JP2022008633A - Manufacturing method of rare earth hydride, hydrogen sensor, and thin film transistor - Google Patents

Manufacturing method of rare earth hydride, hydrogen sensor, and thin film transistor Download PDF

Info

Publication number
JP2022008633A
JP2022008633A JP2021159219A JP2021159219A JP2022008633A JP 2022008633 A JP2022008633 A JP 2022008633A JP 2021159219 A JP2021159219 A JP 2021159219A JP 2021159219 A JP2021159219 A JP 2021159219A JP 2022008633 A JP2022008633 A JP 2022008633A
Authority
JP
Japan
Prior art keywords
film
rare earth
hydrogen
earth element
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021159219A
Other languages
Japanese (ja)
Other versions
JP7219930B2 (en
Inventor
修 中村
Osamu Nakamura
政道 酒井
Masamichi Sakai
琢磨 坂井
Takuma Sakai
輝 吉澤
Teru Yoshizawa
達郎 花尻
Tatsuro Hanajiri
義賢 中島
Yoshitada Nakajima
正秀 徳田
Masahide Tokuda
泰彦 藤井
Yasuhiko Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kake Educational Institution
Toyo University
Saitama University NUC
Original Assignee
Kake Educational Institution
Toyo University
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017220273A external-priority patent/JP2019089267A/en
Application filed by Kake Educational Institution, Toyo University, Saitama University NUC filed Critical Kake Educational Institution
Priority to JP2021159219A priority Critical patent/JP7219930B2/en
Publication of JP2022008633A publication Critical patent/JP2022008633A/en
Application granted granted Critical
Publication of JP7219930B2 publication Critical patent/JP7219930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a rare earth hydride that produces a rare earth hydride semiconductor even at low temperature (particularly at room temperature) and in low concentration hydrogen atmosphere, and a thin film transistor in which a channel layer includes the rare earth hydride semiconductor.
SOLUTION: A manufacturing method of a rare earth hydride includes a step A of sequentially forming, on an insulating substrate 11, a gate electrode 12, a gate insulating film 13 covering the gate electrode 12, a rare earth element film 14 arranged on the gate insulating film 13, a source electrode 17 and a drain electrode 18 arranged on the rare earth element film 14, a passivation film 19 covering the rare earth element film 14, the source electrode 17, and the drain electrode 18, and a platinum film 20 covering the passivation film 19, and a step B of heat-treating a laminated structure obtained through the step A in an atmosphere containing hydrogen.
SELECTED DRAWING: Figure 8
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、希土類水素化物(すなわち、希土類元素の水素化物)の製造方法、並びに、希土類水素化物を用いた水素センサー及び薄膜トランジスターに関する。 The present invention relates to a method for producing a rare earth hydride (that is, a hydride of a rare earth element), and a hydrogen sensor and a thin film using the rare earth hydride.

従来から、希土類二水素化物と希土類三水素化物間の金属-半導体転移を利用したスイッチングミラー(例えば、非特許文献1、特許文献1等)や水素センサー(例えば、非特許文献2)が研究され、また、希土類水素化物金属を利用したデバイスとして冷陰極管等が知られている(例えば、非特許文献3、特許文献2等)。すなわち、希土類二水素化物(例えば、YH(イットリウム二水素化物)等)は金属(以下、「希土類水素化物金属」という。)であり、希土類三水素化物(例えば、YH(イットリウム三水素化物)等)は半導体(以下、希土類水素化物半導体)という。)である。希土類水素化物金属の特徴的な性質として、正孔と電子の濃度差が小さく(両極性伝導)、両者の移動度の差も小さいことからホール電圧が極めて小さいという性質があり、この希土類水素化物金属の性質を利用したデバイスとして、例えば、スピン流生成素子が知られている(特許文献3、4等)。 Conventionally, switching mirrors (for example, Non-Patent Document 1, Patent Document 1, etc.) and hydrogen sensors (for example, Non-Patent Document 2) using a metal-semiconductor transition between a rare earth dihydride and a rare earth trihydride have been studied. Further, a cold cathode tube or the like is known as a device using a rare earth hydride metal (for example, Non-Patent Document 3, Patent Document 2, etc.). That is, the rare earth dihydride (for example, YH 2 (yttrium dihydride), etc.) is a metal (hereinafter referred to as "rare earth hydride metal"), and the rare earth trihydride (for example, YH 3 (yttrium trihydride)). ) Etc.) are referred to as semiconductors (hereinafter referred to as rare earth hydride semiconductors). ). The characteristic properties of rare earth hydride metals are that the hole voltage is extremely small because the difference in concentration between holes and electrons is small (bipolar conduction) and the difference in mobility between the two is small. As a device utilizing the properties of a metal, for example, a spin current generating element is known (Patent Documents 3, 4, etc.).

特表平11-514107号公報Special Table No. 11-514107 Gazette 特開2004-91284号公報Japanese Unexamined Patent Publication No. 2004-911284 特許第5551912号公報Japanese Patent No. 55519112 特許第5601976号公報Japanese Patent No. 5601976 特開2015-065282号公報JP-A-2015-065282 特開2015-118994号公報JP-A-2015-118994

Physical Review B vol57(1998)pp.4943-4949Physical Review B vol57 (1998) pp.4943-4949 Mater.Trans.48(2007)pp.635-636Mater.Trans.48 (2007) pp.635-636 Jpn.J.Appl.Phys. vol39(2000)pp.4933-4938Jpn.J.Appl.Phys. Vol39 (2000) pp.4933-4938 Thin Solid Films Vol.624(2017)pp.175-180Thin Solid Films Vol.624 (2017) pp.175-180 J.Alloy.Com. Vol.239(1996)pp.158-171J.Alloy.Com. Vol.239 (1996) pp.158-171

希土類水素化物の製造方法としては、例えば、希土類元素の膜を水素を含む雰囲気下で熱処理する方法がある(非特許文献3)。しかし、希土類元素の膜は極めて酸化し易いため、この方法では、酸化防止のために、水素化炉として、真空引きが可能で且つ到達真空度が高水準な炉が要求され、高価な真空装置でしか対応できない。また、水素を含む雰囲気が、取り扱いが容易な爆発限界未満の水素分圧の低い雰囲気(例えば、水素3体積%と不活性ガス97体積%の混合ガス)下では、希土類水素化物の金属(例えば、YH)は生成するが、希土類水素化物の半導体(例えば、YH)は生成しない。また、希土類元素の膜上に水素選択透過膜を形成した積層膜を水素を含む雰囲気(例えば、水素3体積%+不活性ガス97体積%の混合ガス雰囲気)下で加熱する方法が知られている(非特許文献4等)。図14はY(イットリウム)膜に水素選択透過膜としてPd(パラジウム)膜を形成した積層膜(Pd:80nm/Y:500nmの積層膜)を水素3体積%+Ar97体積%の混合ガス雰囲気下、各種温度で熱処理したときの、Y膜中に生成したYH
金属)とYH(半導体)の割合を示している。図14から、室温から200℃の温度で
金属(YH)が生成し、300℃以上になると半導体(YH)が生成するが、400℃まで加熱しても半導体(YH)はY膜の半分以上の割合には達しないことがわかる。また、図15は、Y膜に水素選択透過膜としてNi(ニッケル)膜を形成した積層膜(Ni:80nm/Y:500nmの積層膜)を水素3体積%+Ar97体積%の混合ガス雰囲気(以下、「3体積%H+97体積%Ar雰囲気」とも略称する)下、各種温度で熱処理したときのY膜中に生成したYH(金属)とYH(半導体)の割合、図16は、Y膜に水素選択透過膜としてNi/Pd膜を形成した積層膜(Ni/Pd:95nm/Y:500nmの積層膜)を水素3体積%+Ar97体積%雰囲気下、各種温度で熱処理したときの、Y膜中に生成したYH(金属)とYH(半導体)の割合を示している。水素選択透過膜にPd膜を使用した場合、YH(半導体)の生成が115℃で確認され(図15)、水素選択透過膜に(Ni/Pd膜)を使用した場合に、YH(半導体)が生成する温度がさらに低温化している(図16)ことが分かる。しかし、いずれの場合も、室温での希土類水素化物半導体の生成は困難である。
As a method for producing a rare earth hydride, for example, there is a method of heat-treating a film of a rare earth element in an atmosphere containing hydrogen (Non-Patent Document 3). However, since the rare earth element membrane is extremely easy to oxidize, this method requires a hydrogenation furnace that can be evacuated and has a high level of ultimate vacuum in order to prevent oxidation, and is an expensive vacuum device. Can only be handled with. Further, in an atmosphere containing hydrogen, which is easy to handle and has a low hydrogen partial pressure below the explosion limit (for example, a mixed gas of 3% by volume of hydrogen and 97% by volume of an inert gas), a metal of a rare earth hydride (for example). , YH 2 ), but not rare earth hydride semiconductors (eg, YH 3 ). Further, a method of heating a laminated film in which a hydrogen selective permeation film is formed on a film of a rare earth element in an atmosphere containing hydrogen (for example, a mixed gas atmosphere of 3% by volume of hydrogen + 97% by volume of an inert gas) is known. (Non-Patent Document 4 etc.). FIG. 14 shows a laminated film (Pd: 80 nm / Y: 500 nm laminated film) in which a Pd (palladium) film is formed on a Y (ittrium) film as a hydrogen selective permeation film under a mixed gas atmosphere of 3% by volume of hydrogen + 97% by volume of Ar. YH 2 produced in the Y film when heat-treated at various temperatures (
The ratio of (metal) and YH 3 (semiconductor) is shown. From FIG. 14, a metal (YH 2 ) is formed at a temperature of 200 ° C. from room temperature, and a semiconductor (YH 3 ) is formed at a temperature of 300 ° C. or higher, but the semiconductor (YH 3 ) is a Y film even when heated to 400 ° C. It can be seen that the ratio does not reach more than half of. Further, FIG. 15 shows a mixed gas atmosphere of 3% by volume of hydrogen + 97% by volume of Ar in a laminated film (Ni: 80 nm / Y: 500 nm laminated film) in which a Ni (nickel) film is formed as a hydrogen selective permeation film on the Y film. , "3% by volume H 2 + 97% by volume Ar atmosphere"), the ratio of YH 2 (metal) and YH 3 (semiconductor) produced in the Y film when heat-treated at various temperatures, FIG. 16 shows. When a laminated film (Ni / Pd: 95 nm / Y: 500 nm laminated film) in which a Ni / Pd film is formed as a hydrogen selective permeation film on a Y film is heat-treated at various temperatures under an atmosphere of 3% by volume hydrogen + 97% by volume of Ar. The ratio of YH 2 (metal) and YH 3 (semiconductor) produced in the Y film is shown. When a Pd membrane was used for the hydrogen selective permeable membrane, the formation of YH 3 (semiconductor) was confirmed at 115 ° C. (Fig. 15), and when (Ni / Pd membrane) was used for the hydrogen selective permeable membrane, YH 3 (Ni / Pd membrane) was used. It can be seen that the temperature generated by the semiconductor) is further lowered (FIG. 16). However, in either case, it is difficult to produce a rare earth hydride semiconductor at room temperature.

本発明者等の知見によれば、希土類水素化物半導体は多結晶であることから移動度が高いことが予想される。それ故、希土類水素化物半導体を薄膜トランジスターのチャネル層に適用することが期待でき、さらに希土類水素化物半導体のさらなる低温での生成(製造)が可能になれば、有機発光ダイオード(OLED:Organic Light Emitting Diode)に代表される有機EL(Electro-Luminescence)素子を利用した表示パネル等における、高移動度薄膜トランジスター(TFT:Thin Film Transistor)のチャネル層への適用も期待できる。また、希土類水素化物半導体のさらなる低温での生成(製造)が可能になれば、フレキシブル基板上にも希土類水素化物半導体の膜を容易に形成することが可能になる。 According to the findings of the present inventors, the rare earth hydride semiconductor is expected to have high mobility because it is polycrystal. Therefore, if it can be expected that the rare earth hydride semiconductor can be applied to the channel layer of the thin film, and if the rare earth hydride semiconductor can be produced (manufactured) at a lower temperature, the organic light emission diode (OLED: Organic Light Emitting) can be expected. It is also expected to be applied to the channel layer of a high mobility thin film (TFT) in a display panel or the like using an organic EL (Electro-Luminescence) element typified by Diode). Further, if the rare earth hydride semiconductor can be produced (manufactured) at a lower temperature, a film of the rare earth hydride semiconductor can be easily formed on the flexible substrate.

従って、本発明の解決課題は、低温(特に、室温)の低濃度水素雰囲気下においても希土類水素化物半導体を生成し得る希土類水素化物の製造方法を提供することにある。また、室温環境で使用できる水素センサーを提供すること、さらには、希土類水素化物半導体をチャンル層とする薄膜トランジスターとその製造方法を提供することにある。 Therefore, it is an object of the present invention to provide a method for producing a rare earth hydride capable of producing a rare earth hydride semiconductor even in a low concentration hydrogen atmosphere at a low temperature (particularly, room temperature). Another object of the present invention is to provide a hydrogen sensor that can be used in a room temperature environment, and further to provide a thin film having a rare earth hydride semiconductor as a channel layer and a method for manufacturing the same.

本発明者等は上記の課題を解決すべく鋭意研究を重ねた結果、以下の構成を採ることで、上記の課題を解決できることを見出した。 As a result of diligent research to solve the above problems, the present inventors have found that the above problems can be solved by adopting the following configuration.

すなわち、本発明は以下の通りである。
[1] 希土類元素膜上に白金膜が形成された積層膜を水素を含む雰囲気下で熱処理することを含む、希土類水素化物の製造方法。
[2] 希土類水素化物が希土類水素化物半導体である、上記[1]記載の方法。
[3] 水素を含む雰囲気が爆発限界以下の量の水素を含む雰囲気である、上記[1]または[2]記載の方法。
[4] 熱処理温度が室温である、上記[1]~[3]のいずれか1つに記載の方法。
[5] 希土類元素膜が、Sc(スカンジウム)、Y(イットリウム)、Gd(ガドリニウム)、Eu(ユウロピウム)及びYb(イッテルビウム)からなる群から選択されるいずれか一種の元素または二種以上の元素を含む、上記[1]~[4]のいずれか1つに記載の方法。
[6] 希土類水素化物金属膜及び該希土類水素化物金属膜上に形成された白金膜を有する水素センサー。
[7] チャネル層が希土類水素化物半導体を含むことを特徴とする薄膜トランジスター。
[8] チャネル層が希土類水素化物半導体を含む薄膜トランジスターを製造する方法で
あって、下記の工程A及び工程Bを含むことを特徴とする薄膜トランジスターの製造方法。
工程A:絶縁性基板上に、
ゲート電極、
該ゲート電極を覆うゲート絶縁膜、
該ゲート絶縁膜上に配設される希土類元素膜、
該希土類元素膜上に配設されるソース電極及びドレイン電極、
該希土類元素膜、該ソース電極及び該ドレイン電極を覆うパッシベーション膜、並びに該パッシベーション膜を被覆する白金膜
を順次形成する。
工程B:工程Aを経て得られた積層構造体を水素を含む雰囲気内で熱処理する。
[9] 工程Aに代えて、下記の工程Cを有し、工程Bが、下記の工程Cを経て得られた積層構造体を水素を含む雰囲気内で熱処理する工程に変更された、上記[8]記載の方法。
工程C:絶縁性基板上に、ゲート電極、該ゲート電極を覆うゲート絶縁膜、該ゲート絶縁膜上に配設されるソース電極及びドレイン電極を順次形成した後、該ゲート絶縁膜上の該ソース電極、該ドレイン電極及びこれら電極の周辺部のみを覆う希土類元素膜、並びに該希土類元素膜を被覆する白金膜を順次形成する。
[10] 水素を含む雰囲気が爆発限界以下の量の水素を含む雰囲気である、上記[8]または[9]に記載の方法。
[11] 熱処理温度が室温である、上記[8]~[10]のいずれか1つに記載の方法。
That is, the present invention is as follows.
[1] A method for producing a rare earth hydride, which comprises heat-treating a laminated film having a platinum film formed on a rare earth element film in an atmosphere containing hydrogen.
[2] The method according to the above [1], wherein the rare earth hydride is a rare earth hydride semiconductor.
[3] The method according to the above [1] or [2], wherein the atmosphere containing hydrogen is an atmosphere containing an amount of hydrogen equal to or less than the explosion limit.
[4] The method according to any one of the above [1] to [3], wherein the heat treatment temperature is room temperature.
[5] Any one element or two or more elements selected from the group consisting of Sc (scandium), Y (yttrium), Gd (gadolinium), Eu (europium) and Yb (ytterbium) for the rare earth element film. The method according to any one of the above [1] to [4], which comprises.
[6] A hydrogen sensor having a rare earth hydride metal film and a platinum film formed on the rare earth hydride metal film.
[7] A thin film characterized in that the channel layer contains a rare earth hydride semiconductor.
[8] A method for manufacturing a thin film including a rare earth hydride semiconductor in which the channel layer includes the following steps A and B.
Step A: On an insulating substrate,
Gate electrode,
A gate insulating film covering the gate electrode,
A rare earth element film disposed on the gate insulating film,
Source and drain electrodes disposed on the rare earth element film,
The rare earth element film, the passivation film covering the source electrode and the drain electrode, and the platinum film covering the passivation film are sequentially formed.
Step B: The laminated structure obtained through the step A is heat-treated in an atmosphere containing hydrogen.
[9] Instead of the step A, the following step C is provided, and the step B is changed to a step of heat-treating the laminated structure obtained through the following step C in an atmosphere containing hydrogen. 8] The method described.
Step C: A gate electrode, a gate insulating film covering the gate electrode, a source electrode and a drain electrode arranged on the gate insulating film are sequentially formed on the insulating substrate, and then the source on the gate insulating film is formed. A rare earth element film covering only the electrode, the drain electrode, and the peripheral portion of these electrodes, and a platinum film covering the rare earth element film are sequentially formed.
[10] The method according to the above [8] or [9], wherein the atmosphere containing hydrogen is an atmosphere containing an amount of hydrogen equal to or less than the explosion limit.
[11] The method according to any one of the above [8] to [10], wherein the heat treatment temperature is room temperature.

本発明によれば、低温(特に、室温)かつ低濃度水素雰囲気下で、希土類水素化物半導体を生成し得る希土類水素化物の製造方法を提供することができ、特に、低温(特に、室温)かつ低濃度水素雰囲気下で、多結晶の希土類水素化物半導体膜を形成できる希土類水素化物の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a rare earth hydride capable of producing a rare earth hydride semiconductor at a low temperature (particularly at room temperature) and in a low concentration hydrogen atmosphere, particularly at a low temperature (particularly at room temperature) and at a low concentration. It is possible to provide a method for producing a rare earth hydride capable of forming a polycrystalline rare earth hydride semiconductor film under a low concentration hydrogen atmosphere.

また、本発明によれば、室温環境で使用できる水素センサーを提供することができる。 Further, according to the present invention, it is possible to provide a hydrogen sensor that can be used in a room temperature environment.

また、本発明によれば、多結晶の希土類水素化物半導体をチャネル層とする薄膜トランジスター及びその製造方法を提供することができる。 Further, according to the present invention, it is possible to provide a thin film having a polycrystalline rare earth hydride semiconductor as a channel layer and a method for producing the same.

図1は本発明の実施例におけるPt(20nm)/Y(400nm)の積層膜を、3体積%H+97体積%Ar雰囲気下、各種温度で、15分処理した後のY膜のX線回折チャートである。FIG. 1 shows X-rays of the Y film after treating the Pt (20 nm) / Y (400 nm) laminated film in the embodiment of the present invention under an atmosphere of 3% by volume H 2 + 97% by volume Ar at various temperatures for 15 minutes. It is a diffraction chart. 図2は比較例1におけるNi(20nm)/Y(400nm)の積層膜を、3体積%H+97体積%Ar雰囲気下、各種温度で、15分処理した後のY膜のX線回折チャートである。FIG. 2 is an X-ray diffraction chart of the Y film after treating the Ni (20 nm) / Y (400 nm) laminated film in Comparative Example 1 at various temperatures under a 3% by volume H 2 + 97% by volume Ar atmosphere for 15 minutes. Is. 図3は比較例2におけるTi(20nm)/Y(400nm)の積層膜を、3体積%H+97体積%Ar雰囲気下、各種温度で、15分処理した後のY膜のX線回折チャートである。FIG. 3 is an X-ray diffraction chart of the Y film after treating the Ti (20 nm) / Y (400 nm) laminated film in Comparative Example 2 for 15 minutes at various temperatures under a 3% by volume H 2 + 97% by volume Ar atmosphere. Is. 図4は比較例3におけるAu(20nm)/Y(400nm)の積層膜を、3体積%H+97体積%Ar雰囲気下、各種温度で、15分処理した後のY膜のX線回折チャートである。FIG. 4 is an X-ray diffraction chart of the Y film after treating the Au (20 nm) / Y (400 nm) laminated film in Comparative Example 3 at various temperatures under a 3% by volume H 2 + 97% by volume Ar atmosphere for 15 minutes. Is. 図5は本発明の水素センサーの一例の模式斜視図である。FIG. 5 is a schematic perspective view of an example of the hydrogen sensor of the present invention. 図6(A)(B)は本発明の水素センサーの他の一例の模式平面図と模式断面図である。図6(B)は図6(A)中のb-b線における断面を示す。6 (A) and 6 (B) are a schematic plan view and a schematic cross-sectional view of another example of the hydrogen sensor of the present invention. FIG. 6B shows a cross section taken along line bb in FIG. 6A. 図7(A)~(D)は図6(A)(B)に示す水素センサーの製造工程を示す工程別の模式断面図であり、図7(E)は水素センサーにおける希土類水素化物金属膜が希土類水素化物半導体膜に転化した状態を示す模式断面図である。7 (A) to 7 (D) are schematic cross-sectional views for each process showing the manufacturing process of the hydrogen sensor shown in FIGS. 6 (A) and 6 (B), and FIG. 7 (E) is a rare earth hydride metal film in the hydrogen sensor. Is a schematic cross-sectional view showing a state in which is converted into a rare earth hydride semiconductor film. 図8(A)(B)は本発明のチャル層に希土類水素化物半導体を用いた薄膜トランジスターの一例の製造工程における最終工程(水素を含む雰囲気下で熱処工程)とその一つ前の工程を示す模式断面図である。8 (A) and 8 (B) show the final step (heat treatment step in an atmosphere containing hydrogen) and the previous step in the manufacturing process of an example of a thin film using a rare earth hydride semiconductor for the char layer of the present invention. It is a schematic cross-sectional view which shows. 図9(A)(B)は本発明のチャル層に希土類水素化物半導体を用いた薄膜トランジスターの他の一例の模式平面図と断面図である。図9(B)は図9(A)中のb-b線における断面を示す。9 (A) and 9 (B) are schematic plan views and cross-sectional views of another example of a thin film using a rare earth hydride semiconductor for the char layer of the present invention. 9 (B) shows a cross section taken along line bb in FIG. 9 (A). 図10(A)~(D)は図9の薄膜トランジスターの製造工程を示す工程別の模式断面図である。10 (A) to 10 (D) are schematic cross-sectional views for each process showing the manufacturing process of the thin film film of FIG. 図11(A)(B)は図9の薄膜トランジスターの製造工程を示す工程別の模式断面図である。11 (A) and 11 (B) are schematic cross-sectional views for each process showing the manufacturing process of the thin film film of FIG. 図12は本発明の実施例の水素センサーにおける金属相(YH)が主体のイットリウム水素化物膜である希土類水素化物金属膜のX線回折チャートである。FIG. 12 is an X-ray diffraction chart of a rare earth hydride metal film which is a yttrium hydride film mainly composed of a metal phase (YH 2 ) in the hydrogen sensor of the embodiment of the present invention. 図13は本発明の実施例の薄膜トランジスターにおけるPt(10nm)/Yb(290nm)の積層膜を、3体積%H+97体積%Ar雰囲気下、各種温度で、30分処理(昇温時間5分)した後のYb膜のX線回折チャートである。FIG. 13 shows a 30-minute treatment (heating time 5) of a Pt (10 nm) / Yb (290 nm) laminated film in the thin film of the embodiment of the present invention under an atmosphere of 3% by volume H 2 + 97% by volume Ar at various temperatures. It is an X-ray diffraction chart of the Yb film after the minute). 図14は非特許文献4から転記し、加筆した、Y膜に水素選択透過膜としてPd(パラジウム)膜を形成した積層膜(Pd:80nm/Y:500nmの積層膜)が、3体積%H+97体積%Ar雰囲気下、各種温度で処理されたときに生成したYH(金属)とYH(半導体)の割合を示す図である。FIG. 14 is transcribed from Non-Patent Document 4, and the laminated film (Pd: 80 nm / Y: 500 nm laminated film) in which a Pd (palladium) film is formed as a hydrogen selective permeation film on the Y film is 3% by volume H. It is a figure which shows the ratio of YH 2 (metal) and YH 3 (semiconductor) produced when it was treated at various temperatures in the atmosphere of 2 + 97% by volume Ar. 図15は非特許文献4から転記し、加筆した、Y膜に水素選択透過膜としてNi(ニッケル)膜を形成した積層膜(Ni:80nm/Y:500nmの積層膜)が、3体積%H2+97体積%Ar雰囲気下、各種温度で処理されたときに生成したYH(金属)とYH(半導体)の割合を示す図である。FIG. 15 is transcribed from Non-Patent Document 4, and the laminated film (Ni: 80 nm / Y: 500 nm laminated film) in which a Ni (nickel) film is formed as a hydrogen selective permeation film on the Y film is 3% by volume H2 + 97. It is a figure which shows the ratio of YH 2 (metal) and YH 3 (semiconductor) produced when it was treated at various temperatures in a volume% Ar atmosphere. 図16は非特許文献4から転記し、加筆した、Y膜に水素選択透過膜としてNi/Pd膜を形成した積層膜(Ni/Pd:95nm/Y:500nmの積層膜)が、3体積%H+97体積%Ar雰囲気下、各種温度で処理されたときに生成したYH(金属)とYH(半導体)の割合を示す図である。FIG. 16 is transcribed from Non-Patent Document 4, and the laminated film (Ni / Pd: 95 nm / Y: 500 nm laminated film) in which a Ni / Pd film is formed as a hydrogen selective permeation film on the Y film is 3% by volume. It is a figure which shows the ratio of YH 2 (metal) and YH 3 (semiconductor) produced when it was treated at various temperatures under the atmosphere of H2 + 97% by volume Ar.

以下、本発明をその好適な実施形態に即して詳しく説明する。
1.希土類水素化物の製造方法
本発明の希土類水素化物の製造方法(以下、単に「本発明方法」とも略称する)は、希土類元素膜上に白金膜が形成された積層膜を水素を含む雰囲気下で熱処理することを含む。
かかる熱処理により、希土類元素膜は、膜中の希土類元素が水素化されて希土類水素化物を生成した膜(以下、「希土類水素化物膜」ともいう)に転化する。
Hereinafter, the present invention will be described in detail according to the preferred embodiment thereof.
1. 1. Method for producing rare earth hydride The method for producing a rare earth hydride of the present invention (hereinafter, also simply abbreviated as "method of the present invention") is a laminated film in which a platinum film is formed on a rare earth element film under an atmosphere containing hydrogen. Includes heat treatment.
By such heat treatment, the rare earth element film is converted into a film in which the rare earth element in the film is hydrogenated to produce a rare earth hydride (hereinafter, also referred to as “rare earth hydride film”).

本発明方法における「希土類元素」とは、Sc(スカンジウム)、Y(イットリウム)及び元素周期表のランタノイド系のLa(ランタン)からLu(ルテチウム)までの15の元素を包含し、好ましくは、Sc(スカンジウム)、Y(イットリウム)、Gd(ガドリニウム)、Eu(ユウロピウム)及びYb(イッテルビウム)からなる群から選択されるいずれか一種または二種以上である。また、かかる元素群から選択されるいずれか一種または二種以上の元素と当該元素群以外の他の元素とからなる合金も「希土類元素」に包含されるものとする。 The "rare earth element" in the method of the present invention includes 15 elements from Sc (scandium), Y (yttrium) and the lanthanoid-based La (lanthanum) to Lu (lutetium) in the periodic table of elements, preferably Sc. Any one or more selected from the group consisting of (scandium), Y (yttrium), Gd (gadrinium), Eu (europium) and Yb (itterbium). Further, an alloy composed of any one or more kinds of elements selected from such an element group and an element other than the element group is also included in the "rare earth element".

本発明方法で製造される希土類水素化物において「希土類水素化物半導体」は常温において10-3Ω・cm以上の抵抗率を有する。希土類水素化物半導体の具体例としては、
ScH、YH、EuとYbを除くランタノイド系列元素の三水素化物、EuH、YbH、YbH2.6等が挙げられ、酸化のし難さ等の取り扱いの容易さや水素化後の安定性の点から、好ましくは、ScH、YH、GdH、YbH、YbH2.6である。
In the rare earth hydride produced by the method of the present invention, the "rare earth hydride semiconductor" has a resistivity of 10-3 Ω · cm or more at room temperature. Specific examples of rare earth hydride semiconductors include
Examples include trihydrides of lanthanoid series elements other than ScH 3 , YH 3 , Eu and Yb, EuH 2 , YbH 2 , YbH 2.6 , etc., which are easy to handle such as difficulty in oxidation and stable after hydrogenation. From the viewpoint of sex, ScH 3 , YH 3 , GdH 3 , YbH 2 , and YbH 2.6 are preferable.

なお、上記の「常温での抵抗率」における「常温」とはJIS Z 8703に規定の20℃±15℃(5~35℃)の範囲である。 The "normal temperature" in the above "resistivity at room temperature" is in the range of 20 ° C. ± 15 ° C. (5 to 35 ° C.) specified in JIS Z 8703.

本発明方法における「希土類元素膜上に白金膜が形成された積層膜」には、(1)希土類元素膜の表面に直接白金膜が形成された積層膜(白金膜/希土類元素膜)の態様、及び、(2)希土類元素膜の表面に絶縁膜が形成され、該絶縁膜の表面に白金膜が形成された積層膜(白金膜/絶縁膜/希土類元素膜)の態様がある。後述の本発明の薄膜トランジスターの製造方法は、本発明方法(上記(2)の態様)を利用するものであり、後述のTaからなるパッシベーション膜がここでいう絶縁膜に相当する。 The "laminated film in which a platinum film is formed on a rare earth element film" in the method of the present invention includes (1) an embodiment of a laminated film (platinum film / rare earth element film) in which a platinum film is directly formed on the surface of the rare earth element film. , And (2) a laminated film (platinum film / insulating film / rare earth element film) in which an insulating film is formed on the surface of the rare earth element film and a platinum film is formed on the surface of the insulating film. The method for manufacturing a thin film film of the present invention described later utilizes the method of the present invention (the aspect of (2) above), and the passivation film made of Ta 2 O 5 described later corresponds to the insulating film referred to here.

本発明方法において、白金膜は、前述の先行技術文献でいう「水素選択透過膜」、すなわち、希土類元素膜に水素を選択的に供給して希土類元素と水素を化合させる触媒機能を有する膜として機能するが、積層膜が、希土類元素膜の表面に絶縁膜が形成され、該絶縁膜の表面に白金膜が形成された積層膜(Pt膜/絶縁膜/希土類元素膜)である場合は、熱処理により、絶縁膜に対して水素を透過させて、希土類元素膜に水素を選択的に供給して希土類元素と水素を化合させる作用を有する。 In the method of the present invention, the platinum membrane is a "hydrogen selective permeation membrane" referred to in the above-mentioned prior art document, that is, as a membrane having a catalytic function of selectively supplying hydrogen to a rare earth element membrane to combine the rare earth element with hydrogen. If the laminated film is a laminated film (Pt film / insulating film / rare earth element film) in which an insulating film is formed on the surface of the rare earth element film and a platinum film is formed on the surface of the insulating film, the laminated film functions. By heat treatment, hydrogen is permeated through the insulating film, and hydrogen is selectively supplied to the rare earth element membrane to combine the rare earth element with hydrogen.

本発明方法において、「希土類元素膜上に白金膜が形成された積層膜」の作製方法は特に限定はされないが、希土類元素膜及び白金膜は、通常、物理蒸着法によって形成される。好ましい態様として、例えば、絶縁性基板上に、スパッタ法、電子ビーム(EB)蒸着法等により、希土類元素膜を成膜した後、該希土類元素膜上に、スパッタ法、電子ビーム蒸着法等により、白金膜を成膜する、態様が挙げられる。なお、希土類元素膜の表面に絶縁膜が形成され、該絶縁膜の表面に白金膜が形成された積層膜を作製する場合、絶縁膜は、希土類元素膜の成膜後、例えば、スパッタ法やCVD(chemical vapor deposition)
法等により形成する。
In the method of the present invention, the method for producing the "laminated film in which the platinum film is formed on the rare earth element film" is not particularly limited, but the rare earth element film and the platinum film are usually formed by a physical vapor deposition method. As a preferred embodiment, for example, a rare earth element film is formed on the insulating substrate by a sputtering method, an electron beam (EB) vapor deposition method, or the like, and then the rare earth element film is formed by a sputtering method, an electron beam vapor deposition method, or the like. , An embodiment of forming a platinum film. In the case of producing a laminated film in which an insulating film is formed on the surface of the rare earth element film and a platinum film is formed on the surface of the insulating film, the insulating film is used, for example, by a sputtering method after the film formation of the rare earth element film. CVD (chemical vapor deposition)
Formed by law.

なお、絶縁性基板は、希土類元素膜上に白金膜が形成された積層膜が熱処理される過程での支持体として利用される。従って、絶縁性基板としては、例えば、ガラス基板、アルミナ基板、熱酸化膜付きシリコン基板等が使用される。また、希土類元素膜上に白金膜が形成された積層膜が、希土類元素膜の表面に絶縁膜が形成され、該絶縁膜の表面に白金膜が形成された積層膜(希土類元素膜/絶縁膜/白金膜)である場合、絶縁性基板としては、後述の本発明の薄膜トランジスターの製造方法において、薄膜トランジスターの絶縁性基板として利用できるものが好適であり、例えば、一般的なバックプレーンに用いられている非アルカリガラス基板やフレキシブル基板等を使用することができる。 The insulating substrate is used as a support in the process of heat-treating the laminated film in which the platinum film is formed on the rare earth element film. Therefore, as the insulating substrate, for example, a glass substrate, an alumina substrate, a silicon substrate with a thermal oxide film, or the like is used. Further, a laminated film in which a platinum film is formed on a rare earth element film, an insulating film is formed on the surface of the rare earth element film, and a platinum film is formed on the surface of the insulating film (rare earth element film / insulating film). / Platinum film), the insulating substrate is preferably one that can be used as an insulating substrate for a thin film in the method for manufacturing a thin film of the present invention described later, and is used, for example, for a general back plane. It is possible to use a non-alkali glass substrate, a flexible substrate, or the like.

本発明方法において、「水素を含む雰囲気」は、希土類元素膜中の希土類元素の水素との化合(水素化)に必要な量の水素を含有する雰囲気であれば特に制限はされないが、取り扱い性(安全性)の観点から、爆発限界以下の量の水素を含む雰囲気であることが好ましく、爆発限界以下の量の水素と不活性ガスの混合ガスからなる雰囲気がより好ましい。不活性ガスとしては、ヘリウムガス、ネオンガス、アルゴンガス等の希ガス類や窒素を挙げることができるが、好ましくは希ガス類であり、より好ましくはアルゴンガスである。水素と不活性ガスの混合ガスは、水素と不活性ガスの混合比率(水素/不活性ガス)が0.05~12体積%/99.95~88体積%が好ましく、より好ましくは1~3体積%/99~97体積%である。 In the method of the present invention, the "atmosphere containing hydrogen" is not particularly limited as long as it contains an amount of hydrogen required for the combination (hydrogenation) of the rare earth element with hydrogen in the rare earth element film, but the handleability is not particularly limited. From the viewpoint of (safety), an atmosphere containing hydrogen in an amount equal to or less than the explosion limit is preferable, and an atmosphere consisting of a mixed gas of hydrogen and an inert gas in an amount equal to or less than the explosion limit is more preferable. Examples of the inert gas include rare gases such as helium gas, neon gas, and argon gas, and nitrogen, but the inert gas is preferably a rare gas, and more preferably an argon gas. The mixed gas of hydrogen and an inert gas preferably has a mixed ratio of hydrogen and an inert gas (hydrogen / inert gas) of 0.05 to 12% by volume / 99.95 to 88% by volume, more preferably 1 to 3%. Volume% / 99-97 volume%.

また、本発明方法において、「熱処理」とは、室温以上の温度に設定された水素を含む雰囲気に、希土類元素膜上に白金膜が形成された積層膜を置くことである。なお、ここでいう「室温」とは、5~35℃を指す。従って、希土類元素膜上に白金膜が形成された積層膜を室温に設定された水素を含む雰囲気内に置くときは、水素を含む雰囲気の温度が加熱手段を使用することなく室温に維持される場合は、加熱手段は必ずしも必要ではない。水素を含む雰囲気を室温より高い温度に設定して熱処理する場合は通常加熱手段が必要である。 Further, in the method of the present invention, "heat treatment" is to place a laminated film having a platinum film formed on a rare earth element film in an atmosphere containing hydrogen set at a temperature of room temperature or higher. The "room temperature" here means 5 to 35 ° C. Therefore, when the laminated film in which the platinum film is formed on the rare earth element film is placed in an atmosphere containing hydrogen set at room temperature, the temperature of the atmosphere containing hydrogen is maintained at room temperature without using a heating means. In some cases, heating means is not always necessary. When heat treatment is performed by setting the atmosphere containing hydrogen to a temperature higher than room temperature, a heating means is usually required.

室温での熱処理の場合、例えば、アニール炉内に試料(絶縁性基板/希土類元素膜/白金膜)をセットし、真空引きし(炉内圧力:10Pa以下)、爆発限界以下の量の水素と不活性ガスの混合ガス(例えば、水素3体積%とアルゴンガス97体積%の混合ガス)を流しながら、1~30分程度放置する。 In the case of heat treatment at room temperature, for example, a sample (insulating substrate / rare earth element film / platinum film) is set in an annealing furnace, evacuated (in-core pressure: 10 Pa or less), and an amount of hydrogen below the explosion limit is applied. Leave it for about 1 to 30 minutes while flowing a mixed gas of an inert gas (for example, a mixed gas of 3% by volume of hydrogen and 97% by volume of argon gas).

室温よりも高い温度の熱処理をする場合の具体的手順としては、例えば、白金膜の厚さが5nm未満の場合、希土類元素膜を白金が完全に覆っていない可能性があるため、希土類元素膜の一部が酸化されないようにガス置換を慎重に行う必要がある。例えば、アニール炉を真空引きし(炉内圧力:10Pa以下)、アルゴンガス等の不活性ガス、或いは、水素3体積%とアルゴンガス97体積%の混合ガスを流しながら、予備加熱を10~2分程度行った後、試料(絶縁性基板/希土類元素膜/白金膜)をセットし、真空引きし(炉内圧力:0.01Pa以下)、爆発限界以下の量の水素と不活性ガスの混合ガス(例えば、水素3体積%とアルゴンガス97体積%の混合ガス)を流しながら、所定時間加熱する。なお、白金膜の厚さが5nm以上の厚さの場合、必ずしも予備加熱は必要ではないが、予備加熱を行ってもよい。 As a specific procedure for heat treatment at a temperature higher than room temperature, for example, when the thickness of the platinum film is less than 5 nm, the rare earth element film may not be completely covered with platinum, so that the rare earth element film may not be completely covered. Careful gas replacement is required to prevent partial oxidation of the gas. For example, the annealing furnace is evacuated (pressure in the furnace: 10 Pa or less), and preheating is performed 10 to 2 while flowing an inert gas such as argon gas or a mixed gas of 3% by volume of hydrogen and 97% by volume of argon gas. After about a minute, set the sample (insulating substrate / rare earth element film / platinum film), vacuum (internal pressure: 0.01 Pa or less), and mix the amount of hydrogen and inert gas below the explosion limit. It is heated for a predetermined time while flowing a gas (for example, a mixed gas of 3% by volume of hydrogen and 97% by volume of argon gas). When the thickness of the platinum film is 5 nm or more, preheating is not always necessary, but preheating may be performed.

本発明方法において、熱処理の温度は室温~450℃の範囲内で選択可能である。熱処理の温度が450℃を超えると、希土類水素化物膜内における希土類水素化物半導体相(特に、希土類三水素化物の半導体相)の形成が困難になる。熱処理によって、希土類元素膜中の希土類元素が水素化されて希土類水素化物が生成し、熱処理時間を長めにすることで、希土類水素化物半導体が多く生成した希土類水素化物膜となる。従って、希土類水素化物半導体を製造する場合(すなわち、希土類水素化物半導体が主体の希土類水素化物膜を製造する場合)、熱処理時間は5分以上が好ましく、より好ましくは10~30分である。 In the method of the present invention, the temperature of the heat treatment can be selected within the range of room temperature to 450 ° C. When the temperature of the heat treatment exceeds 450 ° C., it becomes difficult to form a rare earth hydride semiconductor phase (particularly, a rare earth hydride semiconductor phase) in the rare earth hydride film. By the heat treatment, the rare earth element in the rare earth element film is hydrogenated to generate a rare earth hydride, and the heat treatment time is lengthened to obtain a rare earth hydride film in which a large amount of rare earth hydride semiconductors are produced. Therefore, when producing a rare earth hydride semiconductor (that is, when producing a rare earth hydride film mainly composed of a rare earth hydride semiconductor), the heat treatment time is preferably 5 minutes or more, more preferably 10 to 30 minutes.

本発明方法において、希土類元素膜の厚さは特に限定はされないが、好ましくは50nm以上、より好ましくは100nm以上であり、量産性(スループット)の観点から、好ましくは500nm以下、より好ましくは300nm以下である。また、白金膜の厚さは特に限定はされないが、好ましくは0.5nm以上、より好ましくは1nm以上であり、また、好ましくは40nm以下、より好ましくは20nm以下である。白金膜の厚さが5nm未満であると、通常の装置(例えば、マグネトロンスパッタ装置等)では、希土類元素膜の表面全域が覆われない可能性があり、40nmを超えると、熱処理時間が長くなり、効率的でない。 In the method of the present invention, the thickness of the rare earth element film is not particularly limited, but is preferably 50 nm or more, more preferably 100 nm or more, and from the viewpoint of mass productivity (throughput), preferably 500 nm or less, more preferably 300 nm or less. Is. The thickness of the platinum film is not particularly limited, but is preferably 0.5 nm or more, more preferably 1 nm or more, and preferably 40 nm or less, more preferably 20 nm or less. If the thickness of the platinum film is less than 5 nm, the entire surface of the rare earth element film may not be covered by a normal device (for example, a magnetron sputtering device), and if it exceeds 40 nm, the heat treatment time becomes long. , Inefficient.

希土類水素化物半導体の移動度は高く、好ましくは10cm/Vs以上、より好ましくは40cm/Vs以上の移動度を示す。従って、本発明方法により得られる希土類水素化物膜が、希土類水素化物半導体が多く生成した希土類水素化物膜、すなわち、希土類水素化物の主体が希土類水素化物半導体である希土類水素化物半導体膜の場合、当該希土類水素化物半導体膜は薄膜トランジスターのチャネル層として利用でき、本発明方法により得られる、希土類水素化物膜が、希土類水素化物金属が多く生成した希土類水素化物膜、すなわち、希土類水素化物の主体が希土類水素化物金属である希土類水素化物金属膜の場合、当該希土類水素化物金属膜は、水素センサーやスピントロニクス装置に利用するこ
とができる。
The mobility of the rare earth hydride semiconductor is high, preferably 10 cm 2 / Vs or more, and more preferably 40 cm 2 / Vs or more. Therefore, when the rare earth hydride film obtained by the method of the present invention is a rare earth hydride film in which a large amount of rare earth hydride semiconductors are produced, that is, a rare earth hydride semiconductor film in which the main component of the rare earth hydride is a rare earth hydride semiconductor. The rare earth hydride semiconductor film can be used as a channel layer of a thin film film, and the rare earth hydride film obtained by the method of the present invention is a rare earth hydride film in which a large amount of rare earth hydride metal is produced, that is, the main component of the rare earth hydride is rare earth. In the case of a rare earth hydride metal film which is a hydride metal, the rare earth hydride metal film can be used for a hydrogen sensor or a spintronics device.

薄膜トランジスターのチャネル層としてとして利用可能な希土類水素化物半導体膜は、膜を構成する希土類水素化物の好ましくは80~100モル%、より好ましくは99~100モル%が希土類水素化物半導体である膜が好適であり、水素センサーやスピントロニクス装置に利用可能な希土類水素化物金属膜は、膜を構成する希土類水素化物の好ましくは80~100モル%、より好ましくは99~100モル%が希土類水素化物金属である膜が好適である。薄膜トランジスターのチャネル層として利用可能な希土類水素化物半導体膜における希土類水素化物半導体は、好ましくは、ScH、YH、RH(R:Eu、Ybを除くLa系列の元素)、或いは、YbHおよび/またはYbH2.6であり、水素センサーやスピントロニクス装置に利用可能な希土類水素化物金属膜における希土類水素化物金属は、好ましくは、ScH,YH、RH(R:Eu、Ybを除くLa系列の元素)である。なお、かかる希土類水素化物の組成は、化学量論比の場合の結晶構造に対して、化学量論比の結晶構造と同一である組成範囲内において、化学量論組成からのずれは許容される。 The rare earth hydride semiconductor film that can be used as the channel layer of the thin film is preferably a film in which 80 to 100 mol%, more preferably 99 to 100 mol% of the rare earth hydride constituting the film is a rare earth hydride semiconductor. The rare earth hydride metal film that is suitable and can be used for hydrogen sensors and spintronics devices is preferably 80 to 100 mol%, more preferably 99 to 100 mol% of the rare earth hydride metal constituting the film. Certain films are suitable. The rare earth hydride semiconductor in the rare earth hydride semiconductor film that can be used as the channel layer of the thin film is preferably ScH 3 , YH 3 , RH 3 (R: La series elements excluding Eu and Yb), or YbH 2 . And / or YbH 2.6 , the rare earth hydride metal in the rare earth hydride metal film that can be used for hydrogen sensors and spintronics devices is preferably ScH 2 , YH 2 , RH 2 (R: Eu, Yb excluded). It is an element of the La series). It should be noted that the composition of the rare earth hydride is allowed to deviate from the stoichiometric composition within the composition range which is the same as the crystal structure of the stoichiometric ratio with respect to the crystal structure in the case of the stoichiometric ratio. ..

2.水素センサー
本発明の水素センサーは、本発明方法で得られる、希土類水素化物金属膜上に白金膜が形成された積層膜(希土類水素化物金属膜/白金膜)をそのまま利用して構成される。
2. 2. Hydrogen sensor The hydrogen sensor of the present invention is configured by using as it is a laminated film (rare earth hydride metal film / platinum film) in which a platinum film is formed on a rare earth hydride metal film obtained by the method of the present invention.

図5は本発明の水素センサーの一例を示し、図において、1は希土類水素化物金属膜、2は白金膜、3は絶縁性基板、4は電極、5は配線を示し、電極4は、それぞれ、配線5を介して定電流源電圧計(図示せず)に接続されている。すなわち、本発明の水素センサーは、該一例のセンサー100に示されるように、本発明方法により得られた希土類水素化物金属膜1上に白金膜2が形成された積層膜7に電極4を付設して構成される。 FIG. 5 shows an example of the hydrogen sensor of the present invention. In the figure, 1 is a rare earth hydride metal film, 2 is a platinum film, 3 is an insulating substrate, 4 is an electrode, 5 is a wiring, and the electrode 4 is a wiring, respectively. , Is connected to a constant current source voltmeter (not shown) via wiring 5. That is, in the hydrogen sensor of the present invention, as shown in the sensor 100 of the example, the electrode 4 is attached to the laminated film 7 in which the platinum film 2 is formed on the rare earth hydride metal film 1 obtained by the method of the present invention. It is composed of.

前述したように、水素選択透過膜である白金膜は室温で希土類元素に水素を選択的に供給して希土類元素を水素化する触媒機能を有する。このため、本発明の水素センサーは水素を含む雰囲気中に置かれると、白金膜の触媒作用によって希土類水素化物金属膜1中の希土類水素化物金属(二水素化物)は三水素化物である希土類水素化物半導体に転化して膜の電気抵抗や光学特性が変化する。従って、膜の電気抵抗変化及び/または光学特性変化を読み取ることで水素を検出することができ、室温環境での水素のガス漏れを検出するセンサー等として使用することができる。なお、白金膜は、室温のみならず、室温を超える温度でも、希土類元素を水素化する触媒機能を有するので、室温を超える温度環境においても水素のガス漏れを検出するセンサー等として使用することができる。 As described above, the platinum film, which is a hydrogen selective permeation film, has a catalytic function of selectively supplying hydrogen to a rare earth element at room temperature to hydrogenate the rare earth element. Therefore, when the hydrogen sensor of the present invention is placed in an atmosphere containing hydrogen, the rare earth hydride metal (dihydride) in the rare earth hydride metal film 1 is trihydride due to the catalytic action of the platinum film. Converted to a compound semiconductor, the electrical resistance and optical characteristics of the film change. Therefore, hydrogen can be detected by reading the change in electrical resistance and / or the change in optical characteristics of the film, and can be used as a sensor or the like for detecting a gas leak of hydrogen in a room temperature environment. Since the platinum film has a catalytic function of hydrogenating rare earth elements not only at room temperature but also at temperatures above room temperature, it can be used as a sensor for detecting hydrogen gas leaks even in a temperature environment above room temperature. can.

図6(A)(B)は本発明の水素センサーの他の一例を示す。図6(B)は図6(A)中のb-b線における断面を示し、図6(A)(B)において、図5と同一符号は同一または相当する部分を示す。 6 (A) and 6 (B) show another example of the hydrogen sensor of the present invention. 6 (B) shows a cross section in line bb in FIG. 6 (A), and in FIGS. 6 (A) and 6 (B), the same reference numerals as those in FIG. 5 indicate the same or corresponding portions.

かかる他の一例の水素センサー101では、平面形状が正方形のガラス基板3の主面の4つのコーナー部に平面形状が正方形の電極4が配置され、該4つの電極4のそれぞれの一つのコーナー部を覆うように、ガラス基板3の平面サイズよりも小さいサイズの平面形状が正方形の希土類水素化物金属膜1がガラス基板3の主面の中央に形成され、該希土類水素化物金属膜1の表面全域が白金膜2で覆われている。電極4は、配線(図示せず)を介して定電流源電圧計(図示せず)に接続されている。なお、ここでいう「正方形」とは、「概観において、正方形を呈する」意味であり、従って、厳密に四辺の長さが同じであることや4つの角の角度が全て90°であることは必ずしも要さない。 In another example of the hydrogen sensor 101, electrodes 4 having a square planar shape are arranged at four corners of the main surface of a glass substrate 3 having a square planar shape, and one corner of each of the four electrodes 4 is arranged. A rare earth hydride metal film 1 having a square planar shape smaller than the plane size of the glass substrate 3 is formed in the center of the main surface of the glass substrate 3 so as to cover the entire surface of the rare earth hydride metal film 1. Is covered with the platinum film 2. The electrode 4 is connected to a constant current source voltmeter (not shown) via wiring (not shown). In addition, "square" here means "presenting a square in the appearance", and therefore, it means that the lengths of the four sides are exactly the same and the angles of all four corners are 90 °. Not necessarily required.

図7は図6の水素センサー101の製造方法とセンサー動作を説明するための図であり
、図7(A)~(D)は製造工程を示し、図7(E)は水素センサーにおける希土類水素化物金属膜が希土類水素化物半導体膜に転化した状態を示す。
7 is a diagram for explaining the manufacturing method and sensor operation of the hydrogen sensor 101 of FIG. 6, FIGS. 7A to 7D show a manufacturing process, and FIG. 7E shows rare earth hydrogen in a hydrogen sensor. It shows a state in which a hydride metal film is converted into a rare earth hydride semiconductor film.

水素センサー101は、例えば、以下のようにして作製される。まず、非アルカリガラス基板等の絶縁性基板3を用意し(図7(A))、電極形成用の所定サイズの孔を開けたハードマスク(メタルマスク)(図示せず)を装着し、スパッタ法、抵抗加熱蒸着法、EB蒸着法等により、該ハードマスク(メタルマスク)の孔を通して、絶縁性基板3の主面のコーナー部上に電極用金属を成膜して、電極4を形成する(図7(B))。電極4の形成後、ハードマスク(メタルマスク)を希土類元素膜形成用の所定サイズの孔を開けたハードマスク(メタルマスク)(図示せず)に取り替え、電子ビーム蒸着法、スパッタ法、抵抗加熱蒸着法等により、該ハードマスク(メタルマスク)の孔を通して、電極4の一部を覆うように、ガラス基板3の主面の中央部上に希土類元素膜6を成膜し、さらに希土類元素膜6上に白金膜2を成膜する(図7(C))。そして、このようにして得られた積層構造物8を、所定時間、水素を含む雰囲気中に置くと、希土類元素膜6が希土類水素化物金属膜1になり、水素センサー101が完成する(図7(D))。 The hydrogen sensor 101 is manufactured, for example, as follows. First, an insulating substrate 3 such as a non-alkali glass substrate is prepared (FIG. 7 (A)), a hard mask (metal mask) (not shown) having holes of a predetermined size for forming electrodes is attached, and sputtering is performed. An electrode metal is formed on the corners of the main surface of the insulating substrate 3 through the holes of the hard mask (metal mask) by a method, a resistance heating vapor deposition method, an EB vapor deposition method, or the like to form the electrode 4. (FIG. 7 (B)). After forming the electrode 4, the hard mask (metal mask) is replaced with a hard mask (metal mask) (not shown) having holes of a predetermined size for forming a rare earth element film, and an electron beam vapor deposition method, a sputtering method, and resistance heating are performed. A rare earth element film 6 is formed on the central portion of the main surface of the glass substrate 3 so as to cover a part of the electrode 4 through the holes of the hard mask (metal mask) by a vapor deposition method or the like, and further, a rare earth element film is formed. A platinum film 2 is formed on the 6 (FIG. 7 (C)). Then, when the laminated structure 8 thus obtained is placed in an atmosphere containing hydrogen for a predetermined time, the rare earth element film 6 becomes the rare earth hydride metal film 1 and the hydrogen sensor 101 is completed (FIG. 7). (D)).

完成した水素センサー101は水素を含む雰囲気中に置かれると、水素を含む雰囲気が室温の雰囲気であっても、白金膜2の触媒作用によって希土類水素化物金属膜(二水素化物)1は希土類水素化物半導体(二水素化物)1’に転化して膜の電気抵抗や光学特性が変化し(図7(E))、この電気抵抗変化及び/または光学特性変化を読み取ることで水素を検出することができる。 When the completed hydrogen sensor 101 is placed in an atmosphere containing hydrogen, the rare earth hydride metal film (dihydride) 1 becomes rare earth hydrogen due to the catalytic action of the platinum film 2 even if the atmosphere containing hydrogen is an atmosphere at room temperature. Converting to a compound semiconductor (dihydride) 1'changes the electrical resistance and optical characteristics of the film (FIG. 7 (E)), and detecting hydrogen by reading this change in electrical resistance and / or optical characteristics. Can be done.

本発明の水素センサーにおいて、絶縁性基板3は、動作の安定性の点から、非アルカリガラス基板が好ましい。 In the hydrogen sensor of the present invention, the insulating substrate 3 is preferably a non-alkali glass substrate from the viewpoint of operational stability.

また、希土類水素化物金属膜1は、動作の安定性の観点から、YH(イットリウム二水素化物)膜、ScH(スカンジウム二水素化物)膜、Gd(ガドリニウム二水素化物)膜等が好ましく、YH(イットリウム二水素化物)膜がより好ましい。 The rare earth hydride metal film 1 is preferably a YH 2 (yttrium dihydride) film, a ScH 2 (scandium dihydride) film, a Gd (gadrinium dihydride) film, or the like, from the viewpoint of operational stability. A YH 2 (yttrium dihydride) film is more preferred.

電極4の材料は特に限定されないが、図5の例の水素センサー100の場合、電極4の下面に水素を透過させにくいという観点から、電極4には、好ましくは、Au電極や、Ta、Auを順次成膜したAu/Ta電極等が使用される。かかるAu/Ta電極はスパッタ法でTa、Auを順次成膜したAu/Ta電極がより好ましい。なお、Au/Ta電極は、図6の例の水素センサー101においても使用できるが、水素センサー101の場合、電極4は希土類水素化物半導体とオーミックコンタクトが取りやすい低仕事関数の材料が好ましく、Al電極やMg合金電極が好適である。なお、希土類元素は、低仕事関数であるものの、センサーを使用する環境では、水素以外の水や酸素等によって劣化が進みやすいため、好ましくない。 The material of the electrode 4 is not particularly limited, but in the case of the hydrogen sensor 100 in the example of FIG. 5, from the viewpoint that hydrogen is difficult to permeate through the lower surface of the electrode 4, the electrode 4 is preferably an Au electrode, Ta, Au. Au / Ta electrodes or the like in which the deposits are sequentially formed are used. The Au / Ta electrode is more preferably an Au / Ta electrode in which Ta and Au are sequentially formed by a sputtering method. The Au / Ta electrode can also be used in the hydrogen sensor 101 of the example of FIG. 6, but in the case of the hydrogen sensor 101, the electrode 4 is preferably a material having a low work function that makes it easy to make ohmic contact with the rare earth hydride semiconductor, and Al. Electrodes and Mg alloy electrodes are suitable. Although rare earth elements have a low work function, they are not preferable because they are easily deteriorated by water other than hydrogen, oxygen, etc. in the environment where the sensor is used.

本発明の水素センサーの大きさは特に限定はされないが、一般的には、平面サイズ(絶縁性基板3の面積)が概ね10~100mm程度である。希土類水素化物金属膜1の厚
さは、動作速度と耐久性の観点から、200~300nm程度が好ましく、白金膜2の厚さは、動作速度と、希土類元素の水分や酸素からの保護との両立の観点から、10~40nm程度が好ましい。
The size of the hydrogen sensor of the present invention is not particularly limited, but generally, the plane size (area of the insulating substrate 3) is about 10 to 100 mm 2 . The thickness of the rare earth hydride metal film 1 is preferably about 200 to 300 nm from the viewpoint of operating speed and durability, and the thickness of the platinum film 2 is the operating speed and protection of rare earth elements from moisture and oxygen. From the viewpoint of compatibility, it is preferably about 10 to 40 nm.

図5の例の水素センサー100は、その構造から、ハードマスク(メタルマスク)の枚数が少なくなり、製造工程の点で有利であり、図6の例の水素センサー101は、その構造から、抵抗測定時に白金膜に流れる電流がほとんどなく、感度の点で有利である。 The hydrogen sensor 100 in the example of FIG. 5 is advantageous in terms of the manufacturing process because the number of hard masks (metal masks) is reduced due to its structure, and the hydrogen sensor 101 in the example of FIG. 6 has resistance due to its structure. There is almost no current flowing through the platinum film during measurement, which is advantageous in terms of sensitivity.

図6の例の水素センサー101の好ましい寸法構成としては、例えば、絶縁性基板3の
平面が一辺が3~10mm程度の正方形、希土類水素化物金属膜1及び白金膜2の平面が一辺が2~8mm程度の正方形、希土類水素化物金属膜1の厚さが200~300nm程度、白金膜2の厚さが10~40nm程度、正方形の電極4の平面が一辺が1~7mm程度の正方形、電極4の厚さが100~400mm程度の構成が挙げられる。
As a preferable dimensional configuration of the hydrogen sensor 101 in the example of FIG. 6, for example, the plane of the insulating substrate 3 is a square having a side of about 3 to 10 mm, and the planes of the rare earth hydride metal film 1 and the platinum film 2 have a side of 2 to 2 to. A square of about 8 mm, the thickness of the rare earth hydride metal film 1 is about 200 to 300 nm, the thickness of the platinum film 2 is about 10 to 40 nm, and the flat surface of the square electrode 4 is a square with a side of about 1 to 7 mm, the electrode 4 A configuration having a thickness of about 100 to 400 mm can be mentioned.

平面が正方形の電極4は、正方形の一辺の長さが1mm以上の大きさであることが好ましい。かかる大きさであれば、上述のハードマスク(メタルマスク)を用いた電極形成が可能であり、電極形成のためのレジストの塗布及びレジストのパターンニング工程が不要になり、製造工程を簡略化できる。 It is preferable that the electrode 4 having a square plane has a size of 1 mm or more on one side of the square. With such a size, it is possible to form an electrode using the above-mentioned hard mask (metal mask), which eliminates the need for resist coating and resist patterning steps for electrode formation, and simplifies the manufacturing process. ..

3.薄膜トランジスター
希土類水素化物半導体の移動度は概して高いことが予想され、非特許文献5に記載の数値から計算すると、例えば、バルク多結晶YHの室温での移動度はキャリヤー濃度が1.9×1019個cm―3の場合、40cm/Vs程度である。このキャリヤー濃度は、極めてドナー濃度が高いことを意味し、又、縮退半導体レベルである。逆に言えば、通常の半導体のキャリヤー濃度ならば100cm/Vs以上の移動度が期待できる。本発明者等が得たデータでは、本発明方法で得られる希土類水素化物半導体膜であるYH膜の移動度は、キャリヤー濃度1×1016個cm―3の場合、23cm/Vsであり、この移動度は、高移動度であることで有名なIGZO膜(インジウム(Indium)、ガリウム
(Gallium)、亜鉛 (Zinc)及び酸素(Oxygen) から構成されるアモルファス半導体膜)の移動度よりも高い。
3. 3. The mobility of the thin film-rare earth hydride semiconductor is generally expected to be high, and when calculated from the numerical values described in Non-Patent Document 5, for example, the mobility of the bulk polycrystalline YH 3 at room temperature has a carrier concentration of 1.9 ×. In the case of 10 19 pieces cm -3 , it is about 40 cm 2 / Vs. This carrier concentration means that the donor concentration is extremely high, and is at the degenerate semiconductor level. Conversely, if the carrier concentration of a normal semiconductor is used, a mobility of 100 cm 2 / Vs or more can be expected. According to the data obtained by the present inventors, the mobility of the YH3 film, which is a rare earth hydride semiconductor film obtained by the method of the present invention, is 23 cm 2 / Vs when the carrier concentration is 1 × 10 16 pieces cm -3 . , This mobility is the IGZO film (Indium, gallium), which is famous for its high mobility.
Higher mobility than (amorphous semiconductor film composed of Gallium), zinc (Zinc) and oxygen (Oxygen).

近年、有機発光ダイオード(OLED:Organic Light Emitting Diode)に代表される有機EL(Electro-Luminescence)素子を用いた表示パネル(有機EL表示パネル)では、低消費電力化、高精細化のための、高移動度薄膜トランジスター(TFT:Thin Film Transistor)が要求されている。また、高移動度TFTのチャネル層(半導体膜)は、有機EL素子やフレキシブル絶縁性基板として使用するプラスチックシートの熱劣化防止の観点から、室温プロセスで形成できることが必要である。 In recent years, display panels (organic EL display panels) using organic EL (Electro-Luminescence) elements represented by organic light emitting diodes (OLEDs) have been used to reduce power consumption and improve definition. High mobility thin film (TFT: Thin Film Transistor) is required. Further, the channel layer (semiconductor film) of the high mobility TFT needs to be able to be formed by a room temperature process from the viewpoint of preventing thermal deterioration of the plastic sheet used as an organic EL element or a flexible insulating substrate.

本発明方法は、前述の通り、室温プロセスで、多結晶の希土類水素化物半導体膜を製造することができる。従って、本発明方法を利用することで、有機EL表示パネルや液晶表示パネル用のチャネル層が希土類水素化物半導体膜からなる高移動度薄膜トランジスターを、従来のアモルファス薄膜トランジスターとほぼ同様のプロセス温度で作製でき、しかも、ボトムゲート構造の薄膜トランジスターを製造することができる。ボトムゲート構造は従来のアモルファス薄膜トランジスターにおいて用いられており、ボトムゲート構造の薄膜トランジスターを製造できることで、従来のプロセスとの整合性もよく、量産性に優れるメリットがある。 As described above, the method of the present invention can produce a polycrystalline rare earth hydride semiconductor film by a room temperature process. Therefore, by using the method of the present invention, a high mobility thin film in which the channel layer for an organic EL display panel or a liquid crystal display panel is made of a rare earth hydride semiconductor film can be produced at a process temperature almost the same as that of a conventional amorphous thin film. It can be manufactured, and a thin film having a bottom gate structure can be manufactured. The bottom gate structure is used in a conventional amorphous thin film, and since a thin film having a bottom gate structure can be manufactured, there is a merit that the consistency with the conventional process is good and the mass productivity is excellent.

図8(A)(B)は本発明方法を利用したチャル層が希土類水素化物半導体膜からなる薄膜トランジスター(以下、「本発明の薄膜トランジスター」ともいう。)の一例の製造工程の最終工程(水素を含む雰囲気下での熱処理工程)と最終工程の一つ前の工程を示す。図において、11は絶縁性基板、12はゲート電極、13はゲート絶縁膜、14は希土類元素膜、14’は希土類水素化物膜、15は希土類水素化物半導体(領域)、16は希土類水素化物金属(領域)、17はソース電極、18はドレイン電極、19はパッシベーション膜、20は白金膜、102は薄膜トランジスター、102aは積層構造体を示し、白抜きの矢印は、水素を含む雰囲気中の水素を示す。 8 (A) and 8 (B) show the final step of the manufacturing process of an example of a thin film in which the char layer made of a rare earth hydride semiconductor film (hereinafter, also referred to as “thin film of the present invention”) using the method of the present invention (hereinafter, also referred to as “thin film of the present invention”). The heat treatment process in an atmosphere containing hydrogen) and the process immediately before the final process are shown. In the figure, 11 is an insulating substrate, 12 is a gate electrode, 13 is a gate insulating film, 14 is a rare earth element film, 14'is a rare earth hydride film, 15 is a rare earth hydride semiconductor (region), and 16 is a rare earth hydride metal. (Region), 17 is a source electrode, 18 is a drain electrode, 19 is a passion film, 20 is a platinum film, 102 is a thin film, 102a is a laminated structure, and white arrows are hydrogen in an atmosphere containing hydrogen. Is shown.

すなわち、本発明の薄膜トランジスターは、該一例の薄膜トランジスター102(図8(B))から分かるように、絶縁性基板11上にゲート電極12が形成され、ゲート電極12上にチャル層である希土類水素化物半導体膜(領域)15が形成されたボトムゲート
型の薄膜トランジスターである。
That is, in the thin film of the present invention, as can be seen from the thin film 102 (FIG. 8 (B)) of the example, the gate electrode 12 is formed on the insulating substrate 11, and the rare earth which is a char layer on the gate electrode 12. It is a bottom gate type thin film in which a hydride semiconductor film (region) 15 is formed.

該一例の薄膜トランジスター102(図8(B))は、例えば、以下の工程A及び工程Bを経て製造される。 The thin film film 102 (FIG. 8 (B)) of the example is manufactured, for example, through the following steps A and B.

[工程A]
絶縁性基板11上に、ゲート電極12;ゲート電極12を覆うゲート絶縁膜13;ゲート絶縁膜13上に配設される希土類元素膜14;希土類元素膜14上に配設されるソース電極17及びドレイン電極18;希土類元素膜14、ソース電極17及びドレイン電極18を覆うパッシベーション膜19;並びにパッシベーション膜19を覆う白金膜20を順次形成して、積層構造体102aを作製する。
[Step A]
The gate electrode 12; the gate insulating film 13 covering the gate electrode 12; the rare earth element film 14 disposed on the gate insulating film 13; the source electrode 17 and the source electrode 17 arranged on the rare earth element film 14 on the insulating substrate 11. The drain electrode 18; the passivation film 19 covering the rare earth element film 14, the source electrode 17, and the drain electrode 18; and the platinum film 20 covering the passivation film 19 are sequentially formed to prepare the laminated structure 102a.

絶縁性基板11としては、非アルカリガラス基板、石英ガラス基板、プラスチックシート(例えば、ポリメチルメタクリレート、ポリアクリレート、ポリカーボネート、ポリスチレン、ポリエチレンサルファイド、ポリエーテルスルホン、ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、シクロオレフィンポリマー、ポリエーテルサルホン、ポリビニルフルオライド、エチレン-テトラフルオロエチレンコポリマー、耐候性ポリプロピレン、透明性ポリイミド、フッ素系ポリマー及び環状オレフィンポリマーからなる群から選択される1種または2種以上の合成樹脂で形成されたシート等)、ガラス繊維強化アクリル樹脂シート、ガラス繊維強化ポリカーボネートシート等使用することができるが、これらに限定されない。 Examples of the insulating substrate 11 include a non-alkali glass substrate, a quartz glass substrate, and a plastic sheet (for example, polymethylmethacrylate, polyacrylate, polycarbonate, polystyrene, polyethylene sulfate, polyether sulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, cycloolefin). With one or more synthetic resins selected from the group consisting of polymers, polyether sulfone, polyvinyl fluoride, ethylene-tetrafluoroethylene copolymers, weather resistant polypropylene, transparent polyimides, fluoropolymers and cyclic olefin polymers. (Formed sheet, etc.), glass fiber reinforced acrylic resin sheet, glass fiber reinforced polycarbonate sheet, etc. can be used, but the present invention is not limited thereto.

ゲート電極12、ソース電極17及びドレイン電極18には、銀(Ag)、銅(Cu)、コバルト(Co)、タンタル(Ta)、モリブデン(Mo)、クロム(Cr)、アルミニウム(Al)、ニッケル(Ni)、タングステン(W)、白金(Pt)、及びチタン(Ti)等の金属を用いることができる。ただし、ソース電極17及びドレイン電極18はオーミックコンタクトの得やすさから低仕事関数であることが望ましく、かかる観点からタンタル(Ta)、アルミニウム(Al)が好ましい。これらの電極は、真空蒸着法、イオンプレーティング法、スパッタ法、レーザーアブレーション法、プラズマCVD法、光CVD法、スクリーン印刷、凸版印刷、インクジェット法等で形成することができるが、これらに限定されず、この種の電極の公知一般の形成方法を用いることができる。電極金属のパターニングは、例えば、フォトリソグラフィ法を用いてパターン形成部分に保護膜を形成し、エッチングにより不要部分を除去して行うことができるが、この方法に限定されず、この種の電極形成における公知一般のパターニング方法を用いることができる。 The gate electrode 12, the source electrode 17, and the drain electrode 18 have silver (Ag), copper (Cu), cobalt (Co), tantalum (Ta), molybdenum (Mo), chromium (Cr), aluminum (Al), and nickel. Metals such as (Ni), tungsten (W), platinum (Pt), and titanium (Ti) can be used. However, it is desirable that the source electrode 17 and the drain electrode 18 have a low work function from the viewpoint of easy acquisition of ohmic contact, and from this viewpoint, tantalum (Ta) and aluminum (Al) are preferable. These electrodes can be formed by a vacuum vapor deposition method, an ion plating method, a sputtering method, a laser ablation method, a plasma CVD method, an optical CVD method, screen printing, letterpress printing, an inkjet method, etc., but are limited thereto. Instead, a known and general method for forming this type of electrode can be used. The patterning of the electrode metal can be performed, for example, by forming a protective film on the pattern forming portion using a photolithography method and removing unnecessary portions by etching, but the present invention is not limited to this method, and this type of electrode formation is performed. A general known patterning method in the above can be used.

ゲート絶縁層13は、図8(A)(B)に示すように、基板1上の全面に亘って形成することができる。ゲート絶縁層13に使用される材料としては、SiO、SiNx、SiON、Al、Ta、Y、HfO、HfAlO、ZrO、TiO等の無機材料;PMMA(ポリメチルメタクリレート)等のポリアクリレート;PVA(ポリビニルアルコール);PS(ポリスチレン):透明性ポリイミド;ポリエステル;エポキシ樹脂;ポリビニルフェノール;ポリビニルアルコール等が挙げられるが、これらに限定されるものではない。ゲートリーク電流の抑制のために、ゲート絶縁層13の構成する絶縁材料の抵抗率は、1011Ωcm以上が好ましく、1014Ωcm以上がより好ましい。ゲート絶縁層13は、例えば、真空蒸着法、イオンプレーティング法、スパッタ法、レーザーアブレーション法、プラズマCVD、光CVD法、ホットワイヤーCVD法等のドライ成膜法や、スピンコート法、ディップコート法、スクリーン印刷法等のウェット成膜法にて形成される。 As shown in FIGS. 8A and 8B, the gate insulating layer 13 can be formed over the entire surface of the substrate 1. Materials used for the gate insulating layer 13 include inorganic materials such as SiO 2 , SiNx, SiON, Al 2 O 3 , Ta 2 O 5 , Y 2 O 3 , HfO 2 , HfAlO, ZrO 2 , and TiO 2 ; PMMA. Polyacrylates such as (polymethylmethacrylate); PVA (polyvinyl alcohol); PS (polystyrene): transparent polyimide; polyester; epoxy resin; polyvinylphenol; polyvinyl alcohol and the like, but are not limited thereto. In order to suppress the gate leak current, the resistivity of the insulating material constituting the gate insulating layer 13 is preferably 10 11 Ω cm or more, and more preferably 10 14 Ω cm or more. The gate insulating layer 13 includes, for example, a dry film forming method such as a vacuum vapor deposition method, an ion plating method, a sputtering method, a laser ablation method, a plasma CVD method, an optical CVD method, and a hot wire CVD method, a spin coating method, and a dip coating method. , Is formed by a wet film forming method such as a screen printing method.

希土類元素膜14には、Sc、Y及び元素周期表のランタノイド系のLaからLuまでの15の元素のいずれかを使用する。中でも、Sc、Y、Gd、またはYbが好ましい。
希土類元素膜14は、物理的蒸着法(好ましくはスパッタ法、電子ビーム(EB)蒸着法等)により形成する。希土類元素膜14の膜厚は、特に限定はされないが、50nm以上が好ましく、より好ましくは100nm以上であり、量産性の観点から、500nm以下が好ましく、300nm以下がより好ましい。
For the rare earth element film 14, any one of 15 elements from La to Lu of the lanthanoid system of Sc, Y and the periodic table of elements is used. Of these, Sc, Y, Gd, or Yb is preferable.
The rare earth element film 14 is formed by a physical vapor deposition method (preferably a sputtering method, an electron beam (EB) vapor deposition method, etc.). The film thickness of the rare earth element film 14 is not particularly limited, but is preferably 50 nm or more, more preferably 100 nm or more, and from the viewpoint of mass productivity, 500 nm or less is preferable, and 300 nm or less is more preferable.

パッシベーション膜19は特に限定されず、有機EL表示パネルや液晶表示パネル用の薄膜トランジスターにおける公知のパッシベーション膜を使用でき、例えば、SiO、Si、Al、Ta等を挙げることができる。なかでも水素透過性(すなわち、後述の第2工程にて行う、希土類元素膜14のゲート電極12上に位置する部分を希土類水素化物半導体に転化(水素化)する際の水素選択透過膜である白金膜20を選択透過した水素を希土類元素膜14まで透過させる水素透過性)の観点から、Taが好ましい。 The passivation film 19 is not particularly limited, and a known passivation film in a thin film for an organic EL display panel or a liquid crystal display panel can be used, for example, SiO 2 , Si 3 N 4 , Al 2 O 3 , Ta 2 O 5 , etc. Can be mentioned. Among them, it is a hydrogen permeable film (that is, a hydrogen selective permeable film for converting (hydrogenating) a portion of the rare earth element film 14 located on the gate electrode 12 into a rare earth hydride semiconductor, which is performed in the second step described later. Ta 2 O 5 is preferable from the viewpoint of (hydrogen permeability that allows hydrogen that has been selectively permeated through the platinum film 20 to permeate to the rare earth element film 14).

白金膜20は、物理的蒸着法(好ましくはスパッタ法、電子ビーム(EB)蒸着法等)により形成する。白金膜20の厚さは、特に限定はされないが、0.5nm以上が好ましく、より好ましくは1nm以上であり、処理時間の観点から、40nm以下が好ましく、より好ましくは20nm以下である。 The platinum film 20 is formed by a physical vapor deposition method (preferably a sputtering method, an electron beam (EB) vapor deposition method, etc.). The thickness of the platinum film 20 is not particularly limited, but is preferably 0.5 nm or more, more preferably 1 nm or more, and from the viewpoint of treatment time, it is preferably 40 nm or less, more preferably 20 nm or less.

[工程B]
工程Aを経て得られた、積層構造体102a(図8(A))を水素を含む雰囲気内で熱処理する。この熱処理により、積層構造体の希土類元素膜14は希土類水素化物膜14’になり、希土類水素化物膜14’のゲート電極17上に位置する部分は希土類水素化物半導体(領域)15となり、ソース電極17とドレイン電極18の下にある部分は希土類水素化物金属(領域)16となり、希土類水素化物膜14’の希土類水素化物半導体(領域)15をチャネル層とする薄膜トランジスター102が得られる(図8(B))。
[Step B]
The laminated structure 102a (FIG. 8A) obtained through the step A is heat-treated in an atmosphere containing hydrogen. By this heat treatment, the rare earth element film 14 of the laminated structure becomes a rare earth hydride film 14', and the portion of the rare earth hydride film 14' located on the gate electrode 17 becomes a rare earth hydride semiconductor (region) 15 and becomes a source electrode. The portion below the 17 and the drain electrode 18 becomes a rare earth hydride metal (region) 16, and a thin film 102 having the rare earth hydride semiconductor (region) 15 of the rare earth hydride film 14'as a channel layer can be obtained (FIG. 8). (B)).

かかる工程Bは、本発明方法における、希土類元素膜上に白金膜が形成された積層膜の水素を含む雰囲気下での熱処理であり、詳細な処理条件、設備(条件)等は、前述の通りである。好ましくは水素を含む雰囲気は爆発限界以下の水素を有する雰囲気であり(例えば、水素3体積%とアルゴンガス97体積%の混合ガス雰囲気が挙げられる。)、熱処理の温度は室温か、或いは、室温よりも高い場合でも350℃以下である。 Such step B is the heat treatment in the method of the present invention in an atmosphere containing hydrogen of the laminated film in which the platinum film is formed on the rare earth element film, and the detailed treatment conditions, equipment (conditions) and the like are as described above. Is. The atmosphere containing hydrogen is preferably an atmosphere having hydrogen below the explosion limit (for example, a mixed gas atmosphere of 3% by volume of hydrogen and 97% by volume of argon gas), and the heat treatment temperature is room temperature or room temperature. Even if it is higher than 350 ° C.

図9は本発明の薄膜トランジスターの他の一例を示し、図9(A)は薄膜トランジスターの平面を示し、図9(B)は図9(A)中のb-b線における断面を示す。図9(A)(B)において、図8(A)(B)と同一符号は同一または相当する部分を示し、103aは積層構造体、103は薄膜トランジスターを示す。 9 shows another example of the thin film of the present invention, FIG. 9A shows a plane of the thin film, and FIG. 9B shows a cross section taken along line bb in FIG. 9A. In FIGS. 9A and 9B, the same reference numerals as those in FIGS. 8A and 8B indicate the same or corresponding portions, 103a indicates a laminated structure, and 103 indicates a thin film.

該他の一例の薄膜トランジスター103は、図8に示す薄膜トランジスター102に比べて構造を簡略化しており、本発明の薄膜トランジスターにおいて、最も製造プロセスが簡単になる薄膜トランジスターである。該他の一例の薄膜トランジスター103(図9(A)(B))は、以下の工程Cを経て製造される。 The thin film 103 of the other example has a simplified structure as compared with the thin film 102 shown in FIG. 8, and is the thin film having the simplest manufacturing process in the thin film of the present invention. The thin film film 103 (FIGS. 9A and 9B) of the other example is manufactured through the following step C.

[工程C]
図10(A)~(D)及び図11(A)(B)は薄膜トランジスター103の製造工程を示し、図9(A)及び図9(B)と同一符号は同一または相当する部分を示し、21はレジストを示す。
[Process C]
10 (A) to (D) and FIGS. 11 (A) and 11 (B) show the manufacturing process of the thin film film 103, and the same reference numerals as those of FIGS. 9 (A) and 9 (B) indicate the same or corresponding portions. , 21 indicate a resist.

絶縁性基板11上に、例えば、タンタル(Ta)からなるゲート電極12を形成した後(図10(A))、例えば、SiOからなるゲート絶縁膜13を形成する(図10(B))。その後、ゲート絶縁膜13上にソース電極17及びドレイン電極18を形成する(
図10(C))。なお、ソース電極17及びドレイン電極18は、低仕事関数であることが望ましく、例えば、タンタル(Ta)やアルミニウム(Al)等で形成するのが好ましい。また、タンタル(Ta)やアルミニウム(Al)よりも、より低い仕事関数の材料である、マグネシウム合金や希土類元素でソース電極17及びドレイン電極18を形成してもよい。希土類元素の中では、酸化しにくいイットリウム(Y)、スカンジウム(Sc)、ガドリニウム(Gd)等が好適である。
After forming the gate electrode 12 made of, for example, tantalum (Ta) on the insulating substrate 11 (FIG. 10 (A)), for example, the gate insulating film 13 made of SiO 2 is formed (FIG. 10 (B)). .. After that, the source electrode 17 and the drain electrode 18 are formed on the gate insulating film 13 (
FIG. 10 (C). The source electrode 17 and the drain electrode 18 preferably have a low work function, and are preferably formed of, for example, tantalum (Ta) or aluminum (Al). Further, the source electrode 17 and the drain electrode 18 may be formed of a magnesium alloy or a rare earth element, which is a material having a lower work function than tantalum (Ta) or aluminum (Al). Among the rare earth elements, yttrium (Y), scandium (Sc), gadolinium (Gd) and the like, which are difficult to oxidize, are suitable.

希土類元素によりソース電極17及びドレイン電極18を形成する場合は、後述のイッテルビウム(Yb)からなる希土類元素膜14を水素化する工程で、イットリウム(Y)、スカンジウム(Sc)またはガドリニウム(Gd)の水素化物半導体が形成されないような条件を選ぶ必要がある。例えば、イッテルビウム(Yb)膜を抵抗加熱蒸着法で290nm形成し、その上面に白金を10nm成膜し、3%水素+97%アルゴン雰囲気下、200℃、30分で処理した場合、YbHの半導体になり、ガドリニウム(Gd)をスパッタ法で280nm成膜、その上面に白金を20nm成膜し、同じ雰囲気下及び処理条件(即ち、3%水素+97%アルゴン雰囲気下、200℃、30分)で熱処理を行うと、GdHの金属になった。従って、ソース電極17及びドレイン電極18として、ガドリニウム(Gd)をスパッタ法で成膜して、希土類膜14としてイッテルビウム(Yb)を蒸着法で成膜すれば、電極17、18が水素化物半導体にならない条件下で希土類膜14を半導体化することが可能である。 When the source electrode 17 and the drain electrode 18 are formed of rare earth elements, yttrium (Y), scandium (Sc) or gadolinium (Gd) can be used in the step of hydrogenating the rare earth element film 14 made of ytterbium (Yb), which will be described later. It is necessary to select conditions that prevent the formation of hydride semiconductors. For example, when a ytterbium (Yb) film is formed at 290 nm by a resistance heating vapor deposition method, platinum is formed on the upper surface thereof at 10 nm, and treated in a 3% hydrogen + 97% argon atmosphere at 200 ° C. for 30 minutes, the semiconductor of YbH 2 is formed. Then, gadolinium (Gd) was formed into a film of 280 nm by a sputtering method, platinum was formed into a film of 20 nm on the upper surface thereof, and under the same atmosphere and treatment conditions (that is, under a 3% hydrogen + 97% argon atmosphere, 200 ° C., 30 minutes). After heat treatment, it became a metal of GdH 2 . Therefore, if gadolinium (Gd) is formed as a source electrode 17 and a drain electrode 18 by a sputtering method and ytterbium (Yb) is formed as a rare earth film 14 by a vapor deposition method, the electrodes 17 and 18 become hydride semiconductors. It is possible to make the rare earth film 14 into a semiconductor under the condition that it does not become.

ソース電極17及びドレイン電極18の形成後、レジスト21を塗布し、チャネル層を得るための希土類元素膜を形成すべき領域のレジスト21を除去する。即ち、ゲート絶縁膜13上のソース電極17及びドレイン電極18とこれら周辺部を覆う領域のレジストを除去する。その後、イッテルビウム(Yb)からなる希土類元素膜14を200(nm)成膜し、該希土類元素膜14上に白金膜20膜を10(nm)成膜し(図10(D))、レジスト21を除去すると、ゲート絶縁膜13上にチャンネル層形成のための希土類元素膜(イッテルビウム(Yb)膜)14と白金膜20が残り、積層構造体103aが得られる(図11(A))。 After forming the source electrode 17 and the drain electrode 18, the resist 21 is applied to remove the resist 21 in the region where the rare earth element film for obtaining the channel layer should be formed. That is, the resist of the source electrode 17 and the drain electrode 18 on the gate insulating film 13 and the region covering these peripheral portions is removed. Then, a rare earth element film 14 made of itterbium (Yb) was formed by 200 (nm), and a platinum film 20 film was formed on the rare earth element film 14 by 10 (nm) (FIG. 10 (D)), and the resist 21 was formed. Is removed, a rare earth element film (itterbium (Yb) film) 14 and a platinum film 20 for forming a channel layer remain on the gate insulating film 13, and a laminated structure 103a is obtained (FIG. 11A).

以上の、絶縁性基板11上に、ゲート電極12、ゲート電極12を覆うゲート絶縁膜13、ゲート絶縁膜13上に配設されるソース電極17及びドレイン電極18を順次形成後、ゲート絶縁膜12上の、ソース電極17、ドレイン電極18及びこれら電極とその周辺部のみを覆う希土類元素膜(イッテルビウム膜)14、並びに、希土類元素膜(イッテルビウム膜)14を被覆する白金膜20を順次形成する工程(工程C)は、前述の薄膜トランジスター102の製造における、絶縁性基板11上に希土類元素膜14と水素選択透過膜(白金膜)20を含む積層膜を有する積層構造体を得る工程Aに相当する。 The gate electrode 12, the gate insulating film 13 covering the gate electrode 12, the source electrode 17 and the drain electrode 18 arranged on the gate insulating film 13 are sequentially formed on the insulating substrate 11 as described above, and then the gate insulating film 12 is formed. The above step of sequentially forming the source electrode 17, the drain electrode 18, the rare earth element film (itterbium film) 14 covering only these electrodes and their peripheral portions, and the platinum film 20 covering the rare earth element film (itterbium film) 14. (Step C) corresponds to step A of obtaining a laminated structure having a laminated film including a rare earth element film 14 and a hydrogen selective permeation film (platinum film) 20 on an insulating substrate 11 in the above-mentioned manufacturing of the thin film film 102. do.

その後、上記の工程Cを経て得られた積層構造体103aを、爆発限界以下の水素を有する雰囲気(例えば、水素3体積%とアルゴンガス97体積%の混合ガス)中に置くことで、イッテルビウム(Yb)からなる希土類元素膜14はイッテルビウム(Yb)がイッテルビウム二水素化物(YbH)に水素化した半導体膜15になり、薄膜トランジスター103が得られる。 Then, the laminated structure 103a obtained through the above step C is placed in an atmosphere having hydrogen below the explosion limit (for example, a mixed gas of 3% by volume of hydrogen and 97% by volume of argon gas) to give ytterbium (for example). The rare earth element film 14 made of Yb) becomes a semiconductor film 15 in which ytterbium (Yb) is hydrogenated into ytterbium dihydride (YbH 2 ), and a thin film film 103 is obtained.

なお、かかる他の一例の薄膜トランジスター103では、一見、白金膜20の存在により、ソース電気17-ドレイン電極18間でショートが発生するように見えるが、白金の仕事関数は5.7eVと大きく、一方、イッテルビウム(Yb)の仕事関数は2.6eVと小さく、イッテルビウム二水素化物(YbH)の仕事関数も小さいため、白金膜20とイッテルビウム二水素化物(YbH)半導体膜15はショットキ-接合となる。そのため、薄膜トランジスター103の動作への影響は少ない。また、白金膜20/イッテルビウム二水素化物(YbH)半導体膜15の積層構成は安定であり、このままで、水素
が抜ける心配も少ない。なお、白金(Pt)/Ta/イッテルビウム二水素化物(YbH)半導体膜の積層構成にしても問題はなく動作がより安定すると考えられる。
In the thin film 103 of the other example, it seems that a short circuit occurs between the source electricity 17 and the drain electrode 18 due to the presence of the platinum film 20, but the work function of platinum is as large as 5.7 eV. On the other hand, the work function of ytterbium (Yb) is as small as 2.6 eV, and the work function of ytterbium dihydride (YbH 2 ) is also small. Therefore, the platinum film 20 and the ytterbium dihydride (YbH 2 ) semiconductor film 15 are shot key bonded. Will be. Therefore, the influence on the operation of the thin film 103 is small. Further, the laminated structure of the platinum film 20 / ytterbium dihydride (YbH 2 ) semiconductor film 15 is stable, and there is little concern that hydrogen will escape as it is. It should be noted that there is no problem even in the laminated structure of platinum (Pt) / Ta 2 O 5 / ytterbium dihydride (YbH 2 ) semiconductor film, and it is considered that the operation is more stable.

以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例等によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited by the following Examples and the like, and is appropriately applicable to the above and the following purposes. It is of course possible to implement it with modifications, all of which are within the technical scope of the invention.

(実施例1)
試料作製
石英ガラス基板(厚さ0.5mm)上に厚さ400nmのY膜及び厚さ20nmのPt膜を順次成膜して試料(試料1:Pt(20nm)/Y(400nm)/石英ガラス基板の積層体)を作製した。Pt膜及びTi膜の成膜はEB蒸着装置で行った。
(Example 1)
Sample preparation
A Y film having a thickness of 400 nm and a Pt film having a thickness of 20 nm are sequentially formed on a quartz glass substrate (thickness 0.5 mm) to form a sample (Sample 1: Pt (20 nm) / Y (400 nm) / quartz glass substrate. Laminated body) was produced. The Pt film and the Ti film were formed by an EB vapor deposition apparatus.

水素化処理1
アニール炉として真空引き後ガス置換が可能な赤外アニール炉を使用し、3体積%H+97体積%Arの水素を含む雰囲気下、室温、100℃、200℃、325℃でそれぞれ熱処理をした。なお、室温での熱処理は、アニール炉内に試料1をセットし、真空引きし(炉内圧力:5×10-4Pa)、水素3体積%とアルゴンガス97体積%の混合ガスを15分間流した。100℃、200℃、325℃での熱処理は、アニール炉を真空引きし(炉内圧力:5×10-4Pa)、水素3体積%とアルゴンガス97体積%の混合ガスを流しながら、予備加熱を10分行った後、試料1をセットし、真空引きし(炉内圧力:5×10-4Pa)、炉内温度を100℃、200℃または325℃に設定し、水素3体積%とアルゴンガス97体積%の混合ガスを15分間流した。
Hydrogenation treatment 1
An infrared annealing furnace capable of gas substitution after vacuuming was used as the annealing furnace, and heat treatment was performed at room temperature, 100 ° C., 200 ° C., and 325 ° C. under an atmosphere containing 3% by volume H 2 + 97% by volume Ar of hydrogen. .. For heat treatment at room temperature, sample 1 is set in the annealing furnace, evacuated (pressure in the furnace: 5 × 10 -4 Pa), and a mixed gas of 3% by volume of hydrogen and 97% by volume of argon gas is mixed for 15 minutes. I shed it. For heat treatment at 100 ° C., 200 ° C. and 325 ° C., the annealing furnace is vacuumed (internal pressure: 5 × 10 -4 Pa), and a mixed gas of 3% by volume of hydrogen and 97% by volume of argon gas is flowed as a preliminary gas. After heating for 10 minutes, the sample 1 is set, evacuated (in-furnace pressure: 5 × 10 -4 Pa), the in-furnace temperature is set to 100 ° C., 200 ° C. or 325 ° C., and 3% by volume of hydrogen is used. And a mixed gas of 97% by volume of argon gas was flowed for 15 minutes.

水素化処理2
アニール炉内(炉内温度:室温)に試料1をセットし、真空引きし(炉内圧力:5×10-4Pa)、水素3体積%とアルゴンガス97体積%の混合ガスを90秒間流した。
Hydrogenation treatment 2
Sample 1 is set in the annealing furnace (inner temperature: room temperature), evacuated (internal pressure: 5 × 10 -4 Pa), and a mixed gas of 3% by volume of hydrogen and 97% by volume of argon gas is flowed for 90 seconds. did.

(比較例1)
Pt膜(20nm)をTi膜(20nm)に変更した以外は実施例1と同様にして試料(試料2:Ti(20nm)/Y(400nm)/石英ガラス基板)を作製し、実施例1の水素化処理1、2と同様の水素化処理を行った。
(Comparative Example 1)
A sample (Sample 2: Ti (20 nm) / Y (400 nm) / quartz glass substrate) was prepared in the same manner as in Example 1 except that the Pt film (20 nm) was changed to the Ti film (20 nm). The same hydrogenation treatment as in the hydrogenation treatments 1 and 2 was performed.

(比較例2)
Pt膜(20nm)をAu膜(20nm)に変更した以外は実施例1と同様にして試料(試料3:Au(20nm)/Y(400nm)/石英ガラス基板)を作製し、実施例1の水素化処理1、2と同様の水素化処理を行った。
(Comparative Example 2)
A sample (Sample 3: Au (20 nm) / Y (400 nm) / quartz glass substrate) was prepared in the same manner as in Example 1 except that the Pt film (20 nm) was changed to the Au film (20 nm). The same hydrogenation treatment as in the hydrogenation treatments 1 and 2 was performed.

(比較例3)
Pt膜(20nm)をNi膜(20nm)に変更した以外は実施例1と同様にして試料(試料4:Ni(20nm)/Y(400nm)/石英ガラス基板)を作製し、実施例1の水素化処理1、2と同様の水素化処理を行った。なお、試料4は非特許文献4に記載の既存結果との比較用試料である。
(Comparative Example 3)
A sample (Sample 4: Ni (20 nm) / Y (400 nm) / quartz glass substrate) was prepared in the same manner as in Example 1 except that the Pt film (20 nm) was changed to a Ni film (20 nm). The same hydrogenation treatment as in the hydrogenation treatments 1 and 2 was performed. The sample 4 is a sample for comparison with the existing results described in Non-Patent Document 4.

X線回折装置により、実施例1および比較例1~3に係る試料1~4の水素化処理1、2後のY膜のX線結晶構造解析を行った。図1~4は試料1~4のそれぞれのX線回折チャートである。 The X-ray crystal structure analysis of the Y film after the hydrogenation treatments 1 and 2 of the samples 1 to 4 according to Examples 1 and Comparative Examples 1 to 3 was performed by an X-ray diffractometer. 1 to 4 are X-ray diffraction charts of samples 1 to 4, respectively.

図2から試料4(Ni(20nm)/Y(400nm)/石英ガラス基板)では、室温や100℃では、半導体相であるYH膜はほとんど形成されず、200℃以上でYH膜が形成され、半導体相であるYH膜の形成温度は、非特許文献4に記載の既存結果に比べると高いことがわかる。 From FIG. 2, in sample 4 (Ni (20 nm) / Y (400 nm) / quartz glass substrate), the YH3 film, which is a semiconductor phase, is hardly formed at room temperature or 100 ° C., and the YH3 film is formed at 200 ° C. or higher. It can be seen that the formation temperature of the YH3 film, which is the semiconductor phase, is higher than the existing results described in Non-Patent Document 4.

図3の試料2(Ti(20nm)/Y(400nm)/石英ガラス基板)ではTiの拡散のためか、Y膜の回折ピーク強度が小さくなった。 In sample 2 (Ti (20 nm) / Y (400 nm) / quartz glass substrate) of FIG. 3, the diffraction peak intensity of the Y film was reduced probably due to the diffusion of Ti.

図4の試料3(Au(20nm)/Y(400nm)/石英ガラス基板)では半導体相であるYH膜のみならず金属相であるYH膜の形成も確認されなかった。ただし、Y(002)面が低角度側にシフトしており、これがY膜への水素進入が原因であるなら、水素分子は表面で分解、透過しているものと推察される。 In sample 3 (Au (20 nm) / Y (400 nm) / quartz glass substrate) of FIG. 4, not only the formation of the YH 3 film which is the semiconductor phase but also the formation of the YH 2 film which is the metal phase was not confirmed. However, if the Y (002) plane is shifted to the low angle side and this is caused by the ingress of hydrogen into the Y membrane, it is presumed that the hydrogen molecules are decomposed and permeated on the surface.

実施例1の図1の試料1(Pt(20nm)/Y(400nm)/石英ガラス基板)では、室温で半導体相であるYH膜が確認される。 In sample 1 (Pt (20 nm) / Y (400 nm) / quartz glass substrate) of FIG. 1 of Example 1, a YH3 film which is a semiconductor phase is confirmed at room temperature.

以上の結果と非特許文献4の既存結果とから、室温(RT)と100℃での半導体相であるYH膜の形成されやすさ比較したものが下記の表1である。 Based on the above results and the existing results of Non-Patent Document 4, Table 1 below compares the easiness of forming the YH3 film, which is a semiconductor phase at room temperature (RT) and 100 ° C.

Figure 2022008633000002
Figure 2022008633000002

(実施例2)
水素センサー
先ず、平面が6mm×6mmの正方形で、厚さが0.5mmの非アルカリガラス基板の主面の4つのコーナー部に2mm角(平面サイスが2mm×2mmの正方形)の大きさのAu/Ta電極(Au膜:100nm、Ta膜:50nm)を形成した。この電極は、レジストを使用したパターンニングを行う必要なく、2mm角の大きさの孔を開けたハードマスク(メタルマスク)を基板に装着し、Au膜とTa膜をスパッタ法で順次成膜することにより簡単に形成できた。次に、この電極形成に使用したハードマスク(メタルマスク)を外し、4mm角(平面サイスが4mm×4mmの正方形)の孔を開けたハードマスク(メタルマスク)を基板に装着し、4mm角(平面サイスが4mm×4mmの正方形)の厚さが400nmのY膜を成膜し、その上面に4mm角(平面サイスが4mm×4mmの正方形)のPt膜を20nm成膜して、Pt(20nm)/Y(400nm)の積層膜を得た。かかるY膜とPt膜の成膜は、電子ビーム蒸着法により、真空中での連続成膜により行った。こうして得られた積層構造物を、90秒間、水素3体積%とアルゴンガス97体積%の混合ガス雰囲気(室温)下に置くことで、Y膜を水素化し、図6(A)(B)に示す構造の水素センサーを完成させた。
(Example 2)
Hydrogen sensor
First, Au / Ta having a flat surface of 6 mm × 6 mm and a size of 2 mm square (a square with a flat surface size of 2 mm × 2 mm) at the four corners of the main surface of a non-alkali glass substrate having a thickness of 0.5 mm. Electrodes (Au film: 100 nm, Ta film: 50 nm) were formed. For this electrode, a hard mask (metal mask) having a hole with a size of 2 mm square is attached to the substrate without the need for patterning using a resist, and an Au film and a Ta film are sequentially formed by a sputtering method. This made it easy to form. Next, the hard mask (metal mask) used for forming the electrodes was removed, and a hard mask (metal mask) having a hole of 4 mm square (square with a flat size of 4 mm × 4 mm) was attached to the substrate and 4 mm square (4 mm square) (4 mm square). A Y film having a thickness of 400 nm with a flat surface of 4 mm × 4 mm is formed, and a Pt film of 4 mm square (square with a flat size of 4 mm × 4 mm) is formed on the upper surface of the Y film with a thickness of 200 nm to form a Pt (20 nm). ) / Y (400 nm) laminated film was obtained. The Y film and Pt film were formed by continuous film formation in vacuum by an electron beam vapor deposition method. The laminated structure thus obtained was placed in a mixed gas atmosphere (room temperature) of 3% by volume of hydrogen and 97% by volume of argon gas for 90 seconds to hydrogenate the Y film, as shown in FIGS. 6A and 6B. A hydrogen sensor with the structure shown is completed.

図12は、上記のPt(20nm)/Y(400nm)積層膜を、3体積%H+97体積%Ar雰囲気下、室温で、90秒処理した後のY膜のX線回折チャートである。金属相であるYHが主体であり、半導体相であるYHが少なく、希土類水素化物金属膜で
あることが分かる。
FIG. 12 is an X-ray diffraction chart of the Y film after treating the Pt (20 nm) / Y (400 nm) laminated film in a 3% by volume H 2 + 97% by volume Ar atmosphere at room temperature for 90 seconds. It can be seen that YH 2 which is a metal phase is the main component, YH 3 which is a semiconductor phase is small, and it is a rare earth hydride metal film.

(実施例3)
薄膜トランジスター
石英ガラス基板(厚さ0.5mm)上に厚さ290nmのYb膜及び厚さ10nmのPt膜を順次成膜して試料(試料1:Pt(10nm)/Yb(290nm)/石英ガラス基板(500nm)を作製した。その後、アニール炉として真空引き後ガス置換が可能な赤外アニール炉を使用し、水素3体積%とアルゴンガス97体積%の混合ガス雰囲気下、室温、100℃、200℃、250℃でそれぞれ熱処理をした。図13は該試料1のX線回折の結果を処理前の結果と共に示す。室温にてイッテルビウム二水素化物(YbH)が得られ、水素の抜けは無く、安定な構造となっていた。従って、室温プロセスで、絶縁性基板上に、薄膜トランジスターのチャネル層となる希土類水素化物半導体膜を形成できることが確認できた。
(Example 3)
Thin film
A Yb film having a thickness of 290 nm and a Pt film having a thickness of 10 nm are sequentially formed on a quartz glass substrate (thickness 0.5 mm) to form a sample (Sample 1: Pt (10 nm) / Yb (290 nm) / quartz glass substrate (sample 1: Pt (10 nm) / Yb (290 nm)). 500 nm) was prepared. After that, an infrared annealing furnace capable of gas substitution after vacuuming was used as the annealing furnace, and the temperature was 100 ° C. and 200 ° C. under a mixed gas atmosphere of 3% by volume of hydrogen and 97% by volume of argon gas. , 250 ° C., respectively. FIG. 13 shows the result of X-ray diffraction of the sample 1 together with the result before the treatment. Ytterbium dihydride (YbH 2 ) was obtained at room temperature, and there was no loss of hydrogen. It had a stable structure. Therefore, it was confirmed that a rare earth hydride semiconductor film to be a channel layer of a thin film film can be formed on an insulating substrate by a room temperature process.

1 希土類水素化物金属膜
2 白金膜
3 絶縁性基板
4 電極
5 配線
11 絶縁性基板
12 ゲート電極
13 ゲート絶縁膜
14 希土類元素膜
14’ 希土類水素化物膜
15 希土類水素化物半導体(領域)
16 希土類水素化物金属(領域)
17 ソース電極
18 ドレイン電極
19 パッシベーション膜
20 白金膜
100 水素センサー
101 スピン流変換素子
102 薄膜トタンジスター
1 Rare earth hydride metal film 2 Platinum film 3 Insulation substrate 4 Electrode 5 Wiring 11 Insulation substrate 12 Gate electrode 13 Gate insulating film 14 Rare earth element film 14'Rare earth hydride film 15 Rare earth hydride semiconductor (region)
16 Rare earth hydride metal (region)
17 Source electrode 18 Drain electrode 19 Passivation film 20 Platinum film 100 Hydrogen sensor 101 Spin current conversion element 102 Thin film totangister

Claims (5)

チャネル層が希土類水素化物半導体を含むことを特徴とする薄膜トランジスター。 A thin film characterized in that the channel layer contains a rare earth hydride semiconductor. チャネル層が希土類水素化物半導体を含む薄膜トランジスターを製造する方法であって、下記の工程A及び工程Bを含むことを特徴とする薄膜トランジスターの製造方法:
工程A:絶縁性基板上に、
ゲート電極、
該ゲート電極を覆うゲート絶縁膜、
該ゲート絶縁膜上に配設される希土類元素膜、
該希土類元素膜上に配設されるソース電極及びドレイン電極、
該希土類元素膜、該ソース電極及び該ドレイン電極を覆うパッシベーション膜、並びに
該パッシベーション膜を被覆する白金膜
を順次形成する;
工程B:工程Aを経て得られた積層構造体を水素を含む雰囲気内で熱処理する。
A method for manufacturing a thin film containing a rare earth hydride semiconductor, wherein the channel layer includes the following steps A and B:
Step A: On an insulating substrate,
Gate electrode,
A gate insulating film covering the gate electrode,
A rare earth element film disposed on the gate insulating film,
Source and drain electrodes disposed on the rare earth element film,
The rare earth element film, the passivation film covering the source electrode and the drain electrode, and the platinum film covering the passivation film are sequentially formed;
Step B: The laminated structure obtained through the step A is heat-treated in an atmosphere containing hydrogen.
工程Aに代えて、下記の工程Cを有し、工程Bが、下記の工程Cを経て得られた積層構造体を水素を含む雰囲気内で熱処理する工程に変更された、請求項2記載の方法:
工程C:絶縁性基板上に、ゲート電極、該ゲート電極を覆うゲート絶縁膜、該ゲート絶縁膜上に配設されるソース電極及びドレイン電極を順次形成した後、該ゲート絶縁膜上の該ソース電極、該ドレイン電極及びこれら電極の周辺部のみを覆う希土類元素膜、並びに該希土類元素膜を被覆する白金膜を順次形成する。
The second aspect of the present invention, wherein instead of the step A, the following step C is provided, and the step B is changed to a step of heat-treating the laminated structure obtained through the following step C in an atmosphere containing hydrogen. Method:
Step C: A gate electrode, a gate insulating film covering the gate electrode, a source electrode and a drain electrode arranged on the gate insulating film are sequentially formed on the insulating substrate, and then the source on the gate insulating film is formed. A rare earth element film covering only the electrode, the drain electrode, and the peripheral portion of these electrodes, and a platinum film covering the rare earth element film are sequentially formed.
水素を含む雰囲気が爆発限界以下の量の水素を含む雰囲気である、請求項2または3に記載の方法。 The method according to claim 2 or 3, wherein the atmosphere containing hydrogen is an atmosphere containing an amount of hydrogen equal to or less than the explosion limit. 熱処理温度が室温である、請求項2~4のいずれか1項に記載の方法。 The method according to any one of claims 2 to 4, wherein the heat treatment temperature is room temperature.
JP2021159219A 2017-11-15 2021-09-29 Method for producing rare earth hydride, hydrogen sensor and thin film transistor Active JP7219930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021159219A JP7219930B2 (en) 2017-11-15 2021-09-29 Method for producing rare earth hydride, hydrogen sensor and thin film transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017220273A JP2019089267A (en) 2017-11-15 2017-11-15 Method for producing rare earth hydride, hydrogen sensor and thin film transistor
JP2021159219A JP7219930B2 (en) 2017-11-15 2021-09-29 Method for producing rare earth hydride, hydrogen sensor and thin film transistor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017220273A Division JP2019089267A (en) 2017-11-15 2017-11-15 Method for producing rare earth hydride, hydrogen sensor and thin film transistor

Publications (2)

Publication Number Publication Date
JP2022008633A true JP2022008633A (en) 2022-01-13
JP7219930B2 JP7219930B2 (en) 2023-02-09

Family

ID=87654618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021159219A Active JP7219930B2 (en) 2017-11-15 2021-09-29 Method for producing rare earth hydride, hydrogen sensor and thin film transistor

Country Status (1)

Country Link
JP (1) JP7219930B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646675A (en) * 2022-04-02 2022-06-21 西安电子科技大学杭州研究院 Hydrogen sensor based on thin film transistor/preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205208A (en) * 1996-01-26 1997-08-05 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JP2000077672A (en) * 1998-09-03 2000-03-14 Seiko Epson Corp Manufacture of semiconductor device
WO2004077672A1 (en) * 2003-02-27 2004-09-10 Racomna Research Ab Microwave switching method and device
JP2004279669A (en) * 2003-03-14 2004-10-07 Sharp Corp Display system
JP2007039283A (en) * 2005-08-04 2007-02-15 National Institute Of Advanced Industrial & Technology Reflective optical switch coated with protective film
WO2010010802A1 (en) * 2008-07-24 2010-01-28 独立行政法人科学技術振興機構 P-CHANNEL THIN-FILM TRANSISTOR AND PROCESS FOR PRODUCING THE p-CHANNEL THIN-FILM TRANSISTOR
JP2010165922A (en) * 2009-01-16 2010-07-29 Idemitsu Kosan Co Ltd Field effect transistor, method for manufacturing field effect transistor and method for manufacturing semiconductor element
JP2015065282A (en) * 2013-09-25 2015-04-09 凸版印刷株式会社 Thin film transistor and thin film transistor manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205208A (en) * 1996-01-26 1997-08-05 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JP2000077672A (en) * 1998-09-03 2000-03-14 Seiko Epson Corp Manufacture of semiconductor device
WO2004077672A1 (en) * 2003-02-27 2004-09-10 Racomna Research Ab Microwave switching method and device
JP2004279669A (en) * 2003-03-14 2004-10-07 Sharp Corp Display system
JP2007039283A (en) * 2005-08-04 2007-02-15 National Institute Of Advanced Industrial & Technology Reflective optical switch coated with protective film
WO2010010802A1 (en) * 2008-07-24 2010-01-28 独立行政法人科学技術振興機構 P-CHANNEL THIN-FILM TRANSISTOR AND PROCESS FOR PRODUCING THE p-CHANNEL THIN-FILM TRANSISTOR
JP2010165922A (en) * 2009-01-16 2010-07-29 Idemitsu Kosan Co Ltd Field effect transistor, method for manufacturing field effect transistor and method for manufacturing semiconductor element
JP2015065282A (en) * 2013-09-25 2015-04-09 凸版印刷株式会社 Thin film transistor and thin film transistor manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646675A (en) * 2022-04-02 2022-06-21 西安电子科技大学杭州研究院 Hydrogen sensor based on thin film transistor/preparation method and application thereof

Also Published As

Publication number Publication date
JP7219930B2 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
JP6936982B2 (en) Semiconductor device
US8502217B2 (en) Oxide semiconductor device including insulating layer and display apparatus using the same
JP5403464B2 (en) Thin film device and manufacturing method thereof
Teraji et al. Low-leakage p-type diamond Schottky diodes prepared using vacuum ultraviolet light/ozone treatment
TW200908333A (en) Field-effect transistor and process for producing field-effect transistor
US9056424B2 (en) Methods of transferring graphene and manufacturing device using the same
JP2008042088A (en) Thin film device, and its manufacturing method
KR102142038B1 (en) Field effect transistor, manufacturing method thereof, display element, display device, and system
JP2011029238A (en) Method of manufacturing laminate comprising crystalline homologous compound layer, and field effect transistor
JP7219930B2 (en) Method for producing rare earth hydride, hydrogen sensor and thin film transistor
JP2007214319A (en) Thin film transistor and its electronic display
CN107785250A (en) Silicon carbide-based Schottky contacts preparation method and Schottky diode manufacture method
JP2015134699A (en) Oxide film and proton conductive device
CN104843689B (en) Method for positioning production of graphene film
JP5211645B2 (en) Thin film transistor substrate and manufacturing method thereof
CN109478560A (en) Field effect transistor and preparation method thereof, display element, image display device and system
US10461192B2 (en) Metal oxide protection structure of a semiconductor device
JP2019089267A (en) Method for producing rare earth hydride, hydrogen sensor and thin film transistor
CN109148477A (en) TFT array substrate and display panel
TW201207953A (en) Method for producing field-effect transistor, method for producing display device, method for producing X-ray imaging device, and method for producing optical sensor
JP6230196B2 (en) Crystalline semiconductor film and semiconductor device
JP6478425B2 (en) Crystalline semiconductor film and semiconductor device
TWI495738B (en) Method for producing electronic device, thin-film transistor, electrooptical device and sensor
JP5332030B2 (en) Thin film transistor substrate and manufacturing method thereof
TW201201402A (en) Electronic device and method for manufacturing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20211013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230120

R150 Certificate of patent or registration of utility model

Ref document number: 7219930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150