WO2017138167A1 - Cooler and air conditioner - Google Patents

Cooler and air conditioner Download PDF

Info

Publication number
WO2017138167A1
WO2017138167A1 PCT/JP2016/072727 JP2016072727W WO2017138167A1 WO 2017138167 A1 WO2017138167 A1 WO 2017138167A1 JP 2016072727 W JP2016072727 W JP 2016072727W WO 2017138167 A1 WO2017138167 A1 WO 2017138167A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
air conditioner
rotation speed
control unit
refrigerant
Prior art date
Application number
PCT/JP2016/072727
Other languages
French (fr)
Japanese (ja)
Inventor
有賀 徹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201680045569.7A priority Critical patent/CN108603681B/en
Publication of WO2017138167A1 publication Critical patent/WO2017138167A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to a cooling device that performs a cooling operation using a heat pump, and an air conditioner that performs a cooling operation and a heating operation using a heat pump.
  • a cooling unit or an air conditioner using a heat pump system that combines gas compression and expansion and heat exchange is used.
  • the heat pump type air conditioner and air conditioner are provided with a refrigeration cycle to which a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are connected.
  • the strength of the cooling operation is adjusted by inverter control of the motor speed of the compressor in the refrigeration cycle.
  • Patent Document 1 discloses a compressor control for simultaneously monitoring a compressor discharge temperature and a compressor input current and protecting the compressor in any operation state.
  • the temperature of an outdoor air temperature sensor or an outdoor heat exchanger is measured, and when these temperature sensors become a predetermined temperature or more, the apparatus is overloaded.
  • the compressor is determined to be in a state.
  • this method poses a problem of increased cost due to mounting various temperature sensors outside the room. Also, for example, if the configuration is such that the outside temperature sensor is not mounted in order to give priority to cost, it becomes impossible to strictly control the overload state of the compressor, and it becomes necessary to mount an outdoor heat exchanger having a capacity larger than ideal. .
  • the present invention it is possible to appropriately suppress the device from being overloaded even when at least one of the outdoor temperature sensor and the outdoor heat exchanger temperature sensor is not provided, and when neither is provided. It aims at providing the air conditioner and air conditioner which can do.
  • the air conditioner according to the first aspect of the present invention includes a cooling mechanism having a compressor, a power calculation unit that calculates a power value of the compressor, a power value obtained by the power calculation unit, and the compressor And a rotation speed control unit that determines whether or not the cooling mechanism is in an overload state based on the rotation speed and controls the rotation speed of the compressor based on the determination result.
  • the rotation speed control unit may determine that the power value obtained from the power calculation unit is in an overload state when a power threshold value in the rotation speed of the compressor is exceeded. Good.
  • the power threshold may be set by calculating in advance a power value when the compressor is operated in an overload state at different environmental temperatures and at different rotational speeds.
  • the air conditioner according to the present invention further includes an outdoor unit and an outside air temperature sensor that measures the temperature of the environment in which the outdoor unit is placed, and the rotational speed control unit is measured by the outside air temperature sensor.
  • the power threshold may be set based on the measured temperature.
  • An air conditioner according to the second aspect of the present invention is an air conditioner including a cooling device having any one of the above-described configurations.
  • the air conditioner and the air conditioner according to the present invention determine whether or not the cooling mechanism is overloaded based on the rotation of the compressor and the power value. Therefore, even when at least one of the outdoor air temperature sensor and the outdoor heat exchanger temperature sensor is not provided, it is possible to appropriately suppress the compressor from being overloaded.
  • FIG. 3 shows a control flow of the compressor when the air conditioner starts cooling operation.
  • FIG. 4 shows a control flow of the compressor during the cooling operation.
  • FIG. 1 It is a schematic diagram which shows the whole structure of the air conditioner concerning the 2nd Embodiment of this invention. It is a flowchart which shows the flow of the rotation speed control of the compressor in the air conditioner shown in FIG. It is a graph which shows an example of the relationship between the rotation speed and electric power value in the compressor in the air conditioner shown in FIG.
  • FIG. 1 shows an internal configuration of an air conditioner 1 according to the present embodiment.
  • FIG. 2 shows the overall configuration of the air conditioner 1 according to the present embodiment.
  • the air conditioner 1 according to the first embodiment can perform both the heating operation and the cooling operation.
  • the air conditioner 1 is also an example of the air conditioner of the present invention. Equivalent to. ⁇ Overall configuration of air conditioner>
  • the flow of the refrigerant (heat medium) during the cooling operation of the air conditioner 1 is indicated by a solid arrow
  • the flow of the refrigerant (heat medium) during the heating operation of the air conditioner 1 is indicated by a broken arrow. Yes.
  • the air conditioner 1 is a separate air conditioner, and mainly includes an indoor unit 10 and an outdoor unit 50.
  • the air conditioner 1 is configured by connecting the indoor unit 10 and the outdoor unit 50 via refrigerant pipes 57 and 58.
  • the outdoor unit 50, the indoor unit 10, and the refrigerant pipes 57 and 58 will be described in detail.
  • Outdoor unit The outdoor unit 50 mainly includes a casing 51, a compressor 52, a four-way valve 53, an outdoor heat exchanger 54, an expansion valve 55, an outdoor blower 56, a refrigerant pipe 57, a refrigerant pipe 58, and a two-way valve. 59, and a three-way valve 60.
  • the outdoor unit 50 is installed outdoors.
  • the casing 51 includes a compressor 52, a four-way valve 53, an outdoor heat exchanger 54, an expansion valve 55, an outdoor fan 56, a refrigerant pipe 57, a refrigerant pipe 58, a two-way valve 59, a three-way valve 60, and a discharge temperature sensor 61. Etc. are stored.
  • the compressor 52 has a discharge pipe 52a and a suction pipe 52b.
  • the discharge pipe 52a and the suction pipe 52b are connected to different connection ports of the four-way valve 53, respectively.
  • the compressor 52 sucks low-pressure refrigerant gas from the suction pipe 52b, compresses the refrigerant gas to generate high-pressure refrigerant gas, and then discharges the high-pressure refrigerant gas from the discharge pipe 52a.
  • a compressor whose capacity can be changed by inverter control is adopted as the compressor 52.
  • a discharge temperature sensor 61 that measures the temperature of the refrigerant discharged from the compressor 52 is disposed in the discharge pipe 52a.
  • the four-way valve 53 is connected to the discharge pipe 52a and the suction pipe 52b of the compressor 52, the outdoor heat exchanger 54, and the indoor heat exchanger 12 through a refrigerant pipe.
  • the four-way valve 53 switches the path of the refrigeration cycle according to a control signal transmitted from a control unit (not shown in FIG. 2) of the air conditioner 1 during operation. That is, the four-way valve 53 switches the path between the cooling operation state and the heating operation state.
  • the four-way valve 53 connects the discharge pipe 52a of the compressor 52 to the outdoor heat exchanger 54 and connects the suction pipe 52b of the compressor 52 to the indoor heat exchanger 12 (FIG. (See solid line arrow 2).
  • the four-way valve 53 connects the discharge pipe 52a of the compressor 52 to the indoor heat exchanger 12 and connects the suction pipe 52b of the compressor 52 to the outdoor heat exchanger 54 (broken line in FIG. 2). See arrow).
  • the outdoor heat exchanger 54 has a large number of radiating fins (not shown) attached to a heat transfer tube (not shown) bent back and forth at both left and right ends, and functions as a condenser during cooling operation. It functions as an evaporator during heating operation.
  • the expansion valve 55 is an electronic expansion valve whose opening degree can be controlled via a stepping motor, which will be described later, and one is connected to a two-way valve 59 via a refrigerant pipe 57 and the other is an outdoor heat exchanger 54. It is connected to the.
  • the stepping motor of the expansion valve 55 operates according to a control signal transmitted from a control unit (not shown) of the air conditioner 1.
  • the expansion valve 55 depressurizes the high-temperature and high-pressure liquid refrigerant flowing out from the condenser (the indoor heat exchanger 12 during heating and the outdoor heat exchanger 54 during cooling) during operation. At the same time, it plays the role of adjusting the amount of refrigerant supplied to the evaporator (the outdoor heat exchanger 54 during heating and the indoor heat exchanger 12 during cooling).
  • the outdoor blower 56 is mainly composed of a propeller fan and a motor.
  • the propeller fan is rotationally driven by a motor and supplies outdoor outdoor air to the outdoor heat exchanger 54.
  • the motor operates according to a control signal transmitted from a control unit (not shown) of the air conditioner 1.
  • the two-way valve 59 is disposed in the refrigerant pipe 57.
  • the two-way valve 59 is closed when the refrigerant pipe 57 is removed from the outdoor unit 50 to prevent the refrigerant from leaking from the outdoor unit 50 to the outside.
  • the three-way valve 60 is disposed in the refrigerant pipe 58.
  • the three-way valve 60 is closed when the refrigerant pipe 58 is removed from the outdoor unit 50 to prevent the refrigerant from leaking from the outdoor unit 50 to the outside. Further, when it is necessary to recover the refrigerant from the outdoor unit 50 or the entire refrigeration cycle (cooling mechanism) including the indoor unit 10, the refrigerant is recovered through the three-way valve 60.
  • the indoor unit 10 is mainly comprised from the housing
  • the housing 11 houses an indoor heat exchanger 12, an indoor blower 13, an indoor heat exchanger temperature sensor 14, an indoor temperature sensor 15, a control unit 20 (see FIG. 1), and the like.
  • the indoor heat exchanger temperature sensor 14 does not necessarily have to be mounted.
  • the compressor can be operated normally by controlling the rotation speed of the compressor with the inverter.
  • the indoor heat exchanger 12 is a combination of three heat exchangers like a roof covering the indoor blower 13 as shown in FIG. Each heat exchanger has a large number of heat radiating fins (not shown) attached to a heat transfer tube (not shown) bent back and forth at both left and right ends, and functions as a condenser during heating operation. During cooling operation, it functions as an evaporator.
  • the indoor heat exchanger temperature sensor 14 measures the temperature of the indoor heat exchanger 12. It arrange
  • the indoor blower 13 is mainly composed of a cross flow fan and a motor.
  • the cross flow fan is rotationally driven by a motor, sucks indoor air into the housing 11 and supplies the air to the indoor heat exchanger 12, and sends out the air exchanged by the indoor heat exchanger 12 into the room.
  • the indoor temperature sensor 15 measures the temperature of the room where the indoor unit 10 is installed.
  • the indoor temperature sensor 15 is disposed, for example, in the vicinity of the outside air inlet of the housing 11.
  • the compressor 52, the four-way valve 53, the outdoor heat exchanger 54 and the expansion valve 55 of the outdoor unit 50, and the indoor heat exchanger 12 of the indoor unit 10 are sequentially connected by refrigerant pipes 57 and 58, and a refrigerant cycle (refrigeration cycle). Cycle).
  • Refrigerant piping The refrigerant piping 57 is thinner than the refrigerant piping 58, and the liquid refrigerant flows during operation.
  • the refrigerant pipe 58 is thicker than the refrigerant pipe 57, and a gas refrigerant flows during operation.
  • the heat medium (refrigerant) for example, HFC type R410A or R32 is used.
  • the four-way valve 53 is in the state indicated by the solid line in FIG. 2, that is, the discharge pipe 52 a of the compressor 52 is connected to the outdoor heat exchanger 54 and the suction pipe 52 b of the compressor 52. Is connected to the indoor heat exchanger 12. At this time, the two-way valve 59 and the three-way valve 60 are opened. In this state, when the compressor 52 is started, the gas refrigerant is sucked into the compressor 52 and compressed, and then sent to the outdoor heat exchanger 54 via the four-way valve 53, and the outdoor heat exchanger 54. Is cooled to become a liquid refrigerant.
  • this liquid refrigerant is sent to the expansion valve 55, where it is depressurized and enters a gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant is supplied to the indoor heat exchanger 12 via the two-way valve 59, cools the indoor air and evaporates to become a gas refrigerant.
  • the gas refrigerant is sucked into the compressor 52 again via the three-way valve 60 and the four-way valve 53.
  • the four-way valve 53 is in the state indicated by the broken line in FIG. 2, that is, the discharge pipe 52a of the compressor 52 is connected to the indoor heat exchanger 12, and the suction pipe 52b of the compressor 52 Is connected to the outdoor heat exchanger 54.
  • the two-way valve 59 and the three-way valve 60 are opened.
  • the compressor 52 is started in this state, the gas refrigerant is sucked into the compressor 52 and compressed, and then supplied to the indoor heat exchanger 12 via the four-way valve 53 and the three-way valve 60, Air is heated and condensed to become a liquid refrigerant.
  • the liquid refrigerant is sent to the expansion valve 55 via the two-way valve 59 and is decompressed to be in a gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant is sent to the outdoor heat exchanger 54 and evaporated in the outdoor heat exchanger 54 to become a gas refrigerant.
  • the gas refrigerant is sucked into the compressor 52 again via the four-way valve 53.
  • FIG. 1 the internal structure of the air conditioner 1 is shown.
  • FIG. 1 the structural member relevant to the operation control of the compressor 52 is shown.
  • the indoor unit 10 includes an indoor fan 13, an indoor temperature sensor 15, a storage unit 16, a display unit 17, a receiving unit 18, a control unit 20, and the like.
  • the storage unit 16 includes a ROM (read only memory) and a RAM (Random access memory).
  • the storage unit 16 stores an operation program and setting data of the air conditioner 1 and temporarily stores a calculation result by the control unit 20.
  • Display unit 17 includes a liquid crystal display panel, an LED light, and the like.
  • the display unit 17 displays the operation status, alarms, and the like of the air conditioner 1 based on the signal from the control unit 20.
  • the receiving unit 18 receives an infrared signal transmitted when a remote controller (not shown) is operated.
  • the control unit 20 is connected to each component in the air conditioner 1 and controls them.
  • the control unit 20 includes a rotation speed control unit 21 and a power calculation unit 22.
  • the rotation speed control unit 21 controls the rotation speed of the compressor 52 based on each signal transmitted to the control unit 20.
  • the power calculation unit 22 calculates the power value of the compressor 52 based on the current value and voltage value of the compressor 52 measured by the ammeter 62 and the voltmeter 63.
  • the power value can be calculated by, for example, multiplying the current value measured by the ammeter 62, the voltage value measured by the voltmeter 63, and a coefficient based on the power factor with respect to the rotation speed of the compressor 52.
  • the power factor is measured in advance.
  • CT-less power monitoring can be performed by calculating the power value using the power factor.
  • accurate power can be measured, especially when the compressor is rotating at a higher speed.
  • the calculation (estimation) of the power value is not limited to this, and may be performed using another conventionally known method.
  • the outdoor unit 50 is provided with a compressor 52, an outdoor fan 56, a discharge temperature sensor 61, an ammeter 62, a voltmeter 63, a timer 64, and the like.
  • the ammeter 62 measures the current flowing through the compressor 52.
  • the current measurement in the ammeter 62 can be performed using, for example, a shunt resistor.
  • the voltmeter 63 measures the voltage applied to the compressor 52.
  • the voltmeter 63 can measure the voltage of the compressor 52 through, for example, a voltage dividing resistor.
  • the timer 64 measures the operation time of the compressor 52. Note that the operation time of the compressor 52 may be measured using a timer (not shown) installed on the indoor unit 10 side instead of the timer 64.
  • FIG. 3 shows the flow of compressor control when the air conditioner 1 starts the cooling operation.
  • the user operates the remote controller or the like to give an instruction to start the cooling operation to the air conditioner 1.
  • the receiving unit 18 of the air conditioner 1 receives this instruction and transmits a signal instructing the control unit 20 to start the cooling operation.
  • the control unit 20 determines whether or not to start the operation of the compressor 52 (step S11 in FIG. 3). Specifically, the control unit 20 receives information on the room temperature measured by the room temperature sensor 15 (for example, the temperature of air sucked into the indoor unit 10 from the room). Then, the control unit 20 determines whether or not the compressor 52 should be operated based on the transmitted room temperature information. Here, even when the compressor 52 is operated at the minimum number of revolutions, if the room temperature is lower than the temperature set by the user, the control unit 20 determines that the compressor 52 cannot be operated (NO in step S11). ). And the control part 20 maintains the stop state, without operating the compressor 52 (step S12).
  • control unit 20 determines that the operation of the compressor 52 may be started based on the transmitted room temperature information (YES in step S11)
  • the control unit 20 operates the compressor 52. Start (step S13). Then, the compressor 52 gradually increases the rotation speed.
  • the refrigerant cycle is configured in about 3 minutes after the compressor 52 starts operation, and the pressure of the piping in the cycle is stabilized. Therefore, the timer 64 measures the time after the compressor 52 starts operation, and waits for a predetermined time (for example, 3 minutes) to elapse (step S14). After a predetermined time (for example, 3 minutes) has elapsed since the compressor 52 started operation (YES in step S14), the control unit 20 fixes the rotational speed of the compressor 52 to a predetermined value (step S15).
  • the predetermined rotational speed is set to a value lower than the rotational speed (the rotational speed threshold value) of the compressor 52 that is restricted during overload operation.
  • step S15 the outdoor blower 56 is also maintained at a predetermined fan speed (initial fan rotation speed preset on the air conditioner 1 side). Further, the indoor blower 13 is also maintained at a predetermined fan speed (initial fan rotation speed preset on the air conditioner 1 side).
  • the fan speed at the start of the operation of the outdoor blower 56 and the indoor blower 13 is not limited to this, and the fan speed based on the set temperature specified by the user may be used.
  • the rotation speed of the compressor 52 is fixed to a predetermined value, and after about 30 seconds have elapsed, the power value of the compressor 52 is measured (step S16).
  • the power value is measured by the power calculation unit 22 in the control unit 20.
  • the power calculation unit 22 calculates the power value by the method described above based on the current value and the voltage value measured by the ammeter 62 and the voltmeter 63.
  • the rotation speed control unit 21 determines whether or not the transmitted power value is higher than the upper limit value (power threshold value) of power at the predetermined rotation speed (step S17). And when the electric power value of the compressor 52 is higher than an electric power threshold value, the rotation speed control part 21 judges that the refrigerating cycle is an overload driving
  • the specific upper limit rotational speed is a rotational speed set so that the pressure of the refrigerant staying in the piping of the refrigeration cycle does not exceed a reference value.
  • the upper limit value (power threshold value) of power at a predetermined rotational speed is set by calculating in advance the power value when the compressor 52 is overloaded at different environmental temperatures and at different rotational speeds.
  • FIG. 5 shows an example of a power threshold for a predetermined number of rotations of the compressor.
  • the power threshold A is indicated by a broken line. A method for setting the power threshold A will be described later.
  • the rotation speed control unit 21 determines that the refrigeration cycle is not in an overload operation state (NO in step S17). In this case, the rotation speed control unit 21 cancels the setting of the specific upper limit rotation speed (step S19). Then, the rotation speed control unit 21 operates the compressor 52 at the rotation speed (maximum rotation speed) necessary for cooling the room temperature to the set temperature desired by the user (step S20).
  • the compressor 52 is controlled according to the above flow.
  • FIG. 4 shows a flow of processing for determining the operation state of the compressor 52 (determination of whether or not it is an overload operation) during the cooling operation.
  • the control unit 20 determines whether or not the operation of the compressor 52 may be continued (step S21). Specifically, the control unit 20 receives information on the room temperature measured by the room temperature sensor 15 (for example, the temperature of air sucked into the indoor unit 10 from the room). And the control part 20 judges whether the driving
  • Step S23 the power value of the compressor 52 is calculated. Similar to step S ⁇ b> 16 described above, the power value is calculated by the power calculation unit 22. Information on the calculated power value is transmitted to the rotation speed control unit 21.
  • the rotation speed control unit 21 acquires information on the rotation speed of the current compressor 52 (step S24). Then, the rotation speed control unit 21 determines whether or not the transmitted power value is higher than the upper limit value (power threshold value) of the power at the acquired rotation speed (step S25). And when the electric power value of the compressor 52 is higher than an electric power threshold value, the rotation speed control part 21 judges that the refrigerating cycle is an overload driving
  • the specific upper limit rotational speed is a rotational speed set so that the pressure of the refrigerant staying in the piping of the refrigeration cycle does not exceed a reference value.
  • the rotation speed control unit 21 determines that the refrigeration cycle is not in an overload operation state (NO in step S25). Note that a reduction in the power value of the compressor 52 below the power threshold means that the outside air temperature has decreased. In this case, the rotation speed control unit 21 cancels the setting of the specific upper limit rotation speed (step S27). Then, the rotation speed control unit 21 operates the compressor 52 at the rotation speed (MAX rotation speed) necessary for cooling the room temperature to the set temperature desired by the user (step S28).
  • the rotational speed control is performed so that the compressor 52 during the cooling operation is not overloaded. It should be noted that after the above series of processing is completed, it is determined whether or not the operation of the compressor 52 can be continued again, and the processing of FIG. 4 may be repeated while the cooling operation is continued. That is, the processing may be performed in a flow of returning to step S21 after step S26 or step S28.
  • predicting the outside air temperature at that time from the information on the rotation speed of the compressor and the power value, and predicting whether or not the refrigeration cycle is overloaded. Can do. That is, during the cooling operation, information on the rotational speed and power value of the compressor is acquired, and by plotting these information in the graph of FIG. 5, the outside air temperature in the environment where the air conditioner 1 is installed is estimated. can do. Further, whether or not the operating state of the compressor is an overload state can be determined based on whether or not the plotted point is located above the power threshold A.
  • the compressor 52 is operated at each rotation speed of 4000 rpm, 4500 rpm, 5000 rpm, and 5500 rpm, and the power value at each rotation speed is measured. Furthermore, the measurement of the power value at each rotational speed is performed under different outside air temperatures (environmental temperatures) of 35 ° C., 40 ° C., and 43 ° C., for example. By plotting the results obtained under each condition in a graph of rotation speed (rpm) versus power (w), a graph as shown in FIG. 5 is obtained.
  • a correlation line at a temperature of 40 ° C. The vicinity is set as the power threshold A.
  • the rotation speed control unit 21 determines that the refrigeration cycle is in an overload operation state (that is, the outdoor air temperature is high). (YES in step S17). Then, the rotational speed control unit 21 operates the compressor 52 by reducing the set rotational speed of the compressor 52 from 5500 rpm (maximum rotational speed) to 4500 rpm (specific upper limit rotational speed) (step S18).
  • 4500 rpm set as the specific upper limit rotational speed is a pressure that does not exceed the refrigerant limit pressure of the outdoor heat exchanger.
  • step S23 when the power value calculated in step S23 shown in FIG. 4 is 1600 w, the power threshold A at the rotation speed of 4500 rpm is about 1800 w (see FIG. 5), so the calculated power value is lower than the power threshold A. Value (NO in step S25). This means that the outside air temperature has decreased to about 35 ° C., for example. Therefore, the rotation speed control unit 21 cancels the specific upper limit rotation speed of 4500 rpm (step S27). As a result, the compressor 52 is operated at a maximum rotational speed of 5500 rpm, for example (step S28).
  • the compressor 52 continues to operate, and at the next overload determination timing, for example, when the power value at the rotation speed of 5500 rpm exceeds 2100 w, the rotation speed control unit 21 indicates that the refrigeration cycle is in an overload state. Some determination is made (YES in step S25). Then, the operation is switched again to the operation at the specific upper limit rotation speed (step S26).
  • the power value of the compressor is estimated, and the refrigeration cycle is in an overload operation state based on the rotation speed of the compressor and the estimated power value.
  • the overload operation state is determined based on whether or not the estimated power value of the compressor exceeds a power threshold for the rotation speed at that time.
  • the overload operation state is present.
  • a compressor is operated by the specific upper limit rotation speed lower than the rotation speed based on preset temperature.
  • FIG. 6 shows an internal configuration of the air conditioner 100 according to the second embodiment.
  • FIG. 7 shows an overall configuration of the air conditioner 100 according to the second embodiment.
  • the air conditioner 100 according to the second embodiment is further provided with an outside air temperature sensor 106 in addition to the configuration of the air conditioner 1 of the first embodiment.
  • an outside air temperature sensor 106 in addition to the configuration of the air conditioner 1 of the first embodiment.
  • the same structure as the air conditioner 1 of 1st Embodiment is fundamentally applicable. Therefore, in the second embodiment, only parts different from the first embodiment will be described.
  • the outdoor temperature sensor 106 measures the temperature in the environment where the outdoor unit 50 is installed.
  • the outside air temperature sensor 106 is attached to the surface of the housing 51 of the outdoor unit 50, for example.
  • information on the outside air temperature can be acquired by the outside air temperature sensor 106.
  • the refrigerant pressure in the outdoor refrigeration cycle can be estimated. Since the refrigerant pressure in the refrigeration cycle can be estimated, the rotation speed control unit 21 can more accurately determine whether or not the compressor 52 can be operated within the specification range of the compressor 52. That is, in the air conditioner 100 of the second embodiment, the power threshold value for determining the overload state can be changed according to the information on the outside air temperature obtained from the outside air temperature sensor 106.
  • FIG. 6 the internal structure of the air conditioner 100 is shown.
  • FIG. 6 the structural member relevant to the operation control of the compressor 52 is shown.
  • the indoor unit 10 includes an indoor fan 13, an indoor temperature sensor 15, a storage unit 16, a display unit 17, a receiving unit 18, a control unit 20, and the like.
  • the control unit 20 includes a rotation speed control unit 21, a power calculation unit 22, and the like.
  • the structure similar to the air conditioner 1 of 1st Embodiment is applicable.
  • the outdoor unit 50 is provided with a compressor 52, an outdoor fan 56, a discharge temperature sensor 61, an ammeter 62, a voltmeter 63, an outdoor temperature sensor 106, and the like.
  • a compressor 52 an outdoor fan 56, a discharge temperature sensor 61, an ammeter 62, a voltmeter 63, an outdoor temperature sensor 106, and the like.
  • a discharge temperature sensor 61 an ammeter 62, a voltmeter 63, an outdoor temperature sensor 106, and the like.
  • an outdoor temperature sensor 106 and the like.
  • the same structure as the air conditioner 1 of 1st Embodiment is applicable.
  • FIG. 8 shows a flow of compressor control when the air conditioner 100 performs a cooling operation.
  • the user operates the remote controller or the like to give an instruction for starting the cooling operation to the air conditioner 100.
  • the receiving unit 18 of the air conditioner 100 receives this instruction, and transmits a signal instructing the control unit 20 to start the cooling operation.
  • the control unit 20 determines whether or not to start the operation of the compressor 52 (step S31 in FIG. 8). Specifically, the control unit 20 receives information on the room temperature measured by the room temperature sensor 15 (for example, the temperature of air sucked into the indoor unit 10 from the room). Then, the control unit 20 determines whether or not the compressor 52 should be operated based on the transmitted room temperature information. Here, even if the compressor 52 is operated at the minimum number of revolutions, if the room temperature is lower than the temperature set by the user, the control unit 20 determines that the compressor 52 cannot be operated (NO in step S31). ). And the control part 20 maintains the stop state, without operating the compressor 52 (step S32).
  • control unit 20 determines that the operation of the compressor 52 may be started based on the transmitted room temperature information (YES in step S31)
  • the control unit 20 operates the compressor 52. Let it begin. Then, the compressor 52 gradually increases the rotation speed.
  • the refrigerant cycle is configured in about 3 minutes after the compressor 52 starts operation, and the pressure of the piping in the cycle is stabilized. Therefore, a timer (not shown) in the air conditioner 100 measures the time after the compressor 52 starts operation and waits for a predetermined time (for example, 3 minutes) to elapse. After a predetermined time (for example, 3 minutes) has elapsed from the start of operation of the compressor 52, the control unit 20 measures the power value of the compressor 52 (step S33). The power value is measured by the power calculation unit 22 in the control unit 20. The power calculation unit 22 calculates the power value by the same method as in the first embodiment based on the current value and the voltage value measured by the ammeter 62 and the voltmeter 63. Information on the calculated power value is transmitted to the rotation speed control unit 21 in the control unit 20.
  • the rotation speed control unit 21 acquires information on the outside air temperature transmitted from the outside air temperature sensor 106 to the control unit 20 (step S34). Subsequently, the rotation speed control unit 21 acquires information on the current rotation speed of the compressor 52 (step S35). And the rotation speed control part 21 determines whether the transmitted electric power value is higher than the upper limit value (for example, electric power threshold value B (refer FIG. 9)) in the acquired external temperature and the acquired rotation speed. (Step S36).
  • the upper limit value for example, electric power threshold value B (refer FIG. 9)
  • the rotation speed control unit 21 determines that the refrigeration cycle is in an overload operation state (YES in step S36). And the rotation speed control part 21 operates the compressor 52 with the specific upper limit rotation speed in the said electric power value (step S37).
  • the specific upper limit rotational speed is a rotational speed set so that the pressure of the refrigerant staying in the piping of the refrigeration cycle does not exceed a reference value.
  • the rotation speed control unit 21 determines that the refrigeration cycle is not in an overload operation state (NO in step S36). In this case, the rotation speed control unit 21 operates the compressor 52 at the rotation speed (MAX rotation speed) necessary for cooling the room temperature to the set temperature desired by the user (step S38).
  • step S37 or S38 the process returns to step S31 again to determine whether or not the operation of the compressor 52 may be continued. Then, while the air conditioner 100 continues the cooling operation, the above-described series of processing is repeated.
  • the compressor 52 is controlled by the flow as described above.
  • the refrigerant pressure range is set in order to maintain the safety of the apparatus. By setting the pressure range, the refrigeration cycle is prevented from being overloaded. Further, the refrigerant is further compressed and the refrigerant pressure is increased by increasing the rotation speed of the compressor. Normally, during the cooling operation, the refrigerant reaches the upper limit pressure when the outside air temperature is 43 ° C. That is, when the outside air temperature exceeds 43 ° C., the refrigerant pressure may exceed the upper limit of the safe pressure range.
  • the power threshold A (see FIG. 5) is set based on the power value when the outside air temperature is about 40 ° C.
  • a rotational speed that is slightly lower than the rotational speed that is actually overloaded is set as the specific upper limit rotational speed.
  • an outside air temperature sensor 106 is provided. That is, in the air conditioner 100, in addition to the information on the power value and the rotation speed of the compressor 52, information on the outside air temperature can also be acquired. If the power value, the rotation speed, and the outside air temperature are known, the refrigerant pressure can be predicted. And the upper limit refrigerant
  • the power threshold B is set so that the refrigerant pressure in the outdoor space is equal to or lower than the upper limit refrigerant pressure.
  • FIG. 9 shows the power threshold B when the upper limit refrigerant pressure is specified as 4.5 mPa and the outside air temperature is 43 ° C.
  • the power threshold B varies depending on the outside air temperature. For example, when the outside air temperature is 40 ° C., the power threshold value increases. That is, the power threshold B shown in FIG. 9 is shifted upward. Therefore, it is desirable to set the power threshold B in units of temperature at a predetermined interval.
  • a different power threshold can be set according to each temperature. Therefore, it is possible to more accurately determine the overload state, and it is possible to increase the rotational speed of the compressor to a rotational speed closer to the limit.
  • the rotational speed is 5500 rpm
  • 2100 w is the upper limit of the power value
  • 2000 w is the upper limit of the power value.
  • the power threshold B shown in FIG. 9 is an example, and the present invention is not limited to this.
  • the power threshold value can be changed as appropriate in accordance with the type and specifications of the air conditioner.
  • the indoor temperature and the fan speed (number of rotations) of the indoor blower or the air volume conversion data are employed as additional information for performing overload determination.
  • FIG. 1 the whole structure of the air conditioner 200 which concerns on 3rd Embodiment is shown.
  • the air conditioner 200 has the same configuration as the air conditioner 1.
  • the indoor temperature information is acquired by the indoor temperature sensor 15 and transmitted to the control unit 20. Further, the control unit 20 controls the operation of the indoor blower 13. Moreover, the control part 20 can acquire the information of the fan speed of the indoor air blower 13, and air volume conversion data.
  • the power threshold A (see FIG. 5) and the power threshold B (see FIG. 9) shift upward or downward.
  • the air conditioner has been described as an example.
  • the present invention can also be realized with a cooling device. Therefore, as a fourth embodiment, an air conditioner will be described as an example.
  • FIG. 2 the whole structure of the air conditioner 300 which concerns on 4th Embodiment is shown.
  • the air conditioner 300 has substantially the same configuration as the air conditioner 1.
  • the air conditioner 300 performs only the cooling operation and does not perform the heating operation. That is, the air conditioner 300 has a configuration in which the refrigeration cycle is circulated only in the direction indicated by the solid arrow in FIG.
  • the structure similar to the air conditioner 1 is applicable.
  • Air conditioner 10 Indoor unit 20: Control unit 21: Rotational speed control unit 22: Electric power calculation unit 50: Outdoor unit 52: Compressor 100: Air conditioner 106: Outside air temperature sensor 200: Air conditioner 300: Cooling Machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided are a cooler and an air conditioner with which it is possible to appropriately prevent the device from reaching an overload operating state, even when an outside air temperature sensor and/or an outdoor heat exchanger temperature sensor is not provided. An air conditioner 1 is equipped with: a refrigeration cycle (cooling mechanism) having a compressor 52; a power calculation unit 22 that calculates power values for the compressor 52; and a rotational frequency control unit 21 that controls the rotational frequency of the compressor 52. The rotational frequency control unit 21 determines whether the refrigeration cycle is in an overload state on the basis of the power values calculated by the power calculation unit 22 and the rotational frequency of the compressor 52, and controls the rotational frequency of the compressor 52 on the basis of the determination result.

Description

冷房機、及び、空気調和機Air conditioner and air conditioner
 本発明は、ヒートポンプを用いて冷房運転を行う冷房機、及び、ヒートポンプを用いて冷房運転及び暖房運転を行う空気調和機に関する。 The present invention relates to a cooling device that performs a cooling operation using a heat pump, and an air conditioner that performs a cooling operation and a heating operation using a heat pump.
 室内の冷房を行う際には、気体の圧縮と膨張、及び、熱交換を組み合わせたヒートポンプ方式を利用した冷房機や空気調和機が用いられる。このヒートポンプ方式の冷房機及び空気調和機には、圧縮機、室内熱交換器、膨張弁、室外熱交換器が接続された冷凍サイクルが備えられている。そして、冷凍サイクル内の圧縮機のモータ回転数をインバータ制御することによって、冷房運転の強弱が調整される。 When performing indoor cooling, a cooling unit or an air conditioner using a heat pump system that combines gas compression and expansion and heat exchange is used. The heat pump type air conditioner and air conditioner are provided with a refrigeration cycle to which a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are connected. The strength of the cooling operation is adjusted by inverter control of the motor speed of the compressor in the refrigeration cycle.
 このような冷房機や空気調和機において、夏場などの外気温が高いときに冷房運転を行うと、装置が過負荷状態となることがある。過負荷状態での圧縮機の運転は、部品等の破損につながるおそれがある。そのため、従来の空気調和機では、例えば、外気温が40℃を超える場合には、過負荷状態であると判断して、圧縮機の最大周波数を下げて冷媒の圧力限界を超さないように制御している。また、圧縮機を保護するために、温度もしくは入力電流に反応する過負荷継電器を圧縮機の表面に付加し、圧縮機の表面温度あるいは入力電流が所定値を超えた場合に、圧縮機の運転を停止するなどの対策が取られているものもある。 In such air conditioners and air conditioners, if the air conditioner is operated when the outside air temperature is high, such as in summer, the device may be overloaded. Operation of the compressor in an overload state may lead to damage of parts and the like. Therefore, in a conventional air conditioner, for example, when the outside air temperature exceeds 40 ° C., it is determined that the engine is overloaded, and the maximum frequency of the compressor is lowered so as not to exceed the refrigerant pressure limit. I have control. In order to protect the compressor, an overload relay that reacts to temperature or input current is added to the surface of the compressor, and when the compressor surface temperature or input current exceeds a predetermined value, Some measures are taken such as stopping.
 また、特許文献1には、コンプレッサ吐出温度とコンプレッサ入力電流とを同時に監視し、どのような運転状態においてもコンプレッサの保護を行うためのコンプレッサの制御について開示されている。 Further, Patent Document 1 discloses a compressor control for simultaneously monitoring a compressor discharge temperature and a compressor input current and protecting the compressor in any operation state.
特開平7-158984号公報Japanese Patent Laid-Open No. 7-158984
 上述のように、従来の空気調和機においては、外気温度センサあるいは室外熱交換器の温度を測定する温度センサを用いて、これらの温度センサが所定の温度以上になった場合に装置が過負荷状態にあると判断し、圧縮機の制御を行っている。しかしながら、この方法では、室外に各種温度センサを搭載することによるコストの増大が問題となる。また、例えば、コストを優先して外気温度センサを搭載しない構成とすると、圧縮機の過負荷状態の厳密な制御が不可能となり、理想より大きな能力を有する室外熱交換器を搭載する必要が生じる。 As described above, in a conventional air conditioner, the temperature of an outdoor air temperature sensor or an outdoor heat exchanger is measured, and when these temperature sensors become a predetermined temperature or more, the apparatus is overloaded. The compressor is determined to be in a state. However, this method poses a problem of increased cost due to mounting various temperature sensors outside the room. Also, for example, if the configuration is such that the outside temperature sensor is not mounted in order to give priority to cost, it becomes impossible to strictly control the overload state of the compressor, and it becomes necessary to mount an outdoor heat exchanger having a capacity larger than ideal. .
 また、従来から、電流センサを用いて装置の過負荷推定を行う方式を採用した空気調和機は存在する。しかし、海外においては、電圧変動が大きい地域、電圧降下が大きい地域、及び低い電圧しか供給されない地域など(具体的には、アセアン地域など)のように電力事情が悪い地域もある。このような電力事情の悪い地域では、この方式での過負荷推定は、誤検知の原因となるため、採用できないのが現状である。 Also, conventionally, there are air conditioners that employ a method of estimating an overload of a device using a current sensor. However, in other countries, there are some regions where the power situation is poor such as regions where voltage fluctuation is large, regions where voltage drop is large, and regions where only a low voltage is supplied (specifically, ASEAN region). In such areas where power conditions are poor, overload estimation using this method is a cause of false detection, so it is currently impossible to employ it.
 そこで、本発明では、外気温度センサ及び室外熱交換器温度センサの少なくとも何れかを備えていない場合、およびどちらも備えていない場合にも、装置が過負荷運転状態となることを適切に抑えることのできる冷房機及び空気調和機を提供することを目的とする。 Therefore, in the present invention, it is possible to appropriately suppress the device from being overloaded even when at least one of the outdoor temperature sensor and the outdoor heat exchanger temperature sensor is not provided, and when neither is provided. It aims at providing the air conditioner and air conditioner which can do.
 本発明の第一局面にかかる冷房機は、圧縮機を有する冷却機構と、前記圧縮機の電力値を算出する電力算出部と、前記電力算出部によって得られた電力値と、前記圧縮機の回転数とに基づいて、前記冷却機構が過負荷状態であるか否かを判定し、その判定結果に基づいて前記圧縮機の回転数を制御する回転数制御部とを備えている。 The air conditioner according to the first aspect of the present invention includes a cooling mechanism having a compressor, a power calculation unit that calculates a power value of the compressor, a power value obtained by the power calculation unit, and the compressor And a rotation speed control unit that determines whether or not the cooling mechanism is in an overload state based on the rotation speed and controls the rotation speed of the compressor based on the determination result.
 前記冷房機において、前記回転数制御部は、前記電力算出部から得られた電力値が、前記圧縮機の回転数おける電力閾値を超えている場合に、過負荷状態であると判定してもよい。 In the air conditioner, the rotation speed control unit may determine that the power value obtained from the power calculation unit is in an overload state when a power threshold value in the rotation speed of the compressor is exceeded. Good.
 前記電力閾値は、異なる環境温度下、及び異なる回転数で前記圧縮機を過負荷状態で運転させた時の電力値を予め算出することによって設定されてもよい。またあるいは、本発明にかかる冷房機は、室外機と、該室外機が置かれている環境の温度を測定する外気温度センサとをさらに備え、前記回転数制御部は、前記外気温度センサによって測定された温度に基づいて前記電力閾値を設定してもよい。 The power threshold may be set by calculating in advance a power value when the compressor is operated in an overload state at different environmental temperatures and at different rotational speeds. Alternatively, the air conditioner according to the present invention further includes an outdoor unit and an outside air temperature sensor that measures the temperature of the environment in which the outdoor unit is placed, and the rotational speed control unit is measured by the outside air temperature sensor. The power threshold may be set based on the measured temperature.
 本発明の第二局面にかかる空気調和機は、上記の何れかの構成を有する冷房機を備えている空気調和機である。 An air conditioner according to the second aspect of the present invention is an air conditioner including a cooling device having any one of the above-described configurations.
 以上のように、本発明にかかる冷房機及び空気調和機は、圧縮機の回転と電力値とに基づいて、冷却機構が過負荷状態であるか否かの判定を行っている。したがって、外気温度センサ及び室外熱交換器温度センサの少なくとも何れかを備えていない場合にも、圧縮機が過負荷運転状態となることを適切に抑えることができる。 As described above, the air conditioner and the air conditioner according to the present invention determine whether or not the cooling mechanism is overloaded based on the rotation of the compressor and the power value. Therefore, even when at least one of the outdoor air temperature sensor and the outdoor heat exchanger temperature sensor is not provided, it is possible to appropriately suppress the compressor from being overloaded.
本発明の一実施の形態にかかる空気調和機の内部構成示すブロック図である。It is a block diagram which shows the internal structure of the air conditioner concerning one embodiment of this invention. 本発明の一実施の形態にかかる空気調和機の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the air conditioner concerning one embodiment of this invention. 図1に示す空気調和機における圧縮機の回転数制御の流れを示すフローチャートである。図3は、空気調和機が冷房運転を開始したときの圧縮機の制御の流れを示す。It is a flowchart which shows the flow of the rotation speed control of the compressor in the air conditioner shown in FIG. FIG. 3 shows a control flow of the compressor when the air conditioner starts cooling operation. 図1に示す空気調和機における圧縮機の回転数制御の流れを示すフローチャートである。図4は、冷房運転中の圧縮機の制御の流れを示す。It is a flowchart which shows the flow of the rotation speed control of the compressor in the air conditioner shown in FIG. FIG. 4 shows a control flow of the compressor during the cooling operation. 図1に示す空気調和機内の圧縮機における回転数と電力値との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the rotation speed and electric power value in the compressor in the air conditioner shown in FIG. 本発明の第2の実施形態にかかる空気調和機の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the air conditioner concerning the 2nd Embodiment of this invention. 本発明の第2の実施形態にかかる空気調和機の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the air conditioner concerning the 2nd Embodiment of this invention. 図6に示す空気調和機における圧縮機の回転数制御の流れを示すフローチャートである。It is a flowchart which shows the flow of the rotation speed control of the compressor in the air conditioner shown in FIG. 図6に示す空気調和機内の圧縮機における回転数と電力値との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the rotation speed and electric power value in the compressor in the air conditioner shown in FIG.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 <第1の実施形態>
 第1の実施形態では、本発明の空気調和機の一例として、ヒートポンプを用いた空気調和機を挙げて説明する。図1は、本実施の形態に係る空気調和機1の内部構成を示す。図2は、本実施形態に係る空気調和機1の全体構成を示す。なお、本第1の実施形態にかかる空気調和機1は、暖房運転と冷房運転の両方を行うことが可能であるが、特に冷房運転を行う場合には、本発明の冷房機の一例にも相当する。
 <空気調和機の全体構成>
<First Embodiment>
In the first embodiment, an air conditioner using a heat pump will be described as an example of the air conditioner of the present invention. FIG. 1 shows an internal configuration of an air conditioner 1 according to the present embodiment. FIG. 2 shows the overall configuration of the air conditioner 1 according to the present embodiment. Note that the air conditioner 1 according to the first embodiment can perform both the heating operation and the cooling operation. However, particularly when performing the cooling operation, the air conditioner 1 is also an example of the air conditioner of the present invention. Equivalent to.
<Overall configuration of air conditioner>
 先ず、本実施の形態にかかる空気調和機1の全体構成と基本的な動作の概要について、図2を用いて説明する。図2では、空気調和機1の冷房運転時の冷媒(熱媒体)の流れを実線の矢印で示し、空気調和機1の暖房運転時の冷媒(熱媒体)の流れを破線の矢印で示している。 First, the overall configuration and basic operation of the air conditioner 1 according to the present embodiment will be described with reference to FIG. In FIG. 2, the flow of the refrigerant (heat medium) during the cooling operation of the air conditioner 1 is indicated by a solid arrow, and the flow of the refrigerant (heat medium) during the heating operation of the air conditioner 1 is indicated by a broken arrow. Yes.
 図2に示すように、本実施の形態にかかる空気調和機1は、セパレート式の空気調和機であって、主に、室内機10と室外機50とから構成されている。なお、空気調和機1は、室内機10と室外機50とが冷媒配管57および58を介して接続されることによって構成されている。以下、室外機50、室内機10、冷媒配管57および58について詳述する。 As shown in FIG. 2, the air conditioner 1 according to the present embodiment is a separate air conditioner, and mainly includes an indoor unit 10 and an outdoor unit 50. The air conditioner 1 is configured by connecting the indoor unit 10 and the outdoor unit 50 via refrigerant pipes 57 and 58. Hereinafter, the outdoor unit 50, the indoor unit 10, and the refrigerant pipes 57 and 58 will be described in detail.
 (1)室外機
 室外機50は、主に、筐体51、圧縮機52、四方弁53、室外熱交換器54、膨張弁55、室外送風機56、冷媒配管57、冷媒配管58、二方弁59、および三方弁60から構成されている。なお、この室外機50は、屋外に設置されている。
(1) Outdoor unit The outdoor unit 50 mainly includes a casing 51, a compressor 52, a four-way valve 53, an outdoor heat exchanger 54, an expansion valve 55, an outdoor blower 56, a refrigerant pipe 57, a refrigerant pipe 58, and a two-way valve. 59, and a three-way valve 60. The outdoor unit 50 is installed outdoors.
 筐体51には、圧縮機52、四方弁53、室外熱交換器54、膨張弁55、室外送風機56、冷媒配管57、冷媒配管58、二方弁59、三方弁60、および吐出温度センサ61等が収納されている。 The casing 51 includes a compressor 52, a four-way valve 53, an outdoor heat exchanger 54, an expansion valve 55, an outdoor fan 56, a refrigerant pipe 57, a refrigerant pipe 58, a two-way valve 59, a three-way valve 60, and a discharge temperature sensor 61. Etc. are stored.
 圧縮機52は、吐出管52aおよび吸入管52bを有している。吐出管52aおよび吸入管52bは、それぞれ、四方弁53の異なる接続口に接続されている。圧縮機52は、運転時、吸入管52bから低圧の冷媒ガスを吸入し、その冷媒ガスを圧縮して高圧の冷媒ガスを生成した後、その高圧の冷媒ガスを吐出管52aから吐出する。なお、本実施の形態では、圧縮機52として、インバータ制御によってその能力を変更することが可能な圧縮機を採用している。また、吐出管52aには、圧縮機52から吐出される冷媒の温度を測定する吐出温度センサ61が配置されている。 The compressor 52 has a discharge pipe 52a and a suction pipe 52b. The discharge pipe 52a and the suction pipe 52b are connected to different connection ports of the four-way valve 53, respectively. During operation, the compressor 52 sucks low-pressure refrigerant gas from the suction pipe 52b, compresses the refrigerant gas to generate high-pressure refrigerant gas, and then discharges the high-pressure refrigerant gas from the discharge pipe 52a. In the present embodiment, a compressor whose capacity can be changed by inverter control is adopted as the compressor 52. A discharge temperature sensor 61 that measures the temperature of the refrigerant discharged from the compressor 52 is disposed in the discharge pipe 52a.
 四方弁53は、冷媒配管を介して圧縮機52の吐出管52aおよび吸入管52b、室外熱交換器54ならびに室内熱交換器12に接続されている。四方弁53は、運転時、空気調和機1の制御部(図2では図示せず)から送信される制御信号に従って、冷凍サイクルの経路を切り換える。すなわち、四方弁53は、冷房運転状態と暖房運転状態との間で経路の切り換えを行う。 The four-way valve 53 is connected to the discharge pipe 52a and the suction pipe 52b of the compressor 52, the outdoor heat exchanger 54, and the indoor heat exchanger 12 through a refrigerant pipe. The four-way valve 53 switches the path of the refrigeration cycle according to a control signal transmitted from a control unit (not shown in FIG. 2) of the air conditioner 1 during operation. That is, the four-way valve 53 switches the path between the cooling operation state and the heating operation state.
 具体的には、冷房運転状態では、四方弁53は、圧縮機52の吐出管52aを室外熱交換器54に連結させると共に圧縮機52の吸入管52bを室内熱交換器12に連結させる(図2の実線矢印参照)。一方、暖房運転状態では、四方弁53は、圧縮機52の吐出管52aを室内熱交換器12に連結させると共に圧縮機52の吸入管52bを室外熱交換器54に連結させる(図2の破線矢印参照)。 Specifically, in the cooling operation state, the four-way valve 53 connects the discharge pipe 52a of the compressor 52 to the outdoor heat exchanger 54 and connects the suction pipe 52b of the compressor 52 to the indoor heat exchanger 12 (FIG. (See solid line arrow 2). On the other hand, in the heating operation state, the four-way valve 53 connects the discharge pipe 52a of the compressor 52 to the indoor heat exchanger 12 and connects the suction pipe 52b of the compressor 52 to the outdoor heat exchanger 54 (broken line in FIG. 2). See arrow).
 室外熱交換器54は、左右両端で複数回折り返された伝熱管(図示せず)に多数の放熱フィン(図示せず)が取り付けられたものであって、冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能する。なお、熱交換器としてパラレルフロー型熱交換器やサーペン型熱交換器を用いてもよい。 The outdoor heat exchanger 54 has a large number of radiating fins (not shown) attached to a heat transfer tube (not shown) bent back and forth at both left and right ends, and functions as a condenser during cooling operation. It functions as an evaporator during heating operation. In addition, you may use a parallel flow type heat exchanger and a serpent type heat exchanger as a heat exchanger.
 膨張弁55は、後述するステッピングモータを介して開度制御が可能な電子膨張弁であって、一方が冷媒配管57を介して二方弁59に接続されると共に、他方が室外熱交換器54に接続されている。膨張弁55のステッピングモータは、空気調和機1の制御部(図示せず)から送信される制御信号に従って動作する。膨張弁55は、運転時において、凝縮器(暖房時は室内熱交換器12であり、冷房時は室外熱交換器54である)から流出する高温高圧の液冷媒を蒸発しやすい状態に減圧すると共に、蒸発器(暖房時は室外熱交換器54であり、冷房時は室内熱交換器12である)への冷媒供給量を調節する役目を担っている。 The expansion valve 55 is an electronic expansion valve whose opening degree can be controlled via a stepping motor, which will be described later, and one is connected to a two-way valve 59 via a refrigerant pipe 57 and the other is an outdoor heat exchanger 54. It is connected to the. The stepping motor of the expansion valve 55 operates according to a control signal transmitted from a control unit (not shown) of the air conditioner 1. The expansion valve 55 depressurizes the high-temperature and high-pressure liquid refrigerant flowing out from the condenser (the indoor heat exchanger 12 during heating and the outdoor heat exchanger 54 during cooling) during operation. At the same time, it plays the role of adjusting the amount of refrigerant supplied to the evaporator (the outdoor heat exchanger 54 during heating and the indoor heat exchanger 12 during cooling).
 なお、キャピラリーチューブを用いて、冷媒の量に関わらず一定の絞りとするサイクル構成としてもよい。この場合には、インバータにより圧縮機の回転数可変域を若干小さくして運転することでサイクルを安定させる事ができる(図示せず)。 In addition, it is good also as a cycle structure which uses a capillary tube and makes constant throttling irrespective of the quantity of a refrigerant | coolant. In this case, the cycle can be stabilized (not shown) by operating the compressor with a variable rotational speed range slightly reduced by the inverter.
 室外送風機56は、主に、プロペラファンおよびモータから構成されている。プロペラファンは、モータによって回転駆動され、屋外の外気を室外熱交換器54に供給する。モータは、空気調和機1の制御部(図示せず)から送信される制御信号に従って動作する。 The outdoor blower 56 is mainly composed of a propeller fan and a motor. The propeller fan is rotationally driven by a motor and supplies outdoor outdoor air to the outdoor heat exchanger 54. The motor operates according to a control signal transmitted from a control unit (not shown) of the air conditioner 1.
 二方弁59は、冷媒配管57に配設されている。なお、二方弁59は、室外機50から冷媒配管57が取り外されるときに閉じられ、冷媒が室外機50から外部に漏れることを防ぐ。 The two-way valve 59 is disposed in the refrigerant pipe 57. The two-way valve 59 is closed when the refrigerant pipe 57 is removed from the outdoor unit 50 to prevent the refrigerant from leaking from the outdoor unit 50 to the outside.
 三方弁60は、冷媒配管58に配設されている。なお、三方弁60は、室外機50から冷媒配管58が取り外されるときに閉じられ、冷媒が室外機50から外部に漏れることを防ぐ。また、室外機50から、あるいは室内機10を含めた冷凍サイクル(冷却機構)全体から、冷媒を回収する必要があるときは、三方弁60を通じて冷媒の回収が行われる。 The three-way valve 60 is disposed in the refrigerant pipe 58. The three-way valve 60 is closed when the refrigerant pipe 58 is removed from the outdoor unit 50 to prevent the refrigerant from leaking from the outdoor unit 50 to the outside. Further, when it is necessary to recover the refrigerant from the outdoor unit 50 or the entire refrigeration cycle (cooling mechanism) including the indoor unit 10, the refrigerant is recovered through the three-way valve 60.
 (2)室内機
 室内機10は、主に、筐体11、室内熱交換器12、および室内送風機13から構成されている。
(2) Indoor unit The indoor unit 10 is mainly comprised from the housing | casing 11, the indoor heat exchanger 12, and the indoor air blower 13. As shown in FIG.
 筐体11には、室内熱交換器12、室内送風機13、室内熱交換器温度センサ14、室内温度センサ15、および制御部20(図1参照)等が収納されている。なお、室内熱交換器温度センサ14は必ずしも搭載されていなくてもよい。この場合は、インバータによって圧縮機の回転数を制御することで、圧縮機を正常に運転させることができる。 The housing 11 houses an indoor heat exchanger 12, an indoor blower 13, an indoor heat exchanger temperature sensor 14, an indoor temperature sensor 15, a control unit 20 (see FIG. 1), and the like. Note that the indoor heat exchanger temperature sensor 14 does not necessarily have to be mounted. In this case, the compressor can be operated normally by controlling the rotation speed of the compressor with the inverter.
 室内熱交換器12は、図2に示すように、3個の熱交換器を、室内送風機13を覆う屋根のように組み合わせたものである。なお、各熱交換器は、左右両端で複数回折り返された伝熱管(図示せず)に多数の放熱フィン(図示せず)が取り付けられたものであって、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。室内熱交換器温度センサ14は、室内熱交換器12の温度を測定する。室内熱交換器12の配管の中間部付近に配置される。 The indoor heat exchanger 12 is a combination of three heat exchangers like a roof covering the indoor blower 13 as shown in FIG. Each heat exchanger has a large number of heat radiating fins (not shown) attached to a heat transfer tube (not shown) bent back and forth at both left and right ends, and functions as a condenser during heating operation. During cooling operation, it functions as an evaporator. The indoor heat exchanger temperature sensor 14 measures the temperature of the indoor heat exchanger 12. It arrange | positions in the intermediate part vicinity of the piping of the indoor heat exchanger 12. FIG.
 室内送風機13は、主に、クロスフローファンおよびモータから構成されている。クロスフローファンは、モータによって回転駆動され、室内の空気を筐体11に吸い込んで室内熱交換器12に供給すると共に、室内熱交換器12で熱交換された空気を室内に送出する。 The indoor blower 13 is mainly composed of a cross flow fan and a motor. The cross flow fan is rotationally driven by a motor, sucks indoor air into the housing 11 and supplies the air to the indoor heat exchanger 12, and sends out the air exchanged by the indoor heat exchanger 12 into the room.
 室内温度センサ15は、室内機10が設置されている室内の温度を測定する。室内温度センサ15は、例えば、筐体11の外気吸込み口付近に配置されている。 The indoor temperature sensor 15 measures the temperature of the room where the indoor unit 10 is installed. The indoor temperature sensor 15 is disposed, for example, in the vicinity of the outside air inlet of the housing 11.
 なお、室外機50の圧縮機52、四方弁53、室外熱交換器54および膨張弁55、ならびに室内機10の室内熱交換器12は、冷媒配管57,58によって順次接続され、冷媒サイクル(冷凍サイクル)を構成している。 The compressor 52, the four-way valve 53, the outdoor heat exchanger 54 and the expansion valve 55 of the outdoor unit 50, and the indoor heat exchanger 12 of the indoor unit 10 are sequentially connected by refrigerant pipes 57 and 58, and a refrigerant cycle (refrigeration cycle). Cycle).
 (3)冷媒配管
 冷媒配管57は、冷媒配管58よりも細い管であって、運転時に液冷媒が流れる。冷媒配管58は、冷媒配管57よりも太い管であって、運転時にガス冷媒が流れる。なお、熱媒体(冷媒)としては、例えば、HFC系のR410AやR32等が用いられる。
(3) Refrigerant piping The refrigerant piping 57 is thinner than the refrigerant piping 58, and the liquid refrigerant flows during operation. The refrigerant pipe 58 is thicker than the refrigerant pipe 57, and a gas refrigerant flows during operation. As the heat medium (refrigerant), for example, HFC type R410A or R32 is used.
 <空気調和機の基本的な動作>
 以下、本実施の形態にかかる空気調和機1の冷房運転、および暖房運転について詳述する。
<Basic operation of the air conditioner>
Hereinafter, the cooling operation and the heating operation of the air conditioner 1 according to the present embodiment will be described in detail.
 (1)冷房運転
 冷房運転では、四方弁53が図2の実線で示される状態、すなわち、圧縮機52の吐出管52aが室外熱交換器54に接続され、かつ、圧縮機52の吸入管52bが室内熱交換器12に接続された状態となる。また、このとき、二方弁59および三方弁60は開状態とされている。この状態で、圧縮機52が起動されると、ガス冷媒が、圧縮機52に吸入され、圧縮された後、四方弁53を経由して室外熱交換器54に送られ、室外熱交換器54において冷却され、液冷媒となる。その後、この液冷媒は、膨張弁55に送られ、減圧されて気液二相状態となる。気液二相状態の冷媒は、二方弁59を経由して室内熱交換器12に供給され、室内空気を冷却するとともに蒸発されてガス冷媒となる。最後に、そのガス冷媒は、三方弁60および四方弁53を経由して、再び、圧縮機52に吸入される。
(1) Cooling operation In the cooling operation, the four-way valve 53 is in the state indicated by the solid line in FIG. 2, that is, the discharge pipe 52 a of the compressor 52 is connected to the outdoor heat exchanger 54 and the suction pipe 52 b of the compressor 52. Is connected to the indoor heat exchanger 12. At this time, the two-way valve 59 and the three-way valve 60 are opened. In this state, when the compressor 52 is started, the gas refrigerant is sucked into the compressor 52 and compressed, and then sent to the outdoor heat exchanger 54 via the four-way valve 53, and the outdoor heat exchanger 54. Is cooled to become a liquid refrigerant. Thereafter, this liquid refrigerant is sent to the expansion valve 55, where it is depressurized and enters a gas-liquid two-phase state. The gas-liquid two-phase refrigerant is supplied to the indoor heat exchanger 12 via the two-way valve 59, cools the indoor air and evaporates to become a gas refrigerant. Finally, the gas refrigerant is sucked into the compressor 52 again via the three-way valve 60 and the four-way valve 53.
 (2)暖房運転
 暖房運転では、四方弁53が図2の破線で示される状態、すなわち、圧縮機52の吐出管52aが室内熱交換器12に接続され、かつ、圧縮機52の吸入管52bが室外熱交換器54に接続された状態となる。また、このとき、二方弁59および三方弁60は開状態とされている。この状態で、圧縮機52が起動されると、ガス冷媒が、圧縮機52に吸入され、圧縮された後、四方弁53および三方弁60を経由して室内熱交換器12に供給され、室内空気を加熱すると共に凝縮されて液冷媒となる。その後、この液冷媒は、二方弁59を経由して膨張弁55に送られ、減圧されて気液二相状態となる。気液二相状態の冷媒は、室外熱交換器54に送られて、室外熱交換器54において蒸発させられてガス冷媒となる。最後に、そのガス冷媒は、四方弁53を経由して、再び、圧縮機52に吸入される。
(2) Heating operation In the heating operation, the four-way valve 53 is in the state indicated by the broken line in FIG. 2, that is, the discharge pipe 52a of the compressor 52 is connected to the indoor heat exchanger 12, and the suction pipe 52b of the compressor 52 Is connected to the outdoor heat exchanger 54. At this time, the two-way valve 59 and the three-way valve 60 are opened. When the compressor 52 is started in this state, the gas refrigerant is sucked into the compressor 52 and compressed, and then supplied to the indoor heat exchanger 12 via the four-way valve 53 and the three-way valve 60, Air is heated and condensed to become a liquid refrigerant. Thereafter, the liquid refrigerant is sent to the expansion valve 55 via the two-way valve 59 and is decompressed to be in a gas-liquid two-phase state. The gas-liquid two-phase refrigerant is sent to the outdoor heat exchanger 54 and evaporated in the outdoor heat exchanger 54 to become a gas refrigerant. Finally, the gas refrigerant is sucked into the compressor 52 again via the four-way valve 53.
 <圧縮機の運転制御について>
 続いて、本実施形態に係る空気調和機1において、圧縮機52の過負荷状態での運転を抑制するための制御の方法について、図1、図3、及び図4を参照しながら説明する。図1には、空気調和機1の内部構成を示す。図1では、圧縮機52の運転制御に関連する構成部材を示している。
<About compressor operation control>
Subsequently, a control method for suppressing the operation of the compressor 52 in an overload state in the air conditioner 1 according to the present embodiment will be described with reference to FIGS. 1, 3, and 4. In FIG. 1, the internal structure of the air conditioner 1 is shown. In FIG. 1, the structural member relevant to the operation control of the compressor 52 is shown.
 図1に示すように、室内機10内には、室内送風機13、室内温度センサ15、記憶部16、表示部17、受信部18、および制御部20などが備えられている。 As shown in FIG. 1, the indoor unit 10 includes an indoor fan 13, an indoor temperature sensor 15, a storage unit 16, a display unit 17, a receiving unit 18, a control unit 20, and the like.
 記憶部16は、ROM(read only memory)及びRAM(Random Access Memory)を含む。記憶部16は、空気調和機1の動作プログラムや設定データを記憶するとともに制御部20による演算結果を一時記憶する。 The storage unit 16 includes a ROM (read only memory) and a RAM (Random access memory). The storage unit 16 stores an operation program and setting data of the air conditioner 1 and temporarily stores a calculation result by the control unit 20.
 表示部17は、液晶表示パネルおよびLEDライトなどを含む。表示部17は制御部20からの信号に基づいて空気調和機1の動作状況や警報等を表示する。受信部18はリモートコントローラ(図示せず)を操作した際に送信される赤外線の信号を受信する。 Display unit 17 includes a liquid crystal display panel, an LED light, and the like. The display unit 17 displays the operation status, alarms, and the like of the air conditioner 1 based on the signal from the control unit 20. The receiving unit 18 receives an infrared signal transmitted when a remote controller (not shown) is operated.
 制御部20は、空気調和機1内の各構成部品と接続され、これらの制御を行う。制御部20内には、回転数制御部21、および電力算出部22などが備えられている。回転数制御部21は、制御部20へ送信される各信号に基づいて、圧縮機52の回転数の制御を行う。 The control unit 20 is connected to each component in the air conditioner 1 and controls them. The control unit 20 includes a rotation speed control unit 21 and a power calculation unit 22. The rotation speed control unit 21 controls the rotation speed of the compressor 52 based on each signal transmitted to the control unit 20.
 電力算出部22では、電流計62及び電圧計63で計測された圧縮機52の電流値及び電圧値に基づいて、圧縮機52の電力値を算出する。電力値は、例えば、電流計62で計測された電流値と、電圧計63で計測された電圧値と、圧縮機52の回転数に対する力率に基づく係数をかけることによって算出することができる。力率は、予め測定される。このように力率を用いて電力値を算出することで、CTレスの電力監視を行うことができる。また、特に圧縮機がより高速で回転している場合に、正確な電力を測定することができる。なお、電力値の算出(推定)は、これに限定はされず、従来公知の他の方法を用いて行ってもよい。 The power calculation unit 22 calculates the power value of the compressor 52 based on the current value and voltage value of the compressor 52 measured by the ammeter 62 and the voltmeter 63. The power value can be calculated by, for example, multiplying the current value measured by the ammeter 62, the voltage value measured by the voltmeter 63, and a coefficient based on the power factor with respect to the rotation speed of the compressor 52. The power factor is measured in advance. Thus, CT-less power monitoring can be performed by calculating the power value using the power factor. Also, accurate power can be measured, especially when the compressor is rotating at a higher speed. The calculation (estimation) of the power value is not limited to this, and may be performed using another conventionally known method.
 また、室外機50内には、圧縮機52、室外送風機56、吐出温度センサ61、電流計62、電圧計63、およびタイマー64などが備えられている。 Also, the outdoor unit 50 is provided with a compressor 52, an outdoor fan 56, a discharge temperature sensor 61, an ammeter 62, a voltmeter 63, a timer 64, and the like.
 電流計62は、圧縮機52に流れる電流を測定する。電流計62における電流測定は、例えば、シャント抵抗を用いて行うことができる。電圧計63は、圧縮機52にかかる電圧を測定する。電圧計63は、例えば、分圧抵抗を通して圧縮機52の電圧を測定することができる。タイマー64は、圧縮機52の動作時間を計測する。なお、タイマー64の代わりに、室内機10側に設置されているタイマー(図示せず)を用いて圧縮機52の動作時間を測定してもよい。 The ammeter 62 measures the current flowing through the compressor 52. The current measurement in the ammeter 62 can be performed using, for example, a shunt resistor. The voltmeter 63 measures the voltage applied to the compressor 52. The voltmeter 63 can measure the voltage of the compressor 52 through, for example, a voltage dividing resistor. The timer 64 measures the operation time of the compressor 52. Note that the operation time of the compressor 52 may be measured using a timer (not shown) installed on the indoor unit 10 side instead of the timer 64.
 図3には、空気調和機1が冷房運転を開始したときの圧縮機制御の流れを示す。まず、使用者がリモートコントローラなどを操作して冷房運転開始時の指示を空気調和機1へ与える。空気調和機1の受信部18は、この指示を受け取り、制御部20に対して冷房運転の開始を指示する信号を送信する。 FIG. 3 shows the flow of compressor control when the air conditioner 1 starts the cooling operation. First, the user operates the remote controller or the like to give an instruction to start the cooling operation to the air conditioner 1. The receiving unit 18 of the air conditioner 1 receives this instruction and transmits a signal instructing the control unit 20 to start the cooling operation.
 制御部20は、冷房運転開始の指示信号を受信すると、圧縮機52の運転を開始するか否かを判断する(図3のステップS11)。具体的には、制御部20は、室内温度センサ15が測定した室内温度(例えば、室内から室内機10へ吸い込まれた空気の温度)の情報を受信する。そして、制御部20は、送信された室内温度情報に基づいて圧縮機52を運転すべきか否かの判断を行う。ここで、制御部20は、圧縮機52を最低回転数で運転しても、室温が使用者の設定した温度よりも下回る場合には、圧縮機52の運転不可と判断する(ステップS11でNO)。そして、制御部20は、圧縮機52を運転させることなく停止状態に維持する(ステップS12)。 When the control unit 20 receives the cooling operation start instruction signal, the control unit 20 determines whether or not to start the operation of the compressor 52 (step S11 in FIG. 3). Specifically, the control unit 20 receives information on the room temperature measured by the room temperature sensor 15 (for example, the temperature of air sucked into the indoor unit 10 from the room). Then, the control unit 20 determines whether or not the compressor 52 should be operated based on the transmitted room temperature information. Here, even when the compressor 52 is operated at the minimum number of revolutions, if the room temperature is lower than the temperature set by the user, the control unit 20 determines that the compressor 52 cannot be operated (NO in step S11). ). And the control part 20 maintains the stop state, without operating the compressor 52 (step S12).
 一方、制御部20が、送信された室内温度情報に基づいて圧縮機52の運転を開始させてよいと判断した場合(ステップS11でYES)には、制御部20は、圧縮機52の運転を開始させる(ステップS13)。そして、圧縮機52は、回転数を徐々に上げる。 On the other hand, when the control unit 20 determines that the operation of the compressor 52 may be started based on the transmitted room temperature information (YES in step S11), the control unit 20 operates the compressor 52. Start (step S13). Then, the compressor 52 gradually increases the rotation speed.
 圧縮機52が運転を開始して約3分間で冷媒サイクルが構成され、サイクル内の配管の圧力が安定する。そのため、タイマー64は、圧縮機52が運転を開始してからの時間を計測し、所定時間(例えば、3分)経過するのを待つ(ステップS14)。圧縮機52が運転を開始してから所定時間(例えば、3分)経過した後(ステップS14でYES)、制御部20は、圧縮機52の回転数を所定値に固定する(ステップS15)。ここでの所定回転数は、過負荷運転時に制限される圧縮機52の回転数(回転数の閾値)よりも低い値に設定されている。 The refrigerant cycle is configured in about 3 minutes after the compressor 52 starts operation, and the pressure of the piping in the cycle is stabilized. Therefore, the timer 64 measures the time after the compressor 52 starts operation, and waits for a predetermined time (for example, 3 minutes) to elapse (step S14). After a predetermined time (for example, 3 minutes) has elapsed since the compressor 52 started operation (YES in step S14), the control unit 20 fixes the rotational speed of the compressor 52 to a predetermined value (step S15). Here, the predetermined rotational speed is set to a value lower than the rotational speed (the rotational speed threshold value) of the compressor 52 that is restricted during overload operation.
 なお、ステップS15では、室外送風機56も所定のファン速度(空気調和機1側で予め設定された初期ファン回転数)に維持される。また、室内送風機13も所定のファン速度(空気調和機1側で予め設定された初期ファン回転数)に維持される。但し、室外送風機56及び室内送風機13の運転開始時のファン速度はこれに限定はされず、使用者が指定した設定温度に基づくファン速度で運転させてもよい。 In step S15, the outdoor blower 56 is also maintained at a predetermined fan speed (initial fan rotation speed preset on the air conditioner 1 side). Further, the indoor blower 13 is also maintained at a predetermined fan speed (initial fan rotation speed preset on the air conditioner 1 side). However, the fan speed at the start of the operation of the outdoor blower 56 and the indoor blower 13 is not limited to this, and the fan speed based on the set temperature specified by the user may be used.
 圧縮機52の回転数を所定値に固定させて約30秒経過後に、圧縮機52の電力値の測定を行う(ステップS16)。電力値の測定は、制御部20内の電力算出部22で行われる。電力算出部22は、電流計62及び電圧計63で測定された電流値及び電圧値をもとに、上述した方法により電力値を算出する。 The rotation speed of the compressor 52 is fixed to a predetermined value, and after about 30 seconds have elapsed, the power value of the compressor 52 is measured (step S16). The power value is measured by the power calculation unit 22 in the control unit 20. The power calculation unit 22 calculates the power value by the method described above based on the current value and the voltage value measured by the ammeter 62 and the voltmeter 63.
 算出された電力値の情報は、制御部20内の回転数制御部21へ送信される。回転数制御部21では、送信された電力値が、所定回転数における電力の上限値(電力閾値)よりも高いか否かを判定する(ステップS17)。そして、圧縮機52の電力値が電力閾値よりも高い場合には、回転数制御部21は、冷凍サイクルが過負荷運転状態である(すなわち、室外気温が高い)と判断する(ステップS17でYES)。そして、回転数制御部21は、当該電力値における特定上限回転数で圧縮機52を運転させる(ステップS18)。特定上限回転数とは、冷凍サイクルの配管内に滞留する冷媒の圧力が基準値を超えないように設定された回転数である。 Information on the calculated power value is transmitted to the rotation speed control unit 21 in the control unit 20. The rotation speed control unit 21 determines whether or not the transmitted power value is higher than the upper limit value (power threshold value) of power at the predetermined rotation speed (step S17). And when the electric power value of the compressor 52 is higher than an electric power threshold value, the rotation speed control part 21 judges that the refrigerating cycle is an overload driving | running state (namely, outdoor outdoor temperature is high) (it is YES at step S17). ). And the rotation speed control part 21 operates the compressor 52 with the specific upper limit rotation speed in the said electric power value (step S18). The specific upper limit rotational speed is a rotational speed set so that the pressure of the refrigerant staying in the piping of the refrigeration cycle does not exceed a reference value.
 ここで、所定回転数における電力の上限値(電力閾値)は、異なる環境温度下、及び異なる回転数において圧縮機52を過負荷運転させた時の電力値を予め算出することによって設定される。図5には、圧縮機の所定回転数に対する電力閾値の一例を示す。図5では、電力閾値Aを破線で示している。この電力閾値Aの設定方法については、後述する。 Here, the upper limit value (power threshold value) of power at a predetermined rotational speed is set by calculating in advance the power value when the compressor 52 is overloaded at different environmental temperatures and at different rotational speeds. FIG. 5 shows an example of a power threshold for a predetermined number of rotations of the compressor. In FIG. 5, the power threshold A is indicated by a broken line. A method for setting the power threshold A will be described later.
 一方、ステップS17において、圧縮機52の電力値が電力閾値以下である場合には、回転数制御部21は、冷凍サイクルが過負荷運転状態ではないと判断する(ステップS17でNO)。この場合、回転数制御部21は、特定上限回転数の設定を解除する(ステップS19)。そして、回転数制御部21は、室内温度を使用者が所望した設定温度まで冷却するために必要な回転数(最高回転数)で、圧縮機52を運転させる(ステップS20)。 On the other hand, when the power value of the compressor 52 is equal to or less than the power threshold value in step S17, the rotation speed control unit 21 determines that the refrigeration cycle is not in an overload operation state (NO in step S17). In this case, the rotation speed control unit 21 cancels the setting of the specific upper limit rotation speed (step S19). Then, the rotation speed control unit 21 operates the compressor 52 at the rotation speed (maximum rotation speed) necessary for cooling the room temperature to the set temperature desired by the user (step S20).
 空気調和機1が冷房運転を開始する際には、以上のような流れで圧縮機52の制御が行われる。 When the air conditioner 1 starts the cooling operation, the compressor 52 is controlled according to the above flow.
 続いて、空気調和機1が冷房運転を行っている最中の圧縮機52の回転数制御について、図4を参照しながら説明する。図4には、冷房運転中に圧縮機52の運転状態の判定(過負荷運転か否かの判定)を行う処理の流れを示す。 Subsequently, the rotational speed control of the compressor 52 during the air-conditioner 1 is performing the cooling operation will be described with reference to FIG. FIG. 4 shows a flow of processing for determining the operation state of the compressor 52 (determination of whether or not it is an overload operation) during the cooling operation.
 冷房運転中の冷凍サイクルの過負荷判定は、例えば、圧縮機の回転数が変更されるタイミング、あるいは、所定の時間間隔で実行すればよい。またあるいは、冷凍サイクルの負荷状態を常時監視しながら運転を行ってもよい。 What is necessary is just to perform the overload determination of the refrigerating cycle during air_conditionaing | cooling operation at the timing when the rotation speed of a compressor is changed, or a predetermined time interval, for example. Alternatively, the operation may be performed while constantly monitoring the load state of the refrigeration cycle.
 過負荷判定が開始されると、先ず、制御部20は、圧縮機52の運転を継続して良いか否かを判断する(ステップS21)。具体的には、制御部20は、室内温度センサ15が測定した室内温度(例えば、室内から室内機10へ吸い込まれた空気の温度)の情報を受信する。そして、制御部20は、送信された室内温度情報に基づいて圧縮機52の運転を継続すべきか否かの判断を行う。ここで、制御部20は、圧縮機52を最低回転数で運転しても、室温が使用者の設定した温度よりも下回る場合には、圧縮機52の運転不可と判断する(ステップS21でNO)。そして、制御部20は、圧縮機52の運転を停止する(ステップS22)。 When the overload determination is started, first, the control unit 20 determines whether or not the operation of the compressor 52 may be continued (step S21). Specifically, the control unit 20 receives information on the room temperature measured by the room temperature sensor 15 (for example, the temperature of air sucked into the indoor unit 10 from the room). And the control part 20 judges whether the driving | operation of the compressor 52 should be continued based on the transmitted indoor temperature information. Here, even if the compressor 52 is operated at the minimum number of revolutions, if the room temperature is lower than the temperature set by the user, the control unit 20 determines that the compressor 52 cannot be operated (NO in step S21). ). And the control part 20 stops the driving | operation of the compressor 52 (step S22).
 一方、制御部20が、送信された室内温度情報に基づいて圧縮機52の運転を継続させてよいと判断した場合(ステップS21でYES)には、圧縮機52の電力値が算出される(ステップS23)。上述したステップS16と同様に、電力値の算出は電力算出部22で行われる。算出された電力値の情報は、回転数制御部21へ送信される。 On the other hand, when the control unit 20 determines that the operation of the compressor 52 may be continued based on the transmitted room temperature information (YES in step S21), the power value of the compressor 52 is calculated ( Step S23). Similar to step S <b> 16 described above, the power value is calculated by the power calculation unit 22. Information on the calculated power value is transmitted to the rotation speed control unit 21.
 続いて、回転数制御部は21、現在の圧縮機52の回転数の情報を取得する(ステップS24)。そして、回転数制御部21は、送信された電力値が、取得した回転数における電力の上限値(電力閾値)よりも高いか否かを判定する(ステップS25)。そして、圧縮機52の電力値が電力閾値よりも高い場合には、回転数制御部21は、冷凍サイクルが過負荷運転状態である(すなわち、室外気温が高い)と判断する(ステップS25でYES)。そして、回転数制御部21は、当該電力値における特定上限回転数で圧縮機52を運転させる(ステップS26)。特定上限回転数とは、冷凍サイクルの配管内に滞留する冷媒の圧力が基準値を超えないように設定された回転数である。 Subsequently, the rotation speed control unit 21 acquires information on the rotation speed of the current compressor 52 (step S24). Then, the rotation speed control unit 21 determines whether or not the transmitted power value is higher than the upper limit value (power threshold value) of the power at the acquired rotation speed (step S25). And when the electric power value of the compressor 52 is higher than an electric power threshold value, the rotation speed control part 21 judges that the refrigerating cycle is an overload driving | running state (namely, outdoor outdoor temperature is high) (it is YES at step S25). ). And the rotation speed control part 21 operates the compressor 52 with the specific upper limit rotation speed in the said electric power value (step S26). The specific upper limit rotational speed is a rotational speed set so that the pressure of the refrigerant staying in the piping of the refrigeration cycle does not exceed a reference value.
 一方、ステップS25において、圧縮機52の電力値が電力閾値以下である場合には、回転数制御部21は、冷凍サイクルが過負荷運転状態はないと判断する(ステップS25でNO)。なお、圧縮機52の電力値が電力閾値以下に低下することは、外気温が下がったことを意味する。この場合、回転数制御部21は、特定上限回転数の設定を解除する(ステップS27)。そして、回転数制御部21は、室内温度を使用者が所望した設定温度まで冷却するために必要な回転数(MAX回転数)で、圧縮機52を運転させる(ステップS28)。 On the other hand, when the power value of the compressor 52 is equal to or less than the power threshold value in step S25, the rotation speed control unit 21 determines that the refrigeration cycle is not in an overload operation state (NO in step S25). Note that a reduction in the power value of the compressor 52 below the power threshold means that the outside air temperature has decreased. In this case, the rotation speed control unit 21 cancels the setting of the specific upper limit rotation speed (step S27). Then, the rotation speed control unit 21 operates the compressor 52 at the rotation speed (MAX rotation speed) necessary for cooling the room temperature to the set temperature desired by the user (step S28).
 以上のような流れで処理を行うことにより、冷房運転中の圧縮機52が過負荷運転状態とならないような回転数制御が行われる。なお、上記の一連の処理が終了した後に、再び圧縮機52の運転を継続して良いか否かの判断を行うという流れで、冷房運転継続中は図4の処理を繰り返し行ってもよい。すなわち、ステップS26又はステップS28の後に、ステップS21に戻るというフローで処理を行ってもよい。 By performing the processing in the flow as described above, the rotational speed control is performed so that the compressor 52 during the cooling operation is not overloaded. It should be noted that after the above series of processing is completed, it is determined whether or not the operation of the compressor 52 can be continued again, and the processing of FIG. 4 may be repeated while the cooling operation is continued. That is, the processing may be performed in a flow of returning to step S21 after step S26 or step S28.
 続いて、本実施形態の空気調和機1における電力閾値の設定方法について、図5を参照しながら説明する。先ず、電力閾値を設定するための基本となる概念について説明する。 Subsequently, a method for setting the power threshold in the air conditioner 1 of the present embodiment will be described with reference to FIG. First, the basic concept for setting the power threshold will be described.
 同じ圧縮機を搭載している同じ機種の冷凍サイクルの場合、同じ回転数で比較すれば、外気温が高いほど圧縮機の消費電力も高くなる。そこで、予め実験を行い、異なる複数の外気温環境下で圧縮機を所定回転数で運転させたときの電力を測定し、図5に示すような、回転数(rpm)と電力(w)との相関グラフを作成する。そして、得られたグラフから冷凍サイクルが過負荷状態となる外気温を推定し、回転数に対する電力値の基準を電力閾値として設定する。 In the case of refrigeration cycles of the same model equipped with the same compressor, the power consumption of the compressor increases as the outside air temperature increases when compared at the same rotation speed. Therefore, an experiment is performed in advance to measure the electric power when the compressor is operated at a predetermined rotational speed under a plurality of different outside air temperature environments, and the rotational speed (rpm) and electric power (w) as shown in FIG. Create a correlation graph. Then, an outside air temperature at which the refrigeration cycle is overloaded is estimated from the obtained graph, and a power value reference for the rotation speed is set as a power threshold value.
 以上のようにして得られたグラフを参照すると、圧縮機の回転数と電力値の情報から、そのときの外気温を予測し、かつ冷凍サイクルが過負荷状態であるか否かを予測することができる。すなわち、冷房運転中に圧縮機の回転数と電力値の情報を取得し、これらの情報を図5のグラフにプロットすることで、空気調和機1の設置されている環境下の外気温を推定することができる。また、プロットされた点が、電力閾値Aよりも上に位置するか否かによって、圧縮機の運転状態が過負荷状態であるか否かを判定することができる。 Referring to the graph obtained as described above, predicting the outside air temperature at that time from the information on the rotation speed of the compressor and the power value, and predicting whether or not the refrigeration cycle is overloaded. Can do. That is, during the cooling operation, information on the rotational speed and power value of the compressor is acquired, and by plotting these information in the graph of FIG. 5, the outside air temperature in the environment where the air conditioner 1 is installed is estimated. can do. Further, whether or not the operating state of the compressor is an overload state can be determined based on whether or not the plotted point is located above the power threshold A.
 例えば、図5に示すグラフの例では、圧縮機52を、4000rpm、4500rpm、5000rpm、及び5500rpmの各回転数で運転させ、それぞれの回転数における電力値を測定する。さらに、この各回転数での電力値の測定を、例えば、35℃、40℃、及び43℃という異なる外気温(環境温度)下で行う。各条件において得られた結果を、回転数(rpm)対電力(w)のグラフにプロットすることで、図5に示すようなグラフが得られる。 For example, in the example of the graph shown in FIG. 5, the compressor 52 is operated at each rotation speed of 4000 rpm, 4500 rpm, 5000 rpm, and 5500 rpm, and the power value at each rotation speed is measured. Furthermore, the measurement of the power value at each rotational speed is performed under different outside air temperatures (environmental temperatures) of 35 ° C., 40 ° C., and 43 ° C., for example. By plotting the results obtained under each condition in a graph of rotation speed (rpm) versus power (w), a graph as shown in FIG. 5 is obtained.
 そして、例えば、外気温40℃を超えた環境下で圧縮機を通常運転させた場合に過負荷状態と判定する制御を行う場合には、図5に示すように、温度40℃での相関線付近を電力閾値Aとして設定する。 For example, in the case where control is performed to determine that the compressor is overloaded when the compressor is normally operated in an environment where the outside air temperature exceeds 40 ° C., as shown in FIG. 5, a correlation line at a temperature of 40 ° C. The vicinity is set as the power threshold A.
 このような電力閾値Aを設定した場合、図3に示す回転数制御において、運転開始時に固定される所定回転数が4500rpmのときに、電力算出部22において算出される電力値が1800w以上であったとする。この場合、算出された電力値は、図5に示す電力閾値Aを超えているため、回転数制御部21は、冷凍サイクルが過負荷運転状態である(すなわち、室外気温が高い)と判断する(ステップS17でYES)。そして、回転数制御部21は、圧縮機52の設定回転数を、5500rpm(最高回転数)から4500rpm(特定上限回転数)へ落として圧縮機52を運転する(ステップS18)。ここで、特定上限回転数として設定される4500rpmは、室外熱交換器の冷媒限度圧力を超えない圧力であることが予め確認されている。 When such a power threshold A is set, in the rotation speed control shown in FIG. 3, when the predetermined rotation speed fixed at the start of operation is 4500 rpm, the power value calculated by the power calculation unit 22 is 1800 w or more. Suppose. In this case, since the calculated electric power value exceeds the electric power threshold A shown in FIG. 5, the rotation speed control unit 21 determines that the refrigeration cycle is in an overload operation state (that is, the outdoor air temperature is high). (YES in step S17). Then, the rotational speed control unit 21 operates the compressor 52 by reducing the set rotational speed of the compressor 52 from 5500 rpm (maximum rotational speed) to 4500 rpm (specific upper limit rotational speed) (step S18). Here, it has been confirmed in advance that 4500 rpm set as the specific upper limit rotational speed is a pressure that does not exceed the refrigerant limit pressure of the outdoor heat exchanger.
 次に、図5に示す電力閾値Aを設定した場合に、図4に示す回転数制御を行う例について、説明する。ここでは、上述の運転開始時の圧縮機の運転状態(電力値が1800w以上であり、4500rpmの特定上限回転数で運転している状態)から、改めて過負荷判定を行う場合を例に挙げて説明する。 Next, an example of performing the rotational speed control shown in FIG. 4 when the power threshold A shown in FIG. 5 is set will be described. Here, as an example, the overload determination is performed again from the compressor operating state at the start of the above-described operation (the power value is 1800 w or more and the motor is operating at the specific upper limit rotational speed of 4500 rpm). explain.
 例えば、図4に示すステップS23において算出された電力値が1600wの場合、回転数4500rpmにおける電力閾値Aは約1800w(図5参照)であるため、算出された電力値は電力閾値Aよりも低い値となる(ステップS25においてNO)。これは、外気温が、例えば約35℃に低下したことを意味する。そこで、回転数制御部21は、4500rpmの特定上限回転数を解除する(ステップS27)。これにより、圧縮機52は、例えば、5500rpmの最大回転数で運転される(ステップS28)。 For example, when the power value calculated in step S23 shown in FIG. 4 is 1600 w, the power threshold A at the rotation speed of 4500 rpm is about 1800 w (see FIG. 5), so the calculated power value is lower than the power threshold A. Value (NO in step S25). This means that the outside air temperature has decreased to about 35 ° C., for example. Therefore, the rotation speed control unit 21 cancels the specific upper limit rotation speed of 4500 rpm (step S27). As a result, the compressor 52 is operated at a maximum rotational speed of 5500 rpm, for example (step S28).
 なお、この状態では、外気温が約35℃程度に低下しているため、回転数が5500rpmに上昇しても、電力は2000w程度に留まることが推測される。回転数5500rpmでの電力閾値Aは、約2100wであるため、圧縮機52は、過負荷状態となることはなく、5500rpmで運転を続けることができる。 In this state, since the outside air temperature is reduced to about 35 ° C., it is estimated that the electric power remains at about 2000 w even if the rotational speed is increased to 5500 rpm. Since the power threshold value A at the rotational speed of 5500 rpm is about 2100 w, the compressor 52 can continue to operate at 5500 rpm without being overloaded.
 この状態で圧縮機52は運転を続け、次の過負荷判定のタイミングで、例えば、回転数5500rpmでの電力値が2100wを超えた場合、回転数制御部21は、冷凍サイクルが過負荷状態である判定する(ステップS25においてYES)。そして、再び特定上限回転数での運転に切り替える(ステップS26)。 In this state, the compressor 52 continues to operate, and at the next overload determination timing, for example, when the power value at the rotation speed of 5500 rpm exceeds 2100 w, the rotation speed control unit 21 indicates that the refrigeration cycle is in an overload state. Some determination is made (YES in step S25). Then, the operation is switched again to the operation at the specific upper limit rotation speed (step S26).
 以上のように、本実施形態に係る空気調和機1では、圧縮機の電力値を推定し、圧縮機の回転数と推定された電力値とに基づいて、冷凍サイクルが過負荷運転状態となっているか否かを判断する。具体的には、推定された圧縮機の電力値が、そのときの回転数に対する電力閾値を超えているか否かに基づいて、過負荷運転状態の判別を行う。推定された電力値が電力閾値を超えている場合に、過負荷運転状態であると判断する。そして、過負荷運転状態であると判断された場合には、設定温度に基づく回転数よりも低い特定上限回転数で圧縮機を運転させる。 As described above, in the air conditioner 1 according to this embodiment, the power value of the compressor is estimated, and the refrigeration cycle is in an overload operation state based on the rotation speed of the compressor and the estimated power value. Judge whether or not. Specifically, the overload operation state is determined based on whether or not the estimated power value of the compressor exceeds a power threshold for the rotation speed at that time. When the estimated power value exceeds the power threshold, it is determined that the overload operation state is present. And when it is judged that it is an overload driving | running state, a compressor is operated by the specific upper limit rotation speed lower than the rotation speed based on preset temperature.
 このようにして圧縮機の制御を行うことにより、圧縮機の過負荷運転を抑制することができる。本実施形態の圧縮機制御では、外気温や室外熱交換器の温度の情報を必要としない。そのため、外気温度センサや室外熱交換器温度センサの設置を省略することができる。 By controlling the compressor in this way, overload operation of the compressor can be suppressed. In the compressor control of the present embodiment, information on the outside air temperature and the temperature of the outdoor heat exchanger is not required. Therefore, installation of an outside air temperature sensor or an outdoor heat exchanger temperature sensor can be omitted.
 <第2の実施形態>
 第2の実施形態では、第1の実施形態の構成に加えて、外気温度センサがさらに備えられている空気調和機について説明する。図6は、第2の実施形態にかかる空気調和機100の内部構成を示す。図7は、第2の実施形態に係る空気調和機100の全体構成を示す。
<Second Embodiment>
In the second embodiment, an air conditioner that is further provided with an outside air temperature sensor in addition to the configuration of the first embodiment will be described. FIG. 6 shows an internal configuration of the air conditioner 100 according to the second embodiment. FIG. 7 shows an overall configuration of the air conditioner 100 according to the second embodiment.
 図7に示すように、第2の実施形態にかかる空気調和機100は、第1の実施形態の空気調和機1の構成に加えて、外気温度センサ106がさらに設けられている。それ以外の構成については、基本的に第1の実施形態の空気調和機1と同じ構成を適用することができる。そこで、本第2の実施形態では、第1の実施形態とは異なる部分のみを説明する。 As shown in FIG. 7, the air conditioner 100 according to the second embodiment is further provided with an outside air temperature sensor 106 in addition to the configuration of the air conditioner 1 of the first embodiment. About the structure of other than that, the same structure as the air conditioner 1 of 1st Embodiment is fundamentally applicable. Therefore, in the second embodiment, only parts different from the first embodiment will be described.
 外気温度センサ106は、室外機50が設置されている環境下の温度を測定する。外気温度センサ106は、例えば、室外機50の筐体51の表面に取り付けられている。第2の実施形態の空気調和機100においては、外気温度センサ106によって外気温の情報を取得することができる。 The outdoor temperature sensor 106 measures the temperature in the environment where the outdoor unit 50 is installed. The outside air temperature sensor 106 is attached to the surface of the housing 51 of the outdoor unit 50, for example. In the air conditioner 100 of the second embodiment, information on the outside air temperature can be acquired by the outside air temperature sensor 106.
 外気温及び電力値がわかると、室外における冷凍サイクル内の冷媒圧力を推定することができる。冷凍サイクル内の冷媒圧力を推定できることにより、回転数制御部21は、圧縮機52の仕様範囲内で圧縮機52を運転させることができるか否かを、より正確に判定することができる。つまり、第2の実施形態の空気調和機100では、外気温度センサ106から得られた外気温の情報に応じて、過負荷状態を判定するための電力閾値を変更することができる。 If the outside air temperature and power value are known, the refrigerant pressure in the outdoor refrigeration cycle can be estimated. Since the refrigerant pressure in the refrigeration cycle can be estimated, the rotation speed control unit 21 can more accurately determine whether or not the compressor 52 can be operated within the specification range of the compressor 52. That is, in the air conditioner 100 of the second embodiment, the power threshold value for determining the overload state can be changed according to the information on the outside air temperature obtained from the outside air temperature sensor 106.
 <圧縮機の運転制御について>
 続いて、本実施形態に係る空気調和機100において、圧縮機52の過負荷運転を抑制するための制御の方法について、図6、及び図8を参照しながら説明する。図6には、空気調和機100の内部構成を示す。図6では、圧縮機52の運転制御に関連する構成部材を示している。
<About compressor operation control>
Subsequently, a control method for suppressing the overload operation of the compressor 52 in the air conditioner 100 according to the present embodiment will be described with reference to FIGS. 6 and 8. In FIG. 6, the internal structure of the air conditioner 100 is shown. In FIG. 6, the structural member relevant to the operation control of the compressor 52 is shown.
 図6に示すように、室内機10内には、室内送風機13、室内温度センサ15、記憶部16、表示部17、受信部18、および制御部20などが備えられている。また、制御部20内には、回転数制御部21、および電力算出部22などが備えられている。これらの構成については、第1の実施形態の空気調和機1と同様の構成を適用できる。 As shown in FIG. 6, the indoor unit 10 includes an indoor fan 13, an indoor temperature sensor 15, a storage unit 16, a display unit 17, a receiving unit 18, a control unit 20, and the like. In addition, the control unit 20 includes a rotation speed control unit 21, a power calculation unit 22, and the like. About these structures, the structure similar to the air conditioner 1 of 1st Embodiment is applicable.
 また、室外機50内には、圧縮機52、室外送風機56、吐出温度センサ61、電流計62、電圧計63、および外気温度センサ106などが備えられている。外気温度センサ106以外の構成については、第1の実施形態の空気調和機1と同様の構成を適用できる。 Also, the outdoor unit 50 is provided with a compressor 52, an outdoor fan 56, a discharge temperature sensor 61, an ammeter 62, a voltmeter 63, an outdoor temperature sensor 106, and the like. About the structure other than the outside air temperature sensor 106, the same structure as the air conditioner 1 of 1st Embodiment is applicable.
 図8には、空気調和機100が冷房運転を行うときの圧縮機制御の流れを示す。まず、使用者がリモートコントローラなどを操作して冷房運転開始時の指示を空気調和機100へ与える。空気調和機100の受信部18は、この指示を受け取り、制御部20に対して冷房運転の開始を指示する信号を送信する。 FIG. 8 shows a flow of compressor control when the air conditioner 100 performs a cooling operation. First, the user operates the remote controller or the like to give an instruction for starting the cooling operation to the air conditioner 100. The receiving unit 18 of the air conditioner 100 receives this instruction, and transmits a signal instructing the control unit 20 to start the cooling operation.
 制御部20は、冷房運転開始の指示信号を受信すると、圧縮機52の運転を開始するか否かを判断する(図8のステップS31)。具体的には、制御部20は、室内温度センサ15が測定した室内温度(例えば、室内から室内機10へ吸い込まれた空気の温度)の情報を受信する。そして、制御部20は、送信された室内温度情報に基づいて圧縮機52を運転すべきか否かの判断を行う。ここで、制御部20は、圧縮機52を最低回転数で運転しても、室温が使用者の設定した温度よりも下回る場合には、圧縮機52の運転不可と判断する(ステップS31でNO)。そして、制御部20は、圧縮機52を運転させることなく停止状態に維持する(ステップS32)。 When the control unit 20 receives the instruction signal to start the cooling operation, the control unit 20 determines whether or not to start the operation of the compressor 52 (step S31 in FIG. 8). Specifically, the control unit 20 receives information on the room temperature measured by the room temperature sensor 15 (for example, the temperature of air sucked into the indoor unit 10 from the room). Then, the control unit 20 determines whether or not the compressor 52 should be operated based on the transmitted room temperature information. Here, even if the compressor 52 is operated at the minimum number of revolutions, if the room temperature is lower than the temperature set by the user, the control unit 20 determines that the compressor 52 cannot be operated (NO in step S31). ). And the control part 20 maintains the stop state, without operating the compressor 52 (step S32).
 一方、制御部20が、送信された室内温度情報に基づいて圧縮機52の運転を開始させてよいと判断した場合(ステップS31でYES)には、制御部20は、圧縮機52の運転を開始させる。そして、圧縮機52は、回転数を徐々に上げる。 On the other hand, when the control unit 20 determines that the operation of the compressor 52 may be started based on the transmitted room temperature information (YES in step S31), the control unit 20 operates the compressor 52. Let it begin. Then, the compressor 52 gradually increases the rotation speed.
 圧縮機52が運転を開始して約3分間で冷媒サイクルが構成され、サイクル内の配管の圧力が安定する。そのため、空気調和機100内のタイマー(図示せず)は、圧縮機52が運転を開始してからの時間を計測し、所定時間(例えば、3分)経過するのを待つ。圧縮機52の運転開始から所定時間(例えば、3分)が経過した後、制御部20は、圧縮機52の電力値の測定を行う(ステップS33)。電力値の測定は、制御部20内の電力算出部22で行われる。電力算出部22は、電流計62及び電圧計63で測定された電流値及び電圧値をもとに、第1の実施形態と同様の方法により電力値を算出する。算出された電力値の情報は、制御部20内の回転数制御部21へ送信される。 The refrigerant cycle is configured in about 3 minutes after the compressor 52 starts operation, and the pressure of the piping in the cycle is stabilized. Therefore, a timer (not shown) in the air conditioner 100 measures the time after the compressor 52 starts operation and waits for a predetermined time (for example, 3 minutes) to elapse. After a predetermined time (for example, 3 minutes) has elapsed from the start of operation of the compressor 52, the control unit 20 measures the power value of the compressor 52 (step S33). The power value is measured by the power calculation unit 22 in the control unit 20. The power calculation unit 22 calculates the power value by the same method as in the first embodiment based on the current value and the voltage value measured by the ammeter 62 and the voltmeter 63. Information on the calculated power value is transmitted to the rotation speed control unit 21 in the control unit 20.
 次に、回転数制御部21は、外気温度センサ106から制御部20へ送信された外気温の情報を取得する(ステップS34)。続いて、回転数制御部は21、現在の圧縮機52の回転数の情報を取得する(ステップS35)。そして、回転数制御部21は、送信された電力値が、取得した外気温及び取得した回転数における電力の上限値(例えば、電力閾値B(図9参照))よりも高いか否かを判定する(ステップS36)。 Next, the rotation speed control unit 21 acquires information on the outside air temperature transmitted from the outside air temperature sensor 106 to the control unit 20 (step S34). Subsequently, the rotation speed control unit 21 acquires information on the current rotation speed of the compressor 52 (step S35). And the rotation speed control part 21 determines whether the transmitted electric power value is higher than the upper limit value (for example, electric power threshold value B (refer FIG. 9)) in the acquired external temperature and the acquired rotation speed. (Step S36).
 ここで、圧縮機52の電力値が電力閾値Bよりも高い場合には、回転数制御部21は、冷凍サイクルが過負荷運転状態であると判断する(ステップS36でYES)。そして、回転数制御部21は、当該電力値における特定上限回転数で圧縮機52を運転させる(ステップS37)。特定上限回転数とは、冷凍サイクルの配管内に滞留する冷媒の圧力が基準値を超えないように設定された回転数である。 Here, when the power value of the compressor 52 is higher than the power threshold B, the rotation speed control unit 21 determines that the refrigeration cycle is in an overload operation state (YES in step S36). And the rotation speed control part 21 operates the compressor 52 with the specific upper limit rotation speed in the said electric power value (step S37). The specific upper limit rotational speed is a rotational speed set so that the pressure of the refrigerant staying in the piping of the refrigeration cycle does not exceed a reference value.
 一方、ステップS36において、圧縮機52の電力値が電力閾値B以下である場合には、回転数制御部21は、冷凍サイクルが過負荷運転状態はないと判断する(ステップS36でNO)。この場合、回転数制御部21は、室内温度を使用者が所望した設定温度まで冷却するために必要な回転数(MAX回転数)で、圧縮機52を運転させる(ステップS38)。 On the other hand, when the power value of the compressor 52 is equal to or lower than the power threshold B in step S36, the rotation speed control unit 21 determines that the refrigeration cycle is not in an overload operation state (NO in step S36). In this case, the rotation speed control unit 21 operates the compressor 52 at the rotation speed (MAX rotation speed) necessary for cooling the room temperature to the set temperature desired by the user (step S38).
 ステップS37又はS38の後、再びステップS31に戻り、圧縮機52の運転を継続してもよいか否かの判定を行う。そして、空気調和機100が冷房運転を継続している間は、上述の一連の処理を繰り返す。 After step S37 or S38, the process returns to step S31 again to determine whether or not the operation of the compressor 52 may be continued. Then, while the air conditioner 100 continues the cooling operation, the above-described series of processing is repeated.
 空気調和機100では、以上のような流れで圧縮機52の制御が行われる。 In the air conditioner 100, the compressor 52 is controlled by the flow as described above.
 続いて、第2の実施形態の空気調和機100における電力閾値の設定方法について、図9を参照しながら説明する。先ず、電力閾値を設定するための基本となる概念について説明する。 Subsequently, a method for setting a power threshold in the air conditioner 100 of the second embodiment will be described with reference to FIG. First, the basic concept for setting the power threshold will be described.
 外気温の上昇によって冷媒が暖められると、冷媒圧力が増加し、冷凍サイクルはより過負荷状態になりやすい。冷凍サイクルを作動させる際には、装置の安全を維持するために、冷媒の圧力範囲が設定されている。圧力範囲を設定することによって、冷凍サイクルが過負荷状態となることが抑えられる。また、圧縮機の回転数を上げることで冷媒はより圧縮され、冷媒圧力も増加する。通常、冷房運転時においては、外気温が43℃のときに冷媒が上限圧力に達する。すなわち、外気温が43℃を超えると、冷媒圧力が安全な圧力範囲の上限を超える可能性がある。 When the refrigerant is warmed by an increase in outside air temperature, the refrigerant pressure increases and the refrigeration cycle is more likely to be overloaded. When operating the refrigeration cycle, the refrigerant pressure range is set in order to maintain the safety of the apparatus. By setting the pressure range, the refrigeration cycle is prevented from being overloaded. Further, the refrigerant is further compressed and the refrigerant pressure is increased by increasing the rotation speed of the compressor. Normally, during the cooling operation, the refrigerant reaches the upper limit pressure when the outside air temperature is 43 ° C. That is, when the outside air temperature exceeds 43 ° C., the refrigerant pressure may exceed the upper limit of the safe pressure range.
 外気温度センサが設けられていない第1の実施形態の空気調和機1では、電力値と回転数とに基づいて外気温を予測するという手法がとられていた。そのため、安全に冷凍サイクルを作動させるために、電力閾値A(図5参照)は、外気温が約40℃での電力値を基準として設定されている。これにより、実際に過負荷状態となる回転数よりもやや低い回転数を特定上限回転数として設定している。 In the air conditioner 1 of the first embodiment in which the outside air temperature sensor is not provided, a method of predicting the outside air temperature based on the power value and the rotation speed has been taken. Therefore, in order to operate the refrigeration cycle safely, the power threshold A (see FIG. 5) is set based on the power value when the outside air temperature is about 40 ° C. As a result, a rotational speed that is slightly lower than the rotational speed that is actually overloaded is set as the specific upper limit rotational speed.
 これに対して、第2の実施形態では、外気温度センサ106が設けられている。つまり、空気調和機100では、圧縮機52の電力値及び回転数の情報に加えて、外気温の情報も取得することができる。電力値、回転数及び外気温がわかると、冷媒圧力を予測することが可能となる。そして、空気調和機の機種に応じて、圧縮機の過負荷運転を抑制するための上限冷媒圧力を設定することができる。この上限冷媒圧力は、例えば、4.5mPaに設定することができる。 In contrast, in the second embodiment, an outside air temperature sensor 106 is provided. That is, in the air conditioner 100, in addition to the information on the power value and the rotation speed of the compressor 52, information on the outside air temperature can also be acquired. If the power value, the rotation speed, and the outside air temperature are known, the refrigerant pressure can be predicted. And the upper limit refrigerant | coolant pressure for suppressing the overload driving | operation of a compressor can be set according to the model of an air conditioner. This upper limit refrigerant pressure can be set to 4.5 mPa, for example.
 そこで、本実施形態に係る空気調和機100では、室外における冷媒の圧力が、上限冷媒圧力以下となるように電力閾値Bを設定している。図9には、上限冷媒圧力を4.5mPaと規定し、外気温が43℃である場合の電力閾値Bを示している。なお、電力閾値Bは、外気温によって変動する。例えば、外気温が40℃の場合には、電力閾値の値は増加する。すなわち、図9に示す電力閾値Bがより上方にシフトする。そのため、電力閾値Bは、所定間隔の温度単位で設定することが望ましい。このように、本実施形態の空気調和機100では、各温度に応じて異なる電力閾値を設定することができる。そのため、より正確に過負荷状態の判定を行うことができ、圧縮機の回転数を、より限界に近い回転数まで上昇させることができる。 Therefore, in the air conditioner 100 according to the present embodiment, the power threshold B is set so that the refrigerant pressure in the outdoor space is equal to or lower than the upper limit refrigerant pressure. FIG. 9 shows the power threshold B when the upper limit refrigerant pressure is specified as 4.5 mPa and the outside air temperature is 43 ° C. The power threshold B varies depending on the outside air temperature. For example, when the outside air temperature is 40 ° C., the power threshold value increases. That is, the power threshold B shown in FIG. 9 is shifted upward. Therefore, it is desirable to set the power threshold B in units of temperature at a predetermined interval. Thus, in the air conditioner 100 of this embodiment, a different power threshold can be set according to each temperature. Therefore, it is possible to more accurately determine the overload state, and it is possible to increase the rotational speed of the compressor to a rotational speed closer to the limit.
 例えば、図8に示す例では、回転数5500rpmの時は、2100wが電力値の上限となり、回転数5000rpmの時は、2000wが電力値の上限となる。なお、図9に示す電力閾値Bは一例であり、本発明はこれに限定はされない。空気調和機の機種、仕様などに応じて、電力閾値は適宜変更することができる。 For example, in the example shown in FIG. 8, when the rotational speed is 5500 rpm, 2100 w is the upper limit of the power value, and when the rotational speed is 5000 rpm, 2000 w is the upper limit of the power value. The power threshold B shown in FIG. 9 is an example, and the present invention is not limited to this. The power threshold value can be changed as appropriate in accordance with the type and specifications of the air conditioner.
 <第3の実施形態>
 上述した第1の実施形態では、圧縮機の回転数と電力値とに基づいて冷凍サイクルが過負荷状態であるか否かの判定を行っている。また、第2の実施形態では、回転数及び電力値の他に外気温の情報に基づいて冷凍サイクルが過負荷状態であるか否かの判定を行っている。第3の実施形態では、これらの情報に加えて、さらに他の情報にも基づいて過負荷判定を行う例について説明する。
<Third Embodiment>
In the first embodiment described above, it is determined whether or not the refrigeration cycle is in an overload state based on the rotation speed and power value of the compressor. In the second embodiment, whether or not the refrigeration cycle is in an overload state is determined based on information on the outside air temperature in addition to the rotation speed and the power value. In the third embodiment, an example in which overload determination is performed based on other information in addition to the above information will be described.
 第3の実施形態に係る空気調和機では、室内の温度、および、室内送風機のファン速度(回転数)または風量換算データを、過負荷判定を行うための追加情報として採用している。図1には、第3の実施形態に係る空気調和機200の全体構成を示す。空気調和機200は、空気調和機1と同様の構成を有している。 In the air conditioner according to the third embodiment, the indoor temperature and the fan speed (number of rotations) of the indoor blower or the air volume conversion data are employed as additional information for performing overload determination. In FIG. 1, the whole structure of the air conditioner 200 which concerns on 3rd Embodiment is shown. The air conditioner 200 has the same configuration as the air conditioner 1.
 室内の温度の情報は、室内温度センサ15によって取得され、制御部20へ送信される。また、制御部20は、室内送風機13の運転を制御する。また、制御部20は、室内送風機13のファン速度や風量換算データの情報を取得することができる。 The indoor temperature information is acquired by the indoor temperature sensor 15 and transmitted to the control unit 20. Further, the control unit 20 controls the operation of the indoor blower 13. Moreover, the control part 20 can acquire the information of the fan speed of the indoor air blower 13, and air volume conversion data.
 制御部20内の回転数制御部21は、圧縮機52の回転数及び電力値に加えて、室内温度及び室内送風機13のファン速度の情報にも基づいて、冷凍サイクルが過負荷状態であるか否かの判定を行っている。そのため、より正確な過負荷判定を行うことができる。 Whether the refrigerating cycle is overloaded based on information on the indoor temperature and the fan speed of the indoor blower 13 in addition to the rotational speed and power value of the compressor 52. Judgment of whether or not. Therefore, more accurate overload determination can be performed.
 例えば、室内温度が標準温度より高いと、電力値は高くなる傾向がある。また、室内送風機の風量が大きいと、電力値は小さくなる傾向がある。そのため、予め室内温度や室内送風機の風量の補正値を求めておき、過負荷判定の因子としてこれらの情報を加えることで、電力値のみによる過負荷判定と比較して、より正確な過負荷判定を行うことができる。過負荷判定にこれらの追加因子が含まれることで、例えば、電力閾値A(図5参照)および電力閾値B(図9参照)が、上方向あるいは下方向にシフトする。 For example, when the room temperature is higher than the standard temperature, the power value tends to increase. Moreover, when the air volume of the indoor blower is large, the power value tends to be small. For this reason, a correction value for the indoor temperature or the air flow rate of the indoor blower is obtained in advance, and by adding these information as factors for overload determination, more accurate overload determination is possible compared to overload determination based only on the power value. It can be performed. By including these additional factors in the overload determination, for example, the power threshold A (see FIG. 5) and the power threshold B (see FIG. 9) shift upward or downward.
 <第4の実施形態>
 上述した第1から第3の実施形態では、空気調和機を例に挙げて説明した。しかし、本発明は、冷房機でも実現可能である。そこで、第4の実施形態として、冷房機を例に挙げて説明する。図2には、第4の実施形態に係る冷房機300の全体構成を示す。冷房機300は、空気調和機1とほぼ同様の構成を有している。但し、冷房機300は、冷房運転のみを行い、暖房運転は行わない。すなわち、冷房機300は、図2において、実線の矢印で示す方向のみに冷凍サイクルを循環させる構成を有している。その他の構成については、空気調和機1と同様の構成を適用することができる。
<Fourth Embodiment>
In the first to third embodiments described above, the air conditioner has been described as an example. However, the present invention can also be realized with a cooling device. Therefore, as a fourth embodiment, an air conditioner will be described as an example. In FIG. 2, the whole structure of the air conditioner 300 which concerns on 4th Embodiment is shown. The air conditioner 300 has substantially the same configuration as the air conditioner 1. However, the air conditioner 300 performs only the cooling operation and does not perform the heating operation. That is, the air conditioner 300 has a configuration in which the refrigeration cycle is circulated only in the direction indicated by the solid arrow in FIG. About the other structure, the structure similar to the air conditioner 1 is applicable.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。また、本明細書で説明した異なる実施形態の構成を互いに組み合わせて得られる構成についても、本発明の範疇に含まれる。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims. Further, configurations obtained by combining the configurations of the different embodiments described in this specification with each other are also included in the scope of the present invention.
1    :空気調和機
10   :室内機
20   :制御部
21   :回転数制御部
22   :電力算出部
50   :室外機
52   :圧縮機
100  :空気調和機
106  :外気温度センサ
200  :空気調和機
300  :冷房機
1: Air conditioner 10: Indoor unit 20: Control unit 21: Rotational speed control unit 22: Electric power calculation unit 50: Outdoor unit 52: Compressor 100: Air conditioner 106: Outside air temperature sensor 200: Air conditioner 300: Cooling Machine

Claims (5)

  1.  圧縮機を有する冷却機構と、
     前記圧縮機の電力値を算出する電力算出部と、
     前記電力算出部によって得られた電力値と、前記圧縮機の回転数とに基づいて、前記冷却機構が過負荷状態であるか否かを判定し、その判定結果に基づいて前記圧縮機の回転数を制御する回転数制御部と
    を備えている冷房機。
    A cooling mechanism having a compressor;
    A power calculation unit for calculating a power value of the compressor;
    It is determined whether or not the cooling mechanism is in an overload state based on the power value obtained by the power calculation unit and the rotation speed of the compressor, and based on the determination result, the rotation of the compressor is determined. An air conditioner including a rotation speed control unit that controls the number.
  2.  前記回転数制御部は、前記電力算出部から得られた電力値が、前記圧縮機の回転数における電力閾値を超えている場合に、過負荷状態であると判定する、請求項1に記載の冷房機。 The said rotation speed control part determines that it is an overload state, when the electric power value obtained from the said electric power calculation part has exceeded the electric power threshold value in the rotation speed of the said compressor. Air conditioner.
  3.  前記電力閾値は、異なる環境温度下、及び異なる回転数で前記圧縮機を過負荷運転させた時の電力値を予め算出することによって設定される、請求項2に記載の冷房機。 The air conditioner according to claim 2, wherein the electric power threshold is set by calculating in advance an electric power value when the compressor is overloaded at different environmental temperatures and at different rotational speeds.
  4.  室外機と、該室外機が置かれている環境の温度を測定する外気温度センサとをさらに備え、
     前記回転数制御部は、前記外気温度センサによって測定された温度に基づいて前記電力閾値を設定する、請求項2に記載の冷房機。
    An outdoor unit, and an outdoor temperature sensor that measures the temperature of the environment in which the outdoor unit is placed,
    The air conditioner according to claim 2, wherein the rotation speed control unit sets the power threshold based on a temperature measured by the outside air temperature sensor.
  5.  請求項1から4の何れか1項に記載の冷房機を有する空気調和機。
     
     
    An air conditioner having the air conditioner according to any one of claims 1 to 4.

PCT/JP2016/072727 2016-02-08 2016-08-03 Cooler and air conditioner WO2017138167A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680045569.7A CN108603681B (en) 2016-02-08 2016-08-03 Air conditioner and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-021435 2016-02-08
JP2016021435A JP6653588B2 (en) 2016-02-08 2016-02-08 Air conditioners and air conditioners

Publications (1)

Publication Number Publication Date
WO2017138167A1 true WO2017138167A1 (en) 2017-08-17

Family

ID=59563002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072727 WO2017138167A1 (en) 2016-02-08 2016-08-03 Cooler and air conditioner

Country Status (3)

Country Link
JP (1) JP6653588B2 (en)
CN (1) CN108603681B (en)
WO (1) WO2017138167A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239836A1 (en) * 2021-05-12 2022-11-17 三菱重工サーマルシステムズ株式会社 Electric compressor control device, electric compressor, and electric compressor control method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7030037B2 (en) * 2018-09-25 2022-03-04 シャープ株式会社 Air conditioner
CN110131845B (en) * 2019-05-22 2021-03-30 广东美的暖通设备有限公司 Air conditioner, control method thereof and computer readable storage medium
JPWO2022244192A1 (en) * 2021-05-20 2022-11-24

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233589A (en) * 1993-01-29 1994-08-19 Hitachi Ltd Revolution control system of air conditioner
JP2015178917A (en) * 2014-03-19 2015-10-08 株式会社富士通ゼネラル air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1782582A (en) * 2004-11-30 2006-06-07 乐金电子(天津)电器有限公司 Central air conditioner and its control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233589A (en) * 1993-01-29 1994-08-19 Hitachi Ltd Revolution control system of air conditioner
JP2015178917A (en) * 2014-03-19 2015-10-08 株式会社富士通ゼネラル air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239836A1 (en) * 2021-05-12 2022-11-17 三菱重工サーマルシステムズ株式会社 Electric compressor control device, electric compressor, and electric compressor control method
EP4296515A4 (en) * 2021-05-12 2024-05-01 Mitsubishi Heavy Ind Thermal Systems Ltd Electric compressor control device, electric compressor, and electric compressor control method

Also Published As

Publication number Publication date
CN108603681A (en) 2018-09-28
JP2017141970A (en) 2017-08-17
JP6653588B2 (en) 2020-02-26
CN108603681B (en) 2020-09-08

Similar Documents

Publication Publication Date Title
US8151583B2 (en) Expansion valve control system and method for air conditioning apparatus
JP5092829B2 (en) Air conditioner
JP4462096B2 (en) Air conditioner
JP2007163106A (en) Air conditioner
WO2017138167A1 (en) Cooler and air conditioner
WO2017212606A1 (en) Refrigeration cycle apparatus
JP2010506132A (en) Method and apparatus for controlling stop operation of air conditioner
WO2016125239A1 (en) Refrigeration/air-conditioning device
KR20150016407A (en) Refrigeration device
US9677798B2 (en) Refrigerating device
JP6141217B2 (en) Compressor deterioration diagnosis device and compressor deterioration diagnosis method
JP4315585B2 (en) Air conditioner
KR20090051479A (en) An air conditioner and control method thereof
JP2010007996A (en) Trial operation method of air conditioner and air conditioner
JP5212330B2 (en) Air conditioner
KR101152936B1 (en) A multi air conditioner system and a pipe connection searching method of the multi air conditioner system
JP4105413B2 (en) Multi-type air conditioner
JP5245575B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP5245576B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP2018141587A (en) air conditioner
JP7000261B2 (en) Combined heat source heat pump device
JP2016156569A (en) Freezer
JP6519098B2 (en) Air conditioner
JP2003302111A (en) Air conditioner
WO2022071068A1 (en) Heat capacity estimation system, refrigerant cycle device, and heat capacity estimation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889868

Country of ref document: EP

Kind code of ref document: A1