JP2022001363A - Method for removing toxic organic material in soil by highly efficient oxidation using composite oxidant - Google Patents

Method for removing toxic organic material in soil by highly efficient oxidation using composite oxidant Download PDF

Info

Publication number
JP2022001363A
JP2022001363A JP2021009990A JP2021009990A JP2022001363A JP 2022001363 A JP2022001363 A JP 2022001363A JP 2021009990 A JP2021009990 A JP 2021009990A JP 2021009990 A JP2021009990 A JP 2021009990A JP 2022001363 A JP2022001363 A JP 2022001363A
Authority
JP
Japan
Prior art keywords
soil
ion
agent
toxic organic
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021009990A
Other languages
Japanese (ja)
Other versions
JP6978649B1 (en
Inventor
高彦征
Yanzheng Gao
張暁▲ふぁん▼
Xiao Huang Tang
王建
Jian Wang
湯磊
Lei Tang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Application granted granted Critical
Publication of JP6978649B1 publication Critical patent/JP6978649B1/en
Publication of JP2022001363A publication Critical patent/JP2022001363A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Ventilation (AREA)
  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Cultivation Of Plants (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Fertilizers (AREA)

Abstract

To provide a method for removing toxic organic materials in soil by highly efficient oxidation using a composite oxidant.SOLUTION: A method for removing toxic organic materials in soil comprises: a step 1 for removing rock and other debris from collected toxic organic material soil, then polishing and breaking the soil and sifting the soil, and obtaining the sifted soil; and a step 2 for mixing at a constant ratio, the sifted soil and an oxidant A in a uniform state, then adding distilled water to the mixture, then agitating the mixture in a uniform state for obtaining slurry reaction liquid, then adding an oxidant B to the slurry reaction liquid, leaving the slurry reaction liquid at rest at a room temperature of 25-30°C for reaction, and after finish of the reaction, removing the toxic organic materials in the soil. The invention can effectively remove the toxic organic materials in the soil, has simplified processing processes and high removal efficiency, and contributes to popularization and use of restoration processing of the toxic organic material soil.SELECTED DRAWING: Figure 1

Description

本発明は、土壌修復の技術分野に関し、具体的に、複合酸化剤を用いた高効率酸化により
土壌中の有毒有機物を除去する方法に関する。
The present invention relates to the technical field of soil restoration, and specifically relates to a method for removing toxic organic substances in soil by high-efficiency oxidation using a composite oxidizing agent.

土壌は生態系の重要な要素であり、人間の生存の基盤である。しかし、現代の産業や農業
の発展に伴い、大量の廃ガス、廃水、廃棄物が土壌システムに不適切に排出され、直接的
または間接的に土壌汚染を引き起こし、環境と人間の健康を害している。多環芳香族炭化
水素(PAHs)土壌汚染における一般的な高リスク有機汚染物質である。何百もの既知の
PAHsが発見されており、その中で多くのPAHsは、発癌性、催奇形性および変異原
性という「3種類病変誘発」効果のため最も注目されている。
Soil is an important element of the ecosystem and the basis of human survival. However, with the development of modern industry and agriculture, large amounts of waste gas, waste water and waste are improperly discharged into the soil system, causing soil pollution directly or indirectly, harming the environment and human health. There is. Polycyclic aromatic hydrocarbons (PAHs) are common high-risk organic pollutants in soil pollution. Hundreds of known PAHs have been discovered, of which many are of the utmost attention due to their "three-type lesion-inducing" effects of carcinogenicity, teratogenicity and mutagenicity.

しかし、現在の一般的な土壌有機汚染物質の酸化除去および修復方法は、通常、単一の酸
化剤を使用しているが、除去効率が低く、分解スペクトルが狭く、適用条件が限られてい
るという欠点があるため、上記の技術的問題を解決するために、土壌中の有毒有機物の酸
化除去効率を改善するための新しいタイプの酸化方法が求められている。
However, current common methods of oxidizing and removing organic pollutants in soil, which usually use a single oxidant, have low removal efficiency, a narrow decomposition spectrum, and limited application conditions. Therefore, in order to solve the above technical problems, a new type of oxidation method for improving the oxidation removal efficiency of toxic organic substances in soil is required.

上記の技術的問題を解決するために、本発明は、複合酸化剤を用いた高効率酸化により土
壌中の有毒有機物を除去する方法を提供する。
In order to solve the above technical problems, the present invention provides a method for removing toxic organic substances in soil by high-efficiency oxidation using a composite oxidizing agent.

本発明の技術的解決策は、複合酸化剤を用いた高効率酸化により土壌中の有毒有機物を除
去する方法を提供し、
ステップ1:有毒有機汚染土壌のプレ処理
収集された有毒有機汚染土壌から石および他の破片を除去した後、研磨・破壊し20メッ
シュのふるいを通過させ、ふるいにかけた土壌を用意すること、
ステップ2:有毒有機汚染土壌の処理
前記複合酸化剤はA剤とB剤から複合して使用され、具体的には、A剤をふるいにかけた
土壌に加え十分に攪拌してスラリーを調製し、そしてB剤を加えてスラリー反応液を得、
前記スラリー反応液を25〜30℃の室温で静置し4日間反応させ、スラリー反応液中の
過硫酸イオン濃度が0.05〜0.6mol/Lであり、スラリー反応液中の土壌―水の
比率が1:1〜4であり、反応が終わった後土壌中の有毒有機物を除去することができ、
前記B剤が過硫酸イオン、第一鉄イオン、シュウ酸イオンである、を含む。
The technical solution of the present invention provides a method for removing toxic organic matter in soil by highly efficient oxidation using a composite oxidant.
Step 1: Pretreatment of toxic organic contaminated soil After removing stones and other debris from the collected toxic organic contaminated soil, polish and destroy it and pass it through a 20 mesh sieve to prepare the sifted soil.
Step 2: Treatment of toxic organically contaminated soil The composite oxidant is used in combination with Agent A and Agent B. Specifically, Agent A is added to the sifted soil and sufficiently stirred to prepare a slurry. Then, agent B was added to obtain a slurry reaction solution.
The slurry reaction solution was allowed to stand at room temperature of 25 to 30 ° C. and reacted for 4 days. The persulfate ion concentration in the slurry reaction solution was 0.05 to 0.6 mol / L, and the soil-water in the slurry reaction solution. The ratio is 1: 1 to 4, and toxic organic substances in the soil can be removed after the reaction is completed.
The agent B contains persulfate ion, ferrous ion, and oxalate ion.

さらに、前記A剤が過酸化カルシウムであり、前記方法では、風乾後の土壌1kgに対し
て、A剤の添加量が5〜60gである。
Further, the agent A is calcium peroxide, and in the method, the amount of the agent A added is 5 to 60 g with respect to 1 kg of soil after air drying.

またさらに、前記方法では、風乾後の土壌1kgに対して、A剤の添加量が20〜40g
である。
Furthermore, in the above method, the amount of the agent A added is 20 to 40 g per 1 kg of soil after air drying.
Is.

さらに、前記B剤が過硫酸イオン、第一鉄イオン、シュウ酸イオンであり、その内、前記
シュウ酸イオンをシュウ酸カリウムの形で加え、前記第一鉄イオンを硫酸第一鉄の形で加
え、前記過硫酸イオンを過硫酸ナトリウムの形で加える。
Further, the agent B is persulfate ion, ferrous ion, and oxalate ion, of which the oxalate ion is added in the form of potassium oxalate, and the ferrous ion is added in the form of ferrous sulfate ion. In addition, the persulfate ion is added in the form of sodium persulfate.

さらに、前記スラリー反応液中の過硫酸イオンの濃度が0.2〜0.4mol/Lである

またさらに、前記第一鉄イオンと過硫酸イオンのモル比が1:1〜16であり、第一鉄イ
オンとシュウ酸イオンのモル比が1:1〜5である。
Further, the concentration of persulfate ion in the slurry reaction solution is 0.2 to 0.4 mol / L.
Furthermore, the molar ratio of ferrous ion to persulfate ion is 1: 1 to 16, and the molar ratio of ferrous ion to oxalate ion is 1: 1 to 5.

またさらに、前記第一鉄イオンとシュウ酸イオンのモル比が1:2であり、第一鉄イオン
と過硫酸イオンのモル比が1:2である。
Furthermore, the molar ratio of ferrous ion to oxalate ion is 1: 2, and the molar ratio of ferrous ion to persulfate ion is 1: 2.

さらに、前記方法では、多環芳香族炭化水素によって代表される有毒有機汚染物は、それ
ぞれナフタレン、アセナフチレン、アセナフテン、フェナントレン、アントラセン、フル
オランテン、ピレン、ベンゾ[a]アントラセン、クリセン、ベンゾ[b]フルオランテン、
ベンゾ[a]ピレン、ジベンゾ[a,b]アントラセン、ベンゾ[g,h,i]ペリレンおよびイ
ンデノ[1,2,3〜cd]ピレンである。
Further, in the above method, the toxic organic contaminants typified by polycyclic aromatic hydrocarbons are naphthalene, acenaphthylene, acenaphthene, phenanthrene, anthracene, fluoranthene, pyrene, benzo [a] anthracene, chrysene, benzo [b] fluoranthene, respectively. ,
Benzo [a] pyrene, dibenzo [a, b] anthracene, benzo [g, h, i] perylene and indeno [1,2,3 to cd] pyrene.

本発明は、以下の有益な効果を有する。
(1)本発明の方法は、複合酸化剤により有毒有機物土壌を修復処理し、土壌中の有毒有
機物を効果的に除去でき、また処理プロセスが簡単で除去効率が高く、有毒有機物土壌の
修復処理の普及および使用に寄与する。
(2)本発明の方法は、複合酸化剤と処理する土壌を配合してスラリー反応溶液を調製し
、複合酸化剤とスラリー土壌を十分に反応させて、有毒有機汚染土壌の処理効果を向上さ
せることができる。
The present invention has the following beneficial effects.
(1) The method of the present invention can repair toxic organic matter soil with a composite oxidant and effectively remove toxic organic matter in the soil, and the treatment process is simple and the removal efficiency is high, and the toxic organic matter soil is repaired. Contributes to the spread and use of.
(2) In the method of the present invention, a composite oxidant and soil to be treated are mixed to prepare a slurry reaction solution, and the composite oxidant and the slurry soil are sufficiently reacted to improve the treatment effect of toxic organically contaminated soil. be able to.

本発明の攪拌制御装置の全体構造の概略図である。It is a schematic diagram of the whole structure of the stirring control device of this invention. 本発明の攪拌制御装置の一部構造の断面図である。It is sectional drawing of the partial structure of the stirring control device of this invention. 本発明の攪拌制御装置の内部構造の上面図である。It is a top view of the internal structure of the stirring control device of this invention.

[符号の説明]
1 反応室
2 ガイド溝
21 ガイドポート
22 制御室
3 ベース
4 液体貯蔵室
41 環形管
5 制御管
51 電気制御プラグ
52 センサ
6 攪拌インペラ
61 カラーインジケータ
62 駆動モータ
[Explanation of sign]
1 Reaction chamber 2 Guide groove 21 Guide port 22 Control chamber 3 Base 4 Liquid storage chamber 41 Ring tube 5 Control tube 51 Electric control plug 52 Sensor 6 Stirring impeller 61 Color indicator 62 Drive motor

実施例1
複合酸化剤を用いた高効率酸化により土壌中の有毒有機物を除去する方法は、
ステップ1:有毒有機汚染土壌のプレ処理
収集された有毒有機汚染土壌から石および他の破片を除去した後、研磨・破壊し20メッ
シュのふるいを通過させ、ふるいにかけた土壌を用意すること、
ステップ2:有毒有機汚染土壌の処理
前記複合酸化剤はA剤とB剤から複合して使用され、具体的には、A剤をふるいにかけた
土壌に加え十分に攪拌してスラリーを調製し、そしてB剤を加えてスラリー反応液を得、
前記スラリー反応液を27℃の室温で静置し4日間反応させ、スラリー反応液中の過硫酸
イオン濃度が0.2mol/Lであり、スラリー反応液中の土壌―水の比率が1:1であ
り、反応が終わった後土壌中の有毒有機物を除去すること、を含む。
その内、風乾後の土壌1kgに対して、A剤の添加量が20g/kgであり、B剤が過硫
酸イオン、第一鉄イオン、シュウ酸イオンであり、シュウ酸イオンをシュウ酸カリウムの
形で加え、第一鉄イオンを硫酸第一鉄の形で加え、過硫酸イオンを過硫酸ナトリウムの形
で加え、第一鉄イオンと過硫酸イオンのモル比が1:2であり、第一鉄イオンとシュウ酸
イオンのモル比が1:2である。
Example 1
A method for removing toxic organic matter in soil by high-efficiency oxidation using a composite oxidant is
Step 1: Pretreatment of toxic organic contaminated soil After removing stones and other debris from the collected toxic organic contaminated soil, polish and destroy it and pass it through a 20 mesh sieve to prepare the sifted soil.
Step 2: Treatment of toxic organically contaminated soil The composite oxidant is used in combination with Agent A and Agent B. Specifically, Agent A is added to the sifted soil and sufficiently stirred to prepare a slurry. Then, agent B was added to obtain a slurry reaction solution.
The slurry reaction solution was allowed to stand at room temperature of 27 ° C. and reacted for 4 days. The persulfate ion concentration in the slurry reaction solution was 0.2 mol / L, and the soil-water ratio in the slurry reaction solution was 1: 1. It involves removing toxic organic matter in the soil after the reaction is complete.
Among them, the amount of agent A added is 20 g / kg with respect to 1 kg of air-dried soil, agent B is persulfate ion, ferrous ion, and oxalate ion, and oxalate ion is potassium oxalate ion. Add in form, ferrous ions are added in the form of ferrous sulfate, persulfate ions are added in the form of sodium persulfate, the molar ratio of ferrous and persulfate ions is 1: 2, and the first The molar ratio of iron ion to oxalate ion is 1: 2.

実施例2
複合酸化剤を用いた高効率酸化により土壌中の有毒有機物を除去する方法は、
ステップ1:有毒有機汚染土壌のプレ処理
収集された有毒有機汚染土壌から石および他の破片を除去した後、研磨・破壊し20メッ
シュのふるいを通過させ、ふるいにかけた土壌を用意すること、
ステップ2:有毒有機汚染土壌の処理
前記複合酸化剤はA剤とB剤から複合して使用され、具体的には、A剤をふるいにかけた
土壌に加え十分に攪拌してスラリーを調製し、そしてB剤を加えてスラリー反応液を得、
前記スラリー反応液を27℃の室温で静置し4日間反応させ、スラリー反応液中の過硫酸
イオン濃度が0.05mol/Lであり、スラリー反応液中の土壌―水の比率が1:1であ
り、反応が終わった後土壌中の有毒有機物を除去すること、を含む。
その内、風乾後の土壌1kgに対して、A剤の添加量が60g/kgであり、B剤が過硫
酸イオン、第一鉄イオン、シュウ酸イオンであり、シュウ酸イオンをシュウ酸カリウムの
形で加え、第一鉄イオンを硫酸第一鉄の形で加え、過硫酸イオンを過硫酸ナトリウムの形
で加え、第一鉄イオンと過硫酸イオンのモル比が1:1であり、第一鉄イオンとシュウ酸
イオンのモル比が1:1である。
Example 2
A method for removing toxic organic matter in soil by high-efficiency oxidation using a composite oxidant is
Step 1: Pretreatment of toxic organic contaminated soil After removing stones and other debris from the collected toxic organic contaminated soil, polish and destroy it and pass it through a 20 mesh sieve to prepare the sifted soil.
Step 2: Treatment of toxic organically contaminated soil The composite oxidant is used in combination with Agent A and Agent B. Specifically, Agent A is added to the sifted soil and sufficiently stirred to prepare a slurry. Then, agent B was added to obtain a slurry reaction solution.
The slurry reaction solution was allowed to stand at room temperature of 27 ° C. and reacted for 4 days. The persulfate ion concentration in the slurry reaction solution was 0.05 mol / L, and the soil-water ratio in the slurry reaction solution was 1: 1. It involves removing toxic organic matter in the soil after the reaction is complete.
Among them, the amount of agent A added is 60 g / kg with respect to 1 kg of air-dried soil, agent B is persulfate ion, ferrous ion, and oxalate ion, and oxalate ion is potassium oxalate ion. Add in form, ferrous ions are added in the form of ferrous sulfate, persulfate ions are added in the form of sodium persulfate, the molar ratio of ferrous and persulfate ions is 1: 1 and the first The molar ratio of iron ion to oxalate ion is 1: 1.

実施例3
複合酸化剤を用いた高効率酸化により土壌中の有毒有機物を除去する方法は、
ステップ1:有毒有機汚染土壌のプレ処理
収集された有毒有機汚染土壌から石および他の破片を除去した後、研磨・破壊し20メッ
シュのふるいを通過させ、ふるいにかけた土壌を用意すること、
ステップ2:有毒有機汚染土壌の処理
前記複合酸化剤はA剤とB剤から複合して使用され、具体的には、A剤をふるいにかけた
土壌に加え十分に攪拌してスラリーを調製し、そしてB剤を加えてスラリー反応液を得、
前記スラリー反応液を27℃の室温で静置し4日間反応させ、スラリー反応液中の過硫酸
イオン濃度が0.6mol/Lであり、スラリー反応液中の土壌―水の比率が1:1であ
り、反応が終わった後土壌中の有毒有機物を除去すること、を含む。
その内、風乾後の土壌1kgに対して、A剤の添加量が5g/kgであり、B剤が過硫酸
イオン、第一鉄イオン、シュウ酸イオンであり、シュウ酸イオンをシュウ酸カリウムの形
で加え、第一鉄イオンを硫酸第一鉄の形で加え、過硫酸イオンを過硫酸ナトリウムの形で
加え、第一鉄イオンと過硫酸イオンのモル比が1:16であり、第一鉄イオンとシュウ酸
イオンのモル比が1:5である。
Example 3
A method for removing toxic organic matter in soil by high-efficiency oxidation using a composite oxidant is
Step 1: Pretreatment of toxic organic contaminated soil After removing stones and other debris from the collected toxic organic contaminated soil, polish and destroy it and pass it through a 20 mesh sieve to prepare the sifted soil.
Step 2: Treatment of toxic organically contaminated soil The composite oxidant is used in combination with Agent A and Agent B. Specifically, Agent A is added to the sifted soil and sufficiently stirred to prepare a slurry. Then, agent B was added to obtain a slurry reaction solution.
The slurry reaction solution was allowed to stand at room temperature of 27 ° C. and reacted for 4 days. The persulfate ion concentration in the slurry reaction solution was 0.6 mol / L, and the soil-water ratio in the slurry reaction solution was 1: 1. It involves removing toxic organic matter in the soil after the reaction is complete.
Among them, the amount of agent A added is 5 g / kg with respect to 1 kg of air-dried soil, agent B is persulfate ion, ferrous ion, and oxalate ion, and oxalate ion is potassium oxalate ion. Add in form, ferrous ions are added in the form of ferrous sulfate, persulfate ions are added in the form of sodium persulfate, the molar ratio of ferrous and persulfate ions is 1:16, first. The molar ratio of iron ion to oxalate ion is 1: 5.

実施例4
本実施例は、実施例1と基本的に同じであるが、ステップ2では、攪拌制御装置により反
応を攪拌・制御することが異なる。
図1〜3に示すように、攪拌制御装置は、反応室1、ガイド溝2、ベース3および液体貯
蔵室4を含み、ベース3が反応室1の底部に接続され、液体貯蔵室4が反応室1の頂部に
接続され、ガイド溝2が反応室1の上部に嵌設され周方向に沿って設けられた6組のガイ
ドポート21を介して反応室1内に延伸し、各ガイドポート21間のガイド溝2内にB剤
を添加するための制御室22がさらに設けられ、制御室22の下方の先端のガイドパイプ
が反応室1内に延伸し、制御室22のガイドパイプの先端に給料を制御するための制御管
5が設けられ、制御管5の内壁にガイドパイプの出口を制御するための電気制御プラグ5
1が設けられ、制御管5の外壁の一側に光線の色を認識するためのセンサ52が設けられ
、反応室1の底部に攪拌インペラ6が設けられ、攪拌インペラ6の底部が回転軸を介して
反応室1を貫通してベース3に嵌設された駆動モータ62の出力軸に接続され、攪拌イン
ペラ6の各ブレードの縁にそれぞれ1つの円弧状のカラーインジケータ61が設けられ、
反応室1の頂面に複数組の環状管41からなる配水装置がさらに設けられ、各環状管が小
型のウォーターポンプおよびパイプラインを介して液体貯蔵室4に接続され、その内、ベ
ース3内に攪拌制御のためのコントローラーがさらに嵌設され、コントローラーは市販さ
れているプログラブルシングルチップマイクロコンピュータであればよく、上記色認識の
ためのセンサ52は市販されているキーエンスの色認識センサーであればよく、上記カラ
ーインジケータ61は市販されている発光ledランプを本装置のカラーインジケータ6
1の形状に調整されたものであればよく、上記駆動モータ62は市販されている回転式モ
ータであればよく、上記電気制御プラグ51は先端にガイドパイプの出口を遮断するため
のプラグが設けられた市販されているプッシュロッドモータであり、プッシュロッドモー
タは制御管5のガイドパイプの出口に対向する側の内壁に設けられ、上記攪拌制御装置は
外部電源または外部のリチウムイオン電池パックから電力供給されてもよく、またはリチ
ウムイオン電池パックをベース3内に嵌設し装置に電力を供給してもよい。
上記攪拌制御装置によるステップ2の操作方法は、以下のとおりである。
事前に必要な投与量のB剤を均一に6組に分けて6つの制御室22内に投与し、6組のカ
ラーインジケータ61それぞれの色をプリセットし、各色に対応するセンサ52を設定し

続いて、A剤とふるいにかけた土壌を添加し十分に攪拌した後、ガイド溝2の各ガイドポ
ート21を介して反応室1内に加え、駆動モータ62により攪拌インペラ6を回転させ、
次にその頂部に設けられた液体貯蔵室4を介して質量比1:1の水を加え、攪拌インペラ
6の作用下で十分に攪拌しスラリーを得、その後攪拌インペラ6の回転数を10rpmに
低減し、コントローラー指令で1組の攪拌インペラ6のブレードのカラーインジケータ6
1に予め設定された1組の色を表示させ、回転するたびに対応する色認識用のセンサ52
をトリガーして、トリガーされたセンサ52が3秒間オンになり、そのオン期間が実際の
必要に応じて調整され得、上記の方法により順に6組のB剤を加え、最後に6組のカラー
インジケータ61を同時にオンにして、10rpmで3分以上回転させ、制御室22内へ
のB剤の添加を確保し、その制御組の数について、実際の必要に応じて複数組の給料制御
を同時に行ってもよく、給料や攪拌および反応制御を改善する。
Example 4
This embodiment is basically the same as that of the first embodiment, but in step 2, the reaction is stirred and controlled by the stirring control device.
As shown in FIGS. 1 to 3, the stirring control device includes a reaction chamber 1, a guide groove 2, a base 3 and a liquid storage chamber 4, the base 3 is connected to the bottom of the reaction chamber 1, and the liquid storage chamber 4 reacts. Connected to the top of the chamber 1, a guide groove 2 is fitted in the upper part of the reaction chamber 1 and extends into the reaction chamber 1 via 6 sets of guide ports 21 provided along the circumferential direction, and each guide port 21 A control chamber 22 for adding the agent B is further provided in the guide groove 2 between the two, and the guide pipe at the lower end of the control chamber 22 extends into the reaction chamber 1 and reaches the tip of the guide pipe of the control chamber 22. A control pipe 5 for controlling the salary is provided, and an electric control plug 5 for controlling the outlet of the guide pipe is provided on the inner wall of the control pipe 5.
1 is provided, a sensor 52 for recognizing the color of light rays is provided on one side of the outer wall of the control tube 5, a stirring impeller 6 is provided at the bottom of the reaction chamber 1, and the bottom of the stirring impeller 6 serves as a rotation axis. It is connected to the output shaft of the drive motor 62 fitted to the base 3 through the reaction chamber 1 through the reaction chamber 1, and one arcuate color indicator 61 is provided on the edge of each blade of the stirring impeller 6.
A water distribution device consisting of a plurality of sets of annular tubes 41 is further provided on the top surface of the reaction chamber 1, and each annular tube is connected to the liquid storage chamber 4 via a small water pump and a pipeline, of which the inside of the base 3 is provided. A controller for stirring control is further fitted in the device, the controller may be a commercially available programmable single-chip computer, and the sensor 52 for color recognition may be a commercially available keyence color recognition sensor. The color indicator 61 may be a commercially available light emitting led lamp, and the color indicator 6 of the present apparatus may be used.
The drive motor 62 may be a commercially available rotary motor as long as it is adjusted to the shape of 1. The electric control plug 51 is provided with a plug at the tip for blocking the outlet of the guide pipe. A commercially available push rod motor, the push rod motor is provided on the inner wall of the control tube 5 on the side facing the outlet of the guide pipe, and the stirring control device is powered by an external power source or an external lithium ion battery pack. It may be supplied, or a lithium ion battery pack may be fitted in the base 3 to power the device.
The operation method of step 2 by the stirring control device is as follows.
The required dose of B agent is uniformly divided into 6 sets and administered into the 6 control chambers 22, the colors of each of the 6 sets of color indicators 61 are preset, and the sensors 52 corresponding to each color are set.
Subsequently, after adding the agent A and the sifted soil and sufficiently stirring the mixture, the mixture is added into the reaction chamber 1 via each guide port 21 of the guide groove 2, and the stirring impeller 6 is rotated by the drive motor 62.
Next, water having a mass ratio of 1: 1 was added through the liquid storage chamber 4 provided at the top thereof, and the mixture was sufficiently stirred under the action of the stirring impeller 6 to obtain a slurry, and then the rotation speed of the stirring impeller 6 was increased to 10 rpm. Color indicator 6 of the blades of a set of stirring impellers 6 reduced and commanded by the controller
A sensor 52 for color recognition that displays a set of preset colors in 1 and corresponds to each time it rotates.
Triggered, the triggered sensor 52 is turned on for 3 seconds, the on period can be adjusted according to the actual need, 6 sets of B agents are added in order by the above method, and finally 6 sets of colors. The indicator 61 is turned on at the same time and rotated at 10 rpm for 3 minutes or more to ensure the addition of the B agent into the control chamber 22, and the number of control sets is controlled by a plurality of sets at the same time as necessary. May go and improve salary, agitation and reaction control.

実施例5
本実施例は、以下のことを除いて実施例1の原理と基本的に同じであり、複合酸化剤の成
分および処理する土壌との混合方式が異なり、具体的には、
ステップ1:有毒有機物土壌のプレ処理
収集された有毒有機物土壌から石などの破片を除去した後、研磨・破壊し30メッシュの
ふるいを通過させ、ふるいにかけた土壌を用意すること、
ステップ2:スラリー反応溶液の調製
総質量の1/3の比率で上記ふるいにかけた土壌と改良後複合酸化剤を1:3の質量比で
均一に混合し、均一に混合した後、均一に混合した物の総体積の45%の蒸留水を加え、
均一に攪拌してスラリー反応溶液を取得すること、を含む。
その内、改良された複合酸化剤がA剤とB剤からなり、具体的には、A剤とふるいにかけ
た土壌を十分に攪拌した後B剤を添加し、A剤が過酸化カルシウムとヒドロキシエチルセ
ルロースの混合物であり、過酸化カルシウムとヒドロキシエチルセルロースが7:0.5
の質量比で混合され、B剤がシュウ酸イオン、第一鉄イオン、過硫酸イオンおよび酢酸イ
オンの混合物であり、シュウ酸イオン、第一鉄イオン、過硫酸イオンおよび酢酸イオンが
3:2:16:4のモル比で混合され、シュウ酸イオンをシュウ酸カリウムの形で加え、
第一鉄イオンを硫酸第一鉄の形で加え、過硫酸イオンを過硫酸ナトリウムの形で加え、酢
酸イオン以酢酸ナトリウムの形で加え、上記シュウ酸カリウム、硫酸第一鉄などを使用し
て対応のイオンを添加するには、入手の難易度が低く、構成コストが低く、大量の有毒有
機土壌を低コストでバッチ処理でき、大量の普及および使用に寄与する。
ステップ3:有毒有機物土壌の処理
上記スラリー反応溶液と残りのふるいにかけた土壌を十分に混合し、攪拌しながら温度2
7℃の反応補助液をスプレーし、攪拌中の前の3分間160ml/分でスプレーし、そし
て55ml/分まで調整し、スプレーが終了するまで5ml/分の速度で減らし、12分間
攪拌した後、攪拌を停止し、暗所に置いて反応させ、反応が終わった後土壌中の有毒有機
物を除去できる。
その内、反応補助液は複合酸化剤のB剤と一定量の蒸留水を混合して形成された混合液で
あり、混合液中のB剤の質量濃度が5.5%である。
Example 5
This example is basically the same as the principle of Example 1 except for the following, and the mixing method with the components of the composite oxidant and the soil to be treated is different.
Step 1: Pretreatment of toxic organic matter soil After removing debris such as stones from the collected toxic organic matter soil, polish and destroy it and let it pass through a 30 mesh sieve to prepare the sifted soil.
Step 2: Preparation of slurry reaction solution The above-sieved soil and the improved composite oxidant are uniformly mixed at a mass ratio of 1: 3 at a ratio of 1/3 of the total mass, and then uniformly mixed. Add 45% of the total volume of distilled water to the product.
Includes uniform stirring to obtain a slurry reaction solution.
Among them, the improved composite oxidant consists of agent A and agent B. Specifically, agent A and the sifted soil are sufficiently stirred, and then agent B is added, and agent A is calcium peroxide and hydroxy. A mixture of ethyl cellulose with calcium peroxide and hydroxyethyl cellulose at 7: 0.5.
B agent is a mixture of oxalate ion, ferrous ion, persulfate ion and acetate ion, and oxalate ion, ferrous ion, persulfate ion and acetate ion are 3: 2: 2: Mixed in a molar ratio of 16: 4, oxalate ions were added in the form of potassium oxalate and added.
Iron ferrous ion is added in the form of ferrous sulfate, persulfate ion is added in the form of sodium persulfate, ion is acetate and added in the form of sodium acetate, and the above potassium oxalate, ferrous sulfate, etc. are used. In order to add the corresponding ion, the difficulty of acquisition is low, the construction cost is low, and a large amount of toxic organic soil can be batch-processed at low cost, which contributes to mass dissemination and use.
Step 3: Treatment of toxic organic matter soil The above slurry reaction solution and the remaining sieved soil are thoroughly mixed and stirred at temperature 2
Spray the reaction aid at 7 ° C., spray at 160 ml / min for 3 minutes prior to stirring, then adjust to 55 ml / min, reduce at a rate of 5 ml / min until spraying is complete, and after stirring for 12 minutes. , Stirring can be stopped, placed in the dark for reaction, and after the reaction is complete, toxic organic matter in the soil can be removed.
Among them, the reaction auxiliary liquid is a mixed liquid formed by mixing a compound oxidizing agent B agent and a certain amount of distilled water, and the mass concentration of the B agent in the mixed liquid is 5.5%.

実施例6
本実施例は実施例1と基本的に同じであるが、複合酸化剤とともにスラリー反応溶液を調
製するためのふるいにかけた土壌の質量が異なり、具体的には、
総質量の1/6の比率で上記ふるいにかけた土壌と複合酸化剤を採取し均一に混合する。
Example 6
This Example is basically the same as Example 1, but the mass of the soil sifted for preparing the slurry reaction solution together with the complex oxidant is different, specifically.
The above-sieved soil and the composite oxidant are collected at a ratio of 1/6 of the total mass and mixed uniformly.

実施例7
本実施例は実施例1と基本的に同じであるが、複合酸化剤とともにスラリー反応溶液を調
製するためのふるいにかけた土壌の質量が異なり、具体的には、
総質量の1/2の比率で上記ふるいにかけた土壌と複合酸化剤を採取し均一に混合する。
Example 7
This Example is basically the same as Example 1, but the mass of the soil sifted for preparing the slurry reaction solution together with the complex oxidant is different, specifically.
Collect the sifted soil and the composite oxidant at a ratio of 1/2 of the total mass and mix them uniformly.

実施例8
本実施例は実施例1と基本的に同じであるが、複合酸化剤のA剤の比率が異なり、具体的
には、A剤が過酸化カルシウムとヒドロキシエチルセルロースの混合物であり、過酸化カ
ルシウムとヒドロキシエチルセルロースを7:0.2の質量比で混合する。
Example 8
This Example is basically the same as Example 1, but the ratio of the A agent of the composite oxidant is different. Specifically, the A agent is a mixture of calcium peroxide and hydroxyethyl cellulose, and is different from calcium peroxide. Hydroxyethyl cellulose is mixed in a mass ratio of 7: 0.2.

実施例9
本実施例は実施例1と基本的に同じであるが、複合酸化剤のA剤の比率が異なり、具体的
には、A剤が過酸化カルシウムとヒドロキシエチルセルロースの混合物であり、過酸化カ
ルシウムとヒドロキシエチルセルロースを7:1の質量比で混合する。
Example 9
This Example is basically the same as Example 1, but the ratio of the A agent of the composite oxidant is different. Specifically, the A agent is a mixture of calcium peroxide and hydroxyethyl cellulose, and is different from calcium peroxide. Hydroxyethyl cellulose is mixed in a mass ratio of 7: 1.

実施例10
本実施例は実施例1と基本的に同じであるが、複合酸化剤のB剤の比率が異なり、具体的
には、B剤がシュウ酸イオン、第一鉄イオン、過硫酸イオンおよび酢酸イオンの混合物で
あり、シュウ酸イオン、第一鉄イオン、過硫酸イオンおよび酢酸イオンを1:2:18:
5のモル比で混合する。
Example 10
This Example is basically the same as Example 1, but the ratio of the B agent of the composite oxidizing agent is different, and specifically, the B agent is a oxalate ion, a ferrous ion, a persulfate ion and an acetate ion. It is a mixture of oxalate ion, ferrous ion, persulfate ion and acetate ion 1: 2: 18 :.
Mix at a molar ratio of 5.

実施例11
本実施例は実施例1と基本的に同じであるが、複合酸化剤のB剤の比率が異なり、具体的
には、B剤がシュウ酸イオン、第一鉄イオン、過硫酸イオンおよび酢酸イオンの混合物で
あり、シュウ酸イオン、第一鉄イオン、過硫酸イオンおよび酢酸イオンを5:2:3:3
のモル比で混合する。
Example 11
This Example is basically the same as Example 1, but the ratio of the B agent of the composite oxidizing agent is different, and specifically, the B agent is a oxalate ion, a ferrous ion, a persulfate ion and an acetate ion. It is a mixture of oxalate ion, ferrous ion, persulfate ion and acetate ion 5: 2: 3: 3.
Mix in a molar ratio of.

実施例12
本実施例は実施例1と基本的に同じであるが、反応補助液中B剤の質量濃度が異なり、具
体的には、混合液中のB剤の質量濃度が3%である。
Example 12
This example is basically the same as that of Example 1, but the mass concentration of the B agent in the reaction auxiliary liquid is different, and specifically, the mass concentration of the B agent in the mixed liquid is 3%.

実施例13
本実施例は実施例1と基本的に同じであるが、反応補助液中B剤の質量濃度が異なり、具
体的には、混合液中のB剤の質量濃度が8%である。
Example 13
This example is basically the same as that of Example 1, but the mass concentration of the B agent in the reaction auxiliary liquid is different, and specifically, the mass concentration of the B agent in the mixed liquid is 8%.

実施例14
本実施例は実施例1と基本的に同じであるが、反応補助液のスプレー温度が異なり、具体
的には、攪拌期間中20℃のスプレーの反応補助液をスプレーする。
Example 14
This example is basically the same as that of Example 1, but the spray temperature of the reaction auxiliary liquid is different. Specifically, the reaction auxiliary liquid of 20 ° C. is sprayed during the stirring period.

実施例15
本実施例は実施例1と基本的に同じであるが、反応補助液のスプレー温度が異なり、具体
的には、攪拌期間中35℃の温度の反応補助液をスプレーする。
Example 15
This example is basically the same as that of Example 1, but the spray temperature of the reaction auxiliary liquid is different. Specifically, the reaction auxiliary liquid having a temperature of 35 ° C. is sprayed during the stirring period.

実施例16
本実施例は実施例1と基本的に同じであるが、反応補助液のスプレー投与量が異なり、具
体的には、攪拌中の前の3分間120ml/分でスプレーし、次に35ml/分に調整し
てスプレーし、そしてスプレーが終了するまでに5ml/分の速度で減らし、12分間攪
拌してから、攪拌を停止し、暗所に置いて反応させる。
Example 16
This Example is basically the same as Example 1, but the spray dose of the reaction aid is different, specifically, spray at 120 ml / min for 3 minutes before stirring, then 35 ml / min. Adjust and spray, then reduce at a rate of 5 ml / min by the end of the spray, stir for 12 minutes, then stop stirring and place in the dark for reaction.

実施例17
本実施例は実施例1と基本的に同じであるが、反応補助液のスプレー投与量が異なり、具
体的には、攪拌中の前の3分間180ml/分でスプレーし、次に60ml/分に調整し
てスプレーし、そしてスプレーが終了するまでに5ml/分の速度で減らし、12分間攪
拌した後、攪拌を停止し、暗所に置いて反応させる。
Example 17
This Example is basically the same as Example 1, but the spray dose of the reaction aid is different, specifically, spray at 180 ml / min for 3 minutes before stirring, then 60 ml / min. Adjust and spray, then reduce at a rate of 5 ml / min by the end of the spray, stir for 12 minutes, then stop stirring and place in the dark for reaction.

実施例18
本実施例は実施例1と基本的に同じであるが、スラリー反応溶液中の蒸留水の添加比率が
異なり、具体的には、均一に混合した物の総体積の30%の蒸留水を添加した。
Example 18
This example is basically the same as that of Example 1, but the addition ratio of distilled water in the slurry reaction solution is different. Specifically, 30% of the total volume of the uniformly mixed product is added with distilled water. did.

実施例19
本実施例は実施例1と基本的に同じであるが、スラリー反応溶液中の蒸留水の添加比率が
異なり、具体的には、均一に混合した物の総体積の50%の蒸留水を添加した。
Example 19
This example is basically the same as that of Example 1, but the addition ratio of distilled water in the slurry reaction solution is different. Specifically, 50% of the total volume of the uniformly mixed product is added with distilled water. did.

有毒有機物土壌の修復に関する実験的研究
試験1:
試験サンプルの調製:
上記方法が有毒有機物の土壌に対する修復処理に及ぼす効果を調べると、この都市の農地
の土壌を試験サンプルとして選択し、風乾後の土壌を十分に研磨し均一に混合して、その
後該サンプル土壌中に14種類の多環芳香族炭化水素のアセトン溶液を加え、十分に均一
に混合し、アセトンが完全に揮発した後、土壌を半年以上熟成させ、14種類の多環芳香
族炭化水素であるナフタレン、アセナフチレン、アセナフテン、フェナントレン、アント
ラセン、フルオランテン、ピレン、ベンゾ[a]アントラセン、クリセン、ベンゾ[b]フル
オランテン、ベンゾ[a]ピレン、ジベンゾ[a,b]アントラセン、ベンゾ[g,h,i]ペリ
レン、インデノ[1,2,3〜cd]ピレンの含有量がそれぞれ3.212、0.784、0
.595、2.516、4.986、5.326、7.329、17.235、19.3
36、9.903、17.512、14.201、26.098、12.745mg/k
gであり、多環芳香族炭化水素の総含有量が141.778mg/kgである。
試験のグループ化:
それぞれ実施例1〜3を使用して、HPLC/UV〜FLD分析により上記の同じ質量の
サンプル土壌を修復処理し、HPLC/UV〜FLD分析条件として、クロマトグラフィ
ーカラムはФ分析条件:250mm Inertsil ODS−PAHs専用逆相クロ
マトグラフィーカラムであり、移動相がメタノール−水であり、勾配溶出および紫外線・
蛍光検出器の直列接続の方法によりPAHsを分離する。紫外線および蛍光検出はどちら
も波長切り替えを採用し、紫外線検出器は二波長検出モードをオンにする。移動相の流量
が1.0mL/分であり、カラム温度が40℃であり、注入量が20サンプルであり、各
修復後の土壌中の多環芳香族炭化水素の除去率をそれぞれ測定した。
テスト結果:土壌中の14種類の多環芳香族炭化水素の除去率を測定し、テスト結果を表
1に示す。
表1 有毒有機汚染土壌中の14種類の多環芳香族炭化水素の除去率

Figure 2022001363

試験結論:以上の表から分かるように、本方法の実施例1〜3は、すべて有毒有機汚染土
壌中の多環芳香族炭化水素を効果的に除去でき、除去効率が高い。 Experimental Study on Restoration of Toxic Organic Soil Test 1:
Preparation of test sample:
When the effect of the above method on the restoration treatment of toxic organic substances on soil was investigated, the soil of the farmland in this city was selected as a test sample, the air-dried soil was thoroughly polished and mixed uniformly, and then in the sample soil. Anthracene solution of 14 kinds of polycyclic aromatic hydrocarbons is added to the mixture, mixed sufficiently uniformly, and after the acetone is completely volatilized, the soil is aged for more than half a year, and 14 kinds of polycyclic aromatic hydrocarbons, naphthalene. , Asenaftylene, Asenaften, Pyrene, Anthracene, Fluoranthene, Pyrene, Benzo [a] Anthracene, Chrysen, Benzo [b] Fluoranten, Benzo [a] Pyrene, Dibenzo [a, b] Anthracene, Benzo [g, h, i] Perylene , Indeno [1,2,3 to cd] Pyrene content is 3.212, 0.784, 0, respectively
.. 595, 2.516, 4.986, 5.326, 7.329, 17.235, 19.3
36, 9.903, 17.512, 14.201, 26.098, 12.745 mg / k
The total content of polycyclic aromatic hydrocarbons is 141.778 mg / kg.
Exam grouping:
Using Examples 1 to 3 respectively, the sample soil of the same mass described above was repaired by HPLC / UV to FLD analysis, and as the HPLC / UV to FLD analysis conditions, the chromatography column was Ф analysis conditions: 250 mm Intersil ODS. -A reverse phase chromatography column dedicated to PAHs, the mobile phase is methanol-water, gradient elution and ultraviolet light.
PAHs are separated by the method of series connection of fluorescence detectors. Both UV and fluorescence detection employ wavelength switching, and the UV detector turns on dual wavelength detection mode. The flow rate of the mobile phase was 1.0 mL / min, the column temperature was 40 ° C., the injection amount was 20 samples, and the removal rate of polycyclic aromatic hydrocarbons in the soil after each restoration was measured.
Test results: The removal rates of 14 types of polycyclic aromatic hydrocarbons in the soil were measured, and the test results are shown in Table 1.
Table 1 Removal rate of 14 types of polycyclic aromatic hydrocarbons in toxic organic polluted soil
Figure 2022001363

Test conclusion: As can be seen from the above table, all of Examples 1 to 3 of this method can effectively remove polycyclic aromatic hydrocarbons in toxic organic polluted soil, and the removal efficiency is high.

試験2:
実施例4では、実施例1の方法に使用される装置を提供し、その除去効率を研究し、上記
と同様な試験方法により、測定作業量を考慮した上で、そのうちの7種類の多環芳香族炭
化水素の除去率を測定し、測定結果が以下のとおりである。
表2 実施例2 有毒有機汚染土壌中の多環芳香族炭化水素の除去率比較表

Figure 2022001363
試験結論:以上の表から分かるように、上記装置の攪拌・混合により、B剤の添加を制御
して、スラリー反応液の混合均一性を高め、多環芳香族炭化水素の除去効果を向上させる
。 Test 2:
In Example 4, the apparatus used for the method of Example 1 is provided, the removal efficiency thereof is studied, the measurement work amount is taken into consideration by the same test method as described above, and seven kinds of polycycles thereof are used. The removal rate of aromatic hydrocarbons was measured, and the measurement results are as follows.
Table 2 Example 2 Comparison table of removal rates of polycyclic aromatic hydrocarbons in toxic organic polluted soil
Figure 2022001363
Test conclusion: As can be seen from the above table, the addition of agent B is controlled by stirring and mixing of the above device to improve the mixing uniformity of the slurry reaction solution and improve the effect of removing polycyclic aromatic hydrocarbons. ..

試験3:
実施例5〜19では、実施例1の方法に基づく最適化された改良処理方法を提供し、その
除去効率を研究し、上記と同様な試験方法により、測定作業量を考慮した上で、そのうち
の7種類の多環芳香族炭化水素の除去率を測定し、測定結果が以下のとおりである。
1)改良された複合酸化剤の修復効果の研究
実施例1と実験的に対照し、テスト結果を表3に示す。
表3 実施例5との対照例 多環芳香族炭化水素の除去率の比較表

Figure 2022001363

結論:上記実施例5と実施例1の比較から分かるように、酸化剤成分および混合方式など
が異なると土壌修復効果に対して一定の影響を与え、そのうちに本発明の改良された複合
酸化剤の処理効果がより好ましい。 Exam 3:
In Examples 5 to 19, an optimized improved treatment method based on the method of Example 1 is provided, the removal efficiency thereof is studied, and the measurement work amount is taken into consideration by the same test method as described above. The removal rates of the seven types of polycyclic aromatic hydrocarbons were measured, and the measurement results are as follows.
1) Study on the repair effect of the improved composite oxidant Table 3 shows the test results in experimental contrast with Example 1.
Table 3 Control example with Example 5 Comparison table of removal rate of polycyclic aromatic hydrocarbons

Figure 2022001363

Conclusion: As can be seen from the comparison between Example 5 and Example 1, different oxidant components, mixing methods, etc. have a certain effect on the soil repair effect, and the improved composite oxidant of the present invention is used. The treatment effect of is more preferable.

2)異なる比率のスラリー反応溶液の修復効果に対する影響の研究
実施例6、7ではそれぞれ土壌の処理試験を行い、実施例3と対照し、テスト結果を表4
に示す。
表4 実施例6、7 多環芳香族炭化水素の除去率の比較表

Figure 2022001363
結論:上記実施例6、7と実施例5の比較から分かるように、スラリー反応溶液の比率が
異なると、修復効果に対して影響を与え、そのうちに実施例5の処理効果がより好ましい
。 2) Research on the effect of different ratios of slurry reaction solutions on the repair effect In Examples 6 and 7, soil treatment tests were conducted, respectively, and compared with Example 3, the test results are shown in Table 4.
Shown in.
Table 4 Examples 6 and 7 Comparison table of removal rates of polycyclic aromatic hydrocarbons

Figure 2022001363
Conclusion: As can be seen from the comparison between Examples 6 and 7 and Example 5, different ratios of the slurry reaction solutions affect the repair effect, and the treatment effect of Example 5 is more preferable.

3)異なる比率のA剤の修復効果に対する影響の研究
実施例8、9ではそれぞれ土壌の処理試験を行い、実施例3と対照し、テスト結果を表5
に示す。
表5 実施例8、9 多環芳香族炭化水素の除去率の比較表


Figure 2022001363
結論:上記実施例8、9と実施例5の比較から分かるように、A剤の配合比率が異なると
土壌修復に対して一定の影響を与え、そのうちに実施例5の処理効果がより好ましい。 3) Research on the effect of agents A in different ratios on the repair effect In Examples 8 and 9, soil treatment tests were conducted, respectively, and compared with Example 3, the test results are shown in Table 5.
Shown in.
Table 5 Example 8 and 9 Comparison table of removal rates of polycyclic aromatic hydrocarbons


Figure 2022001363
Conclusion: As can be seen from the comparison between Examples 8 and 9 and Example 5, different blending ratios of Agent A have a certain effect on soil repair, and the treatment effect of Example 5 is more preferable.

4)異なる比率のB剤の修復効果に対する影響の研究
実施例10、11ではそれぞれ土壌の処理試験を行い、実施例5と対照し、テスト結果を
表6に示す。
表6 実施例8、9 多環芳香族炭化水素の除去率の比較表

Figure 2022001363
結論:上記実施例10、11と実施例5の比較から分かるように、B剤の配合比率が異な
ると土壌修復に対して一定の影響を与え、そのうちに実施例5の処理効果がより好ましい
。 4) Study on the effect of agents B in different ratios on the repair effect In Examples 10 and 11, soil treatment tests were conducted, respectively, and compared with Example 5, the test results are shown in Table 6.
Table 6 Comparison table of removal rates of polycyclic aromatic hydrocarbons in Examples 8 and 9.

Figure 2022001363
Conclusion: As can be seen from the comparison between Examples 10 and 11 and Example 5, different blending ratios of Agent B have a certain effect on soil repair, and the treatment effect of Example 5 is more preferable.

5)異なる比率の反応補助液の修復効果に対する影響の研究
実施例12、13ではそれぞれ土壌の処理試験、以実施例5と対照し、テスト結果を表7
に示す。
表7 実施例10、11 多環芳香族炭化水素の除去率の比較表


Figure 2022001363
結論:上記実施例12、13と実施例5の比較から分かるように、反応補助液の比率が異
なると、土壌修復に対して一定の影響を与え、そのうちに実施例5の処理効果がより好ま
しい。 5) Study of the effect of different ratios of reaction aids on the repair effect In Examples 12 and 13, the soil treatment test was compared with the following Example 5, and the test results are shown in Table 7.
Shown in.
Table 7 Comparison table of removal rates of polycyclic aromatic hydrocarbons in Examples 10 and 11


Figure 2022001363
Conclusion: As can be seen from the comparison between Examples 12 and 13 and Example 5, different ratios of the reaction aids have a certain effect on soil repair, and the treatment effect of Example 5 is more preferable. ..

6)異なる反応補助液の温度の修復効果に対する影響の研究
実施例14、15では、それぞれ土壌の処理試験を行い、実施例5と対照し、テスト結果
を表8に示す。
表8 実施例12、13 多環芳香族炭化水素の除去率の比較表


Figure 2022001363
結論:上記実施例14、15と実施例5の比較から分かるように、反応補助液の温度が異
なると土壌修復に対して一定の影響を与え、そのうちに実施例5の処理効果がより好まし
い。 6) Study on the effect of different reaction aids on the temperature repair effect In Examples 14 and 15, soil treatment tests were conducted, respectively, and compared with Example 5, the test results are shown in Table 8.
Table 8 Comparison table of removal rates of polycyclic aromatic hydrocarbons in Examples 12 and 13.


Figure 2022001363
Conclusion: As can be seen from the comparison between Examples 14 and 15 and Example 5, different temperatures of the reaction aids have a certain effect on soil repair, and the treatment effect of Example 5 is more preferable.

7)異なる反応補助液のスプレー量の修復効果に対する影響の研究
実施例16、17では、それぞれ土壌の処理試験を行い、実施例5と対照し、テスト結果
を表9に示す。
表9 実施例16、17 多環芳香族炭化水素の除去率の比較表

Figure 2022001363
結論:上記実施例16、17と実施例5の比較から分かるように、反応補助液のスプレー
量が異なると土壌修復に対して一定の影響を与え、そのうちに実施例5の処理効果がより
好ましい。 7) Study on the effect of different spray amounts of reaction aids on the repair effect In Examples 16 and 17, soil treatment tests were conducted, respectively, and compared with Example 5, the test results are shown in Table 9.
Table 9 Examples 16 and 17 Comparison table of removal rates of polycyclic aromatic hydrocarbons

Figure 2022001363
Conclusion: As can be seen from the comparison between Examples 16 and 17 and Example 5, different spray amounts of the reaction auxiliary liquid have a certain effect on soil repair, and the treatment effect of Example 5 is more preferable. ..

8)異なるスラリー反応溶液の水希釈度の修復効果に対する影響の研究
実施例18、19ではそれぞれ土壌の処理試験を行い、実施例5と対照し、テスト結果を
表10に示す。
表10 実施例18、19 多環芳香族炭化水素の除去率の比較表

Figure 2022001363

結論:上記実施例18、19と実施例5の比較から分かるように、スラリー反応溶液の水
希釈度が異なると土壌修復に対する影響が小さく、そのうちに実施例5の処理効果がより
好ましい。 8) Study on the effect of different slurry reaction solutions on the repair effect of water dilution In Examples 18 and 19, soil treatment tests were performed, respectively, and compared with Example 5, the test results are shown in Table 10.
Table 10 Examples 18 and 19 Comparison table of removal rates of polycyclic aromatic hydrocarbons
Figure 2022001363

Conclusion: As can be seen from the comparison between Examples 18 and 19 and Example 5, the effect on soil repair is small when the water dilution of the slurry reaction solution is different, and the treatment effect of Example 5 is more preferable.

Claims (7)

ステップ1:有毒有機汚染土壌のプレ処理
収集された有毒有機汚染土壌から石および他の破片を除去した後、研磨・破壊し20メッ
シュのふるいを通過させ、ふるいにかけた土壌を用意するステップと、
ステップ2:有毒有機汚染土壌の処理
前記複合酸化剤はA剤とB剤とを複合して使用され、A剤をふるいにかけた土壌に加え攪
拌してスラリーを調製し、B剤を加えてスラリー反応液を得て、前記スラリー反応液を2
5〜30℃の室温で静置し4日間反応させ、スラリー反応液中の過硫酸イオン濃度が0.
05〜0.6mol/Lであり、スラリー反応液中の土壌―水の比率が1:1〜4であり
、反応が終わった後土壌中の有毒有機物を除去し、前記B剤が過硫酸イオン、第一鉄イオ
ン、シュウ酸イオンであるステップと、
を含む、ことを特徴とする複合酸化剤を用いた高効率酸化により土壌中の有毒有機物を除
去する方法。
Step 1: Pretreatment of toxic organic contaminated soil After removing stones and other debris from the collected toxic organic contaminated soil, grind and destroy it and let it pass through a 20 mesh sieve to prepare the sifted soil.
Step 2: Treatment of toxic organically contaminated soil The compound oxidizing agent is used in combination with agent A and agent B, and agent A is added to the sifted soil and stirred to prepare a slurry, and agent B is added to the slurry. Obtain a reaction solution, and use 2 of the slurry reaction solution.
The mixture was allowed to stand at room temperature of 5 to 30 ° C. for 4 days, and the concentration of persulfate ion in the slurry reaction solution was 0.
It is 05 to 0.6 mol / L, the soil-water ratio in the slurry reaction solution is 1: 1 to 4, and after the reaction is completed, toxic organic substances in the soil are removed, and the agent B is persulfate ion. , Ferrite ion, oxalate ion, and
A method for removing toxic organic matter in soil by high-efficiency oxidation using a composite oxidizing agent, which comprises.
前記A剤が過酸化カルシウムであり、請求項1に記載の方法において、風乾後の土壌1k
gに対して、A剤の添加量が5〜60gである、ことを特徴とする請求項1に記載の方法
The agent A is calcium peroxide, and in the method according to claim 1, the soil 1k after air-drying.
The method according to claim 1, wherein the amount of the agent A added is 5 to 60 g with respect to g.
請求項1に記載の方法において、風乾後の土壌1kgに対して、A剤の添加量が20〜4
0gである、ことを特徴とする請求項2に記載の方法。
In the method according to claim 1, the amount of agent A added is 20 to 4 with respect to 1 kg of soil after air drying.
The method according to claim 2, wherein the weight is 0 g.
前記B剤が過硫酸イオン、第一鉄イオン、シュウ酸イオンであり、
前記シュウ酸イオンをシュウ酸カリウムの形で加え、前記第一鉄イオンを硫酸第一鉄の形
で加え、前記過硫酸イオンを過硫酸ナトリウムの形で加える、ことを特徴とする請求項1
に記載の方法。
The agent B is persulfate ion, ferrous ion, and oxalate ion.
Claim 1 is characterized in that the oxalate ion is added in the form of potassium oxalate, the ferrous ion is added in the form of ferrous sulfate, and the persulfate ion is added in the form of sodium persulfate.
The method described in.
前記スラリー反応液中の過硫酸イオンの濃度が0.2〜0.4mol/Lである、ことを
特徴とする請求項1に記載の方法。
The method according to claim 1, wherein the concentration of persulfate ion in the slurry reaction solution is 0.2 to 0.4 mol / L.
前記第一鉄イオンと過硫酸イオンのモル比が1:1〜16であり、第一鉄イオンとシュウ
酸イオンのモル比が1:1〜5である、ことを特徴とする請求項5に記載の方法。
The fifth aspect of claim 5, wherein the molar ratio of ferrous ion to persulfate ion is 1: 1 to 16, and the molar ratio of ferrous ion to oxalate ion is 1: 1 to 5. The method described.
請求項1に記載の方法において、多環芳香族炭化水素によって代表される有毒有機汚染物
は、それぞれ、ナフタレン、アセナフチレン、アセナフテン、フェナントレン、アントラ
セン、フルオランテン、ピレン、ベンゾ[a]アントラセン、クリセン、ベンゾ[b]フルオ
ランテン、ベンゾ[a]ピレン、ジベンゾ[a,b]アントラセン、ベンゾ[g,h,i]ペリレ
ンおよびインデノ[1,2,3〜cd]ピレンである、ことを特徴とする請求項1に記載の方
法。
In the method according to claim 1, the toxic organic contaminants represented by polycyclic aromatic hydrocarbons are naphthalene, acenaphtylene, acenaphthalene, phenanthrene, anthracene, fluorantene, pyrene, benzo [a] anthracene, chrysen, and benzo, respectively. [B] Fluorentene, benzo [a] pyrene, dibenzo [a, b] anthracene, benzo [g, h, i] perylene and indeno [1,2,3 to cd] pyrene. The method according to 1.
JP2021009990A 2020-06-22 2021-01-26 A method for removing toxic organic matter in soil by high-efficiency oxidation using a composite oxidant. Active JP6978649B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010576256.2A CN111760899B (en) 2020-06-22 2020-06-22 Feeding improvement method for repairing toxic organic contaminated soil through oxidant compounding oxidation
CN202010576256.2 2020-06-22

Publications (2)

Publication Number Publication Date
JP6978649B1 JP6978649B1 (en) 2021-12-08
JP2022001363A true JP2022001363A (en) 2022-01-06

Family

ID=72721853

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2021006775A Active JP7017679B2 (en) 2020-06-22 2021-01-19 Forced Ventilation for Restoring Organically Contaminated Soil-Spiral Stirring Heat Desorption Device
JP2021009993A Active JP7001881B2 (en) 2020-06-22 2021-01-26 Integrated treatment method for fertilization, growth promotion and toxicity reduction of soil of agricultural land contaminated with toxic organic matter
JP2021009990A Active JP6978649B1 (en) 2020-06-22 2021-01-26 A method for removing toxic organic matter in soil by high-efficiency oxidation using a composite oxidant.
JP2021064601A Active JP6966679B1 (en) 2020-06-22 2021-04-06 A method of effectively removing USEPA PAHs in agricultural land soil by acclimatizing resident degrading bacterial communities

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2021006775A Active JP7017679B2 (en) 2020-06-22 2021-01-19 Forced Ventilation for Restoring Organically Contaminated Soil-Spiral Stirring Heat Desorption Device
JP2021009993A Active JP7001881B2 (en) 2020-06-22 2021-01-26 Integrated treatment method for fertilization, growth promotion and toxicity reduction of soil of agricultural land contaminated with toxic organic matter

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021064601A Active JP6966679B1 (en) 2020-06-22 2021-04-06 A method of effectively removing USEPA PAHs in agricultural land soil by acclimatizing resident degrading bacterial communities

Country Status (2)

Country Link
JP (4) JP7017679B2 (en)
CN (1) CN111760899B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368905A (en) * 2021-05-18 2022-11-22 中国石油化工股份有限公司 Composition with function of degrading organic pollutants and application thereof
CN113652221B (en) * 2021-08-23 2023-05-05 南京工业大学 Fracturing fluid for enhancing treatment efficiency of polycyclic aromatic hydrocarbon in hypotonic soil and preparation method thereof
CN115433584B (en) * 2022-08-17 2024-04-19 吉林建筑大学 Synergistic in-situ repair method for calcium peroxide-sodium persulfate in organic composite polluted site

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345800A (en) * 2016-09-12 2017-01-25 南京农业大学 Method for removing polycyclic aromatic hydrocarbons in soil by using persulfate-calcium peroxide through compound oxidation
CN109266359A (en) * 2018-09-11 2019-01-25 四川长虹格润环保科技股份有限公司 Petroleum hydrocarbon contaminated soil repairs medicament and its application method
CN109304362A (en) * 2018-10-12 2019-02-05 南京农业大学 A method of polycyclic aromatic hydrocarbon composite pollution soil is repaired using potentiometric titrations high-level oxidation technology
CN109382405A (en) * 2017-08-11 2019-02-26 上海环境节能工程股份有限公司 The method of polycyclic aromatic hydrocarbon in persulfate-calper calcium peroxide combined oxidation rehabilitating soil

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152972A (en) * 1974-05-31 1975-12-09
JP3669238B2 (en) * 1999-12-27 2005-07-06 三浦工業株式会社 Method for decomposing chlorinated organic compounds
US6843618B2 (en) * 2000-12-18 2005-01-18 William L. Lundy In situ subsurface decontamination method
JP2005144270A (en) 2003-11-12 2005-06-09 Kurita Water Ind Ltd Method and apparatus for treating dioxins-containing solid matter
JP4518382B2 (en) 2004-05-24 2010-08-04 株式会社神鋼環境ソリューション Method and apparatus for removing organohalogen compounds
JP2009066494A (en) 2007-09-11 2009-04-02 Takenaka Komuten Co Ltd System for making contaminated soil harmless
WO2009157387A1 (en) * 2008-06-23 2009-12-30 三菱瓦斯化学株式会社 Agent for purifying soil and/or underground water and purification method
KR20100009450A (en) * 2008-10-24 2010-01-27 (주) 켐스필드코리아 The contaminated soil remediation composition and the soil remediation technique which uses this
JP2010152972A (en) 2008-12-25 2010-07-08 Toshiba Storage Device Corp Data storage device and method of manufacturing the same
CN101972773B (en) 2010-11-23 2012-04-18 南京农业大学 System for restoring organic contaminated soil by forced ventilation and spiral stirring thermal desorption
JP2012161768A (en) 2011-02-09 2012-08-30 Nishimatsu Constr Co Ltd Apparatus for cleaning contaminated soil and method for cleaning soil
WO2013150660A1 (en) 2012-04-04 2013-10-10 G-8 International Trading 株式会社 A treatment device for waste matter containing heavy metals and a method for treating waste matter containing heavy metals using same
JP6221613B2 (en) 2013-10-16 2017-11-01 宇部興産株式会社 Gas processing apparatus and gas processing method
CN104650007B (en) * 2013-11-19 2016-08-31 万华化学集团股份有限公司 A kind of method preparing epoxide ring dodecane continuously
GB201406538D0 (en) 2014-04-11 2014-05-28 Thermtech Holding As Method of treating a material
CN104056854B (en) * 2014-06-25 2016-05-11 湖南恒凯环保科技投资有限公司 A kind of for administering Pb, As, Cu, combining of Cd combined contamination soil stablizing mineralising renovation agent and using method thereof
CN104327858B (en) * 2014-09-22 2017-09-29 广西大学 A kind of soil heavy metal combined stabilizer and its passivating method to heavy metal-polluted soil
CN104445570B (en) * 2014-10-22 2016-11-02 同济大学 A kind of persulfate-calper calcium peroxide dual oxidants removes the method for multiring aromatic hydrocarbon substance methyl naphthalene
CN105565465B (en) * 2015-12-15 2018-05-29 广东工业大学 A kind of method of microwave induced carried active carbon catalysis persulfate processing phthalic acid ester waste water
CN105710125A (en) * 2016-04-21 2016-06-29 济南大学 Chemical repairing method for organic pollution soil
CN106746068B (en) * 2016-11-29 2020-11-17 广东工业大学 Treatment method of wastewater containing high-concentration organic phosphorus
CN107008745A (en) * 2017-04-25 2017-08-04 南京农业大学 A kind of petroleum hydrocarbon contaminated soil repairs medicament and application method
CN108213064A (en) * 2017-12-05 2018-06-29 中国科学院南京土壤研究所 A kind of medicament of in-situ immobilization high concentration polycyclic aromatic hydrocarbon pollution and its application
CN108046404B (en) * 2017-12-20 2020-04-10 浙江省环境保护科学设计研究院 In-situ chemical oxidation remediation method for organic-polluted underground water
CN108380663A (en) * 2018-04-25 2018-08-10 上海化工研究院有限公司 The method that class Fenton oxidation method removes half volatile organic contaminant in soil
CN108811579A (en) * 2018-06-13 2018-11-16 南京农业大学 A kind of method that agricultural land soil soil fertility is restored after chemical oxidation is repaired
CN109570223A (en) * 2018-11-29 2019-04-05 中冶南方都市环保工程技术股份有限公司 A kind of method that chemical oxidation repairs polycyclic aromatic hydrocarbon pollution
CN110434165A (en) * 2019-07-26 2019-11-12 天津绿缘环保工程股份有限公司 The restorative procedure of places polluted by polynuclear aromatic hydrocarbons and application
CN110451628A (en) * 2019-07-30 2019-11-15 济南大学 A kind of restorative procedure of trichloro ethylene polluted underground water
CN110560473B (en) * 2019-08-21 2020-07-07 生态环境部环境规划院 Method for stabilizing soil fluoride and arsenic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345800A (en) * 2016-09-12 2017-01-25 南京农业大学 Method for removing polycyclic aromatic hydrocarbons in soil by using persulfate-calcium peroxide through compound oxidation
CN109382405A (en) * 2017-08-11 2019-02-26 上海环境节能工程股份有限公司 The method of polycyclic aromatic hydrocarbon in persulfate-calper calcium peroxide combined oxidation rehabilitating soil
CN109266359A (en) * 2018-09-11 2019-01-25 四川长虹格润环保科技股份有限公司 Petroleum hydrocarbon contaminated soil repairs medicament and its application method
CN109304362A (en) * 2018-10-12 2019-02-05 南京农业大学 A method of polycyclic aromatic hydrocarbon composite pollution soil is repaired using potentiometric titrations high-level oxidation technology

Also Published As

Publication number Publication date
JP7001881B2 (en) 2022-01-20
JP6978649B1 (en) 2021-12-08
JP7017679B2 (en) 2022-02-09
JP2022001362A (en) 2022-01-06
CN111760899A (en) 2020-10-13
JP6966679B1 (en) 2021-11-17
JP2022001633A (en) 2022-01-06
CN111760899B (en) 2021-08-24
JP2022001364A (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP6978649B1 (en) A method for removing toxic organic matter in soil by high-efficiency oxidation using a composite oxidant.
CN106345800B (en) Method for removing polycyclic aromatic hydrocarbons in soil by persulfate-calcium peroxide composite oxidation
Kulkarni Removal of organic matter from domestic waste water by adsorption
Theivarasu et al. Removal of Malachite Green from Aqueous Solution by Activated Carbon Developed from Cocoa (Theobroma Cacao) Shell‐A Kinetic and Equilibrium Studies
CN204039214U (en) A kind of Chemical Manufacture waste water treating and reutilizing device
CN101474630A (en) Cyclodextrin eluting/Fenton oxidation degradation method for polychlorinated biphenyl in soil
CN107098537B (en) Municipal wastewater treatment process
CN108746195A (en) Elution is with oxidative degradation in the prosthetic device and method of the organic polluted soil of one
CN103143558A (en) Anaerobic-aerobiotic repairing method of TNT (Trinitrotoluene) contaminated soil
JP7305089B1 (en) A device for synchronous storage of energy by recovering organic matter from high-salinity persistent organic wastewater
Frost et al. Organic micropollutants in Swiss sewage sludge
CN106745443A (en) A kind of extracting process of low concentration of water sample extraction device to phenol in water quality
Aćimović et al. Electrochemical oxidation of the polycyclic aromatic hydrocarbons in polluted concrete of the residential buildings
Li et al. Influence of sludge organic matter on elimination of polycyclic aromatic hydrocarbons (PAHs) from waste activated sludge by ozonation: Controversy over aromatic compounds
CN112547032B (en) Ball-milling sulfhydrylation biochar and preparation method and application thereof
CN2781804Y (en) Nano photocatalysis degrading appts. for residualpesticide
Fam et al. Precursors of non-volatile chlorination by-products
CN111018149B (en) Fluorescer effluent treatment plant
CN108689578A (en) A kind of sludge rapid draing processing unit
CN209515217U (en) A kind of efficient radioactive waste treatment facility
CN107140745A (en) A kind of trade effluent biofilm treatment apparatus
CN108467126B (en) A kind of quick processing equipment of high-concentration industrial organic waste water
CN108188165B (en) Method for degrading chloramphenicol antibiotics in soil or clay
CN106316029A (en) Sludge conditioning and gas collecting integrated device and sludge conditioning and gas collecting method
Jiang et al. Ozone degradation of residual carbon in biological samples using microwave irradiation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210126

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211006

R150 Certificate of patent or registration of utility model

Ref document number: 6978649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150