JP5956839B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5956839B2
JP5956839B2 JP2012133802A JP2012133802A JP5956839B2 JP 5956839 B2 JP5956839 B2 JP 5956839B2 JP 2012133802 A JP2012133802 A JP 2012133802A JP 2012133802 A JP2012133802 A JP 2012133802A JP 5956839 B2 JP5956839 B2 JP 5956839B2
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
cooling operation
circulation cooling
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012133802A
Other languages
Japanese (ja)
Other versions
JP2013257087A (en
Inventor
松村 賢治
賢治 松村
康孝 吉田
康孝 吉田
横関 敦彦
敦彦 横関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012133802A priority Critical patent/JP5956839B2/en
Publication of JP2013257087A publication Critical patent/JP2013257087A/en
Application granted granted Critical
Publication of JP5956839B2 publication Critical patent/JP5956839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、強制循環式冷房運転と自然循環式冷房運転を切り換えて運転が可能な空気調和機に関する。   The present invention relates to an air conditioner that can be operated by switching between a forced circulation cooling operation and a natural circulation cooling operation.

近年のエネルギー枯渇問題、地球温暖化問題が注目を浴び、空気調和機の省エネ性が一層重要視されている。一方、ビルや事務所等においてOA機器などによる負荷は増加の一方であり、外気温度の低い春や秋でも冷房が必要とされるケースが増加している。   The energy depletion problem and global warming problem in recent years have attracted attention, and the energy-saving performance of air conditioners has become more important. On the other hand, loads due to office automation equipment and the like are increasing in buildings and offices, and the number of cases where cooling is required even in spring and autumn when the outside air temperature is low.

このような状況において、空気調和機の省エネ性を向上させるために、特許第4167196号公報(特許文献1)のものでは、自然循環冷房運転と強制循環冷房運転を組み合わせた空気調和機が提案されている。即ち、この特許文献1には、外気温度が低い場合には、圧縮機を停止させて、重力による冷媒の循環を利用した動力の少ない自然循環冷房運転を行い、外気温度が高く高負荷の場合には、圧縮機を運転する強制循環冷房運転を行う自然循環併用式の空気調和機が記載されている。   In such a situation, in order to improve the energy saving performance of the air conditioner, Japanese Patent No. 4167196 (Patent Document 1) proposes an air conditioner that combines natural circulation cooling operation and forced circulation cooling operation. ing. That is, in this patent document 1, when the outside air temperature is low, the compressor is stopped and the natural circulation cooling operation with less power using the circulation of the refrigerant by gravity is performed, and the outside air temperature is high and the load is high. Describes a natural circulation combined type air conditioner that performs a forced circulation cooling operation that operates a compressor.

特許第4167196号公報Japanese Patent No. 4167196

室外側熱交換器を有する室外機と室内側熱交換器を有する室内機を冷媒配管で接続し、前記室外機と室内機間に冷媒を循環させて冷凍サイクルを構成するようにした空気調和機において、前記室外側熱交換器が前記室内側熱交換器よりも上部に設置された構成としているものでは、外気温度が室内温度より低い場合に、自然循環方式で冷房(自然循環冷房運転)をすることが可能である。   An air conditioner in which an outdoor unit having an outdoor heat exchanger and an indoor unit having an indoor heat exchanger are connected by a refrigerant pipe, and a refrigerant is circulated between the outdoor unit and the indoor unit to constitute a refrigeration cycle. In the above, the outdoor heat exchanger is installed above the indoor heat exchanger. When the outside air temperature is lower than the indoor temperature, cooling by natural circulation (natural circulation cooling operation) is performed. Is possible.

即ち、前記室外側熱交換器において、外気により凝縮液化させた冷媒を、重力を利用し、冷媒配管(接続液配管)を介して前記室内側熱交換器に導入し、ここで蒸発気化させた気体冷媒(ガス冷媒)を、冷媒配管(接続ガス配管)を介して上昇させて、上部に設置されている前記室外側熱交換器へ再び導入するという自然循環冷房運転を行うことができる。   That is, in the outdoor heat exchanger, the refrigerant condensed and liquefied by the outside air is introduced into the indoor heat exchanger via the refrigerant pipe (connecting liquid pipe) using gravity, and is evaporated here. It is possible to perform a natural circulation cooling operation in which the gaseous refrigerant (gas refrigerant) is raised through the refrigerant pipe (connecting gas pipe) and reintroduced into the outdoor heat exchanger installed in the upper part.

この自然循環冷房運転においては、圧縮機を停止させるので、圧縮機を駆動するための動力を必要としない。従って、エネルギー消費の少ない冷房運転を行うことができる。しかし、この自然循環冷房運転では、外気温度が室内温度に比べある程度低くないと冷媒の循環量が少なくなり、必要な冷房能力を出せない。   In this natural circulation cooling operation, since the compressor is stopped, no power is required to drive the compressor. Therefore, the cooling operation with low energy consumption can be performed. However, in this natural circulation cooling operation, if the outside air temperature is not lower than the room temperature to some extent, the circulation amount of the refrigerant is reduced and the necessary cooling capacity cannot be obtained.

上記特許文献1に記載の空気調和機では、前述したように、外気温度が高い場合には圧縮機駆動による強制循環冷房運転を行い、外気温度が低い場合には自然循環冷房運転を行うように構成されている。そして、この特許文献1のものには、強制循環冷房運転から自然循環冷房運転への切り替えの際に、前記接続液配管内の冷媒が常に過冷却状態となるような切り替え操作を行うことで、切り替え後の自然循環冷房運転が安定的に行なえるようにしている。   In the air conditioner described in Patent Document 1, as described above, the forced circulation cooling operation by the compressor drive is performed when the outside air temperature is high, and the natural circulation cooling operation is performed when the outside air temperature is low. It is configured. And in this patent document 1, when switching from forced circulation cooling operation to natural circulation cooling operation, by performing a switching operation such that the refrigerant in the connection liquid pipe is always in a supercooled state, Natural circulation cooling operation after switching can be performed stably.

上記のような、強制循環冷房運転から自然循環冷房運転への切り替えを行う空気調和機においては、確実に自然循環冷房運転に切り替われるように、強制循環冷房運転中に自然循環冷房運転への移行制御を行う必要がある。即ち、自然循環冷房運転への移行の際には、室外機と室内機を接続する前記接続液配管には確実に液冷媒が流れ、前記接続ガス配管には確実に気体冷媒が流れるように、前記接続液配管及び前記接続ガス配管に流れる冷媒の温度を制御する必要がある。   In the air conditioner that switches from forced circulation cooling operation to natural circulation cooling operation as described above, transition to natural circulation cooling operation during forced circulation cooling operation is performed to ensure switching to natural circulation cooling operation. It is necessary to control. That is, at the time of transition to natural circulation cooling operation, the liquid refrigerant surely flows through the connection liquid pipe connecting the outdoor unit and the indoor unit, and the gas refrigerant flows through the connection gas pipe without fail. It is necessary to control the temperature of the refrigerant flowing through the connection liquid pipe and the connection gas pipe.

しかし、上記特許文献1のものには、前記移行の際に、前記接続液配管内の冷媒が過冷却状態にすることの記載はあるものの、前記接続ガス配管についての配慮は為されていない。このため、強制循環冷房運転から自然循環冷房運転への移行を確実に行なえるものとはなっていないという課題がある。   However, although there is a description in the above-mentioned Patent Document 1 that the refrigerant in the connection liquid pipe is brought into a supercooled state during the transition, no consideration is given to the connection gas pipe. For this reason, there is a problem that the transition from the forced circulation cooling operation to the natural circulation cooling operation cannot be reliably performed.

本発明の目的は、強制循環冷房運転から自然循環冷房運転への移行を確実に行なえる空気調和機を得ることにある。   An object of the present invention is to obtain an air conditioner that can reliably shift from forced circulation cooling operation to natural circulation cooling operation.

上記目的を達成するため本発明は、圧縮機、室外空気と熱交換を行なう室外側熱交換器、減圧装置及び室内空気と熱交換を行なう室内側熱交換器を順次冷媒配管で接続し、前記圧縮機を運転させて冷媒を強制循環させる強制循環冷房運転と、前記室内側熱交換器と、この室内側熱交換器よりも高い位置に設置された室外側熱交換器とを、接続液配管及び接続ガス配管で接続し、重力を利用して前記冷媒を自然循環させる自然循環冷房運転とを切替えて運転可能な空気調和機において、前記強制循環冷房運転から前記自然循環冷房運転へ移行する際に、前記接続液配管の温度が前記接続ガス配管の温度よりも低くなるように、前記室外側熱交換器と熱交換を行なう空気の量を増加させて前記接続液配管の温度を低下させると共に、前記減圧装置の減圧量を増加させて、前記接続ガス配管の温度を上昇させるように制御することを特徴とする。   In order to achieve the above object, the present invention sequentially connects a compressor, an outdoor heat exchanger for exchanging heat with outdoor air, a decompression device, and an indoor heat exchanger for exchanging heat with indoor air through refrigerant piping, Connected liquid piping for forced circulation cooling operation for operating the compressor to forcibly circulate the refrigerant, the indoor heat exchanger, and the outdoor heat exchanger installed at a position higher than the indoor heat exchanger And an air conditioner that can be operated by switching between a natural circulation cooling operation in which the refrigerant is naturally circulated using gravity and is connected with a connecting gas pipe, when the forced circulation cooling operation is shifted to the natural circulation cooling operation. In addition, the temperature of the connection liquid pipe is decreased by increasing the amount of air for heat exchange with the outdoor heat exchanger so that the temperature of the connection liquid pipe is lower than the temperature of the connection gas pipe. The decompressor By increasing the pressure reduction amount, and controls to raise the temperature of the connection gas pipe.

本発明の他の特徴は、圧縮機、室外側熱交換器、減圧装置及び室内側熱交換器を順次冷媒配管で接続し、前記圧縮機を運転させて冷媒を強制循環させる強制循環冷房運転と、前記室内側熱交換器と、この室内側熱交換器よりも高い位置に設置された室外側熱交換器とを、接続液配管及び接続ガス配管で接続し、重力を利用して前記冷媒を自然循環させる自然循環冷房運転とを切替えて運転可能な空気調和機において、前記強制循環冷房運転から前記自然循環冷房運転へ移行する際に、前記接続液配管の温度が前記接続ガス配管の温度よりも低くなるように、前記圧縮機の回転数を低下させて前記接続液配管の温度を低下させると共に、前記減圧装置の減圧量を増加させて、前記接続ガス配管の温度を上昇させるように制御することにある。   Another feature of the present invention is a forced circulation cooling operation in which a compressor, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger are sequentially connected by a refrigerant pipe, and the compressor is operated to forcibly circulate the refrigerant. The indoor heat exchanger and an outdoor heat exchanger installed at a position higher than the indoor heat exchanger are connected by a connecting liquid pipe and a connecting gas pipe, and the refrigerant is removed using gravity. In an air conditioner that can be operated by switching between natural circulation cooling operation for natural circulation, when the forced circulation cooling operation is shifted to the natural circulation cooling operation, the temperature of the connection liquid pipe is higher than the temperature of the connection gas pipe. Control to lower the temperature of the connecting liquid piping by lowering the rotational speed of the compressor and increase the pressure reduction amount of the decompressing device to increase the temperature of the connecting gas piping so that the temperature of the connecting gas piping is increased. There is to do.

本発明によれば、強制循環冷房運転から自然循環冷房運転への移行を確実に行なえる空気調和機を得ることができる効果が得られる。   According to the present invention, it is possible to obtain an air conditioner that can reliably perform a transition from forced circulation cooling operation to natural circulation cooling operation.

本発明の空気調和機の実施例1を示す冷凍サイクル構成図。The refrigeration cycle block diagram which shows Example 1 of the air conditioner of this invention. 本発明の空気調和機の実施例2を示す冷凍サイクル構成図。The refrigeration cycle block diagram which shows Example 2 of the air conditioner of this invention.

以下、本発明の空気調和機の具体的実施例を図面に基づき説明する。なお、各図において、同一符号を付した部分は同一或いは相当する部分を示している。   Hereinafter, specific embodiments of the air conditioner of the present invention will be described with reference to the drawings. Note that, in each drawing, the portions denoted by the same reference numerals indicate the same or corresponding portions.

図1は本発明の空気調和機の実施例1を示す冷凍サイクル構成図である。この図1において、1はスクロール圧縮機などで構成された圧縮機、2は室外空気と熱交換を行なう室外側熱交換器、3は電子膨張弁などで構成された室内膨張弁(減圧装置)、4は室内空気と熱交換を行なう室内側熱交換器で、これらの機器は順次冷媒配管(接続液配管5や接続ガス配管6など)で接続されている。また、前記圧縮機1の吸込側の冷媒配管と吐出側の冷媒配管とは、前記圧縮機1をバイパスするようにバイパス配管7で接続されており、このバイパス配管7には前記室外側熱交換器2側へのみ冷媒流通を可能にする逆止弁8が設けられている。   FIG. 1 is a refrigeration cycle configuration diagram showing Embodiment 1 of an air conditioner of the present invention. In FIG. 1, 1 is a compressor constituted by a scroll compressor and the like, 2 is an outdoor heat exchanger for exchanging heat with outdoor air, and 3 is an indoor expansion valve (pressure reducing device) constituted by an electronic expansion valve and the like. Reference numeral 4 denotes an indoor heat exchanger for exchanging heat with room air. These devices are sequentially connected by refrigerant pipes (connection liquid pipe 5, connection gas pipe 6 and the like). The refrigerant pipe on the suction side and the refrigerant pipe on the discharge side of the compressor 1 are connected by a bypass pipe 7 so as to bypass the compressor 1, and the outdoor heat exchange is connected to the bypass pipe 7. A check valve 8 is provided that allows the refrigerant to flow only to the side of the vessel 2.

9は前記室外側熱交換器2へ室外空気を送風する室外ファン、10は前記室内側熱交換器4へ室内空気を送風する室内ファン、11は前記室外側熱交換器2の出口側の冷媒配管の温度を検出するための温度センサ(温度検知手段)、12は前記室内側熱交換器2の出口側の冷媒配管の温度を検出するための温度センサ(温度検知手段)である。   9 is an outdoor fan that blows outdoor air to the outdoor heat exchanger 2, 10 is an indoor fan that blows indoor air to the indoor heat exchanger 4, and 11 is a refrigerant on the outlet side of the outdoor heat exchanger 2. A temperature sensor (temperature detection means) 12 for detecting the temperature of the pipe, and 12 is a temperature sensor (temperature detection means) for detecting the temperature of the refrigerant pipe on the outlet side of the indoor heat exchanger 2.

前述した圧縮機1、室外側熱交換器2、バイパス配管7、逆止弁8、室外ファン9及び温度センサ11などは室外に設置される室外機100内に設けられており、前述した室内膨張弁3、室内側熱交換器4、室内ファン10及び温度センサ12などは室内に設置される室内機200内に設けられている。前記室外機100と前記室内機200とは前記接続液配管5及び前記接続ガス配管6で接続され、また前記室外機100は前記室内機200よりも高い位置、例えばビルの屋上などに設置されている。   The compressor 1, the outdoor heat exchanger 2, the bypass pipe 7, the check valve 8, the outdoor fan 9, the temperature sensor 11, and the like described above are provided in the outdoor unit 100 installed outdoors, and the indoor expansion described above. The valve 3, the indoor heat exchanger 4, the indoor fan 10, the temperature sensor 12, and the like are provided in an indoor unit 200 installed indoors. The outdoor unit 100 and the indoor unit 200 are connected by the connection liquid pipe 5 and the connection gas pipe 6, and the outdoor unit 100 is installed at a position higher than the indoor unit 200, for example, on the roof of a building. Yes.

即ち、本実施例の空気調和機は、前記圧縮機1を運転させて冷媒を強制循環させる強制循環冷房運転だけでなく、前記室内側熱交換器4と、これよりも高い位置に設置された前記室外側熱交換器2とを、前記接続液配管5及び前記接続ガス配管6で接続し、重力を利用して前記冷媒を自然循環させる自然循環冷房運転も可能な構成になっており、前記強制循環冷房運転と前記自然循環冷房運転とを切替えて運転可能な空気調和機となっている。   That is, the air conditioner of this embodiment was installed not only in the forced circulation cooling operation in which the compressor 1 is operated to forcibly circulate the refrigerant, but also in the indoor heat exchanger 4 and a position higher than this. The outdoor heat exchanger 2 is connected by the connection liquid pipe 5 and the connection gas pipe 6, and a natural circulation cooling operation in which the refrigerant is naturally circulated using gravity is possible. The air conditioner can be operated by switching between the forced circulation cooling operation and the natural circulation cooling operation.

前記強制循環冷房運転時には、図1の実線黒塗り矢印のように冷媒は流れる。即ち、圧縮機1から出た冷媒は、上方に設置された室外側熱交換器2に流入し、ここで室外ファン9により送風される空気と熱交換して液化する。その後、この液化した液冷媒は、接続液配管5を流れて室内膨張弁3で減圧され、室内側熱交換器4に入る。ここで、冷媒は、室内ファン10で送られる空気と熱交換して該空気を冷却すると共に、自らは蒸気を増やし(気化し)、接続ガス配管6を流れて前記圧縮機1に再び吸入されるという冷凍サイクルを繰り返す。   During the forced circulation cooling operation, the refrigerant flows as indicated by the solid black arrows in FIG. That is, the refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 2 installed above, where it is liquefied by exchanging heat with the air blown by the outdoor fan 9. Thereafter, the liquefied liquid refrigerant flows through the connecting liquid pipe 5, is depressurized by the indoor expansion valve 3, and enters the indoor heat exchanger 4. Here, the refrigerant exchanges heat with the air sent by the indoor fan 10 to cool the air, and also increases (vaporizes) the vapor itself, flows through the connecting gas pipe 6 and is sucked into the compressor 1 again. Repeat the refrigeration cycle.

自然循環冷房運転時には、図の実線白抜き矢印のように冷媒が流れる。自然循環冷房運転においては、前記圧縮機1を停止する。このため、前記圧縮機1には冷媒が流れず、前記室内側熱交換器4からのガス冷媒(気体冷媒)は、バイパス配管7及び逆止弁8を通過して前記室外側熱交換器2に流れる。また、前記室内膨張弁3を全開にし、冷媒が流れる流動抵抗を極力少なくする。   During the natural circulation cooling operation, the refrigerant flows as indicated by solid white arrows in the figure. In the natural circulation cooling operation, the compressor 1 is stopped. For this reason, the refrigerant does not flow through the compressor 1, and the gas refrigerant (gaseous refrigerant) from the indoor heat exchanger 4 passes through the bypass pipe 7 and the check valve 8 and the outdoor heat exchanger 2. Flowing into. Further, the indoor expansion valve 3 is fully opened to reduce the flow resistance through which the refrigerant flows as much as possible.

この自然循環冷房運転は、室外空気の温度が低く、室内空気の温度が高い場合に、効率の良い運転が可能になる。この自然循環冷房運転を確実に行なうためには、前記接続液配管5に液冷媒が確実に流れ、前記接続ガス配管6にはガス冷媒(気体冷媒)が確実に流れるようにする必要がある。しかし、強制循環冷房運転中は、圧縮機が運転されているため、室外側熱交換器2における凝縮温度が、室内側熱交換器4における蒸発温度より、通常高くなっている。このため、前記接続液配管5の温度が前記接続ガス配管6の温度よりも高くなっている場合がほとんどであり、自然循環冷房運転に移行直後は、前記接続液配管5内で、液冷媒の一部が蒸気化したり、前記接続ガス配管6内ではガス冷媒の一部が液化して、冷媒の自然循環が妨げられ、自然循環冷房運転に移行できない場合がある。   This natural circulation cooling operation enables efficient operation when the temperature of outdoor air is low and the temperature of indoor air is high. In order to reliably perform this natural circulation cooling operation, it is necessary to ensure that liquid refrigerant flows through the connection liquid pipe 5 and gas refrigerant (gas refrigerant) flows through the connection gas pipe 6 reliably. However, during the forced circulation cooling operation, since the compressor is operated, the condensation temperature in the outdoor heat exchanger 2 is normally higher than the evaporation temperature in the indoor heat exchanger 4. For this reason, in most cases, the temperature of the connection liquid pipe 5 is higher than the temperature of the connection gas pipe 6, and immediately after shifting to the natural circulation cooling operation, In some cases, a part of the gas refrigerant is vaporized, or a part of the gas refrigerant is liquefied in the connection gas pipe 6, and natural circulation of the refrigerant is hindered, and the natural circulation cooling operation cannot be performed.

ここで、自然循環冷房運転に移行する前に、前記接続液配管5の温度が前記接続ガス配管6の温度よりも低くなるような温度条件にできれば、前記接続液配管5内で液冷媒の一部が蒸気化したり、前記接続ガス配管6内でガス冷媒の一部が液化するのを防止できるから、自然循環冷房運転にスムーズに移行することが可能になる。   If the temperature condition of the connection liquid pipe 5 is lower than the temperature of the connection gas pipe 6 before shifting to the natural circulation cooling operation, one of the liquid refrigerants in the connection liquid pipe 5 can be obtained. Since it is possible to prevent the portion from being vaporized and liquefying a part of the gas refrigerant in the connection gas pipe 6, it is possible to smoothly shift to the natural circulation cooling operation.

そこで、本実施例では、強制循環冷房運転から自然循環冷房運転へ移行する際に、前記温度条件を満たすようにするため、前記室外ファン9の回転数を増加させ、前記室外側熱交換器2での熱交換量を増加させるように制御する。このようにすれば、前記接続液配管5の温度を室外温度近くまで冷却することが可能となる。
また、前記室内膨張弁3の減圧量を増やすことにより、前記室内側熱交換器4から流出するガス冷媒の過熱度を増加させるように制御する。これにより、前記接続ガス配管6の温度を室内温度近くまで加熱することが可能となる。
Therefore, in the present embodiment, when the forced circulation cooling operation is shifted to the natural circulation cooling operation, the rotational speed of the outdoor fan 9 is increased so as to satisfy the temperature condition, and the outdoor heat exchanger 2 is increased. Control to increase the amount of heat exchange. If it does in this way, it will become possible to cool the temperature of the said connection liquid piping 5 to near outdoor temperature.
Further, the amount of superheat of the gas refrigerant flowing out of the indoor heat exchanger 4 is controlled by increasing the amount of pressure reduction of the indoor expansion valve 3. As a result, the temperature of the connecting gas pipe 6 can be heated to near the room temperature.

このようにすることにより、前記接続液配管5の温度を前記接続ガス配管6の温度よりも低くすることが可能となる。図1の空気調和機には、図示していないが、制御装置が備えられており、この制御装置は、前記温度センサ11,12で検出された温度信号を取り込んで、前記接続液配管5の温度が前記接続ガス配管6の温度よりも低くなっていることを確認し、その後、前記圧縮機1を停止させて、自然循環冷房運転に移行させる。   In this way, the temperature of the connection liquid pipe 5 can be made lower than the temperature of the connection gas pipe 6. Although not shown, the air conditioner of FIG. 1 is provided with a control device, which takes in the temperature signal detected by the temperature sensors 11 and 12, and connects the connection liquid pipe 5. After confirming that the temperature is lower than the temperature of the connecting gas pipe 6, the compressor 1 is then stopped and shifted to a natural circulation cooling operation.

このように、前記制御装置により、前記室外ファン9や室内膨張弁3を上述したように制御し、前記接続液配管5の温度が前記接続ガス配管6の温度よりも低くなっていることを確認した後、前記圧縮機1を停止させて、自然循環冷房運転に移行させるように制御することにより、前記接続液配管5内で液冷媒の一部が蒸気化したり、前記接続ガス配管6内でガス冷媒の一部が液化するのを防止することができ、自然循環冷房運転への移行をスムーズ且つ確実に行なうことが可能になる。   Thus, the control device controls the outdoor fan 9 and the indoor expansion valve 3 as described above, and confirms that the temperature of the connection liquid pipe 5 is lower than the temperature of the connection gas pipe 6. After that, by controlling the compressor 1 to stop and shift to the natural circulation cooling operation, a part of the liquid refrigerant is vaporized in the connection liquid pipe 5 or in the connection gas pipe 6. A part of the gas refrigerant can be prevented from being liquefied, and the transition to the natural circulation cooling operation can be performed smoothly and reliably.

なお、上述した例では、室外ファン9の回転数を増加させることで前記接続液配管5の温度を低下させるようにしているが、前記室外ファン9の回転数を増加させる代わりに、前記圧縮機1の回転数を減少させるように制御しても、前記接続液配管5の温度を低下させることは可能である。従って、前記室外ファン9の回転数を増加させることと、前記圧縮機1の回転数を減少させることの少なくとも何れかの制御を行なうことにより、前記接続液配管5の温度を低下させることができる。好ましくは、前記室外ファン9の回転数を増加させることと、前記圧縮機1の回転数を減少させることの両方の制御を行なうようにすれば、前記接続液配管5の温度を低下させる効果をより大きくすることができる。   In the above-described example, the temperature of the connection liquid pipe 5 is decreased by increasing the number of rotations of the outdoor fan 9, but instead of increasing the number of rotations of the outdoor fan 9, the compressor Even if it controls so that the rotation speed of 1 may be reduced, it is possible to reduce the temperature of the said connection liquid piping 5. FIG. Therefore, the temperature of the connection liquid pipe 5 can be lowered by performing at least one control of increasing the rotational speed of the outdoor fan 9 and decreasing the rotational speed of the compressor 1. . Preferably, if both the increase of the rotation speed of the outdoor fan 9 and the decrease of the rotation speed of the compressor 1 are performed, the effect of lowering the temperature of the connection liquid pipe 5 is achieved. Can be larger.

また、上述した例では、前記接続ガス配管6の温度を上昇させるために、前記室内膨張弁3の減圧量を増加させるようにしているが、前記室内ファン10の回転数を増加させることも効果がある。従って、好ましくは、前記室内膨張弁3の減圧量を増加させると共に、前記室内ファン10の回転数も増加させるように制御すると、前記接続ガス配管6の温度を上昇させる効果をより大きくすることができる。
前記圧縮機1の回転数を減少させる制御や前記室内ファン10の回転数を増加させる制御も前記制御装置により行われる。
In the example described above, the amount of pressure reduction of the indoor expansion valve 3 is increased in order to increase the temperature of the connection gas pipe 6, but it is also effective to increase the rotational speed of the indoor fan 10. There is. Therefore, preferably, when the pressure reduction amount of the indoor expansion valve 3 is increased and the rotational speed of the indoor fan 10 is also increased, the effect of increasing the temperature of the connection gas pipe 6 can be increased. it can.
Control for decreasing the rotational speed of the compressor 1 and control for increasing the rotational speed of the indoor fan 10 are also performed by the control device.

以上述べたように、本実施例では、強制循環冷房運転から自然循環冷房運転へ移行する際に、室外機100と室内機200を接続する接続液配管5の温度が、接続ガス配管6の温度よりも低くなるように制御し、その後前記自然循環冷房運転に移行するように制御する構成としているので、強制循環冷房運転から、効率の高い自然循環冷房運転への移行を確実に行なえる空気調和機を実現することができる。   As described above, in this embodiment, when the forced circulation cooling operation is shifted to the natural circulation cooling operation, the temperature of the connection liquid pipe 5 that connects the outdoor unit 100 and the indoor unit 200 is the temperature of the connection gas pipe 6. Air conditioning that can make a transition from forced circulation cooling operation to high-efficiency natural circulation cooling operation with certainty. Machine can be realized.

なお、上記実施例において、前記減圧装置は、前記室内機200に設けられた室内膨張弁3である場合について説明したが、前記減圧装置は前記室内膨張弁3に限られるものではなく、前記室外側熱交換器2の出口側と前記室内熱交換器4の入口側を接続している冷媒配管に設けられた減圧装置であれば良い。   In the above embodiment, the case where the pressure reducing device is the indoor expansion valve 3 provided in the indoor unit 200 has been described. However, the pressure reducing device is not limited to the indoor expansion valve 3, and the chamber What is necessary is just the decompression device provided in the refrigerant | coolant piping which has connected the exit side of the outer side heat exchanger 2, and the entrance side of the said indoor heat exchanger 4. FIG.

また、上述した例では、前記室外ファン9の回転数を増加させる、或いは前記圧縮機1の回転数を減少させることで前記接続液配管5の温度を低下させ、また、室内膨張弁3の減圧量を増加させることにより前記接続ガス配管6の温度を上昇させるようにしている。しかし、少なくとも前記室外ファン9の回転数を増加或いは前記圧縮機1の回転数を減少させれば、前記接続液配管5の温度を低下させることができるから、前記接続液配管5の温度が前記接続ガス配管6の温度よりも低くなるような温度条件にすることができれば、自然循環冷房運転への移行は可能である。従って、室内膨張弁3の減圧量を増加させる制御は併せて行うことが好ましいが、この制御を行わなくても、接続液配管5の温度を接続ガス配管6の温度よりも低くできる場合には、自然循環冷房運転への移行が可能な場合もある。   In the example described above, the temperature of the connection liquid pipe 5 is lowered by increasing the rotational speed of the outdoor fan 9 or decreasing the rotational speed of the compressor 1, and the indoor expansion valve 3 is decompressed. The temperature of the connecting gas pipe 6 is increased by increasing the amount. However, if the rotational speed of the outdoor fan 9 is increased or the rotational speed of the compressor 1 is decreased, the temperature of the connection liquid pipe 5 can be lowered. If the temperature condition can be made lower than the temperature of the connecting gas pipe 6, the transition to the natural circulation cooling operation is possible. Therefore, it is preferable to perform the control for increasing the pressure reduction amount of the indoor expansion valve 3 together. However, when the temperature of the connection liquid pipe 5 can be lower than the temperature of the connection gas pipe 6 without performing this control. In some cases, transition to natural circulation cooling operation is possible.

図2は本発明の空気調和機の実施例2を示す冷凍サイクル構成図である。図2において、図1と同一符号を付した部分は同一或いは相当する部分を示しており、同一部分についてはその説明を省略する。以下、本実施例2が上記実施例1と異なる点を主に説明する。   FIG. 2 is a refrigeration cycle configuration diagram showing Embodiment 2 of the air conditioner of the present invention. 2, the same reference numerals as those in FIG. 1 denote the same or corresponding parts, and the description of the same parts is omitted. Hereinafter, the difference between the second embodiment and the first embodiment will be mainly described.

上記実施例1のものにおいては、減圧装置が、室内機200に備えられた室内膨張弁3である場合を例にとり説明したが、本実施例は、室内機200に備えられた室内膨張弁3の他に、室外機100にも減圧装置としての室外膨張弁13を設けるようにしたものである。即ち、本実施例においては、室外機100内の室外側熱交換器2の出口側の冷媒配管にも室外膨張弁13を設けるようにしたものである。また、この実施例では、前記室外側熱交換器2の出口側の冷媒配管の温度を検出するための温度センサ11は、室外機100内の前記室外膨張弁13の出口側に設けられている。他の構成は図1に示したものと同様である、
本実施例の空気調和機において、通常の強制循環冷房運転時には、前記室外膨張弁13は全開状態にされており、その減圧レベルを最小の状態にしておく。この強制循環冷房運転時においては、前記室外膨張弁13以外の動作については、上記図1で説明したものと同様である。
In the first embodiment, the case where the decompression device is the indoor expansion valve 3 provided in the indoor unit 200 has been described as an example. However, in the present embodiment, the indoor expansion valve 3 provided in the indoor unit 200 is described. In addition, the outdoor unit 100 is also provided with an outdoor expansion valve 13 as a pressure reducing device. That is, in the present embodiment, the outdoor expansion valve 13 is also provided in the refrigerant pipe on the outlet side of the outdoor heat exchanger 2 in the outdoor unit 100. In this embodiment, the temperature sensor 11 for detecting the temperature of the refrigerant pipe on the outlet side of the outdoor heat exchanger 2 is provided on the outlet side of the outdoor expansion valve 13 in the outdoor unit 100. . Other configurations are the same as those shown in FIG.
In the air conditioner of this embodiment, during the normal forced circulation cooling operation, the outdoor expansion valve 13 is fully opened, and the pressure reduction level is kept to a minimum state. During the forced circulation cooling operation, the operations other than the outdoor expansion valve 13 are the same as those described with reference to FIG.

次に、前記強制循環冷房運転から自然循環冷房運転へ移行する際の動作について説明する。この移行の際には、まず圧縮機1の運転は継続したまま、前記室外膨張弁13の開度を絞って減圧する。これにより、接続液配管5内の冷媒は低圧の二相流となり、その温度を大きく低下させることができるから、前記接続液配管5の温度を十分に低下させることができる。なお、この移行する際の運転においては、前記接続液配管5の圧力を下げて温度を低下させる必要があるので、室内機200に設けられている前記室内膨張弁3の減圧量は小さくするか、全開にする。前記室外膨張弁13(及び前記室内膨張弁3)により減圧された冷媒は、室内側熱交換器4で室内空気と熱交換して蒸発するが、前記室外膨張弁13(及び前記室内膨張弁3)の減圧量を大きくすることで、前記室内側熱交換器4での冷媒の過熱度を大きくすることができるから、前記接続ガス配管6の温度を上昇させることができる。   Next, the operation when shifting from the forced circulation cooling operation to the natural circulation cooling operation will be described. At the time of this transition, first, while the operation of the compressor 1 is continued, the opening of the outdoor expansion valve 13 is reduced to reduce the pressure. As a result, the refrigerant in the connection liquid pipe 5 becomes a low-pressure two-phase flow, and the temperature of the refrigerant can be greatly reduced. Therefore, the temperature of the connection liquid pipe 5 can be sufficiently reduced. In the operation at the time of this transition, since it is necessary to lower the temperature by lowering the pressure of the connection liquid pipe 5, is the pressure reduction amount of the indoor expansion valve 3 provided in the indoor unit 200 reduced? , Fully open. The refrigerant decompressed by the outdoor expansion valve 13 (and the indoor expansion valve 3) evaporates by exchanging heat with indoor air in the indoor heat exchanger 4, but the outdoor expansion valve 13 (and the indoor expansion valve 3). ) Can be increased, the degree of superheat of the refrigerant in the indoor heat exchanger 4 can be increased, so that the temperature of the connecting gas pipe 6 can be increased.

このように動作させることで、前記室外機100と前記室内機200を接続する前記接続液配管5の温度が、前記接続ガス配管6の温度よりも低くなるように制御することができる。従って、その後の自然循環冷房運転への移行を確実に行うことができる。
なお、前記強制循環冷房運転から自然循環冷房運転へ移行する際には、上記実施例1と同様に、前記圧縮機1の回転数を低下させたり、前記室外ファン9の回転数を増加させて、前記室外側熱交換器から出る冷媒の過冷却度を大きくし、また前記室外膨張弁13(及び前記室内膨張弁3)の減圧量を大きくすると共に室外ファン10の回転数を増加させて、前記室内側熱交換器4から出る冷媒の過熱度を大きくするようにすることが好ましい。
By operating in this way, the temperature of the connection liquid pipe 5 connecting the outdoor unit 100 and the indoor unit 200 can be controlled to be lower than the temperature of the connection gas pipe 6. Therefore, the subsequent transition to the natural circulation cooling operation can be performed reliably.
When shifting from the forced circulation cooling operation to the natural circulation cooling operation, the rotational speed of the compressor 1 is decreased or the rotational speed of the outdoor fan 9 is increased as in the first embodiment. Increasing the degree of supercooling of the refrigerant coming out of the outdoor heat exchanger, increasing the pressure reduction amount of the outdoor expansion valve 13 (and the indoor expansion valve 3), and increasing the rotational speed of the outdoor fan 10, It is preferable to increase the degree of superheat of the refrigerant coming out of the indoor heat exchanger 4.

本実施例によれば、室外機100に設けた室外膨張弁13により、減圧した二相流の冷媒を前記接続液配管5に流すことができるので、前記接続液配管5の温度を容易に大きく低下させることができ、強制循環冷房運転から、効率の高い自然循環冷房運転への移行を更に確実に行なえる空気調和機を実現することができる。   According to the present embodiment, the outdoor expansion valve 13 provided in the outdoor unit 100 allows the decompressed two-phase flow refrigerant to flow through the connection liquid pipe 5, so that the temperature of the connection liquid pipe 5 can be easily increased. It is possible to achieve an air conditioner that can be reduced and that can more reliably shift from forced circulation cooling operation to highly efficient natural circulation cooling operation.

1:圧縮機、
2:室外側熱交換器、
3,13:減圧装置(3:室内膨張弁、13:室外膨張弁)、
4:室内側熱交換器、
5,6:冷媒配管(5:接続液配管、6:接続ガス配管)、
7:バイパス配管、8:逆止弁、
9:室外ファン、10:室内ファン、
11,12:温度センサ(温度検知手段)。
1: compressor,
2: outdoor heat exchanger,
3, 13: decompression device (3: indoor expansion valve, 13: outdoor expansion valve),
4: Indoor heat exchanger,
5, 6: Refrigerant piping (5: Connection liquid piping, 6: Connection gas piping),
7: Bypass piping, 8: Check valve,
9: Outdoor fan, 10: Indoor fan,
11, 12: Temperature sensor (temperature detection means).

Claims (10)

圧縮機、室外空気と熱交換を行なう室外側熱交換器、減圧装置及び室内空気と熱交換を行なう室内側熱交換器を順次冷媒配管で接続し、前記圧縮機を運転させて冷媒を強制循環させる強制循環冷房運転と、前記室内側熱交換器と、この室内側熱交換器よりも高い位置に設置された室外側熱交換器とを、接続液配管及び接続ガス配管で接続し、重力を利用して前記冷媒を自然循環させる自然循環冷房運転とを切替えて運転可能な空気調和機において、
前記室外側熱交換器の出口側の前記接続液配管の温度を検出するための温度検知手段と、前記室内側熱交換器の出口側の前記接続ガス配管の温度を検出するための温度検知手段とを備え、
前記強制循環冷房運転から前記自然循環冷房運転へ移行する際に、前記接続液配管の温度が前記接続ガス配管の温度よりも低くなるように、前記室外側熱交換器と熱交換を行なう空気の量を増加させて前記接続液配管の温度を低下させると共に、前記減圧装置の減圧量を増加させて、前記接続ガス配管の温度を上昇させるように制御し、
前記接続液配管の温度を検出する温度検知手段と前記接続ガス配管の温度を検出する温度検知手段で検出された温度により、前記接続液配管の温度が前記接続ガス配管の温度よりも低くなっていることを確認した後、前記自然循環冷房運転に移行させ
前記室内側熱交換器は室内機に設けられ、この室内機内の前記室内側熱交換器入口側には減圧装置が設けられ、前記室外側熱交換器は室外機に設けられ、この室外機内の前記室外側熱交換器出口側にも減圧装置が設けられてい
ことを特徴とする空気調和機。
A compressor, an outdoor heat exchanger that exchanges heat with outdoor air, a decompression device, and an indoor heat exchanger that exchanges heat with indoor air are connected in order by refrigerant piping, and the compressor is operated to forcibly circulate the refrigerant. The forced circulation cooling operation, the indoor heat exchanger, and the outdoor heat exchanger installed at a position higher than the indoor heat exchanger are connected by connection liquid piping and connection gas piping, and gravity is In an air conditioner that can be operated by switching between natural cooling and cooling operation for natural circulation of the refrigerant,
Temperature detection means for detecting the temperature of the connection liquid pipe on the outlet side of the outdoor heat exchanger, and temperature detection means for detecting the temperature of the connection gas pipe on the outlet side of the indoor heat exchanger And
When shifting from the forced circulation cooling operation to the natural circulation cooling operation, the temperature of the air that exchanges heat with the outdoor heat exchanger is set so that the temperature of the connection liquid piping is lower than the temperature of the connection gas piping. Increasing the amount to lower the temperature of the connection liquid piping, increasing the pressure reduction amount of the decompression device, and controlling to increase the temperature of the connection gas piping,
Due to the temperature detected by the temperature detecting means for detecting the temperature of the connecting liquid pipe and the temperature detecting means for detecting the temperature of the connecting gas pipe, the temperature of the connecting liquid pipe becomes lower than the temperature of the connecting gas pipe. After confirming that the natural circulation cooling operation ,
The indoor heat exchanger is provided in an indoor unit, a decompression device is provided on the indoor heat exchanger inlet side in the indoor unit, and the outdoor heat exchanger is provided in an outdoor unit. an air conditioner, wherein the chamber pressure reducing device on the outside heat exchanger outlet side that provided.
請求項1に記載の空気調和機において、強制循環冷房運転から自然循環冷房運転へ移行する際に、前記圧縮機の回転数も低下させることを特徴とする空気調和機。   2. The air conditioner according to claim 1, wherein the rotational speed of the compressor is also reduced when the forced circulation cooling operation is shifted to the natural circulation cooling operation. 3. 圧縮機、室外側熱交換器、減圧装置及び室内側熱交換器を順次冷媒配管で接続し、前記圧縮機を運転させて冷媒を強制循環させる強制循環冷房運転と、前記室内側熱交換器と、この室内側熱交換器よりも高い位置に設置された室外側熱交換器とを、接続液配管及び接続ガス配管で接続し、重力を利用して前記冷媒を自然循環させる自然循環冷房運転とを切替えて運転可能な空気調和機において、
前記室外側熱交換器の出口側の前記接続液配管の温度を検出するための温度検知手段と、前記室内側熱交換器の出口側の前記接続ガス配管の温度を検出するための温度検知手段とを備え、
前記強制循環冷房運転から前記自然循環冷房運転へ移行する際に、前記接続液配管の温度が前記接続ガス配管の温度よりも低くなるように、前記圧縮機の回転数を低下させて前記接続液配管の温度を低下させると共に、前記減圧装置の減圧量を増加させて、前記接続ガス配管の温度を上昇させるように制御し、
前記接続液配管の温度を検出する温度検知手段と前記接続ガス配管の温度を検出する温度検知手段で検出された温度により、前記接続液配管の温度が前記接続ガス配管の温度よりも低くなっていることを確認した後、前記自然循環冷房運転に移行させ
前記室内側熱交換器は室内機に設けられ、この室内機内の前記室内側熱交換器入口側には減圧装置が設けられ、前記室外側熱交換器は室外機に設けられ、この室外機内の前記室外側熱交換器出口側にも減圧装置が設けられてい
ことを特徴とする空気調和機。
A compressor, an outdoor heat exchanger, a decompression device, and an indoor heat exchanger are sequentially connected by refrigerant piping, and the forced circulation cooling operation in which the compressor is operated to forcibly circulate the refrigerant; and the indoor heat exchanger; A natural circulation cooling operation in which an outdoor heat exchanger installed at a position higher than the indoor heat exchanger is connected by a connecting liquid pipe and a connecting gas pipe, and the refrigerant is naturally circulated using gravity. In an air conditioner that can be operated by switching
Temperature detection means for detecting the temperature of the connection liquid pipe on the outlet side of the outdoor heat exchanger, and temperature detection means for detecting the temperature of the connection gas pipe on the outlet side of the indoor heat exchanger And
When shifting from the forced circulation cooling operation to the natural circulation cooling operation, the connection liquid is reduced by reducing the rotation speed of the compressor so that the temperature of the connection liquid pipe is lower than the temperature of the connection gas pipe. While reducing the temperature of the piping, increasing the amount of decompression of the decompression device, and controlling to increase the temperature of the connection gas piping,
Due to the temperature detected by the temperature detecting means for detecting the temperature of the connecting liquid pipe and the temperature detecting means for detecting the temperature of the connecting gas pipe, the temperature of the connecting liquid pipe becomes lower than the temperature of the connecting gas pipe. After confirming that the natural circulation cooling operation ,
The indoor heat exchanger is provided in an indoor unit, a decompression device is provided on the indoor heat exchanger inlet side in the indoor unit, and the outdoor heat exchanger is provided in an outdoor unit. an air conditioner, wherein the chamber pressure reducing device on the outside heat exchanger outlet side that provided.
請求項3に記載の空気調和機において、前記室外側熱交換器に室外空気を送風する室外ファンを備え、強制循環冷房運転から自然循環冷房運転へ移行する際に、前記室外ファンを増速させて室外側熱交換器と熱交換を行なう空気の量を増加させることを特徴とする空気調和機。   The air conditioner according to claim 3, wherein the outdoor heat exchanger is provided with an outdoor fan that blows outdoor air, and the outdoor fan is accelerated at the time of transition from forced circulation cooling operation to natural circulation cooling operation. An air conditioner that increases the amount of air that exchanges heat with the outdoor heat exchanger. 請求項1〜4の何れか1項に記載の空気調和機において、前記室内側熱交換器に室内空気を送風する室内ファンを備え、強制循環冷房運転から自然循環冷房運転へ移行する際に、前記室内ファンを増速させて室内側熱交換器と熱交換を行なう空気の量を増加させることを特徴とする空気調和機。   In the air conditioner according to any one of claims 1 to 4, the indoor heat exchanger is provided with an indoor fan that blows indoor air, and when shifting from forced circulation cooling operation to natural circulation cooling operation, An air conditioner characterized in that the indoor fan is accelerated to increase the amount of air exchanging heat with the indoor heat exchanger. 請求項1〜4の何れか1項に記載の空気調和機において、
強制循環冷房運転時には、前記室外機内に設けられた前記減圧装置の開度は、全開或いは予め定めた所定開度とし、前記室内機内に設けられた前記減圧装置の開度を制御して減圧することで、冷房運転を実施し、
強制循環冷房運転から自然循環冷房運転へ移行する際には、前記室外機内の前記減圧装置の減圧量を増加させて前記接続液配管内を流れる冷媒を気液二相流として、前記接続液配管の温度を低下させ、その後自然循環冷房運転に移行するようにしたことを特徴とする空気調和機。
In the air conditioner according to any one of claims 1 to 4 ,
During forced circulation cooling operation, the opening of the decompression device provided in the outdoor unit is fully opened or set to a predetermined opening, and the opening of the decompression device provided in the indoor unit is controlled to reduce the pressure. With that, air conditioning operation
When the forced circulation cooling operation is shifted to the natural circulation cooling operation, the connection liquid pipe is configured such that the refrigerant flowing in the connection liquid pipe is increased in the amount of pressure reduction of the pressure reducing device in the outdoor unit to be a gas-liquid two-phase flow. The air conditioner is characterized in that the temperature of the air-conditioner is lowered and then the operation is shifted to the natural circulation cooling operation.
請求項に記載の空気調和機において、強制循環冷房運転から自然循環冷房運転へ移行する際には、前記室内機内の前記減圧装置の減圧量を低下させること特徴とする空気調和機。 The air conditioner according to claim 6 , wherein when the forced circulation cooling operation is shifted to the natural circulation cooling operation, the amount of pressure reduction of the decompression device in the indoor unit is reduced. 請求項に記載の空気調和機において、自然循環冷房運転に移行後は、前記室外機内の前記減圧装置と前記室内機内の前記減圧装置の双方を全開或いは予め定めた所定開度とすることを特徴とする空気調和機。 In the air conditioner according to claim 6 , after shifting to the natural circulation cooling operation, both the decompression device in the outdoor unit and the decompression device in the indoor unit are fully opened or set to a predetermined opening degree. A featured air conditioner. 圧縮機、室外空気と熱交換を行なう室外側熱交換器、減圧装置及び室内空気と熱交換を行なう室内側熱交換器を順次冷媒配管で接続し、前記圧縮機を運転させて冷媒を強制循環させる強制循環冷房運転と、前記室内側熱交換器と、この室内側熱交換器よりも高い位置に設置された室外側熱交換器とを、接続液配管及び接続ガス配管で接続し、重力を利用して前記冷媒を自然循環させる自然循環冷房運転とを切替えて運転可能な空気調和機において、
前記室外側熱交換器は室外機に設けられ、この室外機内の前記室外側熱交換器出口側には前記減圧装置が設けられ、
前記強制循環冷房運転から前記自然循環冷房運転へ移行する際に、前記接続液配管の温度が前記接続ガス配管の温度よりも低くなるように、前記室外側熱交換器と熱交換を行なう空気の量を増加させて前記接続液配管の温度を低下させると共に、前記減圧装置の減圧量を増加させて、前記接続ガス配管の温度を上昇させるように制御する
ことを特徴とする空気調和機。
A compressor, an outdoor heat exchanger that exchanges heat with outdoor air, a decompression device, and an indoor heat exchanger that exchanges heat with indoor air are connected in order by refrigerant piping, and the compressor is operated to forcibly circulate the refrigerant. The forced circulation cooling operation, the indoor heat exchanger, and the outdoor heat exchanger installed at a position higher than the indoor heat exchanger are connected by connection liquid piping and connection gas piping, and gravity is In an air conditioner that can be operated by switching between natural cooling and cooling operation for natural circulation of the refrigerant,
The outdoor heat exchanger is provided in an outdoor unit, and the decompression device is provided on the outdoor heat exchanger outlet side in the outdoor unit,
When shifting from the forced circulation cooling operation to the natural circulation cooling operation, the temperature of the air that exchanges heat with the outdoor heat exchanger is set so that the temperature of the connection liquid piping is lower than the temperature of the connection gas piping. The air conditioner is controlled to increase the amount to lower the temperature of the connection liquid piping and to increase the pressure reduction amount of the decompression device to increase the temperature of the connection gas piping.
圧縮機、室外側熱交換器、減圧装置及び室内側熱交換器を順次冷媒配管で接続し、前記圧縮機を運転させて冷媒を強制循環させる強制循環冷房運転と、前記室内側熱交換器と、この室内側熱交換器よりも高い位置に設置された室外側熱交換器とを、接続液配管及び接続ガス配管で接続し、重力を利用して前記冷媒を自然循環させる自然循環冷房運転とを切替えて運転可能な空気調和機において、
前記室外側熱交換器は室外機に設けられ、この室外機内の前記室外側熱交換器出口側には前記減圧装置が設けられ、
前記強制循環冷房運転から前記自然循環冷房運転へ移行する際に、前記接続液配管の温度が前記接続ガス配管の温度よりも低くなるように、前記圧縮機の回転数を低下させて前記接続液配管の温度を低下させると共に、前記減圧装置の減圧量を増加させて、前記接続ガス配管の温度を上昇させるように制御する
ことを特徴とする空気調和機。
A compressor, an outdoor heat exchanger, a decompression device, and an indoor heat exchanger are sequentially connected by refrigerant piping, and the forced circulation cooling operation in which the compressor is operated to forcibly circulate the refrigerant; and the indoor heat exchanger; A natural circulation cooling operation in which an outdoor heat exchanger installed at a position higher than the indoor heat exchanger is connected by a connecting liquid pipe and a connecting gas pipe, and the refrigerant is naturally circulated using gravity. In an air conditioner that can be operated by switching
The outdoor heat exchanger is provided in an outdoor unit, and the decompression device is provided on the outdoor heat exchanger outlet side in the outdoor unit,
When shifting from the forced circulation cooling operation to the natural circulation cooling operation, the connection liquid is reduced by reducing the rotation speed of the compressor so that the temperature of the connection liquid pipe is lower than the temperature of the connection gas pipe. An air conditioner characterized by controlling the temperature of the connecting gas pipe to be increased by lowering the temperature of the pipe and increasing the amount of pressure reduction of the pressure reducing device.
JP2012133802A 2012-06-13 2012-06-13 Air conditioner Active JP5956839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012133802A JP5956839B2 (en) 2012-06-13 2012-06-13 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133802A JP5956839B2 (en) 2012-06-13 2012-06-13 Air conditioner

Publications (2)

Publication Number Publication Date
JP2013257087A JP2013257087A (en) 2013-12-26
JP5956839B2 true JP5956839B2 (en) 2016-07-27

Family

ID=49953670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133802A Active JP5956839B2 (en) 2012-06-13 2012-06-13 Air conditioner

Country Status (1)

Country Link
JP (1) JP5956839B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6561551B2 (en) * 2015-04-13 2019-08-21 ダイキン工業株式会社 Refrigeration equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3109500B2 (en) * 1998-12-16 2000-11-13 ダイキン工業株式会社 Refrigeration equipment
JP3932955B2 (en) * 2002-04-04 2007-06-20 三菱電機株式会社 Air conditioner
JP4167196B2 (en) * 2004-03-12 2008-10-15 三菱電機株式会社 Natural circulation combined use air conditioner and natural circulation combined use air conditioner control method
JP2006057932A (en) * 2004-08-20 2006-03-02 Gac Corp Control method for air conditioner

Also Published As

Publication number Publication date
JP2013257087A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
AU2014219807B2 (en) Air-conditioning apparatus
JP4931848B2 (en) Heat pump type outdoor unit for hot water supply
JP6479162B2 (en) Air conditioner
JP5263522B2 (en) Refrigeration equipment
JP4849095B2 (en) Air conditioner
AU2014219806B2 (en) Air-conditioning apparatus
JP6091614B2 (en) Heat pump equipment
JP6067178B2 (en) Heat source side unit and air conditioner
JP4475655B2 (en) Air conditioner
JP4418936B2 (en) Air conditioner
JP4385698B2 (en) Air conditioner
KR102059047B1 (en) A heat pump system and a control method the same
EP3228954A2 (en) Cooling apparatus
JP5133524B2 (en) Air conditioner
JP5956839B2 (en) Air conditioner
KR100743719B1 (en) Process for preventing rising of pressure in multi type air conditioner
JP2005037052A (en) Air conditioner
JP2008209021A (en) Multi-air conditioner
JP2005291558A (en) Air conditioner
JP2005037003A (en) Air-conditioner
JP6561551B2 (en) Refrigeration equipment
JP2007107820A (en) Air conditioner and air conditioner heat source unit used therefor
JP2008209020A (en) Multi-air conditioner
JPH08159587A (en) Multi-room type air conditioner
JP2008180480A (en) Operation control method of multi-chamber type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160617

R150 Certificate of patent or registration of utility model

Ref document number: 5956839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250