時間負圧になることを防ぐことができる。 Therefore, it is possible to shorten the recovery operation time of the refrigerant on the indoor side and prevent the negative pressure in the circuit on the indoor side from being generated for a long time.

第3の発明は、第2の発明において、前記冷媒圧力検知手段が、前記第1冷媒遮断手段と前記第2冷媒遮断手段とで遮断された冷媒回路の室内側に配備されるものである。 In the third aspect of the invention, in the second invention, the refrigerant pressure detecting means is provided on the indoor side of the refrigerant circuit cut off by the first refrigerant blocking means and the second refrigerant blocking means.

これにより、室内側作動冷媒の回収終了と適度な量の再放出を正確に検出することができる。 As a result, it is possible to accurately detect the end of recovery of the working refrigerant on the indoor side and the re-emission of an appropriate amount.

従って、室内機の冷媒回路内に残留させる作動冷媒の量を精度よく決定できる。 Therefore, the amount of the working refrigerant remaining in the refrigerant circuit of the indoor unit can be accurately determined.

第4の発明は、第1、第2、第3の発明において、さらに前記制御手段は、前記室内側の作動冷媒の状態推定を行い、前記室内側の冷媒保持量が不足と判断された場合、下記の動作を前記室内側の冷媒保持量が適切と判断されるまで繰り返し行う。 A fourth aspect of the invention is the case where the control means estimates the state of the working refrigerant on the indoor side and determines that the amount of the refrigerant retained on the indoor side is insufficient in the first, second, and third inventions. , The following operation is repeated until the amount of refrigerant retained in the room is determined to be appropriate.

a)前記膨張弁を開
b)前記膨張弁を閉、
c)前記第1冷媒遮断手段を開、
d)前記第1冷媒遮断手段を閉、
これにより、室外機と室内機を接続する第1冷媒経路、第2冷媒経路の長さが異なる場合でも、適度な量の冷媒を残留させて停止することができる。
a) Open the expansion valve b) Close the expansion valve,
c) Open the first refrigerant blocking means,
d) Close the first refrigerant blocking means,
As a result, even if the lengths of the first refrigerant path and the second refrigerant path connecting the outdoor unit and the indoor unit are different, an appropriate amount of refrigerant can be left and stopped.

従って、適応性に優れた制御を行うことができる。 Therefore, control with excellent adaptability can be performed.

第5の発明は、第1から第4の発明において、前記作動冷媒が、可燃性冷媒である。 In the fifth aspect of the invention, in the first to fourth inventions, the working refrigerant is a flammable refrigerant.

これにより、オゾン層の破壊や温暖化への影響を最小限にすることができる。 As a result, the impact on ozone layer depletion and global warming can be minimized.

以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1は、本発明の実施の形態1における空気調和機の構成図を示すものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 shows a configuration diagram of an air conditioner according to the first embodiment of the present invention.

図1に示すように、第1の実施の形態における空気調和機は、室外機101と、室内機107を配管で環状に接続して作動冷媒を循環させ、冷房あるいは暖房を行なう装置である。 As shown in FIG. 1, the air conditioner in the first embodiment is a device in which an outdoor unit 101 and an indoor unit 107 are connected in a ring shape by a pipe to circulate an operating refrigerant to perform cooling or heating.

室外機101は、作動冷媒を圧縮する圧縮機102と、圧縮機102から吐出された作動冷媒の流れを切換える四方弁103と、室外送風機105によって送られてきた室外空気と作動冷媒との間で熱交換する室外熱交換器104と、高圧の作動冷媒を減圧膨張させる膨張弁106が備えられている。ちなみに、圧縮機102はインバータ駆動方式の圧縮機で、状況に応じて運転回転数を変更することが可能である。 The outdoor unit 101 is between a compressor 102 that compresses the working refrigerant, a four-way valve 103 that switches the flow of the working refrigerant discharged from the compressor 102, and the outdoor air and the working refrigerant sent by the outdoor blower 105. An outdoor heat exchanger 104 that exchanges heat and an expansion valve 106 that decompresses and expands a high-pressure working refrigerant are provided. Incidentally, the compressor 102 is an inverter drive type compressor, and the operating rotation speed can be changed according to the situation.

室内機107には、室内送風機109によって送られてきた室内空気と作動冷媒の間で熱交換を行う室内熱交換器108を備えていて、室内を快適な状態にするため冷房や暖房が行われる。 The indoor unit 107 is provided with an indoor heat exchanger 108 that exchanges heat between the indoor air sent by the indoor blower 109 and the working refrigerant, and cools and heats the room in order to make the room comfortable. ..

そして、室内機107は、室外機101の液側接続口110、ガス側接続口111で配管接続され、基本的な冷媒回路を構成している。加えて、快適な空調、円滑な運転を行うために、室温センサ116、室内冷媒温度センサ117、外気温センサ118、圧縮機電力センサ119、制御手段として制御装置120が備えられている。 The indoor unit 107 is connected by piping at the liquid side connection port 110 and the gas side connection port 111 of the outdoor unit 101 to form a basic refrigerant circuit. In addition, in order to perform comfortable air conditioning and smooth operation, a room temperature sensor 116, an indoor refrigerant temperature sensor 117, an outside air temperature sensor 118, a compressor power sensor 119, and a control device 120 as control means are provided.

制御装置120は、すべてのセンサの出力を受けて、すべての動作要素に動作指令を出力するもので、図1では、センサ出力123、動作指令124の矢印で代表して図示し、個別の対応は省略している。制御手段は、例えば、液側遮断弁112、ガス側遮断弁113、圧縮機102、膨張弁106を制御することが出来る。 The control device 120 receives the output of all the sensors and outputs an operation command to all the operation elements. In FIG. 1, the sensor output 123 and the operation command 124 are represented by arrows, and the individual correspondence is shown. Is omitted. The control means can control, for example, the liquid side shutoff valve 112, the gas side shutoff valve 113, the compressor 102, and the expansion valve 106.

使用する作動冷媒について、特に限定はなく、相変化に伴う吸放熱を利用し、圧縮機を用いて冷凍あるいはヒートポンプを構成できる作動冷媒であれば使用可能である。 The working refrigerant to be used is not particularly limited, and any working refrigerant that can be used for freezing or forming a heat pump by using a compressor by utilizing the absorption and heat dissipation accompanying the phase change can be used.

図1の空気調和機は、状態検知手段を有しており、状態検知手段は、室内機の作動冷媒の状態を推定するための検知手段であればよく、例えば、冷媒圧力検知手段、室内冷媒温度検知手段、気温検知手段、圧縮機電力検知手段が挙げられる。冷媒圧力検知手段は冷媒回路中の作動冷媒の圧力を検知する手段であり、図1においては圧力センサ115がこれにあたる。室内冷媒温度検知手段は冷媒回路中を流れる作動冷媒の温度を検知する手段であり、図1においては室内冷媒温度センサ117がこれにあたる。気温検知手段は室外機101や室内機107の雰囲気温度を検知する手段であり、図1においては外気温センサ118と室温センサ116がこれにあたる。圧縮機電力検知手段は圧縮機102の消費電力を検知する手段であり、図1においては圧縮機電力センサ119がこれにあたる。 The air conditioner of FIG. 1 has a state detecting means, and the state detecting means may be any detecting means for estimating the state of the operating refrigerant of the indoor unit, for example, a refrigerant pressure detecting means and an indoor refrigerant. Examples include a temperature detecting means, a temperature detecting means, and a compressor power detecting means. The refrigerant pressure detecting means is a means for detecting the pressure of the operating refrigerant in the refrigerant circuit, and in FIG. 1, the pressure sensor 115 corresponds to this. The indoor refrigerant temperature detecting means is a means for detecting the temperature of the working refrigerant flowing in the refrigerant circuit, and in FIG. 1, the indoor refrigerant temperature sensor 117 corresponds to this. The air temperature detecting means is a means for detecting the atmospheric temperature of the outdoor unit 101 or the indoor unit 107, and in FIG. 1, the outdoor air temperature sensor 118 and the room temperature sensor 116 correspond to this. The compressor power detecting means is a means for detecting the power consumption of the compressor 102, and in FIG. 1, the compressor power sensor 119 corresponds to this.

さらに、図1の空気調和機は、作動冷媒の漏洩を最小限に止めて安全性の向上や環境負荷低減を図るため、運転停止時、例えば運転終了時や作動冷媒漏洩時に冷媒回収運転を適切に行う。そのために、冷媒遮断手段が備えられており、第1冷媒経路である膨張弁106と液側接続口110の間に、第1冷媒遮断手段として液側遮断弁112が配置され、膨張弁106と液側遮断弁112の間に、冷媒貯留手段として冷媒貯留部114が配置されている。加えて、第2冷媒経路であるガス側接続口111と四方弁103の間に、第2冷媒遮断手段としてガス側遮断弁113が配置され、ガス側接続口111とガス側遮断弁113の間に圧力センサ115が配置され、室内機107には冷媒センサ125が配置される。 Further, in the air conditioner of FIG. 1, in order to minimize the leakage of the working refrigerant to improve safety and reduce the environmental load, the refrigerant recovery operation is appropriate when the operation is stopped, for example, at the end of the operation or when the working refrigerant leaks. To do. Therefore, a refrigerant shutoffing means is provided, and a liquid side shutoff valve 112 is arranged as a first refrigerant shutoff means between the expansion valve 106 which is the first refrigerant path and the liquid side connection port 110, and the expansion valve 106 and the expansion valve 106 are provided. A refrigerant storage unit 114 is arranged between the liquid-side shutoff valves 112 as a refrigerant storage means. In addition, a gas side shutoff valve 113 is arranged as a second refrigerant shutoff means between the gas side connection port 111 and the four-way valve 103, which are the second refrigerant paths, and is between the gas side connection port 111 and the gas side shutoff valve 113. A pressure sensor 115 is arranged in the indoor unit 107, and a refrigerant sensor 125 is arranged in the indoor unit 107.

図1において四方弁103は、冷房運転、除霜運転あるいは冷媒回収運転時の状態となっており、圧縮機102から吐出された作動冷媒は、四方弁103から室外熱交換器104、その後、膨張弁106、液側遮断弁112、液側接続口110、室内熱交換器108へと流れる冷凍サイクルを構成している。 In FIG. 1, the four-way valve 103 is in a state during cooling operation, defrosting operation, or refrigerant recovery operation, and the working refrigerant discharged from the compressor 102 is the outdoor heat exchanger 104 from the four-way valve 103, and then expands. It constitutes a refrigeration cycle that flows to the valve 106, the liquid side shutoff valve 112, the liquid side connection port 110, and the indoor heat exchanger 108.

暖房運転の場合は、圧縮機102から吐出された作動冷媒は、四方弁103からガス側遮断弁113、ガス側接続口111を経て室内熱交換器108、その後、液側接続口110、液側遮断弁112、室外熱交換器104へと流れるヒートポンプサイクルを構成している。 In the case of heating operation, the working refrigerant discharged from the compressor 102 is the indoor heat exchanger 108 from the four-way valve 103 via the gas side shutoff valve 113 and the gas side connection port 111, and then the liquid side connection port 110 and the liquid side. It constitutes a heat pump cycle that flows to the shutoff valve 112 and the outdoor heat exchanger 104.

圧縮機102を使って作動冷媒を室外機101へ回収するためには、冷凍サイクルを構成して運転する必要がある。 In order to recover the working refrigerant to the outdoor unit 101 using the compressor 102, it is necessary to configure and operate the refrigeration cycle.

冷媒回収運転が制御装置120から指示されると、圧縮機102の回転数を所定の値に設定して、冷媒回収運転を行う。暖房運転中は一旦停止した後、四方弁103の設定を冷房運転時と同様に設定して冷媒回収運転を開始し、冷房運転や、除霜運転など冷媒が圧縮機102から室外熱交換器104を経て室内熱交換器108の順に流れる冷凍サイクルで運転中は、停止せずに連続して冷媒回収運転を進める。 When the refrigerant recovery operation is instructed by the control device 120, the rotation speed of the compressor 102 is set to a predetermined value, and the refrigerant recovery operation is performed. After temporarily stopping during the heating operation, the setting of the four-way valve 103 is set in the same manner as during the cooling operation, and the refrigerant recovery operation is started. During the operation in the refrigerating cycle in which the indoor heat exchanger 108 flows in this order, the refrigerant recovery operation is continuously advanced without stopping.

冷媒回収運転に移行して所定の時間経過後、液側遮断弁112を閉じると、室内機107の冷媒回路内への作動冷媒供給は止まり、圧縮機102は引き続き運転を続けるので、室内機107の冷媒回路内の作動冷媒は吸引され、室外機101の冷媒回路内へ回収され、その多くは室外熱交換器104で凝縮して室外熱交換器104内に貯留され、冷媒貯留部114にも容積に応じた量の冷媒が貯留される。 When the liquid side shutoff valve 112 is closed after shifting to the refrigerant recovery operation and a predetermined time has elapsed, the supply of the working refrigerant into the refrigerant circuit of the indoor unit 107 is stopped, and the compressor 102 continues to operate. The working refrigerant in the refrigerant circuit of the above is sucked and collected in the refrigerant circuit of the outdoor unit 101, most of which is condensed in the outdoor heat exchanger 104 and stored in the outdoor heat exchanger 104, and also in the refrigerant storage unit 114. An amount of refrigerant corresponding to the volume is stored.

冷媒貯留手段としての冷媒貯留部114は、室内機107の冷媒回路内に開放する作動冷媒の量を貯留している。そのため、冷媒貯留部114内の作動冷媒を開放することにより、作動冷媒を再現精度よく室内機107の冷媒回路内に残留させることができる。なお、冷媒貯留部114は、大量の作動冷媒を貯留することが目的ではなく、配管部にも液冷媒は貯留されるので、貯留配管部も含めて必要な容積とすればよい。 The refrigerant storage unit 114 as a refrigerant storage means stores the amount of working refrigerant to be opened in the refrigerant circuit of the indoor unit 107. Therefore, by opening the working refrigerant in the refrigerant storage unit 114, the working refrigerant can be left in the refrigerant circuit of the indoor unit 107 with high reproducibility accuracy. It should be noted that the refrigerant storage unit 114 is not intended to store a large amount of working refrigerant, and the liquid refrigerant is also stored in the piping unit, so the volume may be sufficient including the storage piping unit.

冷媒回収運転が進行するにつれて、圧力センサ115の出力は低下し、室内冷媒温度センサ117の出力は低下していくが検知部の液冷媒がなくなると上昇に転じ、雰囲気温度を上限にゆっくり上昇していく。 As the refrigerant recovery operation progresses, the output of the pressure sensor 115 decreases and the output of the indoor refrigerant temperature sensor 117 decreases, but when the liquid refrigerant in the detection unit runs out, it starts to increase and slowly increases up to the ambient temperature. To go.

圧力センサ115の出力だけでは、圧力の低下は検知することができるが、室内機107の冷媒回路内にどれだけの液冷媒が残っているかは、設置状態や室温の違いなどにより必ずしも同じではない。 Although a decrease in pressure can be detected only by the output of the pressure sensor 115, how much liquid refrigerant remains in the refrigerant circuit of the indoor unit 107 is not always the same depending on the installation state and the difference in room temperature. ..

また、室内冷媒温度センサ117の出力だけでも、判断が難しく、室内冷媒温度センサ117の出力値を判別しても、液側接続配管121の設置状態や運転状況によって、液側接続配管121から液側遮断弁112までの間にどれだけの液冷媒が残留しているか判断するのは難しい。 Further, it is difficult to judge only by the output of the indoor refrigerant temperature sensor 117, and even if the output value of the indoor refrigerant temperature sensor 117 is determined, the liquid from the liquid side connection pipe 121 depends on the installation state and the operating condition of the liquid side connection pipe 121. It is difficult to determine how much liquid refrigerant remains up to the side shutoff valve 112.

液冷媒が多量に残留してしまうと、漏洩した場合に引火の危険性があり、逆に冷媒回路内が負圧なってしまうと、空気の混入が生じるとか、何らかの作業などにより負圧になった液側接続配管121やガス側接続配管122に外力が加わって変形を生じてしまう危険性がある。 If a large amount of liquid refrigerant remains, there is a risk of ignition if it leaks, and conversely, if the pressure inside the refrigerant circuit becomes negative, air will be mixed in or the pressure will become negative due to some work. There is a risk that external force will be applied to the liquid side connection pipe 121 and the gas side connection pipe 122 to cause deformation.

そこで、圧力センサ115と室内冷媒温度センサ117の両方の出力を用い、圧力センサ115の出力が所定の値より小さいこと、室内冷媒温度センサ117の出力が低下から上昇に転じ、室温センサ116との差が所定の値以内であることを、冷媒回収終了の条件としてガス側遮断弁113を閉じ、圧縮機102、室外送風機105、室内送風機109を停止する。この時点で、室内機107の冷媒回路内に作動冷媒はほとんど存在しない状態となっている。 Therefore, using the outputs of both the pressure sensor 115 and the indoor refrigerant temperature sensor 117, the output of the pressure sensor 115 is smaller than a predetermined value, the output of the indoor refrigerant temperature sensor 117 changes from a decrease to an increase, and the temperature sensor 116 and the room temperature sensor 116 are used. The gas side shutoff valve 113 is closed and the compressor 102, the outdoor blower 105, and the indoor blower 109 are stopped, with the condition that the difference is within a predetermined value as a condition for completing the recovery of the refrigerant. At this point, there is almost no working refrigerant in the refrigerant circuit of the indoor unit 107.

そして、引き続いて膨張弁106を閉状態とし、液側遮断弁112を開放して冷媒貯留部114などに保持された冷媒を再開放し、安定したら再び液側遮断弁112を閉じる。これにより、室内機107側の冷媒回路内は、一定量のガス冷媒で満たされ、室内側で冷媒漏洩が生じた場合に室外機101内の作動冷媒は漏れることがないので作動冷媒の漏洩を最小限に止めて安全性の向上や環境負荷低減を図ることができる。 Then, the expansion valve 106 is subsequently closed, the liquid side shutoff valve 112 is opened, the refrigerant held in the refrigerant storage unit 114 or the like is reopened, and when the liquid side shutoff valve 112 is stabilized, the liquid side shutoff valve 112 is closed again. As a result, the inside of the refrigerant circuit on the indoor unit 107 side is filled with a certain amount of gas refrigerant, and when a refrigerant leak occurs on the indoor side, the working refrigerant in the outdoor unit 101 does not leak, so that the working refrigerant leaks. It can be kept to a minimum to improve safety and reduce the environmental load.

ここで、膨張弁106の閉じる動作は、冷媒の回収が進んで回収終了間近であれば、ガス側遮断弁113が閉じてからでなくてもよい。 Here, the operation of closing the expansion valve 106 does not have to be performed after the gas side shutoff valve 113 is closed as long as the recovery of the refrigerant has progressed and the recovery is about to end.

そして、作動冷媒を再開放した結果、室内機107側の冷媒回路内には所定の正圧がかかっているので、液側接続配管121やガス側接続配管122に外力が加わった場合にも変形を生じにくく、停止中に冷媒漏洩が起こった場合には、圧力センサ115の出力値の異常低下として検知することが可能になる。 As a result of reopening the working refrigerant, a predetermined positive pressure is applied to the refrigerant circuit on the indoor unit 107 side, so that the liquid side connection pipe 121 and the gas side connection pipe 122 are deformed even when an external force is applied. If a refrigerant leaks during stoppage, it can be detected as an abnormal decrease in the output value of the pressure sensor 115.

また、室内冷媒温度センサ117は、もともと空気調和機の空調運転制御を行うためのセンサであって、コストを増加させることなく冷媒回収に利用できる。 Further, the indoor refrigerant temperature sensor 117 is originally a sensor for controlling the air conditioning operation of the air conditioner, and can be used for refrigerant recovery without increasing the cost.

また、実施の形態1においては、圧縮機102には、圧縮機電力センサ119が設けられており、冷媒回収運転が進行すると、圧縮機102の回転数が一定であっても圧縮機電力センサ119の出力は低下する。圧縮機電力センサ119は、精度的には劣るものの、圧縮機102の保護制御上搭載されるケースも多く、安価に構成することができる。 Further, in the first embodiment, the compressor 102 is provided with the compressor power sensor 119, and when the refrigerant recovery operation proceeds, the compressor power sensor 119 is provided even if the rotation speed of the compressor 102 is constant. The output of is reduced. Although the compressor power sensor 119 is inferior in accuracy, it is often mounted on the compressor 102 for protection control, and can be configured at low cost.

圧力センサ115は、第1冷媒遮断手段としての液側遮断弁112と第2冷媒遮断手段としてのガス側遮断弁113とで遮断された冷媒回路の室内機107側で、圧縮機102の吸入口に最も近い、ガス側接続口111とガス側遮断弁113の間に設置することで、最低圧力を検出することができる。 The pressure sensor 115 is a suction port of the compressor 102 on the indoor unit 107 side of the refrigerant circuit shut off by the liquid side shutoff valve 112 as the first refrigerant shutoff means and the gas side shutoff valve 113 as the second refrigerant shutoff means. The minimum pressure can be detected by installing it between the gas side connection port 111 and the gas side shutoff valve 113, which are the closest to the above.

そして、室外機101内に作動冷媒を回収し、一度作動冷媒を再開放した後、室内側の作動冷媒の状態推定を行う。作動冷媒の状態推定とは、例えば、圧力センサ115、室温センサ116、室内冷媒温度センサ117などの出力から室内機107側の冷媒回路の圧力が妥当か判定する。 Then, the working refrigerant is collected in the outdoor unit 101, the working refrigerant is reopened once, and then the state of the working refrigerant on the indoor side is estimated. The state estimation of the working refrigerant is, for example, determining whether the pressure of the refrigerant circuit on the indoor unit 107 side is appropriate from the outputs of the pressure sensor 115, the room temperature sensor 116, the indoor refrigerant temperature sensor 117, and the like.

判定の結果、圧力が低く室内側の冷媒保持量が不足と判定された場合には、膨張弁106を所定の時間開とした後再び閉状態とし、液側遮断弁112を開放して冷媒貯留部114などに保持された冷媒を再開放し、安定したら再び液側遮断弁112を閉じる。 As a result of the determination, when it is determined that the pressure is low and the amount of refrigerant retained in the room is insufficient, the expansion valve 106 is opened for a predetermined time and then closed again, and the liquid side shutoff valve 112 is opened to store the refrigerant. The refrigerant held in the portion 114 or the like is reopened, and when it stabilizes, the liquid side shutoff valve 112 is closed again.

そして、圧力の妥当性判定、判定結果に基づいた弁類の操作を、圧力の妥当性判定が妥当になるまで繰り返す。 Then, the pressure validity determination and the operation of the valves based on the determination result are repeated until the pressure validity determination becomes appropriate.

この操作によって、室内機107と室外機101を繋ぐ液側接続配管121、ガス側接続配管122の長さが長くなっても、室内機107側の冷媒回路の圧力は適切に保たれ、適度な量の冷媒を残留させた状態で停止することができる。 By this operation, even if the lengths of the liquid side connection pipe 121 and the gas side connection pipe 122 connecting the indoor unit 107 and the outdoor unit 101 become long, the pressure of the refrigerant circuit on the indoor unit 107 side is appropriately maintained and is appropriate. It can be stopped with an amount of refrigerant remaining.

そして、図1の実施の形態1に示す空気調和機は、いかなる作動冷媒を使用する場合も、作動冷媒の漏洩を最小限に止め、空気の吸引を防ぎ、安全性の向上や環境負荷低減することが可能であるが、R32、R1234yf、R1234ze、プロパンやブタンなどの炭化水素など、可燃性冷媒を使用する場合には、引火などの危険回避することにつながり、その効果は大きい。 The air conditioner shown in the first embodiment of FIG. 1 minimizes leakage of the working refrigerant, prevents air suction, improves safety, and reduces the environmental load when any working refrigerant is used. However, when a flammable refrigerant such as R32, R1234yf, R1234ze, or a hydrocarbon such as propane or butane is used, it leads to avoiding danger such as ignition, and its effect is great.

中でも、プロパンについては、温暖化影響が小さいだけでなく冷媒としての性能も優れており、引火の危険性を低減できる本発明の意義は極めて高い。 Among them, propane has not only a small influence on global warming but also excellent performance as a refrigerant, and the significance of the present invention capable of reducing the risk of ignition is extremely high.

以上のように、本発明にかかる空気調和機は、冷凍およびヒートポンプサイクルを用いて空気調和を行なう空気調和機において、作動冷媒の漏洩を防ぐもので、その技術は空気調和機だけに止まらず、給湯機やショーケースや冷凍機などにも広く適用することができ、効果をもたらすものである。 As described above, the air conditioner according to the present invention prevents leakage of the working refrigerant in an air conditioner that performs air conditioning using a refrigerating and heat pump cycle, and the technique is not limited to the air conditioner. It can be widely applied to water conditioners, showcases, refrigerators, etc., and has an effect.

101 室外機
102 圧縮機
103 四方弁
104 室外熱交換器
105 室外送風機
106 膨張弁
107 室内機
108 室内熱交換器
109 室内送風機
110 液側接続口
111 ガス側接続口
112 液側遮断弁
113 ガス側遮断弁
114 冷媒貯留部
115 圧力センサ
116 室温センサ
117 室内冷媒温度センサ
118 外気温センサ
119 圧縮機電力センサ
120 制御装置
121 液側接続配管
122 ガス側接続配管
123 センサ出力
124 動作指令
125 冷媒センサ
101 Outdoor unit 102 Compressor 103 Four-way valve 104 Outdoor heat exchanger 105 Outdoor blower 106 Expansion valve 107 Indoor unit 108 Indoor heat exchanger 109 Indoor blower 110 Liquid side connection port 111 Gas side connection port 112 Liquid side shutoff valve 113 Gas side shutoff Valve 114 Refrigerant reservoir 115 Pressure sensor 116 Room temperature sensor 117 Indoor refrigerant temperature sensor 118 Outside temperature sensor 119 Compressor power sensor 120 Control device 121 Liquid side connection piping 122 Gas side connection piping 123 Sensor output 124 Operation command 125 Refrigerant sensor

Claims (5)

作動冷媒を圧縮して送り出す圧縮機と、室外送風機によって送られた室外空気と前記作動冷媒との間で熱交換する室外熱交換器と、前記作動冷媒を減圧膨張させる膨張弁を有する室外機と、
室内送風機によって送られた室内空気と前記作動冷媒との間で熱交換する室内熱交換器を有する室内機とで、
冷凍あるいはヒートポンプサイクルを構成する空気調和機であって、
前記室外機と前記室内機を接続する第1冷媒経路を遮断する第1冷媒遮断手段と、
前記室外機と前記室内機を接続する第2冷媒経路を遮断する第2冷媒遮断手段と、
前記室内機の作動冷媒の状態を推定するための状態検知手段と、
前記膨張弁と前記第1冷媒遮断手段との間に配置された冷媒貯留手段と、
前記第1冷媒遮断手段と前記第2冷媒遮断手段の動作を含め装置の動作を制御する制御手段を備え、
運転停止時に前記第1冷媒遮断手段を閉めて作動冷媒を前記室外機に回収し、前記第2冷媒遮断手段を閉めた後、前記膨張弁を閉状態とし、続いて前記第1冷媒遮断手段を開状態とした後、再び前記第1冷媒遮断手段を閉状態とすることを特徴とする空気調和機。
A compressor that compresses and sends out the working refrigerant, an outdoor heat exchanger that exchanges heat between the outdoor air sent by the outdoor blower and the working refrigerant, and an outdoor unit having an expansion valve that decompresses and expands the working refrigerant. ,
An indoor unit having an indoor heat exchanger that exchanges heat between the indoor air sent by the indoor blower and the working refrigerant.
An air conditioner that constitutes a freezing or heat pump cycle.
A first refrigerant blocking means for blocking the first refrigerant path connecting the outdoor unit and the indoor unit,
A second refrigerant blocking means for blocking the second refrigerant path connecting the outdoor unit and the indoor unit,
A state detecting means for estimating the state of the operating refrigerant of the indoor unit, and
A refrigerant storage means arranged between the expansion valve and the first refrigerant shutoff means,
A control means for controlling the operation of the device including the operation of the first refrigerant shutoff means and the second refrigerant shutoff means is provided.
When the operation is stopped, the first refrigerant blocking means is closed to collect the operating refrigerant in the outdoor unit, the second refrigerant blocking means is closed, the expansion valve is closed, and then the first refrigerant blocking means is closed. An air conditioner characterized in that the first refrigerant blocking means is closed again after being opened.
前記状態検知手段は、冷媒圧力検知手段と、室内冷媒温度検知手段で構成され、前記制御手段は、前記状態検知手段の出力に基づいて前記第1冷媒遮断手段、前記第2冷媒遮断手段または前記膨張弁を制御することを特徴とする請求項1に記載の空気調和機。 The state detecting means is composed of a refrigerant pressure detecting means and an indoor refrigerant temperature detecting means, and the control means is based on the output of the state detecting means, the first refrigerant blocking means, the second refrigerant blocking means or the said. The air conditioner according to claim 1, wherein the expansion valve is controlled. 前記冷媒圧力検知手段が、前記第1冷媒遮断手段と前記第2冷媒遮断手段とで遮断された冷媒回路の室内側に配備されることを特徴とする請求項2に記載の空気調和機。 The air conditioner according to claim 2, wherein the refrigerant pressure detecting means is installed on the indoor side of a refrigerant circuit cut off by the first refrigerant blocking means and the second refrigerant blocking means. さらに、前記制御手段は、前記室内側の作動冷媒の状態推定を行い、前記室内側の冷媒保持量が不足と判断された場合、下記の動作を前記室内側の冷媒保持量が適切と判断されるまで繰り返し行う
a)前記膨張弁を開、
b)前記膨張弁を閉、
c)前記第1冷媒遮断手段を開、
d)前記第1冷媒遮断手段を閉、
ことを特徴とする請求項1から請求項3のいずれかに記載の空気調和機。
Further, the control means estimates the state of the working refrigerant on the indoor side, and when it is determined that the refrigerant holding amount on the indoor side is insufficient, it is determined that the refrigerant holding amount on the indoor side is appropriate for the following operation. Repeat until a) Open the expansion valve,
b) Close the expansion valve,
c) Open the first refrigerant blocking means,
d) Close the first refrigerant blocking means,
The air conditioner according to any one of claims 1 to 3, wherein the air conditioner is characterized by the above.
前記作動冷媒が、可燃性冷媒であることを特徴とする請求項1から請求項4のいずれかに記載の空気調和機。 The air conditioner according to any one of claims 1 to 4, wherein the working refrigerant is a flammable refrigerant.
JP2020121044A 2020-07-15 2020-07-15 Air conditioners Active JP7470897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020121044A JP7470897B2 (en) 2020-07-15 2020-07-15 Air conditioners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020121044A JP7470897B2 (en) 2020-07-15 2020-07-15 Air conditioners

Publications (2)

Publication Number Publication Date
JP2022024289A true JP2022024289A (en) 2022-02-09
JP7470897B2 JP7470897B2 (en) 2024-04-19

Family

ID=80265358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020121044A Active JP7470897B2 (en) 2020-07-15 2020-07-15 Air conditioners

Country Status (1)

Country Link
JP (1) JP7470897B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228281A (en) 2001-01-31 2002-08-14 Sanyo Electric Co Ltd Air conditioner
EP3572744B1 (en) 2017-01-19 2022-06-22 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP7169848B2 (en) 2018-10-31 2022-11-11 日立ジョンソンコントロールズ空調株式会社 air conditioner

Also Published As

Publication number Publication date
JP7470897B2 (en) 2024-04-19

Similar Documents

Publication Publication Date Title
JP6935720B2 (en) Refrigeration equipment
JP6804631B2 (en) Refrigeration cycle equipment
CN111164360B (en) Air conditioning apparatus
US10451306B2 (en) Air-conditioning apparatus
US11015852B2 (en) Refrigeration apparatus
JP3109500B2 (en) Refrigeration equipment
WO2018105102A1 (en) Heat pump device
JP2017142039A (en) Air conditioner
JP5211894B2 (en) Air conditioner
WO2018225257A1 (en) Equipment that uses heat pump
CN109564033B (en) Heat pump device
WO2018158886A1 (en) Refrigeration cycle device
WO2019053771A1 (en) Air conditioning device
WO2019035205A1 (en) Air conditioning device
JP2000097527A (en) Air conditioner and its control method
JP2005214575A (en) Refrigerator
JP2022010435A (en) Air conditioner
JP2000249385A (en) Freezer
JP2014055771A (en) Air conditioner
WO2019093210A1 (en) Refrigerating and air-conditioning apparatus
JP2022024289A (en) Air conditioner
CN115711466A (en) Multi-split air conditioning system and control method thereof
JP6238202B2 (en) Air conditioner
JP5283560B2 (en) Air conditioner
JP6257812B2 (en) Air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240311

R150 Certificate of patent or registration of utility model

Ref document number: 7470897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150