JP2014055771A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2014055771A
JP2014055771A JP2013268452A JP2013268452A JP2014055771A JP 2014055771 A JP2014055771 A JP 2014055771A JP 2013268452 A JP2013268452 A JP 2013268452A JP 2013268452 A JP2013268452 A JP 2013268452A JP 2014055771 A JP2014055771 A JP 2014055771A
Authority
JP
Japan
Prior art keywords
temperature
compressor
valve
refrigerant
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013268452A
Other languages
Japanese (ja)
Other versions
JP5693704B2 (en
Inventor
Masanori Aoki
正則 青木
Tatsunori Sakai
達紀 堺
Hirokuni Shiba
広有 柴
Original Assignee
Mitsubishi Electric Corp
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, 三菱電機株式会社 filed Critical Mitsubishi Electric Corp
Priority to JP2013268452A priority Critical patent/JP5693704B2/en
Publication of JP2014055771A publication Critical patent/JP2014055771A/en
Application granted granted Critical
Publication of JP5693704B2 publication Critical patent/JP5693704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of protecting vacuum operation by using existing temperature detection thermistors in place of a low-pressure-detection pressure switch.SOLUTION: If a control unit detects the following phenomena continuously for a certain time period at start of operation of an air conditioner of this invention, the air conditioner determines that a failure to open a gas-side valve or a liquid-side valve occurs and stops operation of a compressor: (a) a temperature of a closed vessel of the compressor is higher than a discharge temperature by a predetermined value or more; (b) an absolute value of a difference between an indoor air temperature detected by a third temperature sensor and a temperature of a generally intermediate portion of an indoor heat exchanger detected by a second temperature sensor is equal to or smaller than a predetermined value; and (c) an absolute value of a difference between an outdoor air temperature detected by a fifth temperature sensor and a temperature of a generally intermediate portion of an outdoor heat exchanger detected by a fourth temperature sensor is equal to or smaller than a predetermined value.

Description

この発明は、空気調和機に関するもので、空気調和機の据付時における室外機のバルブ開け忘れによる真空運転時の圧縮機の保護に関する。   The present invention relates to an air conditioner, and relates to protection of a compressor during vacuum operation due to forgetting to open a valve of an outdoor unit when the air conditioner is installed.
従来の空気調和機は、バルブ開け忘れや、ガス(冷媒)漏れ時等で圧縮機の吸入側に冷媒が供給されずに真空運転となる場合の保護として、圧縮機の吸入側等に低圧検知用圧力スイッチを取り付けていた(例えば、特許文献1参照)。   Conventional air conditioners detect low pressure on the suction side of the compressor, etc., as a protection in case of forgetting to open the valve or in case of gas (refrigerant) leakage, etc. when the refrigerant is not supplied to the suction side of the compressor and the vacuum operation is performed. The pressure switch for operation was attached (for example, refer patent document 1).
特開平3−20579号公報JP-A-3-20579 特開平07−174386号公報Japanese Patent Laid-Open No. 07-174386 特開2003−090582号公報JP 2003-090582 A 特開平07−063447号公報Japanese Patent Laid-Open No. 07-063447
圧縮機の吸入側等に低圧検知用圧力スイッチを取り付けるものは動作は速いものの、低圧検知用圧力スイッチは値段が高く、室外機のバルブの開け忘れという目的のためだけに、低圧検知用圧力スイッチを設けるのはコスト効率が悪く製品のコストアップとなっていた。   Although a low pressure detection pressure switch is installed on the suction side of the compressor, the operation is fast, but the low pressure detection pressure switch is expensive and is only for the purpose of forgetting to open the valve of the outdoor unit. It was not cost effective and increased the cost of the product.
この発明は、上記のような課題を解決するためになされたもので、低圧検知用圧力スイッチに代えて既設の温度検知サーミスタを流用して真空運転保護を行うようにした空気調和機を提供する。   The present invention has been made to solve the above-described problems, and provides an air conditioner that protects vacuum operation by diverting an existing temperature detection thermistor instead of a low-pressure detection pressure switch. .
この発明に係る空気調和機は、
少なくとも冷媒を圧縮する圧縮機、室外熱交換器、減圧装置、液溜め容器が順に接続された室外冷媒回路であって、当該室外冷媒回路の両端部にガス側バルブ及び液側バルブを有する室外冷媒回路と、前記圧縮機の吐出側の冷媒温度を検出する第1の温度センサと、前記室外熱交換器の略中間部に設置され、冷媒の温度を検出する第4の温度センサと、前記圧縮機の密閉容器の温度を検出する第6の温度センサと、前記室外熱交換器の周囲の空気温度を検出する第5の温度センサとを有する室外機と、
少なくとも室内熱交換器が接続された室内冷媒回路であって、当該室内冷媒回路の両端部にガス側接続部及び液側接続部を有する室内冷媒回路を有する室内機と、
前記ガス側バルブと前記ガス側接続部とを接続するガス管と、
前記液側バルブと前記液側接続部とを接続する液管と、
当該空気調和機の運転を制御する制御部とを備え、
前記制御部は、
当該空気調和機の暖房運転の運転開始時に、以下の(a)条件を一定時間連続して検知した後に、(c)条件を一定時間連続して検知した場合は、前記液側バルブが閉状態と判定して前記圧縮機の運転を停止することを特徴とする。
(a)前記第6の温度センサが検出する前記圧縮機の密閉容器の温度が前記第1の温度センサが検出する吐出温度よりも所定値以上高くなる;
(c)前記第5の温度センサが検出する室外空気温度と、前記第4の温度センサが検出する前記室外熱交換器の略中間部の温度との差の絶対値が、所定値以下になる。
The air conditioner according to the present invention is
An outdoor refrigerant circuit in which at least a compressor for compressing a refrigerant, an outdoor heat exchanger, a decompression device, and a liquid reservoir are connected in order, and the outdoor refrigerant having a gas side valve and a liquid side valve at both ends of the outdoor refrigerant circuit A circuit, a first temperature sensor for detecting a refrigerant temperature on a discharge side of the compressor, a fourth temperature sensor for detecting a refrigerant temperature, which is installed at a substantially intermediate portion of the outdoor heat exchanger, and the compression An outdoor unit having a sixth temperature sensor for detecting the temperature of the sealed container of the unit, and a fifth temperature sensor for detecting an air temperature around the outdoor heat exchanger;
An indoor unit having at least an indoor heat exchanger, an indoor unit having an indoor refrigerant circuit having a gas side connection part and a liquid side connection part at both ends of the indoor refrigerant circuit;
A gas pipe connecting the gas side valve and the gas side connection part;
A liquid pipe connecting the liquid side valve and the liquid side connection part;
A control unit for controlling the operation of the air conditioner,
The controller is
At the start of heating operation of the air conditioner, after the following condition (a) is continuously detected for a certain period of time, (c) when the condition is continuously detected for a certain period of time, the liquid side valve is closed. And the operation of the compressor is stopped.
(A) The temperature of the hermetic container of the compressor detected by the sixth temperature sensor is higher than the discharge temperature detected by the first temperature sensor by a predetermined value or more;
(C) The absolute value of the difference between the outdoor air temperature detected by the fifth temperature sensor and the temperature of the substantially intermediate portion of the outdoor heat exchanger detected by the fourth temperature sensor is a predetermined value or less. .
この発明に係る空気調和装置は、低圧検知用圧力スイッチに代えて既設の温度検知サーミスタを流用して真空運転保護を行うことができる。   The air conditioner according to the present invention can protect the vacuum operation by using an existing temperature detection thermistor instead of the low pressure detection pressure switch.
実施の形態1を示す図で、空気調和機の冷媒回路図。FIG. 3 shows the first embodiment, and is a refrigerant circuit diagram of the air conditioner. 実施の形態1を示す図で、冷凍サイクルのPH線図(モリエル線図)。FIG. 5 shows the first embodiment and is a PH diagram (Mollier diagram) of the refrigeration cycle. 実施の形態1を示す図で、冷房運転で液側バルブ15の開け忘れ時の運転開始時の圧縮機3の吐出圧力Pd及び圧縮機3の吸入圧力Psの変化を示す図。FIG. 5 shows the first embodiment, and shows changes in the discharge pressure Pd of the compressor 3 and the suction pressure Ps of the compressor 3 at the start of operation when the liquid side valve 15 is forgotten to be opened in the cooling operation. 実施の形態1を示す図で、冷房運転で液側バルブ15の開け忘れ時の運転開始時の圧縮機3の吐出温度Td及び圧縮機3の吸入温度Ts及び圧縮機3のシェル温度Tshの変化を示す図。FIG. 5 shows the first embodiment, and changes in the discharge temperature Td of the compressor 3, the suction temperature Ts of the compressor 3, and the shell temperature Tsh of the compressor 3 at the start of operation when the liquid side valve 15 is forgotten to be opened in the cooling operation. FIG. 実施の形態1を示す図で、冷房運転で液側バルブ15の開け忘れ時の運転開始直後の室内熱交換器6の温度及び室外熱交換器11の温度等の変化を示す図。The figure which shows Embodiment 1, and is a figure which shows changes, such as the temperature of the indoor heat exchanger 6 and the temperature of the outdoor heat exchanger 11, immediately after the operation start at the time of forgetting to open the liquid side valve 15 by cooling operation. 実施の形態1を示す図で、冷房運転でガス側バルブ14の開け忘れ時の運転開始時の圧縮機3の吐出圧力Pd及び圧縮機3の吸入圧力Psの変化を示す図。FIG. 5 shows the first embodiment and shows changes in the discharge pressure Pd of the compressor 3 and the suction pressure Ps of the compressor 3 at the start of operation when the gas side valve 14 is forgotten to be opened in the cooling operation. 実施の形態1を示す図で、冷房運転でガス側バルブ14の開け忘れ時の運転開始時の圧縮機3の吐出温度Td及び圧縮機3の吸入温度Ts及び圧縮機3のシェル温度Tshの変化を示す図。FIG. 5 shows the first embodiment, and changes in the discharge temperature Td of the compressor 3, the suction temperature Ts of the compressor 3, and the shell temperature Tsh of the compressor 3 at the start of operation when the gas side valve 14 is forgotten to be opened in the cooling operation. FIG. 実施の形態1を示す図で、冷房運転でガス側バルブ14の開け忘れ時の運転開始直後の室内熱交換器6の温度及び室外熱交換器11の温度等の変化を示す図。The figure which shows Embodiment 1, and is a figure which shows changes, such as the temperature of the indoor heat exchanger 6 and the temperature of the outdoor heat exchanger 11, immediately after the operation start at the time of forgetting to open the gas side valve 14 by air_conditionaing | cooling operation. 実施の形態1を示す図で、冷房運転でガス側バルブ14及び液側バルブ15の開け忘れ時の運転開始時の圧縮機3の吐出圧力Pd及び圧縮機3の吸入圧力Psの変化を示す図。The figure which shows Embodiment 1 and the figure which shows the change of the discharge pressure Pd of the compressor 3 at the time of the operation start at the time of forgetting to open the gas side valve | bulb 14 and the liquid side valve | bulb 15, and the suction pressure Ps of the compressor 3 by air_conditionaing | cooling operation. . 実施の形態1を示す図で、冷房運転でガス側バルブ14及び液側バルブ15の開け忘れ時の運転開始時の圧縮機3の吐出温度Td及び圧縮機3の吸入温度Ts及び圧縮機3のシェル温度Tshの変化を示す図。FIG. 5 is a diagram illustrating the first embodiment. In the cooling operation, the discharge temperature Td of the compressor 3 and the suction temperature Ts of the compressor 3 and the compressor 3 at the start of operation when the gas side valve 14 and the liquid side valve 15 are forgotten to be opened are shown. The figure which shows the change of shell temperature Tsh. 実施の形態1を示す図で、冷房運転でガス側バルブ14及び液側バルブ15の開け忘れ時の運転開始直後の室内熱交換器6の温度及び室外熱交換器11の温度等の変化を示す図。FIG. 5 is a diagram showing the first embodiment, and shows changes in the temperature of the indoor heat exchanger 6 and the temperature of the outdoor heat exchanger 11 immediately after the start of operation when the gas side valve 14 and the liquid side valve 15 are forgotten to be opened in the cooling operation. Figure. 実施の形態1を示す図で、暖房運転で液側バルブ15の開け忘れ時の運転開始時の圧縮機3の吐出圧力Pd及び圧縮機3の吸入圧力Psの変化を示す図。FIG. 5 shows the first embodiment, and shows changes in the discharge pressure Pd of the compressor 3 and the suction pressure Ps of the compressor 3 at the start of operation when the liquid side valve 15 is forgotten to be opened in heating operation. 実施の形態1を示す図で、暖房運転で液側バルブ15の開け忘れ時の運転開始時の圧縮機3の吐出温度Td及び圧縮機3の吸入温度Ts及び圧縮機3のシェル温度Tshの変化を示す図。In the figure which shows Embodiment 1, the change of the discharge temperature Td of the compressor 3, the suction temperature Ts of the compressor 3, and the shell temperature Tsh of the compressor 3 at the time of the operation start at the time of forgetting to open the liquid side valve 15 by heating operation FIG. 実施の形態1を示す図で、暖房運転で液側バルブ15の開け忘れ時の運転開始直後の室内熱交換器6の温度及び室外熱交換器11の温度等の変化を示す図。The figure which shows Embodiment 1 and is a figure which shows changes, such as the temperature of the indoor heat exchanger 6 and the temperature of the outdoor heat exchanger 11, immediately after the operation start at the time of forgetting to open the liquid side valve 15 by heating operation.
実施の形態1.
先ず、本実施の形態の概要を説明する。室内機と室外機とを有する空気調和機は、据付時に現地で室内機と室外機とを延長配管で接続する必要がある。
Embodiment 1 FIG.
First, an outline of the present embodiment will be described. In an air conditioner having an indoor unit and an outdoor unit, it is necessary to connect the indoor unit and the outdoor unit locally with an extension pipe at the time of installation.
工場出荷時、室内機の冷媒回路(室内熱交換器)には窒素ガス等が封入されている。室内機の冷媒回路の二つの開放端部は、例えば、キャップ付きのフレアナットで閉塞され、窒素ガスが外部へ漏れないようになっている。   When shipped from the factory, nitrogen gas or the like is enclosed in the refrigerant circuit (indoor heat exchanger) of the indoor unit. The two open ends of the refrigerant circuit of the indoor unit are closed with a flare nut with a cap, for example, so that nitrogen gas does not leak to the outside.
また、室外機の冷媒回路(圧縮機、室外熱交換器、減圧装置、四方弁等)には、所定量の冷媒が充填されている。また、圧縮機には、圧縮機構を潤滑するための冷凍機油が所定量封入されている。   The refrigerant circuit (compressor, outdoor heat exchanger, pressure reducing device, four-way valve, etc.) of the outdoor unit is filled with a predetermined amount of refrigerant. The compressor is filled with a predetermined amount of refrigeration oil for lubricating the compression mechanism.
室外機の冷媒回路の二つの開放端部には、それぞれバルブが接続され、冷媒が漏れないようになっている。室外機のバルブには、室内機と同様のキャップ付きのフレアナットが取り付けられている。バルブで冷媒回路は閉塞されているので、キャップ付きのフレアナットは、据付時に延長配管を接続するために必要なものである。室内機と同様のキャップ付きのフレアナットを使用するのは、部品を共通化するためである。   A valve is connected to each of the two open ends of the refrigerant circuit of the outdoor unit so that the refrigerant does not leak. A flare nut with a cap similar to the indoor unit is attached to the valve of the outdoor unit. Since the refrigerant circuit is closed by the valve, the flare nut with the cap is necessary for connecting the extension pipe at the time of installation. The reason for using a flare nut with a cap similar to that of an indoor unit is to share parts.
空気調和機の据付時における室内機と室外機との接続方法について説明する。   A method for connecting the indoor unit and the outdoor unit when the air conditioner is installed will be described.
先ず、室内機の冷媒回路における二つの開放端部を閉塞しているキャップ付きのフレアナットを工具を用いて取り外す。このとき室内機の冷媒回路に封入されていた窒素ガスは大気に放出される。   First, a flare nut with a cap that closes two open ends of the refrigerant circuit of the indoor unit is removed using a tool. At this time, the nitrogen gas sealed in the refrigerant circuit of the indoor unit is released to the atmosphere.
また、室外機のバルブに取り付けられているキャップ付きのフレアナットも工具を用いて取り外す。このときバルブは閉じているので、冷媒は室外機の冷媒回路に充填された状態を維持する。   Moreover, the flare nut with the cap attached to the valve | bulb of an outdoor unit is also removed using a tool. Since the valve is closed at this time, the refrigerant is maintained in a state of being filled in the refrigerant circuit of the outdoor unit.
次に、室内機、室外機のキャップ付きのフレアナット(計4個)からキャップを取り外す。   Next, remove the caps from the flare nuts with caps of the indoor unit and outdoor unit (total of 4).
さらに、延長配管として用いる銅管(二本)を所定の長さに切断する。所定の長さとは、据付状態の室内機と室外機との間の距離に略一致する。   Furthermore, the copper pipe (two pieces) used as the extension pipe is cut into a predetermined length. The predetermined length substantially coincides with the distance between the installed indoor unit and the outdoor unit.
二本の延長配管に、キャップを取り外したフレアナットをそれぞれ2個挿入する。そして、二本の延長配管のそれぞれの両端を拡管する。   Insert two flare nuts with caps removed into the two extension pipes. And the both ends of each of two extension piping are expanded.
4個のフレアナットを室内機、室外機の元の部位に締結する。これで、延長配管の接続が完了する。   Fasten the four flare nuts to the original parts of the indoor unit and outdoor unit. This completes the connection of the extension pipe.
接続が完了した室内機の冷媒回路と延長配管の内部は、空気もしくは放出されずに残った窒素ガスを含む空気が残存している。   Air or air containing nitrogen gas remaining without being released remains in the refrigerant circuit and the extension pipe of the indoor unit that has been connected.
そのため、室外機のバルブに設けられている冷媒チャージポート(閉止弁を押し開いて延長配管側に連通する)に真空ポンプを接続し、室内機の冷媒回路と延長配管の内部の真空引きを行う。   For this reason, a vacuum pump is connected to the refrigerant charge port provided in the valve of the outdoor unit (which pushes the stop valve open and communicates with the extension pipe side) to evacuate the refrigerant circuit of the indoor unit and the inside of the extension pipe. .
室内機の冷媒回路と延長配管の内部の真空引きが完了したら、室外機の二つのバルブを開き、室外機に充填されている冷媒を冷媒回路全体に移動させて据付工事は完了する。   When the evacuation of the indoor unit refrigerant circuit and the extension pipe is completed, the two valves of the outdoor unit are opened, the refrigerant filled in the outdoor unit is moved to the entire refrigerant circuit, and the installation work is completed.
しかし、据付業者のミスで、室内機の冷媒回路と延長配管の内部の真空引きが完了したときに室外機の二つのバルブを開け忘れることもあり得る。二つのバルブの両方、いずれか一方のバルブを開け忘れるケースがある。   However, due to the mistake of the installer, when the evacuation of the refrigerant circuit of the indoor unit and the extension pipe is completed, it is possible to forget to open the two valves of the outdoor unit. There are cases where you forget to open both valves.
詳細は本文で後述するが、バルブを開け忘れて空気調和機を運転すると、圧縮機の運転により低圧側の冷媒は高圧側に移動する。圧縮機の運転が継続されると低圧側は略真空となる。この状態では冷媒は冷媒回路の中で移動しない。但し、圧縮機は運転を継続する。低圧側が真空又は真空に近い状態では、圧縮機の圧縮機構は冷媒を吸入しないので、圧縮仕事は略ゼロである。そのため圧縮機構で発生する熱は、圧縮機構の摺動部で発生する僅かな摩擦熱のみである。   Although details will be described later in the text, when the air conditioner is operated without opening the valve, the refrigerant on the low pressure side moves to the high pressure side due to the operation of the compressor. When the operation of the compressor is continued, the low pressure side becomes substantially vacuum. In this state, the refrigerant does not move in the refrigerant circuit. However, the compressor continues to operate. When the low-pressure side is in a vacuum or a state close to vacuum, the compression mechanism of the compressor does not suck in the refrigerant, so the compression work is substantially zero. Therefore, the heat generated by the compression mechanism is only a slight frictional heat generated at the sliding portion of the compression mechanism.
但し、圧縮機構を駆動する電動機は低負荷状態(圧縮仕事は略ゼロであり、負荷となるのは圧縮機構の摺動部の摩擦、回転する部位の風損であり極めて小さい)ではあるが、電動機の損失(巻線のジュール熱、鉄心の鉄損等)分が熱に変わり、電動機が発熱する。   However, although the electric motor that drives the compression mechanism is in a low load state (compression work is substantially zero, the load is friction of the sliding portion of the compression mechanism, windage loss of the rotating part), The loss of the motor (Joule heat of winding, iron loss of iron core, etc.) changes to heat, and the motor generates heat.
そのまま放置すると、圧縮機の温度が電動機の発熱により上昇し、電動機の絶縁部材、冷凍機油等の劣化、精密な圧縮機構に悪影響を及ぼす。   If left as it is, the temperature of the compressor rises due to the heat generated by the electric motor, which adversely affects the deterioration of the insulating member of the electric motor, refrigerating machine oil, etc., and the precise compression mechanism.
従来は、冷媒回路の低圧側に低圧検知用圧力スイッチを設置し、真空運転になると低圧検知用圧力スイッチが作動し、圧縮機の運転を停止して圧縮機を保護していた。   Conventionally, a low pressure detection pressure switch is installed on the low pressure side of the refrigerant circuit, and when the vacuum operation is started, the low pressure detection pressure switch is operated to stop the operation of the compressor and protect the compressor.
室外機のバルブ開け忘れだけのために、低圧検知用圧力スイッチを設けるのはコスト効率が悪い。   Providing a pressure switch for low pressure detection just to forget to open the valve of the outdoor unit is not cost effective.
そこで、本実施の形態では、低圧検知用圧力スイッチに代えて、空気調和機の制御に用いられる既設の温度サーミスタ(冷凍サイクルを構成する各要素に設けられる)の情報により、室外機のバルブ開け忘れによる真空運転時の圧縮機の保護を行うものである。   Therefore, in this embodiment, instead of the pressure switch for detecting low pressure, the valve of the outdoor unit is opened based on information on an existing temperature thermistor (provided in each element constituting the refrigeration cycle) used for controlling the air conditioner. It protects the compressor during vacuum operation due to forgetting.
図1は実施の形態1を示す図で、空気調和機100の冷媒回路図である。先ず、空気調和機の冷媒回路の一例を図1を参照しながら説明する。   FIG. 1 is a diagram showing the first embodiment, and is a refrigerant circuit diagram of the air conditioner 100. First, an example of a refrigerant circuit of an air conditioner will be described with reference to FIG.
空気調和機100は、室外機1と、室内機2とを備える。室外機1と室内機2とは、延長配管(接続配管)であるガス管5及び液管7で接続される。   The air conditioner 100 includes an outdoor unit 1 and an indoor unit 2. The outdoor unit 1 and the indoor unit 2 are connected by a gas pipe 5 and a liquid pipe 7 which are extension pipes (connection pipes).
室外機1は、ガス管5を接続するためのガス側バルブ14と、液管7を接続するための液側バルブ15とを備える。   The outdoor unit 1 includes a gas side valve 14 for connecting the gas pipe 5 and a liquid side valve 15 for connecting the liquid pipe 7.
室内機2は、ガス管5を接続するためのガス側接続部16と、液管7を接続するための液側接続部17とを備える。   The indoor unit 2 includes a gas side connection portion 16 for connecting the gas pipe 5 and a liquid side connection portion 17 for connecting the liquid pipe 7.
ガス管5及び液管7には、所定の径・長さの銅管が使用される。空気調和機100の据付時に、ガス管5及び液管7は現地の状況に合わせて作られる。   As the gas pipe 5 and the liquid pipe 7, copper pipes having a predetermined diameter and length are used. When the air conditioner 100 is installed, the gas pipe 5 and the liquid pipe 7 are made according to the local situation.
ガス管5及び液管7は、ガス側バルブ14、液側バルブ15、ガス側接続部16と、液側接続部17がそれぞれ備えるフレアナット(図示せず)によって固定される。   The gas pipe 5 and the liquid pipe 7 are fixed by flare nuts (not shown) provided in the gas side valve 14, the liquid side valve 15, the gas side connection portion 16, and the liquid side connection portion 17.
室外機1は、冷媒を圧縮する圧縮機3、冷媒の流れる方向を冷房運転と暖房運転とで切り替える四方弁4、熱源側熱交換器である室外熱交換器11、第1の減圧装置10(減圧装置の一例)、中圧レシーバ9、第2の減圧装置8(減圧装置の一例)を備える。室外機1の冷媒回路を室外冷媒回路とする。   The outdoor unit 1 includes a compressor 3 that compresses a refrigerant, a four-way valve 4 that switches a refrigerant flow direction between a cooling operation and a heating operation, an outdoor heat exchanger 11 that is a heat source side heat exchanger, and a first pressure reducing device 10 ( An example of a decompression device), an intermediate pressure receiver 9, and a second decompression device 8 (an example of a decompression device). Let the refrigerant circuit of the outdoor unit 1 be an outdoor refrigerant circuit.
冷媒を圧縮する圧縮機3には、回転式圧縮機やスクロール圧縮機等が用いられる。図示はしないが、圧縮機3は、圧縮機構(圧縮要素ともいう)と、この圧縮機構を駆動する電動機(電動要素ともいう)とを密閉容器内に収納するとともに、圧縮機構の摺動部を潤滑する冷凍機油を密閉容器内に封入している。電動機には、高効率で、トルク制御が可能なブラシレスDCモータが多く使用される。ブラシレスDCモータは、インバータにより駆動され、回転数が制御される。   A rotary compressor, a scroll compressor, or the like is used as the compressor 3 that compresses the refrigerant. Although not shown, the compressor 3 houses a compression mechanism (also referred to as a compression element) and an electric motor (also referred to as an electric element) that drives the compression mechanism in a hermetic container, and a sliding portion of the compression mechanism. The refrigerating machine oil to be lubricated is enclosed in an airtight container. As the electric motor, a brushless DC motor capable of torque control with high efficiency is often used. The brushless DC motor is driven by an inverter and the rotation speed is controlled.
冷媒の流れる方向を冷房運転と暖房運転とで切り替える四方弁4は、図1では、暖房運転時の冷媒の流路を実線で示している。また、冷房運転時の冷媒の流路を破線で示している。   In FIG. 1, the four-way valve 4 that switches the flow direction of the refrigerant between the cooling operation and the heating operation is indicated by a solid line in FIG. Moreover, the flow path of the refrigerant | coolant at the time of air_conditionaing | cooling operation is shown with the broken line.
熱源側熱交換器である室外熱交換器11は、冷房運転時は凝縮器として動作し、暖房運転時は蒸発器として動作する。また、室外送風機(図示せず)により室外熱交換器11に送風が行われて冷媒と空気との熱交換が促進される。   The outdoor heat exchanger 11 that is a heat source side heat exchanger operates as a condenser during the cooling operation, and operates as an evaporator during the heating operation. In addition, the outdoor fan (not shown) blows air to the outdoor heat exchanger 11 to promote heat exchange between the refrigerant and the air.
第1の減圧装置10、第2の減圧装置8には、例えば、電子膨張弁が使用される。   For the first decompression device 10 and the second decompression device 8, for example, an electronic expansion valve is used.
中圧レシーバ9では、気液二相冷媒が流入し、圧縮機3の吸入配管18と熱交換して液冷媒となって流出する。   In the intermediate pressure receiver 9, the gas-liquid two-phase refrigerant flows in, exchanges heat with the suction pipe 18 of the compressor 3, and flows out as liquid refrigerant.
室内機2は、利用側熱交換器である室内熱交換器6を備える。室内熱交換器6は、冷房運転時は蒸発器として動作する。また、暖房運転時は凝縮器として動作する。また、室内送風機(図示せず)により室内熱交換器6に送風が行われて冷媒と空気との熱交換が促進されるとともに、調和空気を空調空間に送出する。室内機2の冷媒回路を室内冷媒回路とする。   The indoor unit 2 includes an indoor heat exchanger 6 that is a use side heat exchanger. The indoor heat exchanger 6 operates as an evaporator during the cooling operation. Moreover, it operates as a condenser during heating operation. In addition, air is sent to the indoor heat exchanger 6 by an indoor blower (not shown) to promote heat exchange between the refrigerant and the air, and conditioned air is sent to the conditioned space. Let the refrigerant circuit of the indoor unit 2 be an indoor refrigerant circuit.
室外機1には、以下に示す温度センサ(温度検知サーミスタ)が設けられる。
(1)圧縮機3の密閉容器の温度を検出する第6の温度センサ13f;
(2)圧縮機3の吐出側の冷媒温度を間接的に検出する第1の温度センサ13a;
(3)室外熱交換器11の略中間部に設置され、冷媒の温度を間接的に検出する第4の温度センサ13d;
(4)室外熱交換器11の周囲の空気温度を検出する第5の温度センサ13e。
The outdoor unit 1 is provided with a temperature sensor (temperature detection thermistor) shown below.
(1) a sixth temperature sensor 13f for detecting the temperature of the sealed container of the compressor 3;
(2) a first temperature sensor 13a for indirectly detecting the refrigerant temperature on the discharge side of the compressor 3;
(3) a fourth temperature sensor 13d that is installed at a substantially intermediate portion of the outdoor heat exchanger 11 and indirectly detects the temperature of the refrigerant;
(4) A fifth temperature sensor 13e that detects the air temperature around the outdoor heat exchanger 11.
室内機2には、以下に示す温度センサが設けられる。
(1)室内熱交換器6の略中間部に設置され、冷媒の温度を間接的に検出する第2の温度センサ13b;
(2)室内機2に吸い込まれる空気温度を検出する第3の温度センサ13c。
The indoor unit 2 is provided with the following temperature sensor.
(1) a second temperature sensor 13b that is installed in a substantially middle part of the indoor heat exchanger 6 and indirectly detects the temperature of the refrigerant;
(2) A third temperature sensor 13c that detects the temperature of the air sucked into the indoor unit 2.
図2は実施の形態1を示す図で、冷凍サイクルのph線図(モリエル線図)である。図2により空気調和機100の冷媒回路に動作を、暖房運転と冷房運転のそれぞれについて説明する。   FIG. 2 shows the first embodiment, and is a ph diagram (Mollier diagram) of the refrigeration cycle. The operation of the refrigerant circuit of the air conditioner 100 will be described with reference to FIG. 2 for each of the heating operation and the cooling operation.
暖房運転時は、圧縮機3から吐出された高圧・高温のガス冷媒(図2の点1)は、四方弁4を通りガス側バルブ14、ガス管5、ガス側接続部16を通り室内熱交換器6に流入する。   During the heating operation, the high-pressure and high-temperature gas refrigerant (point 1 in FIG. 2) discharged from the compressor 3 passes through the four-way valve 4, passes through the gas side valve 14, the gas pipe 5, and the gas side connection portion 16, and heats the room. It flows into the exchanger 6.
室内熱交換器6では、ガス冷媒は室内空気(ガス冷媒の温度より低い)と熱交換することにより冷却されて凝縮する。室内熱交換器6の出口付近では、高圧の液冷媒となる(図2の点2)。尚、この高圧の液冷媒は、凝縮温度よりも所定温度低く過冷却されている。   In the indoor heat exchanger 6, the gas refrigerant is cooled and condensed by exchanging heat with room air (lower than the temperature of the gas refrigerant). In the vicinity of the outlet of the indoor heat exchanger 6, it becomes a high-pressure liquid refrigerant (point 2 in FIG. 2). The high-pressure liquid refrigerant is supercooled at a predetermined temperature lower than the condensation temperature.
室内熱交換器6を出た高圧の液冷媒は、液側接続部17、液管7、液側バルブ15を経て第2の減圧装置8に流入する。第2の減圧装置8で、高圧の液冷媒は減圧されて中圧の気液二相冷媒になる(図2の点3)。   The high-pressure liquid refrigerant that has exited the indoor heat exchanger 6 flows into the second decompression device 8 through the liquid side connection portion 17, the liquid pipe 7, and the liquid side valve 15. In the second decompression device 8, the high-pressure liquid refrigerant is decompressed to become a medium-pressure gas-liquid two-phase refrigerant (point 3 in FIG. 2).
第2の減圧装置8を出た中圧の気液二相冷媒は、中圧レシーバ9に流入する。中圧レシーバ9に流入した中圧の気液二相冷媒は、圧縮機3の吸入配管18を流れる低圧・低温のガス冷媒と熱交換して、中圧の液冷媒となる(図2の点4)。   The medium-pressure gas-liquid two-phase refrigerant that has exited the second decompression device 8 flows into the intermediate-pressure receiver 9. The medium-pressure gas-liquid two-phase refrigerant flowing into the medium-pressure receiver 9 exchanges heat with the low-pressure and low-temperature gas refrigerant flowing through the suction pipe 18 of the compressor 3 to become medium-pressure liquid refrigerant (point in FIG. 2). 4).
中圧レシーバ9を出た中圧の液冷媒は、第1の減圧装置10にて減圧されて低圧の気液二相冷媒になる(図2の点5)。   The medium-pressure liquid refrigerant exiting the intermediate-pressure receiver 9 is decompressed by the first decompression device 10 and becomes a low-pressure gas-liquid two-phase refrigerant (point 5 in FIG. 2).
第1の減圧装置10を出た低圧の気液二相冷媒は、室外熱交換器11に流入する。室外熱交換器11では、低圧の気液二相冷媒は外気(低圧の気液二相冷媒より温度が高い)と熱交換して蒸発する。そして、低圧のガス冷媒となる(図2の点6)。   The low-pressure gas-liquid two-phase refrigerant that has exited the first decompression device 10 flows into the outdoor heat exchanger 11. In the outdoor heat exchanger 11, the low-pressure gas-liquid two-phase refrigerant is evaporated by exchanging heat with the outside air (temperature is higher than that of the low-pressure gas-liquid two-phase refrigerant). And it becomes a low-pressure gas refrigerant (point 6 of Drawing 2).
さらに、低圧のガス冷媒は、中圧レシーバ9の中圧の気液二相冷媒と熱交換することにより加熱され(図2の点7)、圧縮機3に吸入される。   Further, the low-pressure gas refrigerant is heated by exchanging heat with the medium-pressure gas-liquid two-phase refrigerant of the medium-pressure receiver 9 (point 7 in FIG. 2) and sucked into the compressor 3.
冷房運転時は、圧縮機3から吐出された高圧・高温のガス冷媒(図2の点1)は、室外熱交換器11に流入する。   During the cooling operation, the high-pressure and high-temperature gas refrigerant (point 1 in FIG. 2) discharged from the compressor 3 flows into the outdoor heat exchanger 11.
室外熱交換器11では、ガス冷媒は外気(ガス冷媒の温度より低い)と熱交換することにより冷却されて凝縮する。室外熱交換器11の出口付近では、高圧の液冷媒となる(図2の点2)。尚、この高圧の液冷媒は、凝縮温度よりも所定温度低く過冷却されている。   In the outdoor heat exchanger 11, the gas refrigerant is cooled and condensed by exchanging heat with the outside air (lower than the temperature of the gas refrigerant). In the vicinity of the outlet of the outdoor heat exchanger 11, it becomes a high-pressure liquid refrigerant (point 2 in FIG. 2). The high-pressure liquid refrigerant is supercooled at a predetermined temperature lower than the condensation temperature.
室外熱交換器11を出た高圧の液冷媒は、第1の減圧装置10に流入する。第1の減圧装置10で、高圧の液冷媒は減圧されて中圧の気液二相冷媒になる(図2の点3)。   The high-pressure liquid refrigerant that has exited the outdoor heat exchanger 11 flows into the first decompression device 10. In the first decompression device 10, the high-pressure liquid refrigerant is decompressed to become a medium-pressure gas-liquid two-phase refrigerant (point 3 in FIG. 2).
第1の減圧装置10を出た中圧の気液二相冷媒は、中圧レシーバ9に流入する。中圧レシーバ9に流入した中圧の気液二相冷媒は、圧縮機3の吸入配管18を流れる低圧・低温のガス冷媒と熱交換して、中圧の液冷媒となる(図2の点4)。   The medium-pressure gas-liquid two-phase refrigerant that has exited the first decompression device 10 flows into the intermediate-pressure receiver 9. The medium-pressure gas-liquid two-phase refrigerant flowing into the medium-pressure receiver 9 exchanges heat with the low-pressure and low-temperature gas refrigerant flowing through the suction pipe 18 of the compressor 3 to become medium-pressure liquid refrigerant (point in FIG. 2). 4).
中圧レシーバ9を出た中圧の液冷媒は、第2の減圧装置8にて減圧されて低圧の気液二相冷媒になる(図2の点5)。   The medium-pressure liquid refrigerant that has exited the medium-pressure receiver 9 is decompressed by the second decompression device 8 and becomes a low-pressure gas-liquid two-phase refrigerant (point 5 in FIG. 2).
第2の減圧装置8を出た低圧の気液二相冷媒は、液側バルブ15、液管7、液側接続部17を経て室内熱交換器6に流入する。室内熱交換器6では、低圧の気液二相冷媒は室内空気(低圧の気液二相冷媒より温度が高い)と熱交換して蒸発する。そして、低圧のガス冷媒となる(図2の点6)。   The low-pressure gas-liquid two-phase refrigerant exiting the second decompression device 8 flows into the indoor heat exchanger 6 through the liquid side valve 15, the liquid pipe 7, and the liquid side connection portion 17. In the indoor heat exchanger 6, the low-pressure gas-liquid two-phase refrigerant evaporates by exchanging heat with room air (temperature is higher than that of the low-pressure gas-liquid two-phase refrigerant). And it becomes a low-pressure gas refrigerant (point 6 of Drawing 2).
さらに、低圧のガス冷媒は、中圧レシーバ9の中圧の気液二相冷媒と熱交換することにより加熱され(図2の点7)、圧縮機3に吸入される。   Further, the low-pressure gas refrigerant is heated by exchanging heat with the medium-pressure gas-liquid two-phase refrigerant of the medium-pressure receiver 9 (point 7 in FIG. 2) and sucked into the compressor 3.
本実施の形態は、空気調和機100の据付時の室外機1のガス側バルブ14又は液側バルブ15の開け忘れによる真空運転時に、第1の温度センサ13a、第2の温度センサ13b、第3の温度センサ13c、第4の温度センサ13d、第5の温度センサ13e、第6の温度センサ13fを利用して圧縮機を保護する点に特徴がある。   In the present embodiment, the first temperature sensor 13a, the second temperature sensor 13b, the second temperature sensor 13b, the second temperature sensor 13b, the second temperature sensor 13b, the second temperature sensor 13b, the second temperature sensor 13b, and the second temperature sensor 13b. The third temperature sensor 13c, the fourth temperature sensor 13d, the fifth temperature sensor 13e, and the sixth temperature sensor 13f are used to protect the compressor.
しかし、冷房運転又は暖房運転、ガス側バルブ14の開け忘れ、液側バルブ15の開け忘れ、ガス側バルブ14及び液側バルブ15の開け忘れを組み合わせるとモードは、六通りあるが、本実施の形態で対象とするモードは、以下に示すものである。
(1)運転モードが冷房運転で、液側バルブ15の開け忘れ;
(2)運転モードが冷房運転で、ガス側バルブ14の開け忘れ;
(3)運転モードが冷房運転で、液側バルブ15及びガス側バルブ14の開け忘れ;
(4)運転モードが暖房運転で、液側バルブ15の開け忘れ。
However, there are six modes when combined with cooling operation or heating operation, forgetting to open the gas side valve 14, forgetting to open the liquid side valve 15, and forgetting to open the gas side valve 14 and the liquid side valve 15, there are six modes. The modes targeted by the form are as follows.
(1) The operation mode is cooling operation and the liquid side valve 15 is forgotten to be opened;
(2) The operation mode is cooling operation and the gas side valve 14 is forgotten to be opened;
(3) Forgetting to open the liquid side valve 15 and the gas side valve 14 when the operation mode is cooling operation;
(4) The operation mode is heating operation and the liquid side valve 15 is forgotten to be opened.
その他の以下に示すモードは、運転開始時に高圧が上昇して圧縮機3に過電流が流れるため、図示しない圧縮機3の過電流保護装置が作動して圧縮機3を停止するので、本実施の形態の対象外となる。
(5)運転モードが暖房運転で、ガス側バルブ14の開け忘れ;
(6)運転モードが暖房運転で、液側バルブ15及びガス側バルブ14の開け忘れ。
In the other modes shown below, since the high pressure rises at the start of operation and overcurrent flows through the compressor 3, an overcurrent protection device for the compressor 3 (not shown) is activated and the compressor 3 is stopped. It will be excluded from this form.
(5) The operation mode is heating operation and the gas side valve 14 is forgotten to be opened;
(6) The operation mode is heating operation, and the liquid side valve 15 and the gas side valve 14 are forgotten to be opened.
運転モードが暖房運転で、ガス側バルブ14の開け忘れ時は、圧縮機3とガス側バルブ14との間に四方弁4しかなく、圧縮機3の吐出側の容積は極めて小さい。そのため、圧縮機3が始動すると高圧が上昇して圧縮機3に過電流が流れ、圧縮機3の過電流保護装置が作動して圧縮機3を停止する。   When the operation mode is heating operation and the gas side valve 14 is forgotten to be opened, there is only the four-way valve 4 between the compressor 3 and the gas side valve 14, and the discharge side volume of the compressor 3 is extremely small. For this reason, when the compressor 3 is started, the high pressure rises, an overcurrent flows through the compressor 3, the overcurrent protection device of the compressor 3 is activated, and the compressor 3 is stopped.
運転モードが暖房運転で、液側バルブ15及びガス側バルブ14の開け忘れ時も、同様である。   The same applies when the operation mode is heating operation and the liquid side valve 15 and the gas side valve 14 are forgotten to be opened.
上記(1)〜(4)の各モードにおいて、運転開始時の圧縮機3の吐出圧力Pd及び圧縮機3の吸入圧力Ps、圧縮機3の吐出温度Td及び圧縮機3の吸入温度Ts及び圧縮機3のシェル温度Tsh、室内熱交換器6の温度及び室外熱交換器11の温度を測定した。   In each of the above modes (1) to (4), the discharge pressure Pd of the compressor 3 and the suction pressure Ps of the compressor 3 at the start of operation, the discharge temperature Td of the compressor 3, the suction temperature Ts of the compressor 3, and the compression The shell temperature Tsh of the machine 3, the temperature of the indoor heat exchanger 6 and the temperature of the outdoor heat exchanger 11 were measured.
(1)〜(4)の順で、以下、上記測定結果を説明する。図3乃至図5は実施の形態1を示す図で、図3は冷房運転で液側バルブ15の開け忘れ時の運転開始時の圧縮機3の吐出圧力Pd及び圧縮機3の吸入圧力Psの変化を示す図、図4は冷房運転で液側バルブ15の開け忘れ時の運転開始時の圧縮機3の吐出温度Td及び圧縮機3の吸入温度Ts及び圧縮機3のシェル温度Tshの変化を示す図、図5は冷房運転で液側バルブ15の開け忘れ時の運転開始直後の室内熱交換器6の温度及び室外熱交換器11の温度等の変化を示す図である。   The measurement results will be described below in the order of (1) to (4). 3 to 5 show the first embodiment. FIG. 3 shows the discharge pressure Pd of the compressor 3 and the suction pressure Ps of the compressor 3 at the start of operation when the liquid side valve 15 is forgotten to be opened in the cooling operation. FIG. 4 is a diagram showing changes, and FIG. 4 shows changes in the discharge temperature Td of the compressor 3, the suction temperature Ts of the compressor 3, and the shell temperature Tsh of the compressor 3 at the start of operation when the liquid side valve 15 is forgotten to be opened in the cooling operation. FIG. 5 is a diagram showing changes in the temperature of the indoor heat exchanger 6 and the temperature of the outdoor heat exchanger 11 immediately after the start of operation when the liquid side valve 15 is forgotten to be opened in the cooling operation.
冷房運転で液側バルブ15の開け忘れ時は、主に室内熱交換器6の冷媒が圧縮機3により室外熱交換器11、中圧レシーバ9に移動する。運転を開始すると、最初の2分間程度は通常の冷房運転に近い動作をするが、その後は、低圧側の冷媒がなくなるため圧縮機3の吸入側が略真空状態となる(図3参照)。   When it is forgotten to open the liquid side valve 15 in the cooling operation, mainly the refrigerant in the indoor heat exchanger 6 moves to the outdoor heat exchanger 11 and the intermediate pressure receiver 9 by the compressor 3. When the operation is started, an operation close to the normal cooling operation is performed for the first two minutes, but thereafter, the refrigerant on the low-pressure side disappears and the suction side of the compressor 3 is in a substantially vacuum state (see FIG. 3).
圧縮機3の運転を開始してから4分程度経過すると、冷媒回路での冷媒の移動はなくなり、圧縮機3の電動機(図示せず)が無負荷に近い状態で回転しているだけの状態となる。   When about 4 minutes have passed since the operation of the compressor 3 started, there is no movement of the refrigerant in the refrigerant circuit, and the motor (not shown) of the compressor 3 is just rotating in a state close to no load. It becomes.
圧縮機3の電動機は、無負荷に近い状態でも損失(巻線のジュール熱、鉄心の鉄損等)があり、この損失により発熱する。   The electric motor of the compressor 3 has a loss (Joule heat of the winding, iron loss of the iron core, etc.) even in a state close to no load, and generates heat due to this loss.
図4に示す圧縮機3の吐出温度Tdは、圧縮機3の吐出側の冷媒温度を間接的に検出する第1の温度センサ13aの情報により測定される。   The discharge temperature Td of the compressor 3 shown in FIG. 4 is measured by the information of the first temperature sensor 13a that indirectly detects the refrigerant temperature on the discharge side of the compressor 3.
また、図4に示す圧縮機3のシェル温度Tshは、圧縮機3の密閉容器の温度を検出する第6の温度センサ13fの情報により測定される。尚、シェルとは、密閉容器のことである。   Further, the shell temperature Tsh of the compressor 3 shown in FIG. 4 is measured by information of the sixth temperature sensor 13 f that detects the temperature of the hermetic container of the compressor 3. The shell is a sealed container.
また、図4に示す圧縮機3の吸入温度Tsは、参考までに示すもので、圧縮機3の吸入側の冷媒温度を間接的に検出する温度センサ(図示せず)の情報により測定される。   Also, the suction temperature Ts of the compressor 3 shown in FIG. 4 is shown for reference and is measured by information from a temperature sensor (not shown) that indirectly detects the refrigerant temperature on the suction side of the compressor 3. .
図4からわかるように、圧縮機3のシェル温度Tshが運転開始から約4分経過後、徐々に上昇する。その後も、さらにシェル温度Tshは上昇する。   As can be seen from FIG. 4, the shell temperature Tsh of the compressor 3 gradually rises after about 4 minutes from the start of operation. Thereafter, the shell temperature Tsh further increases.
圧縮機3の電動機は、密閉容器に焼き嵌め等により固定されるので、シェル温度Tshは圧縮機3の電動機の温度に略等しい。   Since the electric motor of the compressor 3 is fixed to the sealed container by shrink fitting or the like, the shell temperature Tsh is substantially equal to the temperature of the electric motor of the compressor 3.
一方、圧縮機3の吐出温度Tdは、図4に示すように、圧縮機3の運転開始直後は、10deg以上一旦上昇するが、その後は圧縮機3が圧縮仕事を行わないため、その後の変化は少ない。   On the other hand, as shown in FIG. 4, the discharge temperature Td of the compressor 3 once rises 10 deg or more immediately after the start of operation of the compressor 3, but thereafter, since the compressor 3 does not perform compression work, changes thereafter There are few.
従って、シェル温度Tshは、吐出温度Tdよりも少なくとも10deg以上高くなる。正常な冷房運転では、シェル温度Tshと吐出温度Tdは略同等である。   Accordingly, the shell temperature Tsh is at least 10 degrees higher than the discharge temperature Td. In normal cooling operation, the shell temperature Tsh and the discharge temperature Td are substantially equal.
空気調和機100の運転開始後(冷房運転)、圧縮機3のシェル温度Tshが吐出温度Tdよりも所定値(例えば、10deg)以上高くなる場合は、室外機1のバルブ(液側バルブ15)の開け忘れの可能性があることを示す一つの現象である。   After the start of the operation of the air conditioner 100 (cooling operation), when the shell temperature Tsh of the compressor 3 is higher than the discharge temperature Td by a predetermined value (for example, 10 deg) or more, the valve of the outdoor unit 1 (liquid side valve 15). It is a phenomenon that indicates the possibility of forgetting to open.
図5は冷房運転で液側バルブ15の開け忘れ時の運転開始直後の室内熱交換器6の温度及び室外熱交換器11の温度の変化を示す図であるが、図5において、「室内熱交中間温度」は、室内熱交換器6の冷媒流路における略中間部に設置され、冷媒の温度を間接的に検出する第2の温度センサ13bの検出する温度のことである。また、「室外熱交中間温度」は、室外熱交換器11の冷媒流路における略中間部に設置され、冷媒の温度を間接的に検出する第4の温度センサ13dの検出する温度のことである。   FIG. 5 is a diagram showing changes in the temperature of the indoor heat exchanger 6 and the temperature of the outdoor heat exchanger 11 immediately after the start of operation when the liquid-side valve 15 is forgotten to be opened in the cooling operation. The “intermediate intermediate temperature” is a temperature detected by the second temperature sensor 13b that is installed at a substantially intermediate portion in the refrigerant flow path of the indoor heat exchanger 6 and indirectly detects the temperature of the refrigerant. The “outdoor heat exchanger intermediate temperature” is a temperature detected by a fourth temperature sensor 13d that is installed at a substantially intermediate portion in the refrigerant flow path of the outdoor heat exchanger 11 and indirectly detects the temperature of the refrigerant. is there.
図5には、室外空気温度(35℃)、室内空気温度(27℃)も示している。   FIG. 5 also shows outdoor air temperature (35 ° C.) and indoor air temperature (27 ° C.).
図5に示すように、運転開始直後は圧縮機3の吸入圧力Psの低下に伴う冷媒の蒸発により室内熱交中間温度も減少する。しかし、冷媒の移動により数分後には、室内空気温度と室内熱交中間温度との差は、1〜3deg程度となる。正常な冷房運転時には、室内空気温度と室内熱交中間温度との差は、5〜20deg程度ある(室内空気温度>室内熱交中間温度)。   As shown in FIG. 5, immediately after the start of operation, the indoor heat exchanger intermediate temperature also decreases due to the evaporation of the refrigerant accompanying the decrease in the suction pressure Ps of the compressor 3. However, after several minutes due to the movement of the refrigerant, the difference between the indoor air temperature and the indoor heat exchanger intermediate temperature is about 1 to 3 deg. During normal cooling operation, the difference between the room air temperature and the room heat exchange intermediate temperature is about 5 to 20 degrees (room air temperature> room heat exchange intermediate temperature).
空気調和機100の運転開始後(冷房運転)、室内空気温度と室内熱交中間温度との差が、1〜3deg程度しかない場合は、室外機1のバルブ(液側バルブ15)の開け忘れの可能性があることを示す他の一つの現象である。   After starting the air conditioner 100 (cooling operation), if the difference between the indoor air temperature and the indoor heat exchange intermediate temperature is only about 1 to 3 degrees, forgetting to open the valve (liquid side valve 15) of the outdoor unit 1 It is another phenomenon that indicates that there is a possibility.
図5に示すように、運転開始直後は圧縮機3の吐出圧力Pdの上昇に伴い室外熱交中間温度は、室外空気温度(35℃)より高い状態を数分維持するが、その後は圧縮機3が圧縮仕事を行わないため室外送風機による送風により冷却され、室外熱交中間温度と室外空気温度との差は、1〜3deg程度となる。正常な冷房運転時には、室外熱交中間温度と室外空気温度との差は、5〜20deg程度ある(室外熱交中間温度>室外空気温度)。   As shown in FIG. 5, immediately after the operation is started, the outdoor heat exchange intermediate temperature is maintained higher than the outdoor air temperature (35 ° C.) for several minutes as the discharge pressure Pd of the compressor 3 increases. Since 3 does not perform compression work, it is cooled by blowing by an outdoor blower, and the difference between the outdoor heat exchange intermediate temperature and the outdoor air temperature is about 1 to 3 deg. During normal cooling operation, the difference between the outdoor heat exchange intermediate temperature and the outdoor air temperature is about 5 to 20 deg (outdoor heat exchange intermediate temperature> outdoor air temperature).
空気調和機100の運転開始後(冷房運転)、室外熱交中間温度と室外空気温度との差が、1〜3deg程度しかない場合は、室外機1のバルブ(液側バルブ15)の開け忘れの可能性があることを示すさらに他の一つの現象である。   If the difference between the outdoor heat exchange intermediate temperature and the outdoor air temperature is only about 1 to 3 deg after the start of the operation of the air conditioner 100 (cooling operation), forgetting to open the valve (liquid side valve 15) of the outdoor unit 1 This is yet another phenomenon that indicates that there is a possibility.
以上をまとめると、冷房運転で液側バルブ15の開け忘れ時の運転開始時、冷媒回路において以下に示す現象が発生する。
(a)圧縮機3のシェル温度Tshが吐出温度Tdよりも所定値(例えば、10deg)以上高くなる;
(b)室内空気温度と室内熱交中間温度との差が、例えば、3deg以下になる;
(c)室外熱交中間温度と室外空気温度との差が、例えば、3deg以下になる。
In summary, the following phenomenon occurs in the refrigerant circuit at the start of operation when the liquid side valve 15 is forgotten to be opened in the cooling operation.
(A) The shell temperature Tsh of the compressor 3 is higher than the discharge temperature Td by a predetermined value (for example, 10 deg) or more;
(B) The difference between the indoor air temperature and the indoor heat exchanger intermediate temperature is, for example, 3 deg or less;
(C) The difference between the outdoor heat exchange intermediate temperature and the outdoor air temperature is, for example, 3 deg or less.
従って、空気調和機100の運転を開始してから一定時間(例えば、5分程度)経過後、上記(a)〜(c)の現象を一定時間(例えば、3〜5分)連続して検知した場合は、室外機1のバルブの開け忘れと判断して、圧縮機3を停止する。   Therefore, after a certain time (for example, about 5 minutes) has elapsed since the start of the operation of the air conditioner 100, the above phenomena (a) to (c) are continuously detected for a certain time (for example, 3 to 5 minutes). In that case, it is determined that the valve of the outdoor unit 1 is forgotten to be opened, and the compressor 3 is stopped.
尚、図示はしないが、空気調和機100は、制御プログラムが組み込まれたマイクロコンピュータにより構成される制御部を備える。制御部は、第1の温度センサ13a、第2の温度センサ13b、第3の温度センサ13c、第4の温度センサ13d、第5の温度センサ13e、第6の温度センサ13fからの情報に基づいて、上記(a)〜(c)の現象を一定時間連続して検知した場合は、室外機1のバルブの開け忘れと判断して、圧縮機3を停止する。また、制御部は、圧縮機3を停止するとともに、空気調和機100の室内機2の表示部に室外機1のバルブの開け忘れを表示するようにしてもよい。   Although not shown, the air conditioner 100 includes a control unit configured by a microcomputer in which a control program is incorporated. The control unit is based on information from the first temperature sensor 13a, the second temperature sensor 13b, the third temperature sensor 13c, the fourth temperature sensor 13d, the fifth temperature sensor 13e, and the sixth temperature sensor 13f. When the phenomena (a) to (c) are detected continuously for a certain period of time, it is determined that the valve of the outdoor unit 1 has been forgotten to be opened, and the compressor 3 is stopped. In addition, the control unit may stop the compressor 3 and display the forgetting to open the valve of the outdoor unit 1 on the display unit of the indoor unit 2 of the air conditioner 100.
図6乃至図8は実施の形態1を示す図で、図6は冷房運転でガス側バルブ14の開け忘れ時の運転開始時の圧縮機3の吐出圧力Pd及び圧縮機3の吸入圧力Psの変化を示す図、図7は冷房運転でガス側バルブ14の開け忘れ時の運転開始時の圧縮機3の吐出温度Td及び圧縮機3の吸入温度Ts及び圧縮機3のシェル温度Tshの変化を示す図、図8は冷房運転でガス側バルブ14の開け忘れ時の運転開始直後の室内熱交換器6の温度及び室外熱交換器11の温度等の変化を示す図である。   6 to 8 show the first embodiment. FIG. 6 shows the discharge pressure Pd of the compressor 3 and the suction pressure Ps of the compressor 3 at the start of operation when the gas side valve 14 is forgotten to be opened in the cooling operation. FIG. 7 shows changes in the discharge temperature Td of the compressor 3, the suction temperature Ts of the compressor 3, and the shell temperature Tsh of the compressor 3 at the start of operation when the gas side valve 14 is forgotten to be opened in the cooling operation. FIG. 8 is a diagram showing changes in the temperature of the indoor heat exchanger 6 and the temperature of the outdoor heat exchanger 11 immediately after the start of operation when the gas-side valve 14 is forgotten to be opened in the cooling operation.
冷房運転でガス側バルブ14の開け忘れ時は、圧縮機3の吸入配管18中の僅かな量の冷媒が室外熱交換器11側に移動するだけである。   When the gas-side valve 14 is forgotten to be opened in the cooling operation, only a small amount of refrigerant in the suction pipe 18 of the compressor 3 moves to the outdoor heat exchanger 11 side.
従って、図6に示すように、圧縮機3の吐出圧力Pdは、運転開始直後も変化が見られない。圧縮機3の吸入圧力Psは、運転直後から急激に下がり、圧縮機3の吸入配管18は数分で略真空状態となる。   Therefore, as shown in FIG. 6, the discharge pressure Pd of the compressor 3 does not change immediately after the start of operation. The suction pressure Ps of the compressor 3 rapidly decreases immediately after the operation, and the suction pipe 18 of the compressor 3 becomes a substantially vacuum state in a few minutes.
圧縮機3の運転を開始してから2分程度経過すると、冷媒回路での冷媒の移動はなくなり、圧縮機3の電動機(図示せず)が無負荷に近い状態で回転しているだけの状態となる。   When about 2 minutes have passed since the operation of the compressor 3 started, there is no movement of the refrigerant in the refrigerant circuit, and the motor (not shown) of the compressor 3 is just rotating in a state close to no load. It becomes.
圧縮機3の電動機は、無負荷に近い状態でも損失(巻線のジュール熱、鉄心の鉄損等)があり、この損失により発熱する。   The electric motor of the compressor 3 has a loss (Joule heat of the winding, iron loss of the iron core, etc.) even in a state close to no load, and generates heat due to this loss.
図7に示す圧縮機3の吐出温度Tdは、圧縮機3の吐出側の冷媒温度を間接的に検出する第1の温度センサ13aの情報により測定される。   The discharge temperature Td of the compressor 3 shown in FIG. 7 is measured by the information of the first temperature sensor 13a that indirectly detects the refrigerant temperature on the discharge side of the compressor 3.
また、図7に示す圧縮機3のシェル温度Tshは、圧縮機3の密閉容器の温度を検出する第6の温度センサ13fの情報により測定される。   Moreover, the shell temperature Tsh of the compressor 3 shown in FIG. 7 is measured by the information of the sixth temperature sensor 13 f that detects the temperature of the sealed container of the compressor 3.
また、図7に示す圧縮機3の吸入温度Tsは、参考までに示すもので、圧縮機3の吸入側の冷媒温度を間接的に検出する温度センサ(図示せず)の情報により測定される。   Further, the suction temperature Ts of the compressor 3 shown in FIG. 7 is shown for reference, and is measured by information of a temperature sensor (not shown) that indirectly detects the refrigerant temperature on the suction side of the compressor 3. .
図7からわかるように、圧縮機3のシェル温度Tshが運転開始から約4分経過後、徐々に上昇する。その後も、さらにシェル温度Tshは上昇する。   As can be seen from FIG. 7, the shell temperature Tsh of the compressor 3 gradually rises after about 4 minutes from the start of operation. Thereafter, the shell temperature Tsh further increases.
圧縮機3の電動機は、密閉容器に焼き嵌め等により固定されるので、シェル温度Tshは圧縮機3の電動機の温度に略等しい。   Since the electric motor of the compressor 3 is fixed to the sealed container by shrink fitting or the like, the shell temperature Tsh is substantially equal to the temperature of the electric motor of the compressor 3.
一方、圧縮機3の吐出温度Tdは、図7に示すように、シェル温度Tshに比べ温度上昇は緩やかである。   On the other hand, as shown in FIG. 7, the discharge temperature Td of the compressor 3 rises more slowly than the shell temperature Tsh.
従って、運転開始から6分程度経過後は、シェル温度Tshは吐出温度Tdよりも少なくとも10deg以上高くなる。正常な冷房運転では、シェル温度Tshと吐出温度Tdは略同等である。   Therefore, after about 6 minutes from the start of operation, the shell temperature Tsh becomes at least 10 degrees higher than the discharge temperature Td. In normal cooling operation, the shell temperature Tsh and the discharge temperature Td are substantially equal.
空気調和機100の運転開始後(冷房運転)、圧縮機3のシェル温度Tshが吐出温度Tdよりも所定値(例えば、10deg)以上高くなる場合は、室外機1のバルブ(ガス側バルブ14)の開け忘れの可能性があることを示す一つの現象である。   After the operation of the air conditioner 100 is started (cooling operation), when the shell temperature Tsh of the compressor 3 is higher than the discharge temperature Td by a predetermined value (for example, 10 deg) or more, the valve of the outdoor unit 1 (gas side valve 14). It is a phenomenon that indicates the possibility of forgetting to open.
図8は冷房運転でガス側バルブ14の開け忘れ時の運転開始直後の室内熱交換器6の温度及び室外熱交換器11の温度等の変化を示す図であるが、図8において、「室内熱交中間温度」は、室内熱交換器6の略中間部に設置され、冷媒の温度を間接的に検出する第2の温度センサ13bの検出する温度のことである。また、「室外熱交中間温度」は、室外熱交換器11の略中間部に設置され、冷媒の温度を間接的に検出する第4の温度センサ13dの検出する温度のことである。   FIG. 8 is a diagram showing changes in the temperature of the indoor heat exchanger 6 and the temperature of the outdoor heat exchanger 11 immediately after the start of operation when the gas side valve 14 is forgotten to be opened in the cooling operation. The “heat exchange intermediate temperature” is a temperature detected by the second temperature sensor 13b, which is installed in a substantially intermediate portion of the indoor heat exchanger 6 and indirectly detects the temperature of the refrigerant. The “outdoor heat exchanger intermediate temperature” is a temperature detected by a fourth temperature sensor 13d that is installed at a substantially intermediate portion of the outdoor heat exchanger 11 and indirectly detects the temperature of the refrigerant.
図8には、室外空気温度(35℃)、室内空気温度(27℃)も示している。   FIG. 8 also shows outdoor air temperature (35 ° C.) and indoor air temperature (27 ° C.).
図8に示すように、運転開始から数分後には、室内空気温度と室内熱交中間温度との差は、1〜3deg程度となる。正常な冷房運転時には、室内空気温度と室内熱交中間温度との差は、5〜20deg程度ある(室内空気温度>室内熱交中間温度)。   As shown in FIG. 8, after a few minutes from the start of operation, the difference between the indoor air temperature and the indoor heat exchange intermediate temperature is about 1 to 3 deg. During normal cooling operation, the difference between the room air temperature and the room heat exchange intermediate temperature is about 5 to 20 degrees (room air temperature> room heat exchange intermediate temperature).
空気調和機100の運転開始後(冷房運転)、室内空気温度と室内熱交中間温度との差が、1〜3deg程度しかない場合は、室外機1のバルブ(ガス側バルブ14)の開け忘れの可能性があることを示す他の一つの現象である。   If the difference between the indoor air temperature and the indoor heat exchanger intermediate temperature is only about 1 to 3 deg after starting the operation of the air conditioner 100 (cooling operation), forgetting to open the valve (gas side valve 14) of the outdoor unit 1 It is another phenomenon that indicates that there is a possibility.
図8に示すように、運転開始から室外熱交中間温度と室外空気温度との差は、1〜3deg程度となる。正常な冷房運転時には、室外熱交中間温度と室外空気温度との差は、5〜20deg程度ある(室外熱交中間温度>室外空気温度)。   As shown in FIG. 8, the difference between the outdoor heat exchanger intermediate temperature and the outdoor air temperature from the start of operation is about 1 to 3 deg. During normal cooling operation, the difference between the outdoor heat exchange intermediate temperature and the outdoor air temperature is about 5 to 20 deg (outdoor heat exchange intermediate temperature> outdoor air temperature).
空気調和機100の運転開始後(冷房運転)、室外熱交中間温度と室外空気温度との差が、1〜3deg程度しかない場合は、室外機1のバルブ(ガス側バルブ14)の開け忘れの可能性があることを示すさらに他の一つの現象である。   If the difference between the outdoor heat exchanger intermediate temperature and the outdoor air temperature is only about 1 to 3 deg after the start of the operation of the air conditioner 100 (cooling operation), forgetting to open the valve (gas side valve 14) of the outdoor unit 1 This is yet another phenomenon that indicates that there is a possibility.
以上をまとめると、冷房運転でガス側バルブ14の開け忘れ時の運転開始時、冷媒回路において以下に示す現象が発生する。
(a)圧縮機3のシェル温度Tshが吐出温度Tdよりも所定値(例えば、10deg)以上高くなる;
(b)室内空気温度と室内熱交中間温度との差が、1〜3deg程度になる;
(c)室外熱交中間温度と室外空気温度との差が、1〜3deg程度になる。
In summary, the following phenomenon occurs in the refrigerant circuit at the start of operation when the gas side valve 14 is forgotten to be opened in the cooling operation.
(A) The shell temperature Tsh of the compressor 3 is higher than the discharge temperature Td by a predetermined value (for example, 10 deg) or more;
(B) The difference between the indoor air temperature and the indoor heat exchanger intermediate temperature is about 1 to 3 deg;
(C) The difference between the outdoor heat exchanger intermediate temperature and the outdoor air temperature is about 1 to 3 deg.
従って、空気調和機100の運転を開始してから一定時間(例えば、6分程度)経過後、上記(a)〜(c)の現象を一定時間連続して検知した場合は、室外機1のバルブの開け忘れと判断して、圧縮機3を停止する。   Therefore, after a certain period of time (for example, about 6 minutes) has elapsed since the start of the operation of the air conditioner 100, when the phenomena (a) to (c) are detected continuously for a certain period of time, the outdoor unit 1 It is determined that the valve is forgotten to be opened, and the compressor 3 is stopped.
尚、図示はしないが、空気調和機100は、制御プログラムが組み込まれたマイクロコンピュータにより構成される制御部を備える。制御部は、第1の温度センサ13a、第2の温度センサ13b、第3の温度センサ13c、第4の温度センサ13d、第5の温度センサ13e、第6の温度センサ13fからの情報に基づいて、上記(a)〜(c)の現象を一定時間連続して検知した場合は、室外機1のバルブの開け忘れと判断して、圧縮機3を停止する。また、制御部は、圧縮機3を停止するとともに、空気調和機100の室内機2の表示部に室外機1のバルブの開け忘れを表示するようにしてもよい。   Although not shown, the air conditioner 100 includes a control unit configured by a microcomputer in which a control program is incorporated. The control unit is based on information from the first temperature sensor 13a, the second temperature sensor 13b, the third temperature sensor 13c, the fourth temperature sensor 13d, the fifth temperature sensor 13e, and the sixth temperature sensor 13f. When the phenomena (a) to (c) are detected continuously for a certain period of time, it is determined that the valve of the outdoor unit 1 has been forgotten to be opened, and the compressor 3 is stopped. In addition, the control unit may stop the compressor 3 and display the forgetting to open the valve of the outdoor unit 1 on the display unit of the indoor unit 2 of the air conditioner 100.
図9乃至図11は実施の形態1を示す図で、図9は冷房運転でガス側バルブ14及び液側バルブ15の開け忘れ時の運転開始時の圧縮機3の吐出圧力Pd及び圧縮機3の吸入圧力Psの変化を示す図、図10は冷房運転でガス側バルブ14及び液側バルブ15の開け忘れ時の運転開始時の圧縮機3の吐出温度Td及び圧縮機3の吸入温度Ts及び圧縮機3のシェル温度Tshの変化を示す図、図11は冷房運転でガス側バルブ14及び液側バルブ15の開け忘れ時の運転開始直後の室内熱交換器6の温度及び室外熱交換器11の温度等の変化を示す図である。   9 to 11 show the first embodiment. FIG. 9 shows the discharge pressure Pd of the compressor 3 and the compressor 3 at the start of operation when the gas side valve 14 and the liquid side valve 15 are forgotten to be opened in the cooling operation. FIG. 10 shows a change in the suction pressure Ps of the compressor 3 at the start of operation when the gas-side valve 14 and the liquid-side valve 15 are forgotten to be opened in the cooling operation, and the suction temperature Ts of the compressor 3. FIG. 11 is a diagram showing changes in the shell temperature Tsh of the compressor 3. FIG. 11 shows the temperature of the indoor heat exchanger 6 and the outdoor heat exchanger 11 immediately after the start of operation when the gas side valve 14 and the liquid side valve 15 are forgotten to be opened in the cooling operation. It is a figure which shows changes, such as temperature.
冷房運転でガス側バルブ14及び液側バルブ15の開け忘れ時は、ガス側バルブ14の開け忘れ時と同様、圧縮機3の吸入配管18中の僅かな量の冷媒が室外熱交換器11側に移動するだけである。   When the gas-side valve 14 and the liquid-side valve 15 are forgotten to be opened in the cooling operation, a small amount of refrigerant in the suction pipe 18 of the compressor 3 is removed from the outdoor heat exchanger 11 side as when the gas-side valve 14 is forgotten to be opened. Just move on.
従って、図9に示すように、圧縮機3の吐出圧力Pdは、運転開始直後も変化が見られない。圧縮機3の吸入圧力Psは、運転直後から急激に下がり、圧縮機3の吸入配管18は1分程度で略真空状態となる。   Therefore, as shown in FIG. 9, the discharge pressure Pd of the compressor 3 does not change immediately after the start of operation. The suction pressure Ps of the compressor 3 rapidly decreases immediately after operation, and the suction pipe 18 of the compressor 3 is brought into a substantially vacuum state in about 1 minute.
圧縮機3の運転を開始してから1分程度経過すると、冷媒回路での冷媒の移動はなくなり、圧縮機3の電動機(図示せず)が無負荷に近い状態で回転しているだけの状態となる。   When about 1 minute has passed since the operation of the compressor 3 started, the refrigerant does not move in the refrigerant circuit, and the electric motor (not shown) of the compressor 3 is only rotating in a state close to no load. It becomes.
圧縮機3の電動機は、無負荷に近い状態でも損失(巻線のジュール熱、鉄心の鉄損等)があり、この損失により発熱する。   The electric motor of the compressor 3 has a loss (Joule heat of the winding, iron loss of the iron core, etc.) even in a state close to no load, and generates heat due to this loss.
図10に示す圧縮機3の吐出温度Tdは、圧縮機3の吐出側の冷媒温度を間接的に検出する第1の温度センサ13aの情報により測定される。   The discharge temperature Td of the compressor 3 shown in FIG. 10 is measured by the information of the first temperature sensor 13a that indirectly detects the refrigerant temperature on the discharge side of the compressor 3.
また、図10に示す圧縮機3のシェル温度Tshは、圧縮機3の密閉容器の温度を検出する第6の温度センサ13fの情報により測定される。   Further, the shell temperature Tsh of the compressor 3 shown in FIG. 10 is measured by information of the sixth temperature sensor 13 f that detects the temperature of the hermetic container of the compressor 3.
また、図10に示す圧縮機3の吸入温度Tsは、参考までに示すもので、圧縮機3の吸入側の冷媒温度を間接的に検出する温度センサ(図示せず)の情報により測定される。   Further, the suction temperature Ts of the compressor 3 shown in FIG. 10 is shown for reference and is measured by information of a temperature sensor (not shown) that indirectly detects the refrigerant temperature on the suction side of the compressor 3. .
図10からわかるように、圧縮機3のシェル温度Tshが運転開始から約4分経過後、徐々に上昇する。その後も、さらにシェル温度Tshは上昇する。   As can be seen from FIG. 10, the shell temperature Tsh of the compressor 3 gradually rises after about 4 minutes from the start of operation. Thereafter, the shell temperature Tsh further increases.
圧縮機3の電動機は、密閉容器に焼き嵌め等により固定されるので、シェル温度Tshは圧縮機3の電動機の温度に略等しい。   Since the electric motor of the compressor 3 is fixed to the sealed container by shrink fitting or the like, the shell temperature Tsh is substantially equal to the temperature of the electric motor of the compressor 3.
一方、圧縮機3の吐出温度Tdは、図10に示すように、シェル温度Tshに比べ温度上昇は緩やかである。   On the other hand, as shown in FIG. 10, the discharge temperature Td of the compressor 3 rises more slowly than the shell temperature Tsh.
従って、運転開始から5分程度経過後は、シェル温度Tshは吐出温度Tdよりも少なくとも10deg以上高くなる。正常な冷房運転では、シェル温度Tshと吐出温度Tdは略同等である。   Therefore, after about 5 minutes have elapsed from the start of operation, the shell temperature Tsh is at least 10 degrees higher than the discharge temperature Td. In normal cooling operation, the shell temperature Tsh and the discharge temperature Td are substantially equal.
空気調和機100の運転開始後(冷房運転)、圧縮機3のシェル温度Tshが吐出温度Tdよりも所定値(例えば、10deg)以上高くなる場合は、室外機1のバルブ(ガス側バルブ14及び液側バルブ15)の開け忘れの可能性があることを示す一つの現象である。   After the start of the operation of the air conditioner 100 (cooling operation), when the shell temperature Tsh of the compressor 3 is higher than the discharge temperature Td by a predetermined value (for example, 10 deg) or more, the valves of the outdoor unit 1 (the gas side valve 14 and This is a phenomenon indicating that the liquid side valve 15) may be forgotten to be opened.
図11は冷房運転でガス側バルブ14及び液側バルブ15の開け忘れ時の運転開始直後の室内熱交換器6の温度及び室外熱交換器11の温度等の変化を示す図であるが、図11において、「室内熱交中間温度」は、室内熱交換器6の略中間部に設置され、冷媒の温度を間接的に検出する第2の温度センサ13bの検出する温度のことである。また、「室外熱交中間温度」は、室外熱交換器11の略中間部に設置され、冷媒の温度を間接的に検出する第4の温度センサ13dの検出する温度のことである。   FIG. 11 is a diagram showing changes in the temperature of the indoor heat exchanger 6 and the temperature of the outdoor heat exchanger 11 immediately after the start of operation when the gas side valve 14 and the liquid side valve 15 are forgotten to be opened in the cooling operation. 11, the “indoor heat exchange intermediate temperature” is a temperature detected by the second temperature sensor 13 b that is installed in a substantially intermediate portion of the indoor heat exchanger 6 and indirectly detects the temperature of the refrigerant. The “outdoor heat exchanger intermediate temperature” is a temperature detected by a fourth temperature sensor 13d that is installed at a substantially intermediate portion of the outdoor heat exchanger 11 and indirectly detects the temperature of the refrigerant.
図11には、室外空気温度(35℃)、室内空気温度(27℃)も示している。   FIG. 11 also shows outdoor air temperature (35 ° C.) and indoor air temperature (27 ° C.).
図11に示すように、運転開始から数分後には、室内空気温度と室内熱交中間温度との差は、1〜3deg程度となる。正常な冷房運転時には、室内空気温度と室内熱交中間温度との差は、5〜20deg程度ある(室内空気温度>室内熱交中間温度)。   As shown in FIG. 11, after a few minutes from the start of operation, the difference between the indoor air temperature and the indoor heat exchange intermediate temperature is about 1 to 3 deg. During normal cooling operation, the difference between the room air temperature and the room heat exchange intermediate temperature is about 5 to 20 degrees (room air temperature> room heat exchange intermediate temperature).
空気調和機100の運転開始後(冷房運転)、室内空気温度と室内熱交中間温度との差が、1〜3deg程度しかない場合は、室外機1のバルブ(ガス側バルブ14及び液側バルブ15)の開け忘れの可能性があることを示す他の一つの現象である。   After the operation of the air conditioner 100 is started (cooling operation), when the difference between the indoor air temperature and the indoor heat exchange intermediate temperature is only about 1 to 3 deg, the valves of the outdoor unit 1 (the gas side valve 14 and the liquid side valve). 15) Another phenomenon indicating that there is a possibility of forgetting to open.
図11に示すように、運転開始から室外熱交中間温度と室外空気温度との差は、1〜3deg程度となる。正常な冷房運転時には、室外熱交中間温度と室外空気温度との差は、5〜20deg程度ある(室外熱交中間温度>室外空気温度)。   As shown in FIG. 11, the difference between the outdoor heat exchanger intermediate temperature and the outdoor air temperature is about 1 to 3 deg from the start of operation. During normal cooling operation, the difference between the outdoor heat exchange intermediate temperature and the outdoor air temperature is about 5 to 20 deg (outdoor heat exchange intermediate temperature> outdoor air temperature).
空気調和機100の運転開始後(冷房運転)、室外熱交中間温度と室外空気温度との差が、1〜3deg程度しかない場合は、室外機1のバルブ(ガス側バルブ14及び液側バルブ15)の開け忘れの可能性があることを示すさらに他の一つの現象である。   After the operation of the air conditioner 100 (cooling operation), if the difference between the outdoor heat exchange intermediate temperature and the outdoor air temperature is only about 1 to 3 degrees, the valves of the outdoor unit 1 (the gas side valve 14 and the liquid side valve) 15) is another phenomenon indicating that there is a possibility of forgetting to open.
以上をまとめると、冷房運転でガス側バルブ14及び液側バルブ15の開け忘れ時の運転開始時、冷媒回路において以下に示す現象が発生する。
(a)圧縮機3のシェル温度Tshが吐出温度Tdよりも所定値(例えば、10deg)以上高くなる;
(b)室内空気温度と室内熱交中間温度との差が、1〜3deg程度になる;
(c)室外熱交中間温度と室外空気温度との差が、1〜3deg程度になる。
In summary, the following phenomenon occurs in the refrigerant circuit at the start of operation when the gas side valve 14 and the liquid side valve 15 are forgotten to be opened in the cooling operation.
(A) The shell temperature Tsh of the compressor 3 is higher than the discharge temperature Td by a predetermined value (for example, 10 deg) or more;
(B) The difference between the indoor air temperature and the indoor heat exchanger intermediate temperature is about 1 to 3 deg;
(C) The difference between the outdoor heat exchanger intermediate temperature and the outdoor air temperature is about 1 to 3 deg.
従って、空気調和機100の運転を開始してから一定時間(例えば、6分程度)経過後、上記(a)〜(c)の現象を一定時間連続して検知した場合は、室外機1のバルブの開け忘れと判断して、圧縮機3を停止する。   Therefore, after a certain period of time (for example, about 6 minutes) has elapsed since the start of the operation of the air conditioner 100, when the phenomena (a) to (c) are detected continuously for a certain period of time, the outdoor unit 1 It is determined that the valve is forgotten to be opened, and the compressor 3 is stopped.
尚、図示はしないが、空気調和機100は、制御プログラムが組み込まれたマイクロコンピュータにより構成される制御部を備える。制御部は、第1の温度センサ13a、第2の温度センサ13b、第3の温度センサ13c、第4の温度センサ13d、第5の温度センサ13e、第6の温度センサ13fからの情報に基づいて、上記(a)〜(c)の現象を一定時間連続して検知した場合は、室外機1のバルブの開け忘れと判断して、圧縮機3を停止する。また、制御部は、圧縮機3を停止するとともに、空気調和機100の室内機2の表示部に室外機1のバルブの開け忘れを表示するようにしてもよい。   Although not shown, the air conditioner 100 includes a control unit configured by a microcomputer in which a control program is incorporated. The control unit is based on information from the first temperature sensor 13a, the second temperature sensor 13b, the third temperature sensor 13c, the fourth temperature sensor 13d, the fifth temperature sensor 13e, and the sixth temperature sensor 13f. When the phenomena (a) to (c) are detected continuously for a certain period of time, it is determined that the valve of the outdoor unit 1 has been forgotten to be opened, and the compressor 3 is stopped. In addition, the control unit may stop the compressor 3 and display the forgetting to open the valve of the outdoor unit 1 on the display unit of the indoor unit 2 of the air conditioner 100.
図12乃至図13は実施の形態1を示す図で、図12は暖房運転で液側バルブ15の開け忘れ時の運転開始時の圧縮機3の吐出圧力Pd及び圧縮機3の吸入圧力Psの変化を示す図、図13は暖房運転で液側バルブ15の開け忘れ時の運転開始時の圧縮機3の吐出温度Td及び圧縮機3の吸入温度Ts及び圧縮機3のシェル温度Tshの変化を示す図、図14は暖房運転で液側バルブ15の開け忘れ時の運転開始直後の室内熱交換器6の温度及び室外熱交換器11の温度等の変化を示す図である。   12 to 13 show the first embodiment. FIG. 12 shows the discharge pressure Pd of the compressor 3 and the suction pressure Ps of the compressor 3 at the start of operation when the liquid side valve 15 is forgotten to be opened in the heating operation. FIG. 13 shows changes in the discharge temperature Td of the compressor 3, the suction temperature Ts of the compressor 3, and the shell temperature Tsh of the compressor 3 at the start of operation when the liquid side valve 15 is forgotten to be opened in the heating operation. FIG. 14 and FIG. 14 are diagrams showing changes in the temperature of the indoor heat exchanger 6 and the temperature of the outdoor heat exchanger 11 immediately after the start of operation when the liquid side valve 15 is forgotten to be opened in the heating operation.
暖房運転で液側バルブ15の開け忘れ時は、主に室内熱交換器6及び中圧レシーバ9の冷媒が圧縮機3により室内熱交換器6に移動する。運転を開始すると、最初の1分間程度は通常の暖房運転に近い動作をするが、その後は、低圧側の冷媒がなくなるため圧縮機3の吸入側が略真空状態となる(図12参照)。   When forgetting to open the liquid side valve 15 in the heating operation, mainly the refrigerant in the indoor heat exchanger 6 and the intermediate pressure receiver 9 moves to the indoor heat exchanger 6 by the compressor 3. When the operation is started, the operation is similar to the normal heating operation for the first minute or so, but thereafter, the refrigerant on the low-pressure side disappears and the suction side of the compressor 3 is in a substantially vacuum state (see FIG. 12).
圧縮機3の運転を開始してから34分程度経過すると、冷媒回路での冷媒の移動はなくなり、圧縮機3の電動機(図示せず)が無負荷に近い状態で回転しているだけの状態となる。   When about 34 minutes have elapsed since the operation of the compressor 3 started, there is no movement of the refrigerant in the refrigerant circuit, and the motor (not shown) of the compressor 3 is just rotating in a state close to no load. It becomes.
圧縮機3の電動機は、無負荷に近い状態でも損失(巻線のジュール熱、鉄心の鉄損等)があり、この損失により発熱する。   The electric motor of the compressor 3 has a loss (Joule heat of the winding, iron loss of the iron core, etc.) even in a state close to no load, and generates heat due to this loss.
図13に示す圧縮機3の吐出温度Tdは、圧縮機3の吐出側の冷媒温度を間接的に検出する第1の温度センサ13aの情報により測定される。   The discharge temperature Td of the compressor 3 shown in FIG. 13 is measured by the information of the first temperature sensor 13a that indirectly detects the refrigerant temperature on the discharge side of the compressor 3.
また、図13に示す圧縮機3のシェル温度Tshは、圧縮機3の密閉容器の温度を検出する第6の温度センサ13fの情報により測定される。尚、シェルとは、密閉容器のことである。   Moreover, the shell temperature Tsh of the compressor 3 shown in FIG. 13 is measured by the information of the sixth temperature sensor 13 f that detects the temperature of the sealed container of the compressor 3. The shell is a sealed container.
また、図13に示す圧縮機3の吸入温度Tsは、参考までに示すもので、圧縮機3の吸入側の冷媒温度を間接的に検出する温度センサ(図示せず)の情報により測定される。   Further, the suction temperature Ts of the compressor 3 shown in FIG. 13 is shown for reference and is measured by information from a temperature sensor (not shown) that indirectly detects the refrigerant temperature on the suction side of the compressor 3. .
図13からわかるように、圧縮機3のシェル温度Tshが運転開始から数分経過後、徐々に上昇する。その後も、さらにシェル温度Tshは上昇する。   As can be seen from FIG. 13, the shell temperature Tsh of the compressor 3 gradually rises after several minutes from the start of operation. Thereafter, the shell temperature Tsh further increases.
圧縮機3の電動機は、密閉容器に焼き嵌め等により固定されるので、シェル温度Tshは圧縮機3の電動機の温度に略等しい。   Since the electric motor of the compressor 3 is fixed to the sealed container by shrink fitting or the like, the shell temperature Tsh is substantially equal to the temperature of the electric motor of the compressor 3.
一方、圧縮機3の吐出温度Tdは、図13に示すように、圧縮機3の運転開始直後は、20deg以上一旦上昇するが、その後は圧縮機3が圧縮仕事を行わないため、その後の変化は少ない。   On the other hand, as shown in FIG. 13, the discharge temperature Td of the compressor 3 once rises 20 degrees or more immediately after the start of operation of the compressor 3, but thereafter the compressor 3 does not perform compression work, and thereafter changes. There are few.
従って、シェル温度Tshは、吐出温度Tdよりも少なくとも10deg以上高くなる。正常な暖房運転では、シェル温度Tshと吐出温度Tdは略同等である。   Accordingly, the shell temperature Tsh is at least 10 degrees higher than the discharge temperature Td. In normal heating operation, the shell temperature Tsh and the discharge temperature Td are substantially equal.
空気調和機100の運転開始後(暖房運転)、圧縮機3のシェル温度Tshが吐出温度Tdよりも所定値(例えば、10deg)以上高くなる場合は、室外機1のバルブ(液側バルブ15)の開け忘れの可能性があることを示す一つの現象である。   After the start of the operation of the air conditioner 100 (heating operation), when the shell temperature Tsh of the compressor 3 becomes higher than the discharge temperature Td by a predetermined value (for example, 10 deg) or more, the valve of the outdoor unit 1 (liquid side valve 15). It is a phenomenon that indicates the possibility of forgetting to open.
図14は暖房運転で液側バルブ15の開け忘れ時の運転開始直後の室内熱交換器6の温度及び室外熱交換器11の温度等の変化を示す図であるが、図14において、「室内熱交中間温度」は、室内熱交換器6の略中間部に設置され、冷媒の温度を間接的に検出する第2の温度センサ13bの検出する温度のことである。また、「室外熱交中間温度」は、室外熱交換器11の略中間部に設置され、冷媒の温度を間接的に検出する第4の温度センサ13dの検出する温度のことである。   FIG. 14 is a diagram showing changes in the temperature of the indoor heat exchanger 6 and the temperature of the outdoor heat exchanger 11 immediately after the start of operation when the liquid-side valve 15 is forgotten to be opened in the heating operation. The “heat exchange intermediate temperature” is a temperature detected by the second temperature sensor 13b, which is installed in a substantially intermediate portion of the indoor heat exchanger 6 and indirectly detects the temperature of the refrigerant. The “outdoor heat exchanger intermediate temperature” is a temperature detected by a fourth temperature sensor 13d that is installed at a substantially intermediate portion of the outdoor heat exchanger 11 and indirectly detects the temperature of the refrigerant.
図14には、室外空気温度(7℃)、室内空気温度(20℃)も示している。   FIG. 14 also shows outdoor air temperature (7 ° C.) and indoor air temperature (20 ° C.).
図14に示すように、運転開始直後は圧縮機3の吸入圧力Psの低下に伴う冷媒の蒸発により室外熱交中間温度も減少する。しかし、冷媒の移動により数分後には、室外空気温度と室外熱交中間温度との差は、1〜3deg程度となる。正常な暖房運転時には、室外空気温度と室外熱交中間温度との差は、5〜20deg程度ある(室外空気温度>室外熱交中間温度)。   As shown in FIG. 14, immediately after the start of operation, the outdoor heat exchanger intermediate temperature also decreases due to the evaporation of the refrigerant accompanying the decrease in the suction pressure Ps of the compressor 3. However, after several minutes due to the movement of the refrigerant, the difference between the outdoor air temperature and the outdoor heat exchange intermediate temperature is about 1 to 3 deg. During normal heating operation, the difference between the outdoor air temperature and the outdoor heat exchange intermediate temperature is about 5 to 20 deg (outdoor air temperature> outdoor heat exchange intermediate temperature).
空気調和機100の運転開始後(暖房運転)、室外空気温度と室外熱交中間温度との差が、1〜3deg程度しかない場合は、室外機1のバルブ(液側バルブ15)の開け忘れの可能性があることを示す他の一つの現象である。   After starting the operation of the air conditioner 100 (heating operation), if the difference between the outdoor air temperature and the outdoor heat exchanger intermediate temperature is only about 1 to 3 degrees, forgetting to open the valve (liquid side valve 15) of the outdoor unit 1 It is another phenomenon that indicates that there is a possibility.
図14に示すように、運転開始直後は圧縮機3の吐出圧力Pdの上昇に伴い室内熱交中間温度は、室内空気温度(20℃)より若干高い状態を数分維持するが、その後は圧縮機3が圧縮仕事を行わないため室内送風機による送風により冷却され、室内熱交中間温度と室内空気温度との差は、1〜3deg程度となる。正常な暖房運転時には、室内熱交中間温度と室内空気温度との差は、5〜20deg程度ある(室内熱交中間温度>室内空気温度)。   As shown in FIG. 14, immediately after the start of operation, the indoor heat exchange intermediate temperature is maintained slightly higher than the indoor air temperature (20 ° C.) for several minutes as the discharge pressure Pd of the compressor 3 increases. Since the machine 3 does not perform compression work, it is cooled by blowing air from the indoor blower, and the difference between the indoor heat exchange intermediate temperature and the indoor air temperature is about 1 to 3 deg. During normal heating operation, the difference between the indoor heat exchange intermediate temperature and the room air temperature is about 5 to 20 degrees (indoor heat exchange intermediate temperature> room air temperature).
空気調和機100の運転開始後(暖房運転)、室内熱交中間温度と室内空気温度との差が、1〜3deg程度しかない場合は、室外機1のバルブ(液側バルブ15)の開け忘れの可能性があることを示すさらに他の一つの現象である。   After starting the air conditioner 100 (heating operation), if the difference between the indoor heat exchanger intermediate temperature and the indoor air temperature is only about 1 to 3 degrees, forgetting to open the valve (liquid side valve 15) of the outdoor unit 1 This is yet another phenomenon that indicates that there is a possibility.
以上をまとめると、暖房運転で液側バルブ15の開け忘れ時の運転開始時、冷媒回路において以下に示す現象が発生する。
(a)圧縮機3のシェル温度Tshが吐出温度Tdよりも所定値(例えば、10deg)以上高くなる;
(b)室内空気温度と室内熱交中間温度との差が、1〜3deg程度になる;
(c)室外熱交中間温度と室外空気温度との差が、1〜3deg程度になる。
In summary, the following phenomenon occurs in the refrigerant circuit at the start of operation when the liquid side valve 15 is forgotten to be opened in the heating operation.
(A) The shell temperature Tsh of the compressor 3 is higher than the discharge temperature Td by a predetermined value (for example, 10 deg) or more;
(B) The difference between the indoor air temperature and the indoor heat exchanger intermediate temperature is about 1 to 3 deg;
(C) The difference between the outdoor heat exchanger intermediate temperature and the outdoor air temperature is about 1 to 3 deg.
従って、空気調和機100の運転を開始してから一定時間(例えば、5分程度)経過後、上記(a)〜(c)の現象を一定時間連続して検知した場合は、室外機1のバルブの開け忘れと判断して、圧縮機3を停止する。   Therefore, after a certain time (for example, about 5 minutes) has elapsed since the start of the operation of the air conditioner 100, when the phenomena (a) to (c) are detected continuously for a certain time, the outdoor unit 1 It is determined that the valve is forgotten to be opened, and the compressor 3 is stopped.
尚、図示はしないが、空気調和機100は、制御プログラムが組み込まれたマイクロコンピュータにより構成される制御部を備える。制御部は、第1の温度センサ13a、第2の温度センサ13b、第3の温度センサ13c、第4の温度センサ13d、第5の温度センサ13e、第6の温度センサ13fからの情報に基づいて、上記(a)〜(c)の現象を一定時間連続して検知した場合は、室外機1のバルブの開け忘れと判断して、圧縮機3を停止する。また、制御部は、圧縮機3を停止するとともに、空気調和機100の室内機2の表示部に室外機1のバルブの開け忘れを表示するようにしてもよい。   Although not shown, the air conditioner 100 includes a control unit configured by a microcomputer in which a control program is incorporated. The control unit is based on information from the first temperature sensor 13a, the second temperature sensor 13b, the third temperature sensor 13c, the fourth temperature sensor 13d, the fifth temperature sensor 13e, and the sixth temperature sensor 13f. When the phenomena (a) to (c) are detected continuously for a certain period of time, it is determined that the valve of the outdoor unit 1 has been forgotten to be opened, and the compressor 3 is stopped. In addition, the control unit may stop the compressor 3 and display the forgetting to open the valve of the outdoor unit 1 on the display unit of the indoor unit 2 of the air conditioner 100.
以上の説明では、室外機1の冷媒回路に中圧レシーバ9を備えるものを示したが、これは一例であり、中圧レシーバ9はなくてもよい。中圧レシーバ9を使用しない場合は、減圧装置も一つでよい。   In the above description, the refrigerant circuit of the outdoor unit 1 includes the intermediate pressure receiver 9, but this is an example, and the intermediate pressure receiver 9 may not be provided. When the intermediate pressure receiver 9 is not used, only one decompression device is required.
また、四方弁4も必須の構成要件ではなく、冷房専用の場合には、四方弁4は不要である。   Further, the four-way valve 4 is not an essential constituent element, and the four-way valve 4 is not necessary in the case of cooling only.
1 室外機、2 室内機、3 圧縮機、4 四方弁、5 ガス管、6 室内熱交換器、7 液管、8 第2の減圧装置、9 中圧レシーバ、10 第1の減圧装置、11 室外熱交換器、13a 第1の温度センサ、13b 第2の温度センサ、13c 第3の温度センサ、13d 第4の温度センサ、13e 第5の温度センサ、13f 第6の温度センサ、14 ガス側バルブ、15 液側バルブ、16 ガス側接続部、17 液側接続部、18 吸入配管、100 空気調和機。   DESCRIPTION OF SYMBOLS 1 Outdoor unit, 2 Indoor unit, 3 Compressor, 4 Four way valve, 5 Gas pipe, 6 Indoor heat exchanger, 7 Liquid pipe, 8 2nd decompression device, 9 Medium pressure receiver, 10 1st decompression device, 11 Outdoor heat exchanger, 13a first temperature sensor, 13b second temperature sensor, 13c third temperature sensor, 13d fourth temperature sensor, 13e fifth temperature sensor, 13f sixth temperature sensor, 14 gas side Valve, 15 Liquid side valve, 16 Gas side connection part, 17 Liquid side connection part, 18 Intake pipe, 100 Air conditioner.

Claims (2)

  1. 少なくとも冷媒を圧縮する圧縮機、室外熱交換器、減圧装置、液溜め容器が順に接続された室外冷媒回路であって、当該室外冷媒回路の両端部にガス側バルブ及び液側バルブを有する室外冷媒回路と、前記圧縮機の吐出側の冷媒温度を検出する第1の温度センサと、前記室外熱交換器の略中間部に設置され、冷媒の温度を検出する第4の温度センサと、前記圧縮機の密閉容器の温度を検出する第6の温度センサと、前記室外熱交換器の周囲の空気温度を検出する第5の温度センサとを有する室外機と、
    少なくとも室内熱交換器が接続された室内冷媒回路であって、当該室内冷媒回路の両端部にガス側接続部及び液側接続部を有する室内冷媒回路を有する室内機と、
    前記ガス側バルブと前記ガス側接続部とを接続するガス管と、
    前記液側バルブと前記液側接続部とを接続する液管と、
    当該空気調和機の運転を制御する制御部とを備え、
    前記制御部は、
    当該空気調和機の暖房運転の運転開始時に、以下の(a)条件を一定時間連続して検知した後に、(c)条件を一定時間連続して検知した場合は、前記液側バルブが閉状態と判定して前記圧縮機の運転を停止することを特徴とする空気調和機。
    (a)前記第6の温度センサが検出する前記圧縮機の密閉容器の温度が前記第1の温度センサが検出する吐出温度よりも所定値以上高くなる;
    (c)前記第5の温度センサが検出する室外空気温度と、前記第4の温度センサが検出する前記室外熱交換器の略中間部の温度との差の絶対値が、所定値以下になる。
    An outdoor refrigerant circuit in which at least a compressor for compressing a refrigerant, an outdoor heat exchanger, a decompression device, and a liquid reservoir are connected in order, and the outdoor refrigerant having a gas side valve and a liquid side valve at both ends of the outdoor refrigerant circuit A circuit, a first temperature sensor for detecting a refrigerant temperature on a discharge side of the compressor, a fourth temperature sensor for detecting a refrigerant temperature, which is installed at a substantially intermediate portion of the outdoor heat exchanger, and the compression An outdoor unit having a sixth temperature sensor for detecting the temperature of the sealed container of the unit, and a fifth temperature sensor for detecting an air temperature around the outdoor heat exchanger;
    An indoor unit having at least an indoor heat exchanger, an indoor unit having an indoor refrigerant circuit having a gas side connection part and a liquid side connection part at both ends of the indoor refrigerant circuit;
    A gas pipe connecting the gas side valve and the gas side connection part;
    A liquid pipe connecting the liquid side valve and the liquid side connection part;
    A control unit for controlling the operation of the air conditioner,
    The controller is
    At the start of heating operation of the air conditioner, after the following condition (a) is continuously detected for a certain period of time, (c) when the condition is continuously detected for a certain period of time, the liquid side valve is closed. And the operation of the compressor is stopped.
    (A) The temperature of the hermetic container of the compressor detected by the sixth temperature sensor is higher than the discharge temperature detected by the first temperature sensor by a predetermined value or more;
    (C) The absolute value of the difference between the outdoor air temperature detected by the fifth temperature sensor and the temperature of the substantially intermediate portion of the outdoor heat exchanger detected by the fourth temperature sensor is a predetermined value or less. .
  2. 少なくとも冷媒を圧縮する圧縮機、室外熱交換器、減圧装置、液溜め容器が順に接続された室外冷媒回路であって、当該室外冷媒回路の両端部にガス側バルブ及び液側バルブを有する室外冷媒回路と、前記圧縮機の吐出側の冷媒温度を検出する第1の温度センサと、前記圧縮機の密閉容器の温度を検出する第6の温度センサとを有する室外機と、
    少なくとも室内熱交換器が接続された室内冷媒回路であって、当該室内冷媒回路の両端部にガス側接続部及び液側接続部を有する室内冷媒回路と、前記室内熱交換器の略中間部に設置され、冷媒の温度を検出する第2の温度センサと、当該室内機に吸い込まれる空気温度を検出する第3の温度センサとを有する室内機と、
    前記ガス側バルブと前記ガス側接続部とを接続するガス管と、
    前記液側バルブと前記液側接続部とを接続する液管と、
    当該空気調和機の運転を制御する制御部とを備え、
    前記制御部は、
    当該空気調和機の冷房運転の運転開始時に、以下の(a)条件を一定時間連続して検知した後に、(b)条件を一定時間連続して検知した場合は、前記ガス側バルブが閉状態と判定して前記圧縮機の運転を停止することを特徴とする空気調和機。
    (a)前記第6の温度センサが検出する前記圧縮機の密閉容器の温度が前記第1の温度センサが検出する吐出温度よりも所定値以上高くなる;
    (b)前記第3の温度センサが検出する室内空気温度と、前記第2の温度センサが検出する前記室内熱交換器の略中間部の温度との差の絶対値が、所定値以下になる。
    An outdoor refrigerant circuit in which at least a compressor for compressing a refrigerant, an outdoor heat exchanger, a decompression device, and a liquid reservoir are connected in order, and the outdoor refrigerant having a gas side valve and a liquid side valve at both ends of the outdoor refrigerant circuit An outdoor unit having a circuit, a first temperature sensor for detecting a refrigerant temperature on a discharge side of the compressor, and a sixth temperature sensor for detecting a temperature of a sealed container of the compressor;
    An indoor refrigerant circuit to which at least an indoor heat exchanger is connected, the indoor refrigerant circuit having a gas side connection portion and a liquid side connection portion at both ends of the indoor refrigerant circuit, and a substantially intermediate portion of the indoor heat exchanger An indoor unit installed and having a second temperature sensor for detecting the temperature of the refrigerant and a third temperature sensor for detecting the temperature of the air sucked into the indoor unit;
    A gas pipe connecting the gas side valve and the gas side connection part;
    A liquid pipe connecting the liquid side valve and the liquid side connection part;
    A control unit for controlling the operation of the air conditioner,
    The controller is
    At the start of cooling operation of the air conditioner, after the following condition (a) is detected continuously for a certain period of time, if the condition (b) is detected continuously for a certain period of time, the gas side valve is closed. And the operation of the compressor is stopped.
    (A) The temperature of the hermetic container of the compressor detected by the sixth temperature sensor is higher than the discharge temperature detected by the first temperature sensor by a predetermined value or more;
    (B) The absolute value of the difference between the indoor air temperature detected by the third temperature sensor and the temperature of the substantially intermediate portion of the indoor heat exchanger detected by the second temperature sensor is a predetermined value or less. .
JP2013268452A 2013-12-26 2013-12-26 Air conditioner Active JP5693704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013268452A JP5693704B2 (en) 2013-12-26 2013-12-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013268452A JP5693704B2 (en) 2013-12-26 2013-12-26 Air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013065585A Division JP5535359B2 (en) 2013-03-27 2013-03-27 Air conditioner

Publications (2)

Publication Number Publication Date
JP2014055771A true JP2014055771A (en) 2014-03-27
JP5693704B2 JP5693704B2 (en) 2015-04-01

Family

ID=50613232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013268452A Active JP5693704B2 (en) 2013-12-26 2013-12-26 Air conditioner

Country Status (1)

Country Link
JP (1) JP5693704B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106369719A (en) * 2016-10-08 2017-02-01 珠海格力电器股份有限公司 Heat pump system, control method of heat pump system and air conditioner
CN107314499A (en) * 2017-05-27 2017-11-03 宁波奥克斯电气股份有限公司 A kind of air-conditioning heating low tension switch protects control method
CN107642863A (en) * 2017-08-02 2018-01-30 宁波奥克斯电气股份有限公司 Air conditioner opens control method during heating mode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674496A (en) * 1992-08-25 1994-03-15 Toshiba Corp Air-conditioner
JPH0763447A (en) * 1993-08-25 1995-03-10 Mitsubishi Electric Corp Refrigerating cycling apparatus
JPH0783483A (en) * 1993-09-14 1995-03-28 Mitsubishi Heavy Ind Ltd Separate type air conditioner
JP2003090582A (en) * 2001-09-20 2003-03-28 Fujitsu General Ltd Control method for air conditioner
JP2008014609A (en) * 2006-07-10 2008-01-24 Daikin Ind Ltd Air-conditioning control device
JP2008138926A (en) * 2006-12-01 2008-06-19 Matsushita Electric Ind Co Ltd Compressor protecting controlling method for air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674496A (en) * 1992-08-25 1994-03-15 Toshiba Corp Air-conditioner
JPH0763447A (en) * 1993-08-25 1995-03-10 Mitsubishi Electric Corp Refrigerating cycling apparatus
JPH0783483A (en) * 1993-09-14 1995-03-28 Mitsubishi Heavy Ind Ltd Separate type air conditioner
JP2003090582A (en) * 2001-09-20 2003-03-28 Fujitsu General Ltd Control method for air conditioner
JP2008014609A (en) * 2006-07-10 2008-01-24 Daikin Ind Ltd Air-conditioning control device
JP2008138926A (en) * 2006-12-01 2008-06-19 Matsushita Electric Ind Co Ltd Compressor protecting controlling method for air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106369719A (en) * 2016-10-08 2017-02-01 珠海格力电器股份有限公司 Heat pump system, control method of heat pump system and air conditioner
CN107314499A (en) * 2017-05-27 2017-11-03 宁波奥克斯电气股份有限公司 A kind of air-conditioning heating low tension switch protects control method
CN107314499B (en) * 2017-05-27 2019-11-08 宁波奥克斯电气股份有限公司 A kind of air-conditioning heating low tension switch protection control method
CN107642863A (en) * 2017-08-02 2018-01-30 宁波奥克斯电气股份有限公司 Air conditioner opens control method during heating mode
CN107642863B (en) * 2017-08-02 2019-08-16 宁波奥克斯电气股份有限公司 Air conditioner opens control method when heating mode

Also Published As

Publication number Publication date
JP5693704B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5063347B2 (en) Refrigeration air conditioner
JP5263522B2 (en) Refrigeration equipment
US20200240686A1 (en) Refrigeration apparatus
EP3136010B1 (en) Air-conditioning device
JPWO2017006474A1 (en) Refrigeration cycle apparatus, remote monitoring system, remote monitoring apparatus, and abnormality determination method
JP5693704B2 (en) Air conditioner
JP2008224210A (en) Air conditioner and operation control method of air conditioner
JP5511761B2 (en) Air conditioner
JP2008241065A (en) Refrigerating device and oil returning method of refrigerating device
JP2013204871A (en) Air conditioner
JP6084297B2 (en) Air conditioner
JP5283560B2 (en) Air conditioner
JP5535359B2 (en) Air conditioner
JP2008082654A (en) Failure diagnostic method for refrigerating device, and refrigerating device
US10684052B2 (en) Diagnostic mode of operation to detect refrigerant leaks in a refrigeration circuit
JP2006118788A (en) Air conditioner
JP2006349258A (en) Air conditioner
JP6253731B2 (en) Air conditioner
JPH0763447A (en) Refrigerating cycling apparatus
JP5020114B2 (en) Air conditioner
JP6238202B2 (en) Air conditioner
JP3868265B2 (en) Air conditioner
JP2011257097A (en) Multi-room type air conditioning apparatus
JP2018141587A (en) air conditioner
JP2016156569A (en) Freezer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150203

R150 Certificate of patent or registration of utility model

Ref document number: 5693704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250