JP2022001364A - METHOD FOR EFFECTIVELY REMOVING USEPA PAHs IN AGRICULTURAL LAND SOIL BY ACCLIMATIZING INDIGENOUS DEGRADATION BACTERIUM COMMUNITY - Google Patents

METHOD FOR EFFECTIVELY REMOVING USEPA PAHs IN AGRICULTURAL LAND SOIL BY ACCLIMATIZING INDIGENOUS DEGRADATION BACTERIUM COMMUNITY Download PDF

Info

Publication number
JP2022001364A
JP2022001364A JP2021064601A JP2021064601A JP2022001364A JP 2022001364 A JP2022001364 A JP 2022001364A JP 2021064601 A JP2021064601 A JP 2021064601A JP 2021064601 A JP2021064601 A JP 2021064601A JP 2022001364 A JP2022001364 A JP 2022001364A
Authority
JP
Japan
Prior art keywords
soil
resident
aerobic
anaerobic
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021064601A
Other languages
Japanese (ja)
Other versions
JP6966679B1 (en
Inventor
高彦征
Yanzheng Gao
陸超
Chao Lu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Application granted granted Critical
Publication of JP6966679B1 publication Critical patent/JP6966679B1/en
Publication of JP2022001364A publication Critical patent/JP2022001364A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Cultivation Of Plants (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Fertilizers (AREA)
  • Ventilation (AREA)
  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

To provide a method for effectively removing USEPA PAHs in agricultural land soil by acclimatizing indigenous degradation bacterium community, and to provide an apparatus.SOLUTION: The problem is solved by a method that includes 1) enrichment culture of indigenous degradation bacterium, 2) acclimatization of indigenous degradation bacterium, 3) isolation and purification of indigenous degradation bacterium, 4) selection of predominant indigenous degradation bacterium, and 5) inoculation of indigenous degradation bacterium.SELECTED DRAWING: Figure 1

Description

本発明は、常在分解細菌群集を馴養することにより農地土壌中のUSEPA PAHsを
効果のに除去する方法に関する。
The present invention relates to a method of effectively removing USEPA PAHs in agricultural land soil by acclimatizing a resident degrading bacterial community.

PAHsは天然資源と人工資源に分けられる。天然資源は主に土地、水生植物および微生
物の生物合成過程に由来し、さらに、森林、草地の自然火災、火山噴火や化石燃料、リグ
ニン、堆積物にも多環芳香族炭化水素が存在し、人工資源は主に様々な化石燃料、木材、
紙、その他の炭化水素の不完全な燃焼、または還元条件下での熱分解によって形成される
PAHs are divided into natural resources and artificial resources. Natural resources are mainly derived from the biosynthesis process of land, aquatic plants and microorganisms, and polycyclic aromatic hydrocarbons are also present in natural fires in forests and grasslands, volcanic eruptions and fossil fuels, lignin, and deposits. Artificial resources are mainly various fossil fuels, wood,
Formed by incomplete combustion of paper and other hydrocarbons, or pyrolysis under reducing conditions.

PAHsは、催奇形性、発がん性、変異原性の影響があるため、呼吸器系、循環器系、神
経系の損傷、肝臓や腎臓の損傷など、人体に多くの害を及ぼす可能性がある。現在、微生
物による修復は、多環芳香族炭化水素を含む多くの汚染物質を除去するための重要な技術
になっている。
Due to its teratogenic, carcinogenic and mutagenic effects, PAHs can cause many harms to the human body, including respiratory, circulatory and nervous system damage, liver and kidney damage. .. Currently, microbial repair has become an important technique for removing many contaminants, including polycyclic aromatic hydrocarbons.

常在菌は私たちの周りの自然環境に生息しており、さまざまな有益な微生物の混合グルー
プであり、常在微生物は好気性細菌と好気性細菌に分類され、菌種によって酵母菌、アス
ペルギルスおよび放線菌。細菌、乳酸菌、胞子菌などに分かれる。30億年の進化の後、
細菌はほとんどすべての化合物をエネルギーとして代謝することができ、自然の究極のス
カベンジャーと見なされる。その強力な適応性のために、細菌は環境を汚染する危険を減
らしたり修復したりするために広く使われる。
Indigenous bacteria live in the natural environment around us and are a mixed group of various beneficial microorganisms. Indigenous bacteria are classified into aerobic bacteria and aerobic bacteria, and depending on the bacterial species, yeast and Aspergillus. And actinomycetes. It is divided into bacteria, lactic acid bacteria, spore bacteria, etc. After 3 billion years of evolution
Bacteria can metabolize almost any compound as energy and are considered the ultimate scavenger of nature. Due to its strong adaptability, bacteria are widely used to reduce or repair the risk of polluting the environment.

しかし、常在菌は様々な種類があり、農地の土壌を除去するために使用できる常在菌は入
手する前に分離して馴養する必要がある。
However, there are various types of indigenous bacteria, and indigenous bacteria that can be used to remove soil from agricultural land must be isolated and acclimatized before they can be obtained.

上記の問題を考慮して、本発明は、常在分解細菌群集を馴養することにより農地土壌中の
USEPA PAHsを効果のに除去する方法を提供する。
In view of the above problems, the present invention provides a method for effectively removing USEPA PAHs in agricultural land soil by acclimatizing a resident degrading bacterial community.

本発明の技術的解決策は、
常在分解細菌群集を馴養することにより農地土壌中のUSEPA PAHsを効果のに除
去する方法は、
1)PAHsで汚染されていない土壌サンプルを土壌希釈液に調製し、土壌希釈液をそれ
ぞれ採取して好気集積培養と嫌気集積培養を行い、好気培地液と嫌気培地液を取得するこ
と、
2)PAHsで汚染された土壌サンプルを土壌懸濁液に調製し、土壌懸濁液を2つの部分
に分け、勾配濃度に従い好気培地液と嫌気培地液にそれぞれ接種して培養および増殖し、
PAHsを唯一の炭素源として常在分解細菌を馴養し、馴養された好気常在分解細菌液と
嫌気常在分解細菌液を取得すること、
3)馴養された好気常在分解細菌液と嫌気常在分解細菌液を分離および純化し、複数の常
在分解細菌を取得すること、
4)分離および純化されて得られた複数の常在分解細菌を使用して、それぞれPAHsを
含む土壌抽出液を処理し、HPLCを用いて処理された土壌のPAHs含有量を測定し、
分解率が最も高い土壌分解細菌を優勢な菌として選択して増殖させ、優勢な常在分解細菌
液を取得すること、
1)優勢な常在分解細菌液をPAHsで汚染された農地土壌に接種し、常在分解細菌を使
用して農地土壌中のPAHs含有量を低減すること、を含む。
The technical solution of the present invention is
How to effectively remove USEPA PAHs in agricultural land soil by acclimatizing resident degrading bacterial communities
1) Prepare a soil sample that is not contaminated with PAHs into a soil diluent, collect the soil diluent, perform aerobic enrichment culture and anaerobic enrichment culture, and obtain an aerobic medium solution and an anaerobic medium solution.
2) Prepare a soil sample contaminated with PAHs into a soil suspension, divide the soil suspension into two parts, inoculate the aerobic medium solution and the anaerobic medium solution according to the gradient concentration, respectively, and culture and proliferate.
Acclimatizing resident degrading bacteria using PAHs as the sole carbon source, and obtaining the conditioned aerobic resident degrading bacterial fluid and anaerobic resident degrading bacterial fluid,
3) Separation and purification of acclimatized aerobic resident degrading bacterial fluid and anaerobic resident degrading bacterial fluid to obtain multiple resident degrading bacteria.
4) Multiple resident degrading bacteria obtained by isolation and purification were used to treat soil extracts containing PAHs, respectively, and the PAHs content of the treated soil was measured using HPLC.
To obtain the predominant resident degrading bacterial solution by selecting and multiplying the soil-degrading bacterium with the highest decomposition rate as the predominant bacterium.
1) Inoculating a predominant resident degrading bacterial solution into a farm soil contaminated with PAHs and using the resident degrading bacteria to reduce the PAHs content in the farm soil.

本発明の一態様では、1)において、
土壌希釈液の調製:PAHsで汚染されていない土壌サンプルを炎の隣で減菌水に加え、
PAHsで汚染されていない土壌サンプルと減菌水の体積比が1:9であり、振動装置を
使用して10〜20min均一に振動させ、土壌中の常在分解細菌を減菌水に均一に分散
させ、5〜8h放置して上澄み液を取り、遠心分離機で0.4〜0.5h遠心分離し、遠
心回転数を4000〜5000rpmとし、遠心上澄み液を取り土壌希釈液を取得し、土
壌希釈液の濃度が10%であり、土壌希釈液のさらなる希釈に寄与し、炎の隣で操作すれ
ば空気中の他の細菌が土壌希釈液に混入して常在分解細菌の馴養に影響を及ぼす。
In one aspect of the present invention, in 1),
Preparation of soil diluent: Add a soil sample uncontaminated with PAHs to the sterilized water next to the flame and add.
The volume ratio of the soil sample not contaminated with PAHs to the sterilized water is 1: 9, and the sterilized water is uniformly vibrated for 10 to 20 minutes using a vibrating device to uniformly sterilize the indigenous decomposed bacteria in the soil. Disperse, leave for 5 to 8 hours to remove the supernatant, centrifuge for 0.4 to 0.5 h with a centrifuge, set the centrifugal rotation speed to 4000-5000 rpm, remove the centrifugal supernatant to obtain a soil diluted solution. The concentration of the soil diluent is 10%, which contributes to the further dilution of the soil diluent, and if operated next to the flame, other bacteria in the air will be mixed into the soil diluent and affect the acclimatization of the indigenous decomposition bacteria. To exert.

本発明の一態様では、1)において、
好気集積培養:オープンフラスコに好気培地を設置し、減菌ピペットを使用して土壌希釈
液を吸い上げて好気培地に接種し、オープンフラスコを培養箱に入れ、培養箱の温度を3
3〜35℃範囲に制御し、18〜20h振動培養して、好気培地液を取得し、好気菌の培
養は空気条件下で行われる必要があり、振動培養によりオープンフラスコの底部の好気常
在分解細菌が菌液表面に移動して酸素を取得し、優勢な土壌分解細菌が酸素不足により死
亡することを避け、
嫌気集積培養:三角フラスコに嫌気培地を設置し、減菌ピペットを使用して土壌希釈液を
吸い上げて嫌気培地に接種し、ボルトプラグで三角フラスコを密閉して培養箱に入れ、培
養箱の温度を33〜35℃範囲に制御し、18〜20h放置培養して、嫌気培地液を取得
し、嫌気培養は密閉条件下で放置培養し、振動が嫌気菌の繁殖に悪影響を与える。
In one aspect of the present invention, in 1),
Aerobic enrichment culture: Place the aerobic medium in the open flask, suck up the soil diluent using a sterilization pipette, incubate the aerobic medium, put the open flask in the culture box, and set the temperature of the culture box to 3.
Controlled to a range of 3 to 35 ° C. and vibrated for 18 to 20 hours to obtain an aerobic medium solution, and the aerobic bacteria must be cultured under air conditions. Avoids the predominant soil-degrading bacteria dying from oxygen deficiency by moving to the surface of the broth to obtain oxygen.
Anaerobic accumulation culture: Place the anaerobic medium in the triangular flask, suck up the soil diluent using a sterilization pipette, incubate the anaerobic medium, seal the triangular flask with a bolt plug and put it in the culture box, and the temperature of the culture box. Is controlled in the range of 33 to 35 ° C. and left-cultured for 18 to 20 hours to obtain an anaerobic medium solution, and the anaerobic culture is left-cultured under closed conditions, and vibration adversely affects the growth of anaerobic bacteria.

本発明の一態様では、2)において、
土壌懸濁液の調製:PAHsで汚染された土壌サンプルを炎の隣で減菌水に加え、PAH
sで汚染された土壌サンプルと減菌水の体積比が1:4であり、振動装置で10〜20m
in均一振動して土壌懸濁液を取得し、土壌懸濁液の濃度が20%であり、懸濁液は土壌
中のPAHsを完全に保留でき、PAHsを唯一の炭素源として常在分解細菌を馴養し、
高いPAHs含有量であれば馴養効率を高めることができ、
好気培地液の接種および馴養:濃度が20%の土壌懸濁液を3つの部分に分け、その内の
2つの土壌懸濁液に減菌水を加え、それらの濃度を10%と15%にそれぞれ調整し、ま
ず減菌ピペットを使用して10%濃度の土壌懸濁液を好気培地液に接種し、33〜35℃
の培養箱で20〜24h振動培養し、1級好気馴養液を取得し、次に減菌ピペットを使用
して1級好気馴養液を15%濃度の土壌懸濁液に接種し、33〜35℃の培養箱で20〜
24h振動培養し、2級好気馴養液を取得し、最後に減菌ピペットを使用して2級好気馴
養液を20%濃度の土壌懸濁液に接種し、33〜35℃の培養箱で20〜24h振動培養
し、最終的に馴養された好気常在分解細菌液を取得し、PAHsの初期濃度が高すぎると
、好気常在分解細菌の生存に影響し、勾配濃度に従い土壌懸濁液中のPAHsの濃度を徐
々に高めることで、土壌希釈液中の常在分解細菌以外の微生物細菌の存在が益々難しくな
り、最後にすべて死亡し、好気常在分解細菌のみが残り、
嫌気培地液の接種および馴養:濃度が20%の土壌懸濁液を3つの部分に分け、その内の
2つの土壌懸濁液に減菌水を加え、それらの濃度を10%と15%に調整し、まず減菌ピ
ペットを使用して10%濃度の土壌懸濁液を嫌気培地液に接種し、33〜35℃の培養箱
で密閉して20〜24h放置培養し、1級嫌気馴養液を取得し、次に減菌ピペットを使用
して1級嫌気馴養液を15%濃度の土壌懸濁液に接種し、33〜35℃の培養箱で密閉し
て20〜24h放置培養し、2級嫌気馴養液を取得し、最後に減菌ピペットを使用して2
級嫌気馴養液を20%濃度の土壌懸濁液に接種し、33〜35℃の培養箱で密閉して20
〜24h放置培養し、最終的に馴養された嫌気常在分解細菌液を取得し、PAHsの初期
濃度が高すぎると、嫌気常在分解細菌の生存に影響し、勾配濃度に従い土壌懸濁液中のP
AHsの濃度を徐々に高めることで、土壌希釈液中の常在分解細菌以外の微生物細菌の存
在が益々難しくなり、最後にすべて死亡し、嫌気常在分解細菌のみが残る。
In one aspect of the present invention, in 2),
Preparation of soil suspension: Add PAHs-contaminated soil samples to sterilized water next to the flame and PAH
The volume ratio of the soil sample contaminated with s and the sterilized water is 1: 4, and the vibration device is used for 10 to 20 m.
In uniform vibration to obtain a soil suspension, the concentration of the soil suspension is 20%, the suspension can completely retain PAHs in the soil, and PAHs are the only carbon source for resident degrading bacteria. Familiarize,
High PAHs content can increase acclimatization efficiency,
Inoculation and acclimatization of aerobic medium solution: Divide the 20% concentration soil suspension into three parts, add sterilized water to two of the soil suspensions, and increase their concentrations to 10% and 15%. First, a 10% concentration soil suspension was inoculated into the aerobic medium solution using a sterilization pipette, and the temperature was 33 to 35 ° C.
Incubate for 20 to 24 hours in the culture box of No. 1 to obtain a first-class aerobic conditioned solution, and then incubate the first-class aerobic conditioned solution into a soil suspension having a concentration of 15% using a sterilization pipette. 20 ~ in a culture box at ~ 35 ° C
Incubate for 24 hours to obtain a secondary aerobic conditioned solution, and finally inoculate a 20% concentration soil suspension with the secondary aerobic conditioned solution using a sterilization pipette, and incubate in a culture box at 33 to 35 ° C. After 20 to 24 hours of vibration culture, the aerobic resident degrading bacterial solution was finally obtained, and if the initial concentration of PAHs was too high, it affected the survival of the aerobic resident degrading bacteria, and the soil was adjusted according to the gradient concentration. Gradually increasing the concentration of PAHs in the suspension makes the presence of microbial bacteria other than resident-degrading bacteria in the soil diluent more difficult, and finally all die, leaving only aerobic resident-degrading bacteria. ,
Inoculation and acclimatization of anaerobic medium solution: Divide the 20% concentration soil suspension into three parts, add sterilized water to two of the soil suspensions, and increase their concentrations to 10% and 15%. First, inoculate the anaerobic medium solution with a 10% concentration soil suspension using a sterilization pipette, seal it in a culture box at 33 to 35 ° C., leave it for 20 to 24 hours, and incubate it for 20 to 24 hours. Then, using a sterilization pipette, inoculate a first-class anaerobic conditioned solution into a soil suspension having a concentration of 15%, seal it in a culture box at 33 to 35 ° C., and leave it for 20 to 24 hours for culture. Obtain a grade anaerobic culture medium and finally use a sterilization pipette 2
Incubate a 20% concentration soil suspension with a grade anaerobic incubator, seal in a culture box at 33-35 ° C, and 20
After culturing for ~ 24 hours, the anaerobic resident degrading bacterial solution finally acclimatized was obtained, and if the initial concentration of PAHs was too high, it affected the survival of the anaerobic resident degrading bacteria, and in the soil suspension according to the gradient concentration. P
By gradually increasing the concentration of AHs, the presence of microbial bacteria other than the resident degrading bacteria in the soil diluent becomes more difficult, and finally all of them die, leaving only the anaerobic resident degrading bacteria.

本発明の一態様では、3)において、
分離および純化の具体的なステップ:複数の減菌培養プレートを用意し、接種ループを使
用してそれぞれ馴養された好気常在分解細菌液と嫌気常在分解細菌液を粘着取り、減菌培
養プレート上に塗布し、塗布された減菌培養プレートを20〜24h放置培養し、上記操
作を繰り返して複数回の希釈・塗布・分離を行い、常在分解細菌の数が希釈回数の増加に
従い減少し、徐々に純化され、分離されて得られた純化常在分解細菌をそれぞれ傾斜面に
保管し、分離および純化により馴養された常在分解細菌を個別に分離し、より高純度の常
在分解細菌を得ることができ、その後の優勢な土壌分解細菌の選択に便利である。
In one aspect of the present invention, in 3),
Specific steps for isolation and purification: Prepare multiple sterilized culture plates and use an inoculation loop to adhere to the aerobic and anaerobic resident degrading bacterial solutions that have been acclimatized, respectively, and sterilize the culture. The sterilized culture plate applied on the plate is left to incubate for 20 to 24 hours, and the above operation is repeated to dilute, apply, and separate multiple times, and the number of indigenously degrading bacteria decreases as the number of dilutions increases. The purified resident-degrading bacteria obtained by gradual purification and separation are stored on an inclined surface, and the resident-degrading bacteria acclimatized by separation and purification are individually separated to obtain higher-purity resident decomposition. Bacteria can be obtained, which is useful for the subsequent selection of predominant soil-degrading bacteria.

本発明の一態様では、4)において、
常在分解細菌を利用してPAHsを含む土壌抽出液を処理する具体的なステップ:3)で
分離および純化されて得られた複数の常在分解細菌をそれぞれ増殖させ、PAHsを含む
土壌サンプルを土壌懸濁液に調製し、HPLCを使用して土壌懸濁液中のPAHs含有量
を検出し、それぞれ増殖した複数の常在分解細菌を土壌懸濁液に接種して処理し、常在分
解細菌培養液と土壌懸濁液の体積比が1:10〜80であり、3d処理した後HPLCを
使用して土壌懸濁液中のPAHs含有量を検出し、PAHsの除去効率が最も高い土壌分
解細菌を選択して、土壌中のPAHsの除去効率を高める。
In one aspect of the present invention, in 4),
Specific Steps for Treating a Soil Extract Containing PAHs Using Resident Degrading Bacteria: Multiple resident decomposition bacteria obtained by separation and purification in 3) are grown, respectively, and a soil sample containing PAHs is prepared. Prepared into a soil suspension, use HPLC to detect the PAHs content in the soil suspension, inoculate the soil suspension with multiple resident degrading bacteria, each of which has grown, and treat the resident decomposition. The volume ratio of the bacterial culture solution to the soil suspension is 1: 10 to 80, and after 3d treatment, the PAHs content in the soil suspension is detected using HPLC, and the soil with the highest PAHs removal efficiency. Degrading bacteria are selected to increase the efficiency of removing PAHs in the soil.

本発明の一態様では、上記方法で使用される装置は、土壌中のPAHs含有量を検出する
ためのHPLCと、土壌希釈液と土壌懸濁液の振動処理のための振動装置と、土壌希釈液
を遠心分離し上澄み液を得るための遠心分離機と、土壌中の菌液を好気集積培養するため
のオープンフラスコと、接種および液取りのための減菌ピペットと、常在分解細菌の培養
のための培養箱と、土壌中の菌液を嫌気集積培養ための三角フラスコと、馴養された好気
常在分解細菌液と嫌気常在分解細菌液を分離および純化するための減菌培養プレートと、
前記減菌培養プレートへの接種のための接種ループと、を含む。
In one aspect of the invention, the apparatus used in the above method includes HPLC for detecting the PAHs content in the soil, a vibrating apparatus for vibrating the soil diluent and the soil suspension, and soil dilution. A centrifuge for centrifuging the liquid to obtain the supernatant, an open flask for aerobic accumulation culture of the bacterial liquid in the soil, a sterilization pipette for inoculation and liquid removal, and a resident degrading bacterium. A culture box for culturing, a triangular flask for anaerobic accumulation culture of the bacterial solution in the soil, and a sterilization culture for separating and purifying the acclimatized aerobic resident decomposition bacterial solution and anaerobic resident decomposition bacterial solution. With a plate,
Includes an inoculation loop for inoculation to the sterilized culture plate.

本発明の一態様では、上記装置では、
前記培養箱は、好気常在分解菌を培養するための好気培養箱体と、
前記好気培養箱体の上方に配置されて嫌気常在分解細菌を培養するための嫌気培養箱体と

前記好気培養箱体と嫌気培養箱体の側部に配置された制御ボックスと、
それぞれ好気培養箱体と嫌気培養箱体の内部に配置されて微生物容器を固定するための固
定装置と、固定装置は2つの半環状の固定アームと前記固定アームの内外回転を制御する
ためのステッピングモーターを含み、固定アームとステッピングモーターの接続箇所に圧
力センサがさらに設けられ、圧力センサは圧力に応じてステッピングモーターのオンオフ
を制御し、
それぞれ前記好気培養箱体と嫌気培養箱体の内部に配置されて室内温度を調節するための
調温装置と、調温装置は好気培養箱体と嫌気培養箱体の内壁に設けられた加熱コイルと室
内温度を監視するための温度センサを含み、
培養箱の通気および換気のための通気装置と、通気装置は嫌気培養箱体の頂部に設けられ
た送気装置と好気培養箱体の後壁の下部に設けられた排気穴を含み、前記送気装置は外部
空気を培養箱に吸い込む空気ポンプと、空気ポンプの送気口に設けられ空気中のほこりや
微生物を濾過するための濾過溝を含み、前記排気穴の外側に排出空気中の常在菌を濾過す
るための濾過膜が設けられ、
制御ボックス内部に配置されたコントローラーと、制御ボックスの前側面に配置された2
つの温度制御ノブと、を含む。
In one aspect of the invention, the device
The culture box includes an aerobic culture box for culturing aerobic indigenous degrading bacteria and an aerobic culture box.
An anaerobic culture box placed above the aerobic culture box for culturing anaerobic resident degrading bacteria, and an anaerobic culture box.
The control box arranged on the side of the aerobic culture box and the anaerobic culture box,
A fixing device arranged inside the aerobic culture box and an anaerobic culture box to fix the microbial container, and the fixing device for controlling the internal / external rotation of the two semi-annular fixing arms and the fixing arm, respectively. Including the stepping motor, a pressure sensor is further installed at the connection point between the fixed arm and the stepping motor, and the pressure sensor controls the on / off of the stepping motor according to the pressure.
A temperature control device for controlling the indoor temperature, which is arranged inside the aerobic culture box and the anaerobic culture box, respectively, and the temperature control device are provided on the inner walls of the aerobic culture box and the anaerobic culture box, respectively. Includes heating coil and temperature sensor for monitoring room temperature,
A ventilation device for ventilation and ventilation of the culture box, and the ventilation device includes an air supply device provided at the top of the anaerobic culture box and an exhaust hole provided at the bottom of the rear wall of the aerobic culture box. The air supply device includes an air pump for sucking external air into the culture box and a filtration groove provided at the air supply port of the air pump for filtering dust and microorganisms in the air, and the exhaust air is provided outside the exhaust hole. A filtration membrane for filtering indigenous bacteria is provided,
A controller placed inside the control box and 2 placed on the front side of the control box
Includes two temperature control knobs.

本発明は有益な効果を有する。本発明は、それぞれ土壌希釈液中の常在分解細菌を好気培
養および嫌気培養し、PAHsを含む土壌懸濁液を使用して土壌の分解細菌を勾配馴養し
、土壌中の他の他の細菌を全部除去し、そして馴養された常在分解細菌の菌種を分離およ
び純化し、PAHsの除去効率が最も高い常在分解細菌を選択して増殖させ、汚染土壌に
接種してPAHsを分解し、分解効率が高い。
The present invention has a beneficial effect. The present invention aerobically and anaerobically cultivates indigenous degrading bacteria in soil diluents, respectively, and gradient acclimatizes soil degrading bacteria using soil suspensions containing PAHs, as well as other soil degrading bacteria. All bacteria are removed, and the species of the acclimatized indigenous degrading bacteria are isolated and purified, the indigenous degrading bacteria having the highest PAHs removal efficiency are selected and propagated, and inoculated into the contaminated soil to decompose PAHs. However, the decomposition efficiency is high.

本発明の方法および装置のフローチャートである。It is a flowchart of the method and apparatus of this invention. 本発明の培養箱の構造の概略図である。It is a schematic diagram of the structure of the culture box of this invention.

[符号の説明]
1 培養箱
11 好気培養箱体
12 嫌気培養箱体
13 制御ボックス
131 温度制御ノブ
14 固定装置
141 固定アーム
142 ステッピングモーター
143 圧力センサ
15 調温装置
151 加熱コイル
152 温度センサ
16 通気装置
161 送気装置
1611 空気ポンプ
1612 濾過溝
162 排気穴
1621 濾過膜
[Explanation of sign]
1 culture box 11 aerobic culture box 12 anaerobic culture box 13 control box 131 temperature control knob 14 fixing device 141 fixing arm 142 stepping motor 143 pressure sensor 15 temperature control device 151 heating coil 152 temperature sensor 16 ventilation device 161 air supply device 1611 Air pump 1612 Filter groove 162 Exhaust hole 1621 Filter membrane

本発明の技術的解決策の理解を容易にするために、本発明は、特定の実施例および添付の
図1〜2を参照して以下でさらに説明され、実施例は、本発明の保護範囲に対する制限を
構成しない。
To facilitate understanding of the technical solutions of the invention, the invention is further described below with reference to specific examples and accompanying FIGS. 1-2, wherein the examples are the scope of protection of the invention. Do not configure restrictions on.

実施例1:図1に示すように、常在分解細菌群集を馴養することにより農地土壌中のUS
EPA PAHsを効果のに除去する方法は、
1)PAHsで汚染されていない土壌サンプルを土壌希釈液に調製し、土壌希釈液をそれ
ぞれ採取して好気集積培養と嫌気集積培養を行い、好気培地液と嫌気培地液を取得するこ
と、
土壌希釈液の調製:PAHsで汚染されていない土壌サンプルを炎の隣で減菌水に加え、
PAHsで汚染されていない土壌サンプルと減菌水の体積比が1:9であり、振動装置を
使用して20min均一に振動させ、土壌中の常在分解細菌を減菌水に均一に分散させ、
8h放置して上澄み液を取り、遠心分離機で0.5h遠心分離し、遠心回転数を5000
rpmとし、遠心上澄み液を取り土壌希釈液を取得し、土壌希釈液の濃度が10%であり

好気集積培養:オープンフラスコに好気培地を設置し、減菌ピペットを使用して土壌希釈
液を吸い上げて好気培地に接種し、オープンフラスコを培養箱1に入れ、培養箱1の温度
を35℃に制御し、20h振動培養して、好気培地液を取得し、
嫌気集積培養:三角フラスコに嫌気培地を設置し、減菌ピペットを使用して土壌希釈液を
吸い上げて嫌気培地に接種し、ボルトプラグで三角フラスコを密閉して培養箱1に入れ、
培養箱1の温度を35℃に制御し、20h放置培養して、嫌気培地液を取得し、
2)PAHsで汚染された土壌サンプルを土壌懸濁液に調製し、土壌懸濁液を2つの部分
に分け、勾配濃度に従い好気培地液と嫌気培地液にそれぞれ接種して培養および増殖し、
PAHsを唯一の炭素源として常在分解細菌を馴養し、馴養された好気常在分解細菌液と
嫌気常在分解細菌液を取得すること、
土壌懸濁液の調製:PAHsで汚染された土壌サンプルを炎の隣で減菌水に加え、PAH
sで汚染された土壌サンプルと減菌水の体積比が1:4であり、振動装置で20min均
一振動して土壌懸濁液を取得し、土壌懸濁液の濃度が20%であり、
好気培地液の接種および馴養:濃度が20%の土壌懸濁液を3つの部分に分け、その内の
2つの土壌懸濁液に減菌水を加え、それらの濃度を10%と15%にそれぞれ調整し、ま
ず減菌ピペットを使用して10%濃度の土壌懸濁液を好気培地液に接種し、35℃の培養
箱1で24h振動培養し、1級好気馴養液を取得し、次に減菌ピペットを使用して1級好
気馴養液を15%濃度の土壌懸濁液に接種し、35℃の培養箱1で24h振動培養し、2
級好気馴養液を取得し、最後に減菌ピペットを使用して2級好気馴養液を20%濃度の土
壌懸濁液に接種し、35℃の培養箱1で24h振動培養し、最終的に馴養された好気常在
分解細菌液を取得し、
嫌気培地液の接種および馴養:濃度が20%の土壌懸濁液を3つの部分に分け、その内の
2つの土壌懸濁液に減菌水を加え、それらの濃度を10%と15%に調整し、まず減菌ピ
ペットを使用して10%濃度の土壌懸濁液を嫌気培地液に接種し、33〜35℃の培養箱
1で密閉して20〜24h放置培養し、1級嫌気馴養液を取得し、次に減菌ピペットを使
用して1級嫌気馴養液を15%濃度の土壌懸濁液に接種し、35℃の培養箱1で密閉して
24h放置培養し、2級嫌気馴養液を取得し、最後に減菌ピペットを使用して2級嫌気馴
養液を20%濃度の土壌懸濁液に接種し、35℃の培養箱1で密閉して24h放置培養し
、最終的に馴養された嫌気常在分解細菌液を取得し、
3)馴養された好気常在分解細菌液と嫌気常在分解細菌液を分離および純化し、複数の常
在分解細菌を取得すること、
分離および純化の具体的なステップ:複数の減菌培養プレートを用意し、接種ループを使
用してそれぞれ馴養された好気常在分解細菌液と嫌気常在分解細菌液を粘着取り、減菌培
養プレート上に塗布し、塗布された減菌培養プレートを24h放置培養し、上記操作を繰
り返して複数回の希釈・塗布・分離を行い、常在分解細菌の数が希釈回数の増加に従い減
少し、徐々に純化され、分離されて得られた純化常在分解細菌をそれぞれ傾斜面に保管し

4)分離および純化されて得られた複数の常在分解細菌を使用して、それぞれPAHsを
含む土壌抽出液を処理し、HPLCを用いて処理された土壌のPAHs含有量を測定し、
分解率が最も高い土壌分解細菌を優勢な菌として選択して増殖させ、優勢な常在分解細菌
液を取得すること、
常在分解細菌を利用してPAHsを含む土壌抽出液を処理する具体的なステップ:3)で
分離および純化されて得られた複数の常在分解細菌をそれぞれ増殖させ、PAHsを含む
土壌サンプルを土壌懸濁液に調製し、HPLCを使用して土壌懸濁液中のPAHs含有量
を検出し、それぞれ増殖した複数の常在分解細菌を土壌懸濁液に接種して処理し、常在分
解細菌培養液と土壌懸濁液の体積比が1:80であり、3d処理した後HPLCを使用し
て土壌懸濁液中のPAHs含有量を検出し、
5)優勢な常在分解細菌液をPAHsで汚染された農地土壌に接種し、常在分解細菌を使
用して農地土壌中のPAHs含有量を低減すること、を含む。
実施例2:実施例2は、実施例1と以下の通り異なり:
1)PAHsで汚染されていない土壌サンプルを土壌希釈液に調製し、土壌希釈液を好気
集積培養して好気培地液を取得する、
土壌希釈液の調製:PAHsで汚染されていない土壌サンプルを炎の隣で減菌水に加え、
PAHsで汚染されていない土壌サンプルと減菌水の体積比が1:9であり、振動装置を
使用して10min均一に振動させ、土壌中の常在分解細菌を減菌水に均一に分散させ、
5h放置して上澄み液を取り、遠心分離機で0.4h遠心分離し、遠心回転数を4000
rpmとし、遠心上澄み液を取り土壌希釈液を取得し、土壌希釈液の濃度が10%であり

好気集積培養:オープンフラスコに好気培地を設置し、減菌ピペットを使用して土壌希釈
液を吸い上げて好気培地に接種し、オープンフラスコを培養箱1に入れ、培養箱1の温度
を33℃に制御し、18h振動培養して、好気培地液を取得し、
2)PAHsで汚染された土壌サンプルを土壌懸濁液に調製し、土壌懸濁液を勾配濃度に
従い好気培地液に接種して培養増殖し、PAHsを唯一の炭素源として常在分解細菌を馴
養し、馴養された好気常在分解細菌液を取得する、
土壌懸濁液の調製:PAHsで汚染された土壌サンプルを炎の隣で減菌水に加え、PAH
sで汚染された土壌サンプルと減菌水の体積比が1:4であり、振動装置で10min均
一振動して土壌懸濁液を取得し、土壌懸濁液の濃度が20%であり、
好気培地液の接種および馴養:濃度が20%の土壌懸濁液を3つの部分に分け、その内の
2つの土壌懸濁液に減菌水を加え、それらの濃度を10%と15%にそれぞれ調整し、ま
ず減菌ピペットを使用して10%濃度の土壌懸濁液を好気培地液に接種し、33℃の培養
箱1で20h振動培養し、1級好気馴養液を取得し、次に減菌ピペットを使用して1級好
気馴養液を15%濃度の土壌懸濁液に接種し、33℃の培養箱1で20h振動培養し、2
級好気馴養液を取得し、最後に減菌ピペットを使用して2級好気馴養液を20%濃度の土
壌懸濁液に接種し、33℃の培養箱1で20h振動培養し、最終的に馴養された好気常在
分解細菌液を取得し、
3)馴養された好気常在分解細菌液を分離および純化して、複数の常在分解細菌を取得す
る、
分離および純化の具体的なステップ:複数の減菌培養プレートを用意し、接種ループ9を
使用してそれぞれ馴養された好気常在分解細菌液と嫌気常在分解細菌液を粘着取り、減菌
培養プレート上に塗布し、塗布された減菌培養プレートを24h放置培養し、上記操作を
繰り返して複数回の希釈・塗布・分離を行い、常在分解細菌の数が希釈回数の増加に従い
減少し、徐々に純化され、分離されて得られた純化常在分解細菌をそれぞれ傾斜面に保管
する。
Example 1: As shown in FIG. 1, US in agricultural land soil by acclimatizing a resident degrading bacterial community.
How to effectively remove EPA PAHs
1) Prepare a soil sample that is not contaminated with PAHs into a soil diluent, collect the soil diluent, perform aerobic enrichment culture and anaerobic enrichment culture, and obtain an aerobic medium solution and an anaerobic medium solution.
Preparation of soil diluent: Add a soil sample uncontaminated with PAHs to the sterilized water next to the flame and add.
The volume ratio of the soil sample not contaminated with PAHs to the sterilized water is 1: 9, and the sterilized water is uniformly vibrated for 20 minutes using a vibrating device to uniformly disperse the resident degrading bacteria in the soil. ,
Leave it for 8 hours to remove the supernatant, centrifuge for 0.5 hours with a centrifuge, and set the centrifugal rotation speed to 5000.
At rpm, the centrifugal supernatant was taken to obtain the soil diluent, and the concentration of the soil diluent was 10%.
Aerobic enrichment culture: Place the aerobic medium in the open flask, suck up the soil diluent using a sterilization pipette, incubate the aerobic medium, put the open flask in the culture box 1, and set the temperature of the culture box 1. Control to 35 ° C. and incubate for 20 hours to obtain an aerobic medium solution.
Anaerobic enrichment culture: Place the anaerobic medium in the Erlenmeyer flask, suck up the soil diluent using a sterilization pipette, incubate the anaerobic medium, seal the Erlenmeyer flask with a bolt plug, and put it in the culture box 1.
The temperature of the culture box 1 was controlled to 35 ° C., and the cells were left to incubate for 20 hours to obtain an anaerobic medium solution.
2) Prepare a soil sample contaminated with PAHs into a soil suspension, divide the soil suspension into two parts, inoculate the aerobic medium solution and the anaerobic medium solution according to the gradient concentration, respectively, and culture and proliferate.
Acclimatizing resident degrading bacteria using PAHs as the sole carbon source, and obtaining the conditioned aerobic resident degrading bacterial fluid and anaerobic resident degrading bacterial fluid,
Preparation of soil suspension: Add PAHs-contaminated soil samples to sterilized water next to the flame and PAH
The volume ratio of the soil sample contaminated with s to the sterilized water was 1: 4, and the soil suspension was obtained by uniformly vibrating for 20 minutes with a vibrating device, and the concentration of the soil suspension was 20%.
Inoculation and acclimatization of aerobic medium solution: Divide the 20% concentration soil suspension into three parts, add sterilized water to two of the soil suspensions, and increase their concentrations to 10% and 15%. First, a 10% concentration soil suspension was inoculated into the aerobic medium solution using a sterilization pipette, and vibrated in a culture box 1 at 35 ° C. for 24 hours to obtain a first-class aerobic nutrient solution. Then, using a sterilization pipette, inoculate a first-class aerobic nutrient solution into a soil suspension having a concentration of 15%, and vibrate and culture in a culture box 1 at 35 ° C. for 24 hours.
Obtain a grade aerobic nutrient solution, and finally incubate a grade 2 aerobic nutrient solution into a soil suspension having a concentration of 20% using a sterilization pipette, and incubate in a culture box 1 at 35 ° C. for 24 hours, and finally. Obtained an aerobic resident decomposition bacterial solution that has been acclimatized to
Inoculation and acclimatization of anaerobic medium solution: Divide the 20% concentration soil suspension into three parts, add sterilized water to two of the soil suspensions, and increase their concentrations to 10% and 15%. First, inoculate the anaerobic medium solution with a 10% concentration soil suspension using a sterilization pipette, seal in a culture box 1 at 33 to 35 ° C., leave and incubate for 20 to 24 hours, and perform first-class anaerobic acclimation. Obtain the solution, then use a sterilization pipette to inoculate the first-grade anaerobic conditioned solution into a soil suspension with a concentration of 15%, seal in a culture box 1 at 35 ° C., leave and incubate for 24 hours, and second-grade anaerobic. Obtain the conditioned solution, and finally inoculate the secondary anaerobic conditioned solution into a soil suspension having a concentration of 20% using a sterilization pipette, seal in a culture box 1 at 35 ° C., and leave to culture for 24 hours, and finally. Obtained an anaerobic resident decomposition medium acclimatized to
3) Separation and purification of acclimatized aerobic resident degrading bacterial fluid and anaerobic resident degrading bacterial fluid to obtain multiple resident degrading bacteria.
Specific steps for isolation and purification: Prepare multiple sterilized culture plates and use an inoculation loop to adhere to the aerobic and anaerobic resident degrading bacterial solutions that have been acclimatized, respectively, and sterilize the culture. It was applied on a plate, and the applied sterilized culture plate was left to inoculate for 24 hours, and the above operation was repeated to dilute, apply, and separate multiple times. Purified resident degrading bacteria obtained by gradual purification and isolation were stored on an inclined surface.
4) Multiple resident degrading bacteria obtained by isolation and purification were used to treat soil extracts containing PAHs, respectively, and the PAHs content of the treated soil was measured using HPLC.
To obtain the predominant resident degrading bacterial solution by selecting and multiplying the soil-degrading bacterium with the highest decomposition rate as the predominant bacterium.
Specific steps for treating a soil extract containing PAHs using resident-degrading bacteria: Multiple resident-degrading bacteria obtained by separation and purification in 3) are grown, and a soil sample containing PAHs is prepared. Prepared into a soil suspension, use HPLC to detect the PAHs content in the soil suspension, inoculate the soil suspension with multiple indigenously degrading bacteria, each of which has grown, and treat with indigenous degradation. The volume ratio of the bacterial culture solution to the soil suspension was 1:80, and after 3d treatment, HPLC was used to detect the PAHs content in the soil suspension.
5) Inoculating the predominant resident degrading bacterial solution into the agricultural land soil contaminated with PAHs and using the resident degrading bacteria to reduce the PAHs content in the agricultural land soil.
Example 2: Example 2 differs from Example 1 as follows:
1) Prepare a soil sample not contaminated with PAHs as a soil diluent, and aerobic enrichment culture of the soil diluent to obtain an aerobic medium solution.
Preparation of soil diluent: Add a soil sample uncontaminated with PAHs to the sterilized water next to the flame and add.
The volume ratio of the soil sample not contaminated with PAHs to the sterilized water is 1: 9, and the sterilized water is uniformly vibrated for 10 minutes using a vibrating device to uniformly disperse the resident degrading bacteria in the soil. ,
Leave it for 5 hours to remove the supernatant, centrifuge for 0.4 hours with a centrifuge, and set the centrifugal rotation speed to 4000.
At rpm, the centrifugal supernatant was taken to obtain the soil diluent, and the concentration of the soil diluent was 10%.
Aerobic enrichment culture: Place the aerobic medium in the open flask, suck up the soil diluent using a sterilization pipette, incubate the aerobic medium, put the open flask in the culture box 1, and set the temperature of the culture box 1. Control to 33 ° C. and incubate for 18 hours to obtain an aerobic medium solution.
2) Prepare a soil sample contaminated with PAHs into a soil suspension, inoculate the soil suspension into an aerobic medium solution according to the gradient concentration, culture and proliferate, and use PAHs as the sole carbon source to generate resident degrading bacteria. Acclimate and obtain acclimatized aerobic resident decomposition medium,
Preparation of soil suspension: Add PAHs-contaminated soil samples to sterilized water next to the flame and PAH
The volume ratio of the soil sample contaminated with s to the sterilized water was 1: 4, and the soil suspension was obtained by uniformly vibrating for 10 minutes with a vibrating device, and the concentration of the soil suspension was 20%.
Inoculation and acclimatization of aerobic medium solution: Divide the 20% concentration soil suspension into three parts, add sterilized water to two of the soil suspensions, and increase their concentrations to 10% and 15%. First, a 10% concentration soil suspension was inoculated into the aerobic medium solution using a sterilization pipette, and vibrated in a culture box 1 at 33 ° C. for 20 hours to obtain a first-class aerobic nutrient solution. Then, using a sterilization pipette, inoculate a first-class aerobic nutrient solution into a soil suspension having a concentration of 15%, and vibrate and culture in a culture box 1 at 33 ° C. for 20 hours.
Obtain a grade aerobic nutrient solution, and finally incubate a grade 2 aerobic nutrient solution into a soil suspension having a concentration of 20% using a sterilization pipette, and incubate in a culture box 1 at 33 ° C. for 20 hours, and finally. Obtained an aerobic resident decomposition bacterial solution that has been acclimatized to
3) Isolate and purify the acclimatized aerobic resident degrading bacterial solution to obtain multiple resident degrading bacteria.
Specific steps for isolation and purification: Prepare multiple sterilized culture plates and use inoculation loop 9 to tackle and sterilize the aerobic and anaerobic resident degrading bacterial solutions that have been acclimatized, respectively. It was applied on a culture plate, and the applied sterilized culture plate was left to inoculate for 24 hours, and the above operation was repeated to dilute, apply, and separate multiple times, and the number of indigenously degrading bacteria decreased as the number of dilutions increased. , Gradually purified and isolated and obtained purified resident degrading bacteria are stored on the inclined surface respectively.

実験例1:単一な好気常在分解細菌と好気・嫌気複合常在分解細菌による土壌中のPAH
sの除去効率に対する影響の検討
実験対象:実施例1で優勢な常在分解細菌液を調製して得られ、実施例2で優勢な常在分
解細菌液を調製して得られ、その内に、実施例1の優勢な常在分解細菌液には好気常在分
解細菌および嫌気常在分解細菌が含まれ、実施例2の優勢な常在分解細菌液には好気常在
分解細菌のみが含まれる。
実験条件:PAHsで汚染された農地土壌からランダムに10cmの土壌サンプルを採
取し、土壌サンプルを平均に2つの部分に分け、それぞれ実施例1の優勢な常在分解細菌
液、実施例2の優勢な常在分解細菌液を2つの土壌サンプルに接種し、土壌サンプルを実
験室の模擬農地環境下で放置し、それぞれ1d、3d、5dおよび7d経ったとき1cm
の土壌サンプルを採取してPAHs検出を行う。
実験結果:検出結果が表1に示される:
表1 単一な好気分解細菌と好気・嫌気複合分解細菌によるPAHsの除去効率の比較表
Experimental Example 1: PAH in soil by a single aerobic resident degrading bacterium and an aerobic / anaerobic complex resident degrading bacterium
Examination of the effect of s on the removal efficiency Experimental target: Obtained by preparing the predominant resident decomposing bacterial solution in Example 1 and preparing the predominant resident decomposing bacterial solution in Example 2, and in it. , The predominant resident degrading bacterial solution of Example 1 contains aerobic resident degrading bacteria and anaerobic resident degrading bacteria, and the predominant resident degrading bacterial solution of Example 2 contains only aerobic resident degrading bacteria. Is included.
Experimental conditions: Soil samples of 10 cm 3 were randomly collected from farmland soil contaminated with PAHs, and the soil samples were divided into two parts on average. Two soil samples were inoculated with the predominant resident degrading bacterial solution, and the soil samples were left in a simulated farmland environment in the laboratory, 1 cm after 1d, 3d, 5d and 7d, respectively.
A soil sample of 3 is collected and PAHs are detected.
Experimental results: Detection results are shown in Table 1:
Table 1 Comparison table of PAHs removal efficiency by single aerobic degrading bacteria and aerobic / anaerobic compound degrading bacteria

Figure 2022001364
Figure 2022001364

実験結論:実施例1の好気・嫌気複合常在分解細菌を含む優勢な常在分解細菌液による土
壌中のPAHsの除去効率がより高いが、実施例2の好気常在分解細菌のみを含む優勢な
常在分解細菌液による土壌中のPAHsの除去効率は実施例1のそれと大差がなく、土壌
中のPAHs除去には、好気常在分解細菌は主な役割を果たす。
Experimental conclusion: The efficiency of removing PAHs in the soil by the predominant resident degrading bacterial solution containing the aerobic and anaerobic complex resident degrading bacteria of Example 1 is higher, but only the aerobic resident degrading bacteria of Example 2 are used. The efficiency of removing PAHs in soil by the predominantly resident degrading bacterial solution containing is not much different from that of Example 1, and aerobic resident degrading bacteria play a major role in removing PAHs in soil.

実施例3:実施例3は、実施例1と以下の通り異なり:
1)PAHsで汚染されていない土壌サンプルを土壌希釈液に調製し、土壌希釈液を嫌気
集積培養して嫌気培地液を取得する、
土壌希釈液の調製:PAHsで汚染されていない土壌サンプルを炎の隣で減菌水に加え、
PAHsで汚染されていない土壌サンプルと減菌水の体積比が1:9であり、振動装置を
使用して10〜20min均一に振動させ、土壌中の常在分解細菌を減菌水に均一に分散
させ、5h放置して上澄み液を取り、遠心分離機で0.4h遠心分離し、遠心回転数を4
000rpmとし、遠心上澄み液を取り土壌希釈液を取得し、土壌希釈液の濃度が10%
であり、
嫌気集積培養:三角フラスコに嫌気培地を設置し、減菌ピペットを使用して土壌希釈液を
吸い上げて嫌気培地に接種し、ボルトプラグで三角フラスコを密閉して培養箱1に入れ、
培養箱1の温度を33℃に制御し、18h放置培養して、嫌気培地液を取得し、
2)PAHsで汚染された土壌サンプルを土壌懸濁液に調製し、土壌懸濁液を勾配濃度に
従い嫌気培地液に接種して培養増殖し、PAHsを唯一の炭素源として常在分解細菌を馴
養し、馴養された嫌気常在分解細菌液を取得する、
土壌懸濁液の調製:PAHsで汚染された土壌サンプルを炎の隣で減菌水に加え、PAH
sで汚染された土壌サンプルと減菌水の体積比が1:4であり、振動装置で10min均
一振動して土壌懸濁液を取得し、土壌懸濁液の濃度が20%であり、
嫌気培地液の接種および馴養:濃度が20%の土壌懸濁液を3つの部分に分け、その内の
2つの土壌懸濁液に減菌水を加え、それらの濃度を10%と15%に調整し、まず減菌ピ
ペットを使用して10%濃度の土壌懸濁液を嫌気培地液に接種し、33℃の培養箱1で密
閉して20h放置培養し、1級嫌気馴養液を取得し、次に減菌ピペットを使用して1級嫌
気馴養液を15%濃度の土壌懸濁液に接種し、33℃の培養箱1で密閉して20h放置培
養し、2級嫌気馴養液を取得し、最後に減菌ピペットを使用して2級嫌気馴養液を20%
濃度の土壌懸濁液に接種し、33℃の培養箱1で密閉して20h放置培養し、最終的に馴
養された嫌気常在分解細菌液を取得し、
3)馴養された嫌気常在分解細菌液を分離および純化して複数の常在分解細菌を取得する

分離および純化の具体的なステップ:複数の減菌培養プレートを用意し、接種ループ9を
使用してそれぞれ馴養された好気常在分解細菌液と嫌気常在分解細菌液を粘着取り、減菌
培養プレート上に塗布し、塗布された減菌培養プレートを20h放置培養し、上記操作を
繰り返して複数回の希釈・塗布・分離を行い、常在分解細菌の数が希釈回数の増加に従い
減少し、徐々に純化され、分離されて得られた純化常在分解細菌をそれぞれ傾斜面に保管
する。
Example 3: Example 3 differs from Example 1 as follows:
1) Prepare a soil sample that is not contaminated with PAHs into a soil diluent, and anaerobic enrichment culture of the soil diluent to obtain an anaerobic medium solution.
Preparation of soil diluent: Add a soil sample uncontaminated with PAHs to the sterilized water next to the flame and add.
The volume ratio of the soil sample not contaminated with PAHs to the sterilized water is 1: 9, and the sterilized water is uniformly vibrated for 10 to 20 minutes using a vibration device to uniformly sterilize the indigenous decomposed bacteria in the soil. Disperse and leave for 5 hours to remove the supernatant, centrifuge for 0.4h with a centrifuge, and set the centrifugation speed to 4.
At 000 rpm, take the centrifugal supernatant to obtain the soil diluent, and the concentration of the soil diluent is 10%.
And
Anaerobic enrichment culture: Place the anaerobic medium in the Erlenmeyer flask, suck up the soil diluent using a sterilization pipette, incubate the anaerobic medium, seal the Erlenmeyer flask with a bolt plug, and put it in the culture box 1.
The temperature of the culture box 1 was controlled to 33 ° C., and the cells were left to incubate for 18 hours to obtain an anaerobic medium solution.
2) Prepare a soil sample contaminated with PAHs into a soil suspension, inoculate the soil suspension into an anaerobic medium solution according to the gradient concentration, culture and proliferate, and acclimate the resident degrading bacteria using PAHs as the sole carbon source. And obtain the acclimatized anaerobic resident decomposition bacterial solution,
Preparation of soil suspension: Add PAHs-contaminated soil samples to sterilized water next to the flame and PAH
The volume ratio of the soil sample contaminated with s to the sterilized water was 1: 4, and the soil suspension was obtained by uniformly vibrating for 10 minutes with a vibrating device, and the concentration of the soil suspension was 20%.
Inoculation and acclimatization of anaerobic medium solution: Divide the 20% concentration soil suspension into three parts, add sterilized water to two of the soil suspensions, and increase their concentrations to 10% and 15%. First, inoculate the anaerobic medium solution with a 10% concentration soil suspension using a sterilization pipette, seal it in a culture box 1 at 33 ° C., leave it for 20 hours, and obtain a first-class anaerobic acclimatization solution. Then, using a sterilization pipette, inoculate a 15% concentration soil suspension with a first-grade anaerobic conditioned solution, seal it in a culture box 1 at 33 ° C., leave it for 20 hours, and obtain a second-grade anaerobic conditioned solution. Finally, use a sterilization pipette to add 20% of the second grade anaerobic conditioned solution.
Incubate in a soil suspension of a concentration, seal in a culture box 1 at 33 ° C., leave and incubate for 20 hours, and finally obtain an anaerobic resident decomposition bacterial solution that has been acclimatized.
3) Isolate and purify the acclimatized anaerobic resident degrading bacterial solution to obtain multiple resident degrading bacteria.
Specific steps for isolation and purification: Prepare multiple sterilized culture plates and use inoculation loop 9 to tackle and sterilize the aerobic and anaerobic resident degrading bacterial solutions that have been acclimatized, respectively. It was applied on a culture plate, and the applied sterilized culture plate was left to inoculate for 20 hours, and the above operation was repeated to dilute, apply, and separate multiple times, and the number of indigenously degrading bacteria decreased as the number of dilutions increased. , Gradually purified and isolated and obtained purified resident degrading bacteria are stored on the inclined surface respectively.

実験例2:単一な嫌気常在分解細菌と好気・嫌気複合常在分解細菌による土壌中のPAH
sの除去効率に対する影響の検討
実験対象:実施例1で優勢な常在分解細菌液を調製して得られ、実施例3で優勢な常在分
解細菌液を調製して得られ、その内に実施例1の優勢な常在分解細菌液には好気常在分解
細菌および嫌気常在分解細菌が含まれ、実施例3の優勢な常在分解細菌液には嫌気常在分
解細菌のみが含まれる。
実験条件:PAHsで汚染された農地土壌からランダムに10cmの土壌サンプルを採
取し、土壌サンプルを平均に2つの部分に分け、それぞれ実施例1の優勢な常在分解細菌
液、実施例3の優勢な常在分解細菌液を2つの土壌サンプルに接種し、土壌サンプルを実
験室の模擬農地環境下で放置し、それぞれ1d、3d、5dおよび7dを経ったとき1c
の土壌サンプルを採取してPAHs検出を行う。
実験結果:検出結果が表2に示される:
表2 単一な嫌気分解細菌と好気・嫌気複合分解細菌によるPAHsの除去効率の比較表
Experimental example 2: PAH in soil by a single anaerobic resident degrading bacterium and an aerobic / anaerobic compound resident degrading bacterium
Examination of the effect of s on the removal efficiency Experimental target: Obtained by preparing the predominant resident decomposing bacterial solution in Example 1 and preparing the predominant resident decomposing bacterial solution in Example 3, and in it. The predominant resident degrading bacterial solution of Example 1 contains aerobic resident degrading bacteria and anaerobic resident degrading bacteria, and the predominant resident degrading bacterial solution of Example 3 contains only anaerobic resident degrading bacteria. Is done.
Experimental conditions: Soil samples of 10 cm 3 were randomly collected from farmland soil contaminated with PAHs, and the soil samples were divided into two parts on average. Two soil samples were inoculated with the predominant resident degrading bacterial solution, and the soil samples were left in a simulated farmland environment in the laboratory, 1c after passing 1d, 3d, 5d and 7d, respectively.
The soil sample of m 3 were collected perform the PAHs detected.
Experimental results: Detection results are shown in Table 2:
Table 2 Comparison table of PAHs removal efficiency by single anaerobic degrading bacteria and aerobic / anaerobic compound degrading bacteria

Figure 2022001364
Figure 2022001364

実験結論:実施例1の好気・嫌気複合常在分解細菌を含む優勢な常在分解細菌液による土
壌中のPAHsの除去効率が高く、実施例3の嫌気常在分解細菌のみを含む優勢な常在分
解細菌液による土壌中のPAHsの除去効率が低く、土壌中のPAHs除去には、嫌気常
在分解細菌の役割がそれほど大きくなく、嫌気常在分解細菌の調製には大量のコストおよ
び時間が必要することを考慮して、実際の応用には好気常在分解細菌液のみを調製して土
壌中のPAHsを除去すればよく、より高い除去効率を求めるときに、好気常在分解細菌
および嫌気常在分解細菌を含む常在分解細菌液を調製すればよい。
実施例4:実施例4は、実施例1と以下の通り異なり:
2)2)で馴養された好気常在分解細菌及び嫌気常在分解細菌を分離および純化すること
なく、2)で馴養された好気常在分解細菌液および嫌気常在分解細菌液をそのまま使用し
てそれぞれPAHsを含む土壌抽出液を処理し、処理された土壌PAHsの分解率を検出
し、分解率が最も高い常在分解細菌液を選択して増殖させ、優勢な常在分解細菌液を得る
Experimental conclusion: The efficiency of removing PAHs in the soil by the predominant resident degrading bacterial solution containing the aerobic / anaerobic complex resident degrading bacterium of Example 1 is high, and the predominant anaerobic resident degrading bacterium of Example 3 is contained. The efficiency of removing PAHs in soil by the resident degrading bacterial solution is low, the role of anaerobic resident degrading bacteria is not so great in removing PAHs in soil, and a large amount of cost and time are required for preparing anaerobic resident degrading bacteria. In consideration of the need, it is sufficient to prepare only aerobic resident decomposition bacterial solution to remove PAHs in the soil for practical application, and aerobic resident decomposition is required when higher removal efficiency is required. A resident degrading bacterial solution containing bacteria and anaerobic resident degrading bacteria may be prepared.
Example 4: Example 4 differs from Example 1 as follows:
2) Without separating and purifying the aerobic resident degrading bacteria and anaerobic resident degrading bacteria conditioned in 2), the aerobic resident degrading bacterial solution and anaerobic resident degrading bacterial solution conditioned in 2) remain as they are. Each is treated with a soil extract containing PAHs, the decomposition rate of the treated soil PAHs is detected, the resident decomposition bacterial solution with the highest decomposition rate is selected and propagated, and the dominant resident decomposition bacterial solution is predominant. To get.

実験例3:馴養された常在分解細菌の分離および純化の土壌中のPAHsの除去効率に対
する影響の検討
実験対象:実施例1で優勢な常在分解細菌液を調製して得られ、実施例4で優勢な常在分
解細菌液を調製して得られ、その内に実施例1の優勢な常在分解細菌液については馴養さ
れた好気常在分解細菌液および嫌気常を分解細菌液で分離および純化した後優勢な分解細
菌を選択するし、実施例4の優勢な常在分解細菌液については馴養された好気常在分解細
菌液および嫌気常在分解細菌液を分離および純化することなくそのまま使用する。
実験条件:PAHsで汚染された農地土壌からランダムに10cmの土壌サンプルを採
取し、土壌サンプルを平均に2つの部分に分け、それぞれ実施例1の優勢な常在分解細菌
液、実施例4の優勢な常在分解細菌液を2つの土壌サンプルに接種し、土壌サンプルを実
験室の模擬農地環境下で放置し、それぞれ1d、3d、5dおよび7dを経ったとき1c
の土壌サンプルを採取してPAHs検出を行う。
実験結果:検出結果が表3に示される:
表3 常在分解細菌の分離および純化の土壌PAHsの除去効率の比較表
Experimental Example 3: Examination of the effect of isolation and purification of acclimatized resident degrading bacteria on the removal efficiency of PAHs in soil Experimental target: Obtained by preparing the predominant resident degrading bacterial solution in Example 1, Example The predominant resident decomposing bacterial solution was prepared in No. 4, and the aerobic resident degrading bacterial solution and the anaerobic anaerobic bacterial solution that had been acclimated for the predominant resident decomposing bacterial solution of Example 1 were used as the decomposing bacterial solution. After isolation and purification, the predominantly degrading bacterium is selected, and for the predominant resident degrading bacterial solution of Example 4, the aerobic resident degrading bacterial solution and the anaerobic resident degrading bacterial solution that have been acclimatized are isolated and purified. Use as it is without.
Experimental conditions: Soil samples of 10 cm 3 were randomly collected from farmland soil contaminated with PAHs, and the soil samples were divided into two parts on average, and the predominant resident decomposition bacterial solution of Example 1 and Example 4 were used, respectively. Two soil samples were inoculated with the predominant resident degrading bacterial solution, and the soil samples were left in a simulated farmland environment in the laboratory, 1c after passing 1d, 3d, 5d and 7d, respectively.
The soil sample of m 3 were collected perform the PAHs detected.
Experimental results: Detection results are shown in Table 3:
Table 3 Comparison table of soil PAHs removal efficiency of isolation and purification of resident degrading bacteria

Figure 2022001364
Figure 2022001364

実験結論:実施例1の優勢な常在分解細菌液について、馴養された好気常在分解細菌液お
よび嫌気常在分解細菌液を分離および純化した後優勢な分解細菌を選択するため、土壌中
のPAHsの除去効率が実施例4よりも顕著に大きく、馴養された好気常在分解細菌液お
よび嫌気常を分解細菌液で分離および純化すれば、優勢な土壌分解細菌を取得でき、優勢
な土壌分解細菌を増殖させて土壌中のPAHsを除去し、効果がより良好である。
実施例5:実施例5は、実施例1と以下の通り異なり:
4)3)で分離および純化して得られた複数の常在分解細菌を直接増殖させ、常在分解細
菌液を取得し、
(5)常在分解細菌液をPAHsで汚染された農地土壌に接種し、常在分解細菌を使用し
て農地土壌中のPAHs含有量を低減する。
実験例4:優勢な土壌分解細菌の選択の土壌中のPAHsの除去効率に対する影響の検討
実験対象:実施例1で優勢な常在分解細菌液を調製して得られ、実施例5で常在分解細菌
液を調製して得られ、その内に、実施例1で分離および純化した後分解率が最も高い土壌
分解細菌を優勢な菌増殖として選択し、優勢な常在分解細菌液を得、実施例5では分離お
よび純化して得られた複数の常在分解細菌を直接増殖させて常在分解細菌液を得る。
実験条件:PAHsで汚染された農地土壌からランダムに10cmの土壌サンプルを採
取し、土壌サンプルを平均に2つの部分に分け、それぞれ実施例1の優勢な常在分解細菌
液、実施例5の優勢な常在分解細菌液を2つの土壌サンプルに接種し、土壌サンプルを実
験室の模擬農地環境下で放置し、それぞれ1d、3d、5dおよび7dを経ったとき1c
の土壌サンプルを採取しPAHs検出を行う。
実験結果:検出結果が表4に示される:
表4 優勢な分解細菌の選択の土壌PAHsの除去効率の比較表
Experimental conclusion: For the predominant resident degrading bacterial solution of Example 1, in order to select the predominant degrading bacteria after separating and purifying the conditioned aerobic resident degrading bacterial solution and the anaerobic resident degrading bacterial solution, in the soil. PAHs removal efficiency is significantly higher than in Example 4, and if the acclimatized aerobic resident degrading bacterial solution and anaerobic normal are separated and purified with the degrading bacterial solution, predominant soil-degrading bacteria can be obtained, which is predominant. Soil-degrading bacteria are grown to remove PAHs in the soil, and the effect is better.
Example 5: Example 5 differs from Example 1 as follows:
4) Multiple indigenously degrading bacteria obtained by separation and purification in 3) are directly grown to obtain a indigenously degrading bacterial solution.
(5) The resident degrading bacterial solution is inoculated into the agricultural land soil contaminated with PAHs, and the resident degrading bacteria are used to reduce the PAHs content in the agricultural land soil.
Experimental Example 4: Examination of the effect of selection of predominant soil-degrading bacteria on the removal efficiency of PAHs in soil Experimental target: Obtained by preparing a predominant resident-degrading bacterial solution in Example 1 and resident in Example 5. A soil-degrading bacterium obtained by preparing a degrading bacterial solution, and the soil-degrading bacterium having the highest decomposition rate after separation and purification in Example 1 was selected as the predominant bacterial growth to obtain a predominant resident-degrading bacterial solution. In Example 5, a plurality of resident degrading bacteria obtained by separation and purification are directly grown to obtain a resident degrading bacterial solution.
Experimental conditions: Soil samples of 10 cm 3 were randomly collected from farmland soil contaminated with PAHs, and the soil samples were divided into two parts on average. Two soil samples were inoculated with the predominant resident degrading bacterial solution, and the soil samples were left in a simulated farmland environment in the laboratory, 1c after passing 1d, 3d, 5d and 7d, respectively.
The soil sample of m 3 perform the collected PAHs detected.
Experimental results: Detection results are shown in Table 4:
Table 4 Comparison table of soil PAHs removal efficiency for selection of predominantly degrading bacteria

Figure 2022001364
Figure 2022001364

実験結論:実施例1の優勢な常在分解細菌液について、分離および純化した後分解率が最
も高い土壌分解細菌を優勢な菌として選択して増殖させ、土壌中のPAHsの除去効率が
より高く、実施例5では分離および純化して得られた複数の常在分解細菌を直接行増殖さ
せて常在分解細菌液を得、土壌中のPAHsの除去効率が比較的に低く、土壌中のPAH
s除去には、優勢な常在分解細菌の除去効率がより高い。
特に明記しない限り、実施例で使用される材料および試薬はすべて、当該技術分野で従来
から使用されているかまたは市販されている。
実施例6:本実施例では、上記実施例1〜5の方法で使用される装置の構造を説明し、土
壌中のPAHs含有量を検出するためのHPLCと、土壌希釈液と土壌懸濁液の振動処理
のための振動装置と、土壌希釈液を遠心分離し上澄み液を得るための遠心分離機と、土壌
中の菌液を好気集積培養するためのオープンフラスコと、接種および液取りのための減菌
ピペットと、常在分解細菌の培養のための培養箱1と、土壌中の菌液を嫌気集積培養ため
の三角フラスコと、馴養された好気常在分解細菌液と嫌気常在分解細菌液を分離および純
化するための減菌培養プレートと、減菌培養プレートへの接種のための接種ループと、を
含む。
Experimental conclusion: For the predominant resident degrading bacterial solution of Example 1, the soil-degrading bacterium having the highest decomposition rate after isolation and purification was selected as the predominant bacterium and propagated, and the efficiency of removing PAHs in the soil was higher. In Example 5, a plurality of resident degrading bacteria obtained by separation and purification were directly propagated to obtain a resident degrading bacterial solution, and the efficiency of removing PAHs in soil was relatively low, and PAHs in soil were obtained.
For s removal, the removal efficiency of the predominant resident degrading bacteria is higher.
Unless otherwise stated, all materials and reagents used in the Examples are either conventionally used or commercially available in the art.
Example 6: In this example, the structure of the apparatus used in the above-mentioned Examples 1 to 5 will be described, HPLC for detecting the PAHs content in the soil, a soil diluent and a soil suspension. A vibrating device for vibration treatment, a centrifuge for centrifuging the soil diluent to obtain the supernatant, an open flask for aerobic accumulation and culture of the bacterial solution in the soil, and inoculation and liquid removal. A sterilization pipette for sterilization, a culture box 1 for culturing resident degrading bacteria, a triangular flask for anaerobic accumulation culture of bacterial liquor in soil, and aerobic resident degrading bacterial liquor and anaerobic resident. Includes a sterilized culture plate for separating and purifying the degrading bacterial fluid and an inoculation loop for inoculation into the sterilized culture plate.

実施例7:実施例1と以下の通り異なり、
図2に示すように、培養箱1は、好気常在分解菌を培養するための好気培養箱体11と、
好気培養箱体11の上方に配置されて嫌気常在分解細菌を培養するための嫌気培養箱体1
2と、
好気培養箱体11と嫌気培養箱体12の側部に配置された制御ボックス13と、
それぞれ好気培養箱体11と嫌気培養箱体12の内部に配置されて微生物容器を固定する
ための固定装置14と、固定装置14は2つの半環状の固定アーム141と固定アーム1
41の内外回転を制御するためのステッピングモーター142を含み、固定アーム141
とステッピングモーター142の接続箇所に圧力センサ143がさらに設けられ、圧力セ
ンサ143は圧力に応じてステッピングモーター142のオンオフを制御し、
それぞれ好気培養箱体11と嫌気培養箱体12の内部に配置されて室内温度を調節するた
めの調温装置15と、調温装置15は好気培養箱体11と嫌気培養箱体12の内壁に設け
られた加熱コイル151と室内温度を監視するための温度センサ152を含み、
培養箱1の通気および換気のための通気装置16と、通気装置16は嫌気培養箱体12の
頂部に設けられた送気装置161と好気培養箱体11の後壁の下部に設けられた排気穴1
62を含み、送気装置161は外部空気を培養箱1に吸い込む空気ポンプ1611と、空
気ポンプ1611の送気口に設けられ空気中のほこりや微生物を濾過するための濾過溝1
612を含み、排気穴162の外側に排出空気中の常在菌を濾過するための濾過膜162
1が設けられ、
制御ボックス13内部に配置されたコントローラーと、制御ボックス13の前側面に配置
された2つの温度制御ノブ131と、を含む。
Example 7: Different from Example 1 as follows,
As shown in FIG. 2, the culture box 1 includes an aerobic culture box 11 for culturing aerobic indigenous degrading bacteria and an aerobic culture box 11.
An anaerobic culture box 1 placed above the aerobic culture box 11 for culturing anaerobic resident degrading bacteria.
2 and
The control box 13 arranged on the side of the aerobic culture box 11 and the anaerobic culture box 12,
The fixing device 14 for fixing the microbial container arranged inside the aerobic culture box 11 and the anaerobic culture box 12, respectively, and the fixing device 14 are two semi-annular fixing arms 141 and a fixing arm 1.
Includes a stepping motor 142 to control the internal and external rotation of 41, fixed arm 141
A pressure sensor 143 is further provided at the connection point between the stepping motor 142 and the pressure sensor 143, and the pressure sensor 143 controls the on / off of the stepping motor 142 according to the pressure.
The temperature control device 15 is arranged inside the aerobic culture box 11 and the anaerobic culture box 12 to control the indoor temperature, respectively, and the temperature control device 15 is the aerobic culture box 11 and the anaerobic culture box 12. It includes a heating coil 151 provided on the inner wall and a temperature sensor 152 for monitoring the room temperature.
The aeration device 16 for aeration and ventilation of the culture box 1 and the aeration device 16 are provided at the lower part of the rear wall of the air supply device 161 provided at the top of the anaerobic culture box 12 and the aerobic culture box 11. Exhaust hole 1
The air supply device 161 includes an air pump 1611 for sucking external air into the culture box 1, and a filtration groove 1 provided at the air supply port of the air pump 1611 for filtering dust and microorganisms in the air.
Filtration membrane 162 containing 612 and for filtering indigenous bacteria in the exhaust air outside the exhaust hole 162
1 is provided,
It includes a controller arranged inside the control box 13 and two temperature control knobs 131 arranged on the front surface of the control box 13.

実験例5:実施例7によって提供される培養箱と通常培養箱の違いの検討
実験対象:実施例6中の培養箱と実施例7中の培養箱1について、発明の使用要件を満た
すことができる限り、実施例6中の培養箱は市販されている通常培養箱であり得る。
実験条件:10人のオペレーターを自主的に募集し、各オペレーターは、実施例6および
実施例7に提供された培養箱を使用して、実施例1に提供された方法に従って優勢な常在
分解細菌液を調製し、10人のオペレーターの使用感を調べた。
実験結果:10人のオペレーターの応答:
実施例6中の市販の通常培養箱について、単独に好気・嫌気常在分解細菌を培養し、同時
培養を達成するために少なくとも2台の培養箱を必要とし、1台の培養箱では優勢な常在
分解細菌液の調製進行に深刻な影響を与え、そして実験室で調製するため、空気中の微生
物の含有量や種類が多く、培養過程で、培養箱内に他の細菌が増殖する状況があり、優勢
な常在分解細菌液の純度に影響を与える、
実施例7によって提供される培養箱について、同時に好気・嫌気常在分解細菌を培養でき
、培養時間を個別に記録する必要がなく、オペレーターの作業負荷を軽減でき、実施例7
によって提供される培養箱は空気中の微生物を濾過できるため、培養箱内に他の細菌の付
着や増殖がなく、調製して得られた優勢な常在分解細菌液の純度が99%と高かった、常
在分解細菌が空気に逃げず、実験室の他のプロジェクトに影響を与えない。
実験結論:実施例7によって提供される培養箱は同時に好気・嫌気常在分解細菌を培養し
、オペレーターの作業負荷を軽減でき、外部空気中の微生物を濾過することにより、常在
分解細菌の調製純度を確保し、培養箱から排出された空気中の微生物を濾過することによ
り、常在分解細菌が外部空気に逃げて他の影響を与えるのを防ぐことができる。
Experimental Example 5: Examination of the difference between the culture box provided by Example 7 and the normal culture box Experimental target: The culture box in Example 6 and the culture box 1 in Example 7 can satisfy the requirements for use of the invention. As far as possible, the culture box in Example 6 can be a commercially available conventional culture box.
Experimental conditions: Ten operators were voluntarily recruited, and each operator used the culture boxes provided in Examples 6 and 7, and predominantly resident degradation according to the method provided in Example 1. Bacterial fluid was prepared and the usability of 10 operators was examined.
Experimental results: Responses from 10 operators:
For the commercially available normal culture boxes in Example 6, at least two culture boxes are required to independently cultivate aerobic and anaerobic resident degrading bacteria, and simultaneous culture is achieved, and one culture box is predominant. Since it has a serious effect on the preparation progress of the indigenous decomposition bacterial solution and is prepared in the laboratory, the content and types of microorganisms in the air are high, and other bacteria grow in the culture box during the culture process. There are situations that affect the purity of the predominantly resident degrading bacterial solution,
With respect to the culture box provided by Example 7, aerobic and anaerobic resident degrading bacteria can be cultured at the same time, the culture time does not need to be recorded individually, and the workload of the operator can be reduced.
Since the culture box provided by is capable of filtering microorganisms in the air, there is no adhesion or growth of other bacteria in the culture box, and the predominant resident decomposition bacterial solution obtained by preparation has a high purity of 99%. In addition, resident degrading bacteria do not escape to the air and do not affect other projects in the laboratory.
Experimental conclusion: The culture box provided by Example 7 simultaneously cultivates aerobic and anaerobic resident degrading bacteria, can reduce the workload of the operator, and by filtering the microorganisms in the outside air, the resident degrading bacteria can be cultivated. By ensuring the preparation purity and filtering the microorganisms in the air discharged from the culture box, it is possible to prevent the resident degrading bacteria from escaping to the outside air and affecting other effects.

Claims (8)

1)PAHsで汚染されていない土壌サンプルを土壌希釈液に調製し、土壌希釈液をそれ
ぞれ採取して好気集積培養と嫌気集積培養を行い、好気培地液と嫌気培地液を取得するス
テップと、
2)PAHsで汚染された土壌サンプルを土壌懸濁液に調製し、土壌懸濁液を2つの部分
に分け、勾配濃度に従い好気培地液と嫌気培地液にそれぞれ接種して培養および増殖し、
PAHsを唯一の炭素源として常在分解細菌を馴養し、馴養された好気常在分解細菌液と
嫌気常在分解細菌液を取得するステップと、
3)馴養された好気常在分解細菌液と嫌気常在分解細菌液を分離および純化し、複数の常
在分解細菌を取得するステップと、
4)分離および純化されて得られた複数の常在分解細菌を使用して、それぞれPAHsを
含む土壌抽出液を処理し、HPLCを用いて処理された土壌のPAHs含有量を測定し、
分解率が最も高い土壌分解細菌を優勢な菌として選択して増殖させ、優勢な常在分解細菌
液を取得するステップと、
5)優勢な常在分解細菌液をPAHsで汚染された農地土壌に接種し、常在分解細菌を使
用して農地土壌中のPAHs含有量を低減するステップと、
を含む常在分解細菌群集を馴養することにより農地土壌中のUSEPA PAHsを効果
的に除去する方法。
1) A step of preparing a soil sample not contaminated with PAHs into a soil diluted solution, collecting the soil diluted solution, performing aerobic enrichment culture and anaerobic enrichment culture, and obtaining an aerobic medium solution and an anaerobic medium solution. ,
2) Prepare a soil sample contaminated with PAHs into a soil suspension, divide the soil suspension into two parts, inoculate the aerobic medium solution and the anaerobic medium solution according to the gradient concentration, respectively, and culture and proliferate.
Steps to acclimate resident degrading bacteria using PAHs as the sole carbon source and obtain the conditioned aerobic resident degrading bacterial fluid and anaerobic resident degrading bacterial fluid,
3) A step of separating and purifying the acclimatized aerobic resident degrading bacterial solution and the anaerobic resident degrading bacterial solution to obtain a plurality of resident degrading bacteria, and
4) Multiple resident degrading bacteria obtained by isolation and purification were used to treat soil extracts containing PAHs, respectively, and the PAHs content of the treated soil was measured using HPLC.
The step of selecting the soil-degrading bacterium with the highest decomposition rate as the predominant bacterium and growing it to obtain the predominant resident degrading bacterial solution, and
5) Inoculating the predominant resident degrading bacterial solution into the farmland soil contaminated with PAHs and using the resident degrading bacteria to reduce the PAHs content in the farmland soil.
A method for effectively removing USEPA PAHs in agricultural land soil by acclimatizing a resident degrading bacterial community containing.
ステップ1)において、
土壌希釈液の調製:PAHsで汚染されていない土壌サンプルを炎の隣で減菌水に加え、
PAHsで汚染されていない土壌サンプルと減菌水の体積比が1:9であり、振動装置を
使用して10〜20min均一に振動させ、土壌中の常在分解細菌を減菌水に均一に分散
させ、5〜8h放置して上澄み液を取り、遠心分離機で0.4〜0.5h遠心分離し、遠
心回転数を4000〜5000rpmとし、遠心上澄み液を取り土壌希釈液を取得し、土
壌希釈液の濃度が10%である、請求項1に記載の方法。
In step 1)
Preparation of soil diluent: Add a soil sample uncontaminated with PAHs to the sterilized water next to the flame and add.
The volume ratio of the soil sample not contaminated with PAHs to the sterilized water is 1: 9, and the sterilized water is uniformly vibrated for 10 to 20 minutes using a vibrating device to uniformly sterilize the indigenous decomposed bacteria in the soil. Disperse, leave for 5 to 8 hours to remove the supernatant, centrifuge for 0.4 to 0.5 h with a centrifuge, set the centrifuge to 4000-5000 rpm, remove the centrifugal supernatant to obtain a soil diluted solution. The method according to claim 1, wherein the concentration of the soil diluent is 10%.
ステップ1)において、
好気集積培養:オープンフラスコに好気培地を設置し、減菌ピペットを使用して土壌希釈
液を吸い上げて好気培地に接種し、オープンフラスコを培養箱(1)に入れ、培養箱(1
)の温度を33〜35℃範囲に制御し、18〜20h振動培養して、好気培地液を取得し

嫌気集積培養:三角フラスコに嫌気培地を設置し、減菌ピペットを使用して土壌希釈液を
吸い上げて嫌気培地に接種し、ボルトプラグで三角フラスコを密閉して培養箱(1)に入
れ、培養箱(1)の温度を33〜35℃範囲に制御し、18〜20h放置培養して、嫌気
培地液を取得する、請求項1に記載の方法。
In step 1)
Aerobic enrichment culture: Place the aerobic medium in an open flask, suck up the soil diluent using a sterilization pipette, incubate the aerobic medium, place the open flask in the culture box (1), and place the open flask in the culture box (1).
) Is controlled in the range of 33 to 35 ° C. and vibrated for 18 to 20 hours to obtain an aerobic medium solution.
Anaerobic enrichment culture: Place an anaerobic medium in a triangular flask, suck up the soil diluent using a sterilization pipette, incubate the anaerobic medium, seal the triangular flask with a bolt plug, put it in the culture box (1), and culture. The method according to claim 1, wherein the temperature of the box (1) is controlled in the range of 33 to 35 ° C., and the culture is left to stand for 18 to 20 hours to obtain an anaerobic medium solution.
ステップ2)において、
土壌懸濁液の調製:PAHsで汚染された土壌サンプルを炎の隣で減菌水に加え、PAH
sで汚染された土壌サンプルと減菌水の体積比が1:4であり、振動装置で10〜20m
in均一振動して土壌懸濁液を取得し、土壌懸濁液の濃度が20%であり、
好気培地液の接種および馴養:濃度が20%の土壌懸濁液を3つの部分に分け、その内の
2つの土壌懸濁液に減菌水を加え、それらの濃度を10%と15%にそれぞれ調整し、ま
ず減菌ピペットを使用して10%濃度の土壌懸濁液を好気培地液に接種し、33〜35℃
の培養箱(1)で20〜24h振動培養し、1級好気馴養液を取得し、次に減菌ピペット
を使用して1級好気馴養液を15%濃度の土壌懸濁液に接種し、33〜35℃の培養箱(
1)で20〜24h振動培養し、2級好気馴養液を取得し、最後に減菌ピペットを使用し
て2級好気馴養液を20%濃度の土壌懸濁液に接種し、33〜35℃の培養箱(1)で2
0〜24h振動培養し、最終的に馴養された好気常在分解細菌液を取得し、
嫌気培地液の接種および馴養:濃度が20%の土壌懸濁液を3つの部分に分け、その内の
2つの土壌懸濁液に減菌水を加え、それらの濃度を10%と15%に調整し、まず減菌ピ
ペットを使用して10%濃度の土壌懸濁液を嫌気培地液に接種し、33〜35℃の培養箱
(1)で密閉して20〜24h放置培養し、1級嫌気馴養液を取得し、次に減菌ピペット
を使用して1級嫌気馴養液を15%濃度の土壌懸濁液に接種し、33〜35℃の培養箱(
1)で密閉して20〜24h放置培養し、2級嫌気馴養液を取得し、最後に減菌ピペット
を使用して2級嫌気馴養液を20%濃度の土壌懸濁液に接種し、33〜35℃の培養箱(
1)で密閉して20〜24h放置培養し、最終的に馴養された嫌気常在分解細菌液を取得
する、請求項1に記載の方法。
In step 2)
Preparation of soil suspension: Add PAHs-contaminated soil samples to sterilized water next to the flame and PAH
The volume ratio of the soil sample contaminated with s and the sterilized water is 1: 4, and the vibration device is used for 10 to 20 m.
In uniform vibration to obtain the soil suspension, the concentration of the soil suspension is 20%,
Inoculation and acclimatization of aerobic medium solution: Divide the 20% concentration soil suspension into three parts, add sterilized water to two of the soil suspensions, and increase their concentrations to 10% and 15%. First, a 10% concentration soil suspension was inoculated into the aerobic medium solution using a sterilization pipette, and the temperature was 33 to 35 ° C.
Incubate for 20 to 24 hours in the culture box (1) of the above to obtain a first-class aerobic conditioned solution, and then incubate the first-class aerobic conditioned solution into a soil suspension having a concentration of 15% using a sterilization pipette. Incubator at 33-35 ° C (
Incubate for 20 to 24 hours in 1) to obtain a second-grade aerobic conditioned solution, and finally inoculate the second-grade aerobic conditioned solution into a 20% concentration soil suspension using a sterilization pipette, and 33 to 33 to 2 in the culture box (1) at 35 ° C.
Vibration-cultured for 0 to 24 hours, and finally obtained the aerobic resident decomposition bacterial solution that had been acclimatized.
Inoculation and acclimatization of anaerobic medium solution: Divide the 20% concentration soil suspension into three parts, add sterilized water to two of the soil suspensions, and increase their concentrations to 10% and 15%. After adjustment, first inoculate a 10% concentration soil suspension into an anaerobic medium solution using a sterilization pipette, seal it in a culture box (1) at 33 to 35 ° C., leave it for 20 to 24 hours, and incubate it to the first grade. Obtain the anaerobic conditioned solution, then inoculate the first grade anaerobic conditioned solution into the soil suspension at a concentration of 15% using a sterilization pipette, and inoculate the culture box at 33-35 ° C.
Closed in 1) and left to culture for 20 to 24 hours to obtain a secondary anaerobic conditioned solution, and finally inoculate the secondary anaerobic conditioned solution into a 20% concentration soil suspension using a sterilization pipette, 33. Incubation box at ~ 35 ° C (
The method according to claim 1, wherein the anaerobic resident decomposing bacterial solution is finally obtained after being hermetically sealed in 1) and left to culture for 20 to 24 hours.
ステップ3)において、
分離および純化の具体的なステップ:複数の減菌培養プレートを用意し、接種ループを使
用してそれぞれ馴養された好気常在分解細菌液と嫌気常在分解細菌液を粘着取り、減菌培
養プレート上に塗布し、塗布された減菌培養プレートを20〜24h放置培養し、上記操
作を繰り返して複数回の希釈・塗布・分離を行い、常在分解細菌の数が希釈回数の増加に
従い減少し、徐々に純化され、分離されて得られた純化常在分解細菌をそれぞれ傾斜面に
保管する、請求項1に記載の方法。
In step 3)
Specific steps for isolation and purification: Prepare multiple sterilized culture plates and use an inoculation loop to adhere to the aerobic and anaerobic resident degrading bacterial solutions that have been acclimatized, respectively, and sterilize the culture. The sterilized culture plate applied on the plate is left to inoculate for 20 to 24 hours, and the above operation is repeated to dilute, apply, and separate multiple times, and the number of indigenously degrading bacteria decreases as the number of dilutions increases. The method according to claim 1, wherein each of the purified resident degrading bacteria obtained by gradually purifying and separating is stored on an inclined surface.
ステップ4)において、
常在分解細菌を利用してPAHsを含む土壌抽出液を処理する具体的なステップ:ステッ
プ3)で分離および純化されて得られた複数の常在分解細菌をそれぞれ増殖させ、PAH
sを含む土壌サンプルを土壌懸濁液に調製し、HPLCを使用して土壌懸濁液中のPAH
s含有量を検出し、それぞれ増殖した複数の常在分解細菌を土壌懸濁液に接種して処理し
、常在分解細菌培養液と土壌懸濁液の体積比が1:10〜80であり、3d処理した後H
PLCを使用して土壌懸濁液中のPAHs含有量を検出する、請求項1に記載の方法。
In step 4)
Specific steps for treating soil extracts containing PAHs using resident-degrading bacteria: Multiple resident-degrading bacteria obtained by separation and purification in step 3) are grown, and PAHs are grown.
Soil samples containing s are prepared in soil suspensions and PAHs in soil suspensions are used using HPLC.
The s content was detected, and a plurality of indigenously degrading bacteria that grew respectively were inoculated into the soil suspension for treatment, and the volume ratio of the indigenously degrading bacterial culture solution to the soil suspension was 1: 10 to 80. After 3d processing, H
The method of claim 1, wherein the PLC is used to detect the PAHs content in the soil suspension.
土壌中のPAHs含有量を検出するためのHPLCと、土壌希釈液と土壌懸濁液の振動処
理のための振動装置と、土壌希釈液を遠心分離し上澄み液を得るための遠心分離機と、土
壌中の菌液を好気集積培養するためのオープンフラスコと、接種および液取りのための減
菌ピペットと、常在分解細菌の培養のための培養箱(1)と、土壌中の菌液を嫌気集積培
養ための三角フラスコと、馴養された好気常在分解細菌液と嫌気常在分解細菌液を分離お
よび純化するための減菌培養プレートと、前記減菌培養プレートへの接種のための接種ル
ープと、を含む、請求項1〜5に記載の方法で使用される装置。
HPLC for detecting PAHs content in soil, a vibrating device for vibration treatment of soil diluent and soil suspension, and a centrifuge for centrifuging the soil diluent to obtain a supernatant. An open flask for aerobic accumulation and culture of bacterial fluid in soil, a sterilization pipette for inoculation and fluid removal, a culture box (1) for culturing resident degrading bacteria, and bacterial fluid in soil. For inoculation into the sterilized culture plate, a triangular flask for anaerobic accumulation culture, a sterilized culture plate for separating and purifying the acclimatized aerobic resident decomposition bacterial solution and the anaerobic resident decomposition bacterial solution, and the sterilized culture plate. The device used in the method according to claim 1-5, comprising the inoculation loop of.
前記培養箱(1)は、
好気常在分解菌を培養するための好気培養箱体(11)と、
前記好気培養箱体(11)の上方に配置されて嫌気常在分解細菌を培養するための嫌気培
養箱体(12)と、
前記好気培養箱体(11)と嫌気培養箱体(12)の側部に配置された制御ボックス(1
3)と、
それぞれ好気培養箱体(11)と嫌気培養箱体(12)の内部に配置されて微生物容器を
固定するための固定装置(14)と、固定装置(14)は2つの半環状の固定アーム(1
41)と前記固定アーム(141)の内外回転を制御するためのステッピングモーター(
142)を含み、固定アーム(141)とステッピングモーター(142)の接続箇所に
圧力センサ(143)がさらに設けられ、圧力センサ(143)は圧力に応じてステッピ
ングモーター(142)のオン/オフを制御し、
それぞれ前記好気培養箱体(11)と嫌気培養箱体(12)の内部に配置されて室内温度
を調節するための調温装置(15)と、調温装置(15)は好気培養箱体(11)と嫌気
培養箱体(12)の内壁に設けられた加熱コイル(151)と室内温度を監視するための
温度センサ(152)を含み、
培養箱(1)の通気および換気のための通気装置(16)と、通気装置(16)は嫌気培
養箱体(12)の頂部に設けられた送気装置(161)と好気培養箱体(11)の後壁の
下部に設けられた排気穴(162)を含み、前記送気装置(161)は外部空気を培養箱
(1)に吸い込む空気ポンプ(1611)と、空気ポンプ(1611)の送気口に設けら
れ空気中のほこりや微生物を濾過するための濾過溝(1612)を含み、前記排気穴(1
62)の外側に排出空気中の常在菌を濾過するための濾過膜(1621)が設けられ、
制御ボックス(13)内部に配置されたコントローラーと、制御ボックス(13)の前側
面に配置された温度制御ノブ(131)と、を含む、請求項7に記載の装置。
The culture box (1) is
An aerobic culture box (11) for culturing aerobic indigenous degrading bacteria and
An anaerobic culture box (12) arranged above the aerobic culture box (11) for culturing anaerobic resident degrading bacteria, and
A control box (1) arranged on the side of the aerobic culture box (11) and the anaerobic culture box (12).
3) and
The fixing device (14) arranged inside the aerobic culture box (11) and the anaerobic culture box (12) for fixing the microbial container, and the fixing device (14) are two semi-annular fixing arms, respectively. (1
A stepping motor (41) for controlling the internal and external rotation of the fixed arm (141) and the fixed arm (141).
142) is included, a pressure sensor (143) is further provided at the connection point between the fixed arm (141) and the stepping motor (142), and the pressure sensor (143) turns the stepping motor (142) on / off according to the pressure. Control and
The temperature control device (15) arranged inside the aerobic culture box (11) and the anaerobic culture box (12) for controlling the indoor temperature, and the temperature control device (15) are the aerobic culture boxes, respectively. It includes a heating coil (151) provided on the inner wall of the body (11) and the anaerobic culture box (12) and a temperature sensor (152) for monitoring the room temperature.
The aeration device (16) for aeration and ventilation of the culture box (1), and the aeration device (16) is an air supply device (161) and an aerobic culture box provided at the top of the anaerobic culture box (12). Including an exhaust hole (162) provided in the lower part of the rear wall of (11), the air supply device (161) includes an air pump (1611) for sucking external air into the culture box (1) and an air pump (1611). The exhaust hole (1) includes a filtration groove (1612) provided in the air supply port for filtering dust and microorganisms in the air.
A filtration membrane (1621) for filtering indigenous bacteria in the exhaust air is provided on the outside of 62).
The device of claim 7, comprising a controller disposed inside the control box (13) and a temperature control knob (131) disposed on the front surface of the control box (13).
JP2021064601A 2020-06-22 2021-04-06 A method of effectively removing USEPA PAHs in agricultural land soil by acclimatizing resident degrading bacterial communities Active JP6966679B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010576256.2A CN111760899B (en) 2020-06-22 2020-06-22 Feeding improvement method for repairing toxic organic contaminated soil through oxidant compounding oxidation
CN202010576256.2 2020-06-22

Publications (2)

Publication Number Publication Date
JP6966679B1 JP6966679B1 (en) 2021-11-17
JP2022001364A true JP2022001364A (en) 2022-01-06

Family

ID=72721853

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2021006775A Active JP7017679B2 (en) 2020-06-22 2021-01-19 Forced Ventilation for Restoring Organically Contaminated Soil-Spiral Stirring Heat Desorption Device
JP2021009993A Active JP7001881B2 (en) 2020-06-22 2021-01-26 Integrated treatment method for fertilization, growth promotion and toxicity reduction of soil of agricultural land contaminated with toxic organic matter
JP2021009990A Active JP6978649B1 (en) 2020-06-22 2021-01-26 A method for removing toxic organic matter in soil by high-efficiency oxidation using a composite oxidant.
JP2021064601A Active JP6966679B1 (en) 2020-06-22 2021-04-06 A method of effectively removing USEPA PAHs in agricultural land soil by acclimatizing resident degrading bacterial communities

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2021006775A Active JP7017679B2 (en) 2020-06-22 2021-01-19 Forced Ventilation for Restoring Organically Contaminated Soil-Spiral Stirring Heat Desorption Device
JP2021009993A Active JP7001881B2 (en) 2020-06-22 2021-01-26 Integrated treatment method for fertilization, growth promotion and toxicity reduction of soil of agricultural land contaminated with toxic organic matter
JP2021009990A Active JP6978649B1 (en) 2020-06-22 2021-01-26 A method for removing toxic organic matter in soil by high-efficiency oxidation using a composite oxidant.

Country Status (2)

Country Link
JP (4) JP7017679B2 (en)
CN (1) CN111760899B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368905A (en) * 2021-05-18 2022-11-22 中国石油化工股份有限公司 Composition with function of degrading organic pollutants and application thereof
CN113652221B (en) * 2021-08-23 2023-05-05 南京工业大学 Fracturing fluid for enhancing treatment efficiency of polycyclic aromatic hydrocarbon in hypotonic soil and preparation method thereof
CN115772405A (en) * 2021-09-06 2023-03-10 苏州清泉环保科技有限公司 Chemical oxidation remediation agent for organic contaminated soil and application method thereof
CN115433584B (en) * 2022-08-17 2024-04-19 吉林建筑大学 Synergistic in-situ repair method for calcium peroxide-sodium persulfate in organic composite polluted site
CN115959763A (en) * 2022-10-21 2023-04-14 中国矿业大学 Method for treating coking wastewater by micro-nano bubble reinforced aerobic bacteria

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152972A (en) * 1974-05-31 1975-12-09
JP3669238B2 (en) * 1999-12-27 2005-07-06 三浦工業株式会社 Method for decomposing chlorinated organic compounds
US6843618B2 (en) * 2000-12-18 2005-01-18 William L. Lundy In situ subsurface decontamination method
JP2005144270A (en) * 2003-11-12 2005-06-09 Kurita Water Ind Ltd Method and apparatus for treating dioxins-containing solid matter
JP4518382B2 (en) * 2004-05-24 2010-08-04 株式会社神鋼環境ソリューション Method and apparatus for removing organohalogen compounds
JP2009066494A (en) * 2007-09-11 2009-04-02 Takenaka Komuten Co Ltd System for making contaminated soil harmless
CN102083557B (en) * 2008-06-23 2013-05-01 三菱瓦斯化学株式会社 Agent for purifying soil and/or underground water and purification method
KR20100009450A (en) * 2008-10-24 2010-01-27 (주) 켐스필드코리아 The contaminated soil remediation composition and the soil remediation technique which uses this
JP2010152972A (en) * 2008-12-25 2010-07-08 Toshiba Storage Device Corp Data storage device and method of manufacturing the same
CN101972773B (en) * 2010-11-23 2012-04-18 南京农业大学 System for restoring organic contaminated soil by forced ventilation and spiral stirring thermal desorption
JP2012161768A (en) * 2011-02-09 2012-08-30 Nishimatsu Constr Co Ltd Apparatus for cleaning contaminated soil and method for cleaning soil
WO2013150660A1 (en) * 2012-04-04 2013-10-10 G-8 International Trading 株式会社 A treatment device for waste matter containing heavy metals and a method for treating waste matter containing heavy metals using same
JP6221613B2 (en) * 2013-10-16 2017-11-01 宇部興産株式会社 Gas processing apparatus and gas processing method
CN104650007B (en) * 2013-11-19 2016-08-31 万华化学集团股份有限公司 A kind of method preparing epoxide ring dodecane continuously
GB201406538D0 (en) * 2014-04-11 2014-05-28 Thermtech Holding As Method of treating a material
CN104056854B (en) * 2014-06-25 2016-05-11 湖南恒凯环保科技投资有限公司 A kind of for administering Pb, As, Cu, combining of Cd combined contamination soil stablizing mineralising renovation agent and using method thereof
CN104327858B (en) * 2014-09-22 2017-09-29 广西大学 A kind of soil heavy metal combined stabilizer and its passivating method to heavy metal-polluted soil
CN104445570B (en) * 2014-10-22 2016-11-02 同济大学 A kind of persulfate-calper calcium peroxide dual oxidants removes the method for multiring aromatic hydrocarbon substance methyl naphthalene
CN105565465B (en) * 2015-12-15 2018-05-29 广东工业大学 A kind of method of microwave induced carried active carbon catalysis persulfate processing phthalic acid ester waste water
CN105710125A (en) * 2016-04-21 2016-06-29 济南大学 Chemical repairing method for organic pollution soil
CN106345800B (en) * 2016-09-12 2020-04-17 南京农业大学 Method for removing polycyclic aromatic hydrocarbons in soil by persulfate-calcium peroxide composite oxidation
CN106746068B (en) * 2016-11-29 2020-11-17 广东工业大学 Treatment method of wastewater containing high-concentration organic phosphorus
CN107008745A (en) * 2017-04-25 2017-08-04 南京农业大学 A kind of petroleum hydrocarbon contaminated soil repairs medicament and application method
CN109382405A (en) * 2017-08-11 2019-02-26 上海环境节能工程股份有限公司 The method of polycyclic aromatic hydrocarbon in persulfate-calper calcium peroxide combined oxidation rehabilitating soil
CN108213064A (en) * 2017-12-05 2018-06-29 中国科学院南京土壤研究所 A kind of medicament of in-situ immobilization high concentration polycyclic aromatic hydrocarbon pollution and its application
CN108046404B (en) * 2017-12-20 2020-04-10 浙江省环境保护科学设计研究院 In-situ chemical oxidation remediation method for organic-polluted underground water
CN108380663A (en) * 2018-04-25 2018-08-10 上海化工研究院有限公司 The method that class Fenton oxidation method removes half volatile organic contaminant in soil
CN108811579A (en) * 2018-06-13 2018-11-16 南京农业大学 A kind of method that agricultural land soil soil fertility is restored after chemical oxidation is repaired
CN109266359A (en) * 2018-09-11 2019-01-25 四川长虹格润环保科技股份有限公司 Petroleum hydrocarbon contaminated soil repairs medicament and its application method
CN109304362B (en) * 2018-10-12 2021-01-05 南京农业大学 Method for repairing polycyclic aromatic hydrocarbon composite polluted soil by sulfate radical advanced oxidation technology
CN109570223A (en) * 2018-11-29 2019-04-05 中冶南方都市环保工程技术股份有限公司 A kind of method that chemical oxidation repairs polycyclic aromatic hydrocarbon pollution
CN110434165A (en) * 2019-07-26 2019-11-12 天津绿缘环保工程股份有限公司 The restorative procedure of places polluted by polynuclear aromatic hydrocarbons and application
CN110451628A (en) * 2019-07-30 2019-11-15 济南大学 A kind of restorative procedure of trichloro ethylene polluted underground water
CN110560473B (en) * 2019-08-21 2020-07-07 生态环境部环境规划院 Method for stabilizing soil fluoride and arsenic

Also Published As

Publication number Publication date
CN111760899B (en) 2021-08-24
JP2022001633A (en) 2022-01-06
JP7001881B2 (en) 2022-01-20
JP2022001362A (en) 2022-01-06
CN111760899A (en) 2020-10-13
JP7017679B2 (en) 2022-02-09
JP6966679B1 (en) 2021-11-17
JP2022001363A (en) 2022-01-06
JP6978649B1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
JP6966679B1 (en) A method of effectively removing USEPA PAHs in agricultural land soil by acclimatizing resident degrading bacterial communities
CN109082393A (en) One kind can be used for Treating Municipal Sewage microbial bacterial agent and preparation method thereof
CN110628678B (en) Heavy metal-resistant cupronickel bacterium, preparation method and application of bacterium agent
CN114107092B (en) Endophyte Gordonia L191 for degrading phthalate and application thereof
CN107365728A (en) One plant degraded PAEs endophyte of plant and the application in PAEs contaminated soils are repaired
CN110066743B (en) Erythromycin production strain with improved fermentation foul smell and application thereof
CN110527652A (en) A kind of degradation of formaldehyde, the complex microbial inoculum of phenol mix waste gas and application
CN111004736B (en) Bacillus megaterium and application thereof in degrading pyrethroid insecticides
CN104263682A (en) Plant-growth-promoting endophytic bacterium having polycyclic aromatic hydrocarbons degrading function and application thereof
CN115786179A (en) Bacterial strain for degrading o-dichlorobenzene and application thereof
CN102876621B (en) Mesorhizobium ZY1 and application thereof in soil remediation
CN107446842A (en) One bacillus subtilis and its application in purifying water
CN112251362B (en) Aspergillus for degrading triphenyl phosphate and tricresyl phosphate and screening method and application thereof
CN110862953B (en) Preparation and germination method and application of geobacillus stearothermophilus spores
CN113462590A (en) Preparation of compound microbial agent and application of compound microbial agent in degradation of pollutant polycyclic aromatic hydrocarbon
CN109486698A (en) The enterobacteria of the resistance to lead of one plant height and its application
CN111269855A (en) Algicidal bacteria, screening method and application
CN114410508B (en) Grease degrading bacterium and screening method and application thereof
CN102424804B (en) Citrobacter sp. for removing H2S gas from gas, and use thereof
JPH09803A (en) Method for extracting hydrocarbons from minute algae belonging to botryococcus
CN110029067B (en) Fusarium oxysporum and application thereof in remediation of phthalate compound contaminated soil
CN112779189A (en) Bacillus proteus soil and application thereof
CN113862177B (en) Lysogen-aminoglutaric acid bacillus for synchronously degrading mixed phenol and application thereof
CN114134079B (en) Tetracycline antibiotic degrading bacteria, method and application
CN113929221B (en) Microorganism composite flora for treating aquaculture tail water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210406

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210916

R150 Certificate of patent or registration of utility model

Ref document number: 6966679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150