WO2013150660A1 - A treatment device for waste matter containing heavy metals and a method for treating waste matter containing heavy metals using same - Google Patents

A treatment device for waste matter containing heavy metals and a method for treating waste matter containing heavy metals using same Download PDF

Info

Publication number
WO2013150660A1
WO2013150660A1 PCT/JP2012/059822 JP2012059822W WO2013150660A1 WO 2013150660 A1 WO2013150660 A1 WO 2013150660A1 JP 2012059822 W JP2012059822 W JP 2012059822W WO 2013150660 A1 WO2013150660 A1 WO 2013150660A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
heavy metals
tobermorite
treatment
liquid
Prior art date
Application number
PCT/JP2012/059822
Other languages
French (fr)
Japanese (ja)
Inventor
松井 三郎
Original Assignee
G-8 International Trading 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G-8 International Trading 株式会社 filed Critical G-8 International Trading 株式会社
Priority to JP2014508992A priority Critical patent/JP6872101B2/en
Priority to PCT/JP2012/059822 priority patent/WO2013150660A1/en
Publication of WO2013150660A1 publication Critical patent/WO2013150660A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/004Sludge detoxification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/20Agglomeration, binding or encapsulation of solid waste
    • B09B3/25Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Definitions

  • the present invention treats waste containing heavy metals such as sewage sludge, industrial sludge, medical waste, household waste, and industrial waste using high-temperature and high-pressure steam, and after the treatment, it is treated and fixed.
  • the present invention relates to an apparatus for treating waste containing heavy metals and a method for treating waste containing heavy metals using the same, which discharges and separates a mixture containing a waste containing heavy metals and a liquid. .
  • a method for treating organic waste for example, a method of treating waste in high-temperature and high-pressure steam in a sealed container is known (see, for example, Patent Document 1).
  • the conventional method of treating waste with steam there is almost no generation of harmful nitrogen oxides, sulfur oxides, etc. as in the case of incineration treatment, and there is no problem of environmental pollution and safe waste The process could be expected.
  • the processed solid matter and liquid are in a mixed state, and there is a problem that transportation and storage after taking out the processed waste is inconvenient and difficult to handle, and Separation of solids and liquids processed using a separator after processing requires a complicated process and requires a lot of labor. The processing takes a long time.
  • sewage sludge discharged from sewage treatment facilities contains pathogenic microorganisms and heavy metals, and in order to avoid environmental risks caused by them, it can be treated and treated by various methods such as concentration, digestion, dehydration, composting, incineration, and melting. Disposal has been done.
  • any of these treatment methods is a method of reducing or discarding, a consumption type technology that inputs a large amount of electric power or thermal energy, and a method that has a large impact on the environment, such as being a greenhouse gas emission source. This is a cause of squeezing the local economy because of high maintenance costs rather than processing according to the principle of resource recycling.
  • Non-Patent Document 1 a soil purification method by solidifying heavy metals has been proposed by treating inorganic waste with lime addition and processing under subcritical water conditions.
  • Non-Patent Document 2 a soil purification method by solidifying heavy metals has been proposed by treating inorganic waste with lime addition and processing under subcritical water conditions.
  • Non-Patent Document 2 a soil purification method by solidifying heavy metals has been proposed by treating inorganic waste with lime addition and processing under subcritical water conditions.
  • concrete resource regeneration it is safe to process and immobilize the heavy metals to suppress elution, simplify the structure of the processing equipment, and it seems easy to operate and low cost.
  • New resource recycling technology has not been introduced.
  • the present invention has been made in view of the above-described conventional problems, and a first object of the present invention is to safely treat waste containing heavy metals using high-temperature and high-pressure steam with a single device.
  • the heavy metal is immobilized to suppress elution, and after the treatment, the mixture containing the waste and liquid in which the heavy metal is immobilized can be discharged and separated and recovered by a simple operation. It is an object of the present invention to provide an apparatus for treating waste containing heavy metals that is simple, easy to operate, and low in cost.
  • a second object of the present invention is to provide a mixture containing waste and liquid, in which waste containing heavy metals is simply treated using high-temperature and high-pressure steam, and the heavy metals are immobilized to suppress elution. It is an object of the present invention to provide a method for treating waste containing heavy metals that can be discharged and separated and recovered by a simple operation.
  • the invention according to claim 1 of the present invention for solving the above-mentioned problems is characterized in that a waste containing heavy metals is contained therein, and at least the heavy metals are treated with a 5CaO ⁇ 6SiO 2 ⁇ 5H 2 O crystal (tobermorite) structure.
  • a sealed container having a closed space for containing a sufficient amount of Ca component raw material and SiO 2 component raw material to form 5CaO.6SiO 2 .5H 2 O crystal (tobermorite) for containment in the sealed container, Steam ejection means for ejecting high-temperature and high-pressure steam for treating the waste, the Ca component raw material and the SiO 2 component raw material, and cooling means for cooling and liquefying the steam in the sealed container after the treatment; Waste and liquefaction containing a tobermorite containing a discharge port provided on the bottom side in a sealed container and having an opening and closing mechanism, and the heavy metals treated from the discharge port
  • a waste treatment apparatus containing heavy metals comprising: a separation / recovery means for separating the waste and the liquid from the discharged mixture.
  • separating and collecting means Separates and collects the waste and the liquid while moving by separating and collecting means for separating the waste and the liquid after the mixture is once collected in a collection container and / or supplying the mixture to a belt conveyor device. It is a waste processing apparatus containing heavy metals, which is a separation and recovery means.
  • the invention according to claim 3 of the present invention is the treatment method according to claim 2, wherein the content of the Ca component (A-1) and the content of the SiO 2 component (A) previously contained in the waste containing heavy metals. -2) is analyzed, and 5CaO ⁇ 6SiO 2 ⁇ 5H 2 O crystals (tobermorite) are formed during the treatment to contain at least the heavy metals in the 5CaO ⁇ 6SiO 2 ⁇ 5H 2 O crystal (tobermorite) structure.
  • the amount of Ca component (B-1) and the amount of SiO 2 component (B-2) sufficient to be calculated are calculated, and the waste containing heavy metals is calculated by the following formulas (1) and (2).
  • the addition amount (C-1) of the Ca component raw material to be added and the addition amount (C-2) of the SiO 2 component raw material are obtained, and the Ca component raw material (C-1) and the SiO 2 component raw material ( C-2) is added to the treatment It is characterized by performing.
  • the heavy metal is at least one selected from chromium, lead, cadmium, arsenic, mercury, zinc, copper, and nickel. Since the heavy metals are contained in the 5CaO.6SiO 2 .5H 2 O crystal (tobermorite) structure in the waste after treatment, the waste after treatment is classified into water environment standard, soil environment standard, It is characterized by satisfying at least one selected from special fertilizer standards and food safety standards.
  • the treatment is performed at 120 to 250 ° C. and 1.1 to 2.1 MPa. It is characterized by performing time.
  • the invention according to claim 1 of the present invention includes a waste containing heavy metals therein, and 5CaO ⁇ for containing at least the heavy metals in a 5CaO ⁇ 6SiO 2 ⁇ 5H 2 O crystal (tobermorite) structure during processing.
  • a closed container 12 having a closed space S1 for storing a sufficient amount of Ca component raw material and SiO 2 component raw material for forming 6SiO 2 .5H 2 O crystal (tobermorite), and the waste stored in the closed container 12
  • Vapor jetting means 14 for jetting high-temperature and high-pressure steam for treating the product, Ca component raw material and SiO 2 component raw material, cooling means 70 for cooling and liquefying the vapor in the sealed container 12 after the treatment, and sealing
  • a discharge port 16 provided on the bottom side in the container 12 and having an opening / closing mechanism 26; and a tobermorite containing the heavy metal treated from the discharge port 16
  • the separation / recovery means 18 recovers the mixture into a recovery container 50-1 or 50-2 and then separates the waste and the liquid and / or the mixture into a belt conveyor device 80.
  • -1 or 80-2 is a separation and recovery means for separating the waste and the liquid during the movement, and is a waste treatment apparatus containing heavy metals, and only by one apparatus , Wastes containing heavy metals are treated safely using high-temperature and high-pressure steam, and the heavy metals are immobilized to suppress elution.
  • Wastes containing heavy metals are treated safely using high-temperature and high-pressure steam, and the heavy metals are immobilized to suppress elution.
  • Including The product can be discharged and separated and recovered by a simple operation. The structure is simple, the operation is simple, and the cost is low.
  • the processing apparatus 10 of the present invention has a simple configuration, a simple operation, and a low-cost structure, and can satisfactorily separate and collect processed waste and liquid. Further, the entire apparatus is not enlarged and can be manufactured at low cost. In addition, waste collected separately from liquid is in a state of low moisture, which is convenient for handling, transportation, management, etc. For example, carbonized waste is processed into fuel, soil conditioner, etc. in a short period of time. obtain.
  • the shape of the airtight container 12 may be, for example, a rectangular box shape, a three-dimensional polygonal cylinder shape, a cylindrical shape, a barrel shape, a drum shape, or any other arbitrary shape, but using gravity from the discharge port 16 provided on the lower surface side. A shape that is discharged is preferred.
  • the lower surface of the sealed container 12 is provided in a downward slope toward the discharge port 16.
  • the processing apparatus 10 of the present invention also separates and collects the mixture from the waste and the liquid after the mixture is once collected in the collection container 50-1 or 50-2 and / or removes the mixture from the belt conveyor device 80. -1 or 80-2, and separation and recovery means 18 for separating the waste and the liquid during movement. As shown in FIG. 1 and FIG. 3A, once the mixture of the waste and the liquid treated in the vicinity of the discharge port 16 is recovered in the recovery container 50-1, the bottom of the recovery container 50-1 is formed.
  • the liquid is separated by a stainless steel mesh 56 that does not allow the waste to pass through but allows the liquid to pass through, and is recovered in another recovery container 50-3 disposed below the recovery container 50-1. Since the waste material is separated and remains on the stainless steel mesh 56 of the recovery container 50-1, the waste is driven by a controlled driving device (not shown) around the rotating shaft 52 when taken out. Rotate 56 in the direction of the arrow to release the locking portion 53 and drop it downward by gravity to collect the waste in a collection container (not shown). In addition to a simple configuration, the waste and liquid that have been processed can be separated and recovered satisfactorily with a simple and low-cost structure.
  • Waste material containing heavy metals characterized by separating and recovering the collected waste, and waste containing heavy metals with only one device Is treated safely and simply using high-temperature and high-pressure steam to immobilize the heavy metals to suppress elution, and after treatment, the heavy metals treated continuously are cooled with the immobilized waste.
  • the invention according to claim 3 of the present invention is the treatment method according to claim 2, wherein the content of the Ca component (A-1) and the content of the SiO 2 component (A) previously contained in the waste containing heavy metals.
  • the heavy metal is at least one selected from chromium, lead, cadmium, arsenic, mercury, zinc, copper, and nickel. Since the heavy metals are contained in the 5CaO.6SiO 2 .5H 2 O crystal (tobermorite) structure in the waste after treatment, the waste after treatment is classified into water environment standard, soil environment standard, It is characterized in that it satisfies at least one selected from special fertilizer standards and food safety standards, and efficiently contains the heavy metals to satisfy at least one selected from the standards There is a further remarkable effect of being able to.
  • the treatment is performed at 120 to 250 ° C. and 1.1 to 2.1 MPa.
  • 5CaO.6SiO 2 .5H 2 O crystals are efficiently generated during the treatment in the first closed vessel 12, and the heavy metal is contained in the crystal structure.
  • the species can be contained.
  • the stirring means 30 which stirs a waste in the airtight container 12.
  • FIG. by having a configuration having a stirring means for stirring the waste, the waste can be processed quickly without unevenness.
  • the sealed container 12 is formed in a side-down barrel shape in which the discharge port 16 is provided on the bottom side of the left and right center part, and the diameter is gradually reduced from the left and right center part toward both left and right sides.
  • a rotating shaft 49 that is provided horizontally in the sealed container 12 and rotatably supported, and a stirring blade 48 that is attached to the rotating shaft 49 and has a portion that extends in the circumferential direction of the rotating shaft 49.
  • the length from the rotating shaft 49 of the stirring blade 48 to the tip of the blade is long at the central position in the longitudinal direction of the rotating shaft 49 corresponding to the sideways barrel shape of the sealed container 12, and gradually decreases toward both ends. It is good also as having been formed.
  • the steam jetting means 14 includes a rotary shaft / steam jet pipe 28 constituted by forming the rotary shaft 49 as a hollow tube and forming a plurality of steam jet holes 44 on the peripheral surface of the hollow tube. Also good. By adopting such a configuration, high-temperature and high-pressure steam can be directly ejected to the waste for efficient waste disposal, and the efficiency of the steam ejection means and the stirring means in the first sealed container A good arrangement configuration can be realized.
  • FIG. 1 is a cross-sectional explanatory view of an example of a waste treatment apparatus containing heavy metals according to an embodiment of the present invention.
  • FIG. 2 is an enlarged partial cross-sectional explanatory view of the vicinity of the discharge port of the waste processing apparatus containing heavy metals of FIG.
  • FIG. 3A is an explanatory diagram for explaining a part of the separation / recovery unit shown in FIG. 1, and
  • FIG. 3 (b) is an explanatory diagram for explaining another example of the separation / recovery unit shown in FIG.
  • FIG. 3C is an explanatory view for explaining an example of a separation and recovery means for separating the waste and the liquid during the movement by supplying the mixture to the belt conveyor device, and
  • FIG. 4 is an explanatory diagram schematically illustrating the layered crystal structure of the tobermorite formed.
  • FIG. 5 is an explanatory diagram for explaining a state in which chromium and lead ions are taken in and contained in the layered crystal structure of tobermorite.
  • FIG. 6 is an explanatory diagram for explaining a reaction region when performing a subcritical water reaction.
  • FIG. 7 is an explanatory diagram showing the relationship between the types of heavy metals and the average value and standard deviation of the solidification rate by subcritical water treatment (the ratio of the decrease in the concentration of treated sludge to the concentration of heavy metals in the raw sewage dewatered sludge).
  • FIG. 1 is a cross-sectional explanatory view of an example of a waste treatment apparatus including heavy metals according to an embodiment of the present invention as will be described later.
  • Waste containing heavy metals in the sealed container 12 having the openable / closable discharge port 16 and the closed space S1 shown in FIG. 1 and the heavy metals are converted into 5CaO ⁇ 6SiO.
  • the tobermorite crystal is composed of a Si—O tetrahedral layer, a Ca—O octahedral layer, and a Si—O tetrahedral layer, and the Si—O tetrahedral layer and the Si—O tetrahedral layer are repeated.
  • calcium ions are grown in a layered manner intercalated.
  • heavy metals are substituted into the layered crystal structure by substituting calcium ions with the calcium ions by an ion exchange reaction.
  • Heavy metals are incorporated and contained in the layered crystal structure of tobermorite, which suppresses elution.
  • the subcritical water reaction conditions (temperature, pressure, time) are important.
  • the layered crystal structure of tobermorite is formed by treating the waste, and in the process of forming the layered crystal structure, heavy metals replace calcium ions by ion exchange reaction with calcium ions, and are taken into the layered crystal structure of tobermorite and containment It is important to use such subcritical water reaction conditions.
  • FIG. 5 shows a case in which contaminated soil containing chromium and lead as heavy metals is mixed with SiO contained in the contaminated soil in advance. 2 Using the components, SiO 2 is newly added to satisfy the above formula (3).
  • silica (SiO2) in the soil and newly added SiO 2 Tobermorite was synthesized by chemically reacting components and additives with lime (CaO) at a relatively low temperature (120 to 250 ° C) (1.1 to 2.1 MPa for 1 to 8 hours). Elution can be suppressed by growing a stable and strong crystal and confining heavy metals in the layered crystal.
  • SiO contained in the contaminated soil in advance. 2 Using the components, SiO 2 is newly added to satisfy the above formula (3). 2 The example which added CaO newly as a component and Ca component, and performed the hydrothermal reaction was shown. According to the formula (3), the molar ratio (theoretical value) of Ca / Si is about 0.8.
  • SiO 2 Part of the component dissolves in water to form silicate ions, and this SiO 2
  • the component does not contribute to tobermorite layered crystal formation. Therefore, SiO satisfying the formula (3) 2 It is preferable to add a larger amount to the component in advance. However, if added too much, the silicate ion concentration becomes high and heavy metals cannot be confined in the tobermorite layered crystal as will be described later.
  • the inventors have determined that the SiO / Si molar ratio is in the range of 0.6 to 0.8.
  • the present invention treats waste in the sealed container 12 while ejecting high-temperature and high-pressure steam, and then cools the sealed container 12 by the cooling means 70 to liquefy the water vapor in the closed space S1, A treated liquid containing the water-soluble compound of heavy metals is used, and the liquid and the treated waste containing tobermorite containing the heavy metals are separated and recovered.
  • the cooling means 70 for cooling the sealed container 12 is a hollow metal chamber that is installed so as to integrally cover and fix most of the outer surface of the sealed container 12, A cooling medium, such as water or oil whose temperature is adjusted as necessary, or a gas such as air or nitrogen, supplied from a cooling medium source (not shown) flows inside the metal chamber and exchanges heat with the sealed container 12.
  • a cooling device that is installed by covering and fixing most of the outer surface of the sealed container 12 with a plurality of metal chambers, A hollow metal pipe fixedly installed on the outer surface of the hermetic container 12 and supplied from a cooling medium source (not shown), such as water, oil, air, nitrogen, etc., temperature-controlled as necessary
  • a cooling medium source such as water, oil, air, nitrogen, etc.
  • the waste processing apparatus containing heavy metals of the present invention includes, for example, a syringe made of synthetic resin, a gauze with blood attached, a disposable diaper, a medical waste discarded from a medical organization such as a visceral organ operated, a garbage Waste from household waste, food processing waste, agricultural and fishery waste, various industrial product waste, industrial waste such as sewage sludge, etc. Is a device that processes high temperature and high pressure steam. Furthermore, the waste containing the tobermorite encapsulated in the heavy metals obtained from the treatment and the liquid liquefied as described above are effectively separated by a simple operation, and the waste and the liquid are recovered separately.
  • the processing apparatus 10 includes a sealed container 12 that contains waste therein, a steam ejection means 14 that ejects high-temperature and high-pressure steam into the sealed container 12, and the sealed container 12. And a separation and recovery means 18 for separating and recovering the treated waste and liquid.
  • the sealed container 12 is a closed container having a closed space S ⁇ b> 1 that accommodates waste to be processed therein, and is a container that processes waste in the closed space S ⁇ b> 1 under high temperature and high pressure. .
  • the sealed container 12 is supported by the support legs 13 so as to be disposed at a certain height from the ground.
  • the sealed container 12 is formed in a side-down barrel shape whose diameter is gradually reduced from the central portion in the left-right direction toward the end walls 12a on the left and right ends.
  • the sealed container 12 is formed, for example, by processing a metal plate so as to have heat and pressure resistance, and waste is about 2 m. 3 It is provided with a size that can be accommodated.
  • the closed container 12 is provided with an input part 20 above the center part and a discharge part 22 at the bottom side of the center part, and is provided to be opened and closed by opening / closing mechanisms 24 and 26, respectively.
  • a steam ejection pipe 28 constituting the steam ejection means 14 and a stirring means 30 for stirring the waste are disposed in the closed space S1 of the sealed container 12.
  • the sealed container 12 is provided with a safety valve 32 that can release the internal steam when the internal pressure becomes higher than a set value, for example, the set pressure can be adjusted.
  • a silencer / deodorant / heavy metal recovery device 34 is provided in the middle of the exhaust pipe connected to the safety valve 32, and the steam exhausted through the safety valve 32 is silenced, deodorized, Heavy metal compounds are collected and discharged to the outside air side.
  • the discharge port 16 is opened on the bottom surface side of the left and right central part of the sealed container 12, and is provided with the treated waste discharged in a downward direction. ing.
  • the diameter of the discharge port 16 is, for example, about 300 mm.
  • the discharge port 16 is connected to a discharge tube 36 projecting downward to form a discharge path R1 for the treated waste, and is provided in the middle of the discharge path R1.
  • An opening / closing mechanism 26 for opening and closing the discharge port 16 is provided. That is, in the present embodiment, the discharge unit 22 includes the discharge port 16, the discharge tube 36, and the opening / closing mechanism 26.
  • the opening / closing mechanism 26 has, for example, a ball-shaped valve body 38 provided with a through-hole 37 communicating with the discharge path R1 at the center around a rotary shaft 40 provided in a direction orthogonal to the discharge path. And an opening / closing valve such as a ball valve that opens and closes the discharge path R1. Since the sealed container 12 is laid sideways and formed into a barrel shape, the waste inside easily gathers toward the center where the discharge port 16 is provided due to gravity, and is simply processed by simply opening the opening / closing mechanism 26. Waste can be discharged from the discharge port 16.
  • the closing opening 12 is opened on the upper side of the sealed container 12, and a loading cylinder 43 protruding upward is attached to the loading opening 42 to open and close the loading cylinder 43.
  • an opening / closing mechanism 24 such as a ball valve is provided. Waste including heavy metal, the Ca component raw material, and SiO are opened through an opening / closing mechanism 24. 2
  • the component raw materials can be charged into the sealed container 12 and closed during processing to maintain the closed state of the closed space S1 in the sealed container 12.
  • the steam ejection means 14 ejects high-temperature and high-pressure steam into the sealed container 12, puts the sealed container 12 into a high-temperature and high-pressure state, and processes the waste through the steam.
  • the steam ejection means 14 includes a steam ejection pipe 28 that is a hollow pipe disposed in the sealed container 12 and formed with a large number of steam ejection holes 44 on the peripheral surface side, A steam generator 46 such as a boiler, and a steam feed pipe 47 that supplies steam from the steam generator 46 into the steam ejection pipe 28 are included.
  • the steam ejected from the steam ejection means 14 into the sealed container 12 is 5CaO ⁇ 6SiO during processing in the sealed container 12. 2 ⁇ 5H 2
  • the high temperature and high pressure are set so that O crystals (tobermorite) can be efficiently produced and the heavy metals can be contained in the crystal structure.
  • the steam ejected from the steam ejection pipe 28 has a temperature of 120 to 250 ° C. and a pressure of 1.1 to 2.1 MPa.
  • the inside of the sealed container 12 is set to a temperature of 120 to 250 ° C. and a pressure of about 1.1 to 2 MPa, and the treatment is performed for 1 to 8 hours. If the temperature is less than the lower limit, there is a risk that tobermorite crystals will not be formed, and if the temperature exceeds the upper limit, other crystals that are not tobermorite crystals may be formed.
  • the tobermorite crystals may not be formed, and if the pressure exceeds the upper limit, other crystals that are not tobermorite crystals may be formed. If the treatment time is less than the lower limit, a tobermorite crystal may not be formed, and there is no upper limit, but if the treatment time is too long, it becomes uneconomical.
  • 5CaO ⁇ 6SiO 2 ⁇ 5H 2 O crystals can be efficiently produced, and the heavy metals can be contained in the crystal structure.
  • the steam ejection pipe 28 is long in the lateral direction at a substantially central position in the vertical direction of the sealed container 12, and is rotatably supported via bearings 45 provided on both end walls 12 a of the sealed container 12. ing. That is, the steam ejection pipe 28 is adapted to directly apply the steam to the waste while rotating radially around the horizontal axis and ejecting the steam radially. Note that the steam ejection pipe 28 is rotated by obtaining a rotational driving force from a rotational driving device 51 such as a motor via a chain or the like. Furthermore, in this embodiment, the stirring blade 48 is attached to the steam ejection pipe 28, and the steam ejection pipe 28 also serves as the rotating shaft 49 of the stirring means.
  • the steam jetting unit 14 is a rotary shaft that is configured by forming the rotating shaft 49 of the stirring unit 30 as a hollow tube and forming a plurality of steam jetting holes 44 on the peripheral surface of the hollow tube. It also includes a steam jet pipe 28.
  • steam ejection means 14 is not restricted to the structure of this embodiment, For example, the structure which ejects a vapor
  • the stirring unit 30 is a unit that stirs the waste to be processed in the sealed container 12 and can process the waste at an early stage without unevenness.
  • the stirring means 30 includes a rotating shaft 49 composed of the steam ejection pipe 28 and a stirring blade 48 attached to the rotating shaft 49 and having a portion extending in the circumferential direction of the rotating shaft.
  • the stirring blade 48 is formed of a right-handed spiral blade 48a and a left-handed spiral blade 48b that are provided in a reversely wound manner at approximately the center position in the axial direction of the rotating shaft 49.
  • the stirring blade 48 is provided such that the length from the rotation shaft 49 to the blade tip is gradually reduced from the left and right central portions toward both ends.
  • the waste can be reliably agitated corresponding to the barrel shape of the closed container 12. Furthermore, a certain gap H is provided between the blade tip and the inner wall of the sealed container 12.
  • the spiral blades 48a and 48b agitate the waste while crushing the solid waste while conveying the waste from the center toward the both end walls.
  • the waste is finally provided by the stirring means 30 so as to be crushed to about 0.3 to 0.8 mm, for example.
  • the waste conveyed to the both end walls 12a side by the stirring blades 48 is pushed by the waste conveyed later on the end wall 12a side, passes through the gap H along the inner wall of the sealed container 12, and then enters the center. It is transported back.
  • the agitation means 30 is not limited to the one in the present embodiment.
  • the agitation means 30 is agitated with a plurality of plate-like or wing-like agitation blades or rods attached to the rotary shaft 49, or a pressure fluid such as steam. Any other configuration such as a configuration to be used may be used. Moreover, you may set arbitrarily the magnitude
  • 5CaO ⁇ 6SiO is obtained by processing for a required time, for example, about 1 to 8 hours, while stirring in the sealed container 12 under high temperature and high pressure as described above. 2 ⁇ 5H 2 O crystals (tobermorite) can be efficiently produced, and the heavy metals can be contained in the crystal structure.
  • FIGS. 1 and 3A is an explanatory view for explaining a part of the separation and recovery means shown in FIG.
  • the mixture of the waste and the liquid processed in the vicinity of the discharge port 16 is once recovered in the recovery container 50-1.
  • the waste forming the bottom of the recovery container 50-1 is not allowed to pass through, but is separated from the liquid by the stainless steel mesh 56 that allows the liquid to pass through, and the other recovery container 50 disposed below the recovery container 50-1. -3. Since the waste material is separated and remains on the stainless steel mesh 56 of the recovery container 50-1, the waste is driven by a controlled driving device (not shown) around the rotating shaft 52 when taken out.
  • a controlled driving device not shown
  • FIG. 3B is an explanatory view for explaining another example of the separation and recovery means shown in FIG.
  • the waste and liquid mixture treated in the vicinity of the discharge port 16 is once recovered in a recovery container 50-2.
  • the liquid is driven by a controlled driving device (not shown) around the rotation shaft 54 installed on the side wall of the recovery container 50-2 to rotate the recovery container 50-2 and tilt the liquid to another recovery container 50-. 4 to collect.
  • FIG. 3C is an explanatory diagram illustrating an example of a separation and recovery unit that supplies the mixture to the belt conveyor device and separates waste and liquid during movement.
  • the waste and liquid mixture treated in the vicinity of the discharge port 16 includes a belt formed of a stainless steel mesh 56 that does not allow the waste to pass but allows the liquid to pass. Supplied to one end of the belt of the belt conveyor device 80-1. Then, the liquid is separated by the stainless steel mesh 56 and collected in another collection container 50-5 disposed at the lower part of the belt conveyor device 80-1.
  • FIG. 3D is an explanatory view for explaining another example of the separation and recovery means shown in FIG.
  • the waste and liquid mixture treated in the vicinity of the discharge port 16 includes a belt made of synthetic rubber or the like disposed at an angle ⁇ with respect to the horizontal direction. Supplied to one end of the belt of the belt conveyor device 80-2. Then, since the liquid is inclined by the angle ⁇ as described above, the liquid is separated from the mixture by gravity, and flows down faster than the waste as indicated by an arrow toward the end in the traveling direction on the belt.
  • the angle ⁇ depends on the physical properties of the mixture, the waste, the liquid, the material of the belt, the moving speed of the belt, and the like, the liquid is separated from the mixture by gravity, and the end of the traveling direction on the belt It is preferable to test and determine in advance an angle ⁇ that flows faster than the waste as indicated by an arrow. 55 is scraping means, and the belt is disposed above the belt with a gap (not shown) through which the liquid passes. Then, the waste from which the liquid on the belt has been separated is scraped off by the scraping means 55 as indicated by an arrow, and recovered in the recovery container 50-8.
  • the liquid in a state containing bacteria, malodorous components and the like contained in the waste at the same time as the waste can be treated with high-temperature and high-pressure steam.
  • the liquid separated and recovered after the treatment contains water-soluble compounds of heavy metals, but malodors and harmful components can be recovered in a decomposed state, so that the separated and recovered liquid needs to be subjected to secondary treatment. This eliminates the need for labor and saves time. However, when it is necessary to separate the water-soluble compound of heavy metals from the liquid, it is necessary to perform a secondary treatment.
  • the operation of the waste treatment apparatus including heavy metals according to the present embodiment will be described together with the liquid recovery method according to the embodiment.
  • the waste containing heavy metals to be treated includes, for example, blood discharged from hospitals, universities, other medical institutions such as laboratories, internal organs after surgery, cotton wool, disposable diapers, and blood supply. Medical waste such as tubes, infusion containers, and plastic syringes. In addition, metals such as injection needles and those made of glass are separated and removed in advance. With the opening / closing mechanism 26 of the discharge port 16 closed, the opening / closing mechanism 24 of the inlet 42 of the sealed container 12 is opened, for example, 2 m 3 Waste containing heavy metals and the Ca component raw material and SiO 2 Ingredient raw materials are charged.
  • a high-temperature and high-pressure steam set to, for example, about 250 ° C. and about 25 atm from the steam ejection pipe 28 of the steam ejection means 14 in the sealed container. Erupt. Due to the jetted steam, the inside of the sealed container 12 is in a high temperature and high pressure state of, for example, about 250 ° C. and about 2.1 MPa.
  • the waste is treated while being stirred and crushed by the rotating stirring blade 48 under high-temperature and high-pressure conditions. When treated, the Ca component previously contained in the waste or the newly added Ca component and the SiO contained in the waste in advance.
  • the component reacts hydrothermally to produce stable calcium silicate (5CaO ⁇ 6SO 2 ⁇ 5H 2
  • a crystal having a layered structure of mineral called O tobermorite is formed, and in the process of forming the layered crystal structure, heavy metals are taken into the layered crystal structure and contained. Most heavy metals are taken in and contained in the layered crystal structure of tobermorite as described above, but when anions are present in the waste, they are dissolved in water vapor or dissolved in water. Further, pathogens contained in (or adhering to) the waste are sufficiently sterilized and treated while decomposing malodorous components.
  • the moisture contained in the waste is also treated with high-temperature and high-pressure steam at the same time as the waste.
  • the organic matter in the waste is processed into a charcoal state crushed into particles of, for example, about 0.3 to 0.8 mm.
  • the liquid is separated by the stainless steel mesh 56 that does not allow the waste forming the bottom of the recovery container 50-1 to pass but allows the liquid to pass.
  • -1 is recovered in another recovery container 50-3 arranged at the lower part of -1. Since the waste material is separated and remains on the stainless steel mesh 56 of the recovery container 50-1, the waste is driven by a controlled driving device (not shown) around the rotating shaft 52 when taken out. Rotate 56 in the direction of the arrow to release the locking portion 53 and drop it downward by gravity to collect the waste in a collection container (not shown).
  • the treated waste is, for example, liquid separated, organic matter is charcoal, tobermorite containing heavy metals and treated soil particles, etc. Can be recovered in a state that is easy to handle.
  • Each open / close mechanism may be configured to open and close manually, or may be configured to open and close by mechanical operation using electricity or the like. Since the subcritical water reaction described above uses only high-pressure steam as the driving force of the reaction, it can be said to be the safest treatment technology without using any artificial materials such as chemicals.
  • the subcritical water reaction (temperature of about 100 to 374 ° C., pressure of 0.1 to 22.1 MPa) has various reaction regions as shown in FIG. 6 depending on the temperature and pressure conditions of water vapor.
  • the subcritical water treatment conditions used for recycling sewage sludge are regions where the main reaction is a “hydrolysis reaction” at a temperature of about 200 ° C. and a pressure of 1.2 to 1.6 Mpa. Utilize the same reaction principle as the decomposition reaction performed by fermenting microorganisms.
  • Sewage sludge is reduced in molecular weight by hydrolysis, and the fiber is hydrolyzed to glucose and oligosaccharides, the protein is hydrolyzed to amino acids and peptides, and the lipids are hydrolyzed to organic acids. For this reason, it becomes possible to introduce into a multipurpose resource reproduction system, such as direct material utilization of processing sludge, and efficiency improvement of methane fermentation. In addition, it can sterilize and destroy pathogenic microorganisms, viruses, etc., and can ensure various environmental safety such as decomposition of harmful chemical substances such as agricultural chemicals and suppression of elution by solidification of heavy metals. Regarding sewage sludge, it can be used as various recyclable resources as follows.
  • Agricultural land soil improvement material Subcritical water treatment of sewage sludge can be stably hydrolyzed and can be generated in a granulated state, so that it can be a highly convenient green agricultural land soil improvement material.
  • Sludge organic fertilizer Sewage sludge can be used as a kind of “ordinary fertilizer” if it can be dried and fermented to confirm the safety of fertilizer components and agricultural standards for heavy metals.
  • Pretreatment function of methane fermentation Since the macromolecular organic matter is hydrolyzed, the rate of microbial decomposition, that is, primary fermentation is increased, and at the same time, the gas yield is increased.
  • the yield of methane gas is enhanced by about 1.5 to 2.8 times, and the material and energy recovery rate can be enhanced. It can also be mixed with household waste, food waste, etc., and when it is jointly treated at a sewage treatment plant, it can also be used as a power and heat source self-sustained system by methane fermentation power generation. As described above, there are various utilities, but in any case, ensuring the safety of heavy metals is an important issue.
  • the heavy metal solidification characteristics of sewage dewatered sludge containing heavy metals by subcritical water treatment were tested.
  • the subcritical water treatment apparatus shown in FIG. 1 is of a practical type and has a reaction volume of 2 m.
  • the component raw material was mixed well with sewage dewatered sludge, and after adding and mixing the raw material, steam was injected until the subcritical water reaction conditions were reached, and subcritical water treatment was performed for the required time while maintaining the predetermined conditions. This reaction time ranges from 30 min to 1 hour. After completion of the reaction, the mixture is cooled to room temperature, degassed and returned to normal pressure, and then 10 kg of liquid containing the liquefied component is separated.
  • MPa analysis method It conformed to the heavy metal dissolution test method based on Prime Minister's Ordinance No. 5 in 1973.
  • Tables 1 and 2 show two examples of analysis results of sludge containing tobermorite in which the heavy metals are contained.
  • Table 3 shows the results of a survey conducted by the Public Works Research Institute of the Ministry of Land, Infrastructure, Transport and Tourism (“Environmental Standards Concerning Soil Contamination” Environmental Agency Notification No. 46, August 1991). Indicates heavy metal concentration. From the results of the national survey on sewage sludge, if the maximum value of the soil environmental standards listed in Table 3 can be cleared by subcritical water treatment, the safety of sewage sludge heavy metals can be secured nationwide.
  • the maximum value of Cr is about 650 mg ⁇ kg. -1 And applying the average solidification ratio of 45% shown in FIG. 7 to about 360 mg ⁇ kg after the subcritical water treatment. -1 Therefore, the fertilizer standards shown in Tables 1 to 3 are satisfied.
  • the maximum value of Pb is about 180 mg ⁇ kg. -1 When the average solidification rate of Pb shown in FIG. 7 is 45%, it is about 99 mg ⁇ kg after the subcritical water treatment. -1 And 100mg / kg -1 However, it is below the fertilizer reference value shown in Tables 1 to 3.
  • the maximum value of Cd is 7.4 mg ⁇ kg. -1 When the average solidification rate of Cd of about 58% shown in FIG.
  • the maximum value of Zn is 3020mg ⁇ kg -1
  • the average solidification rate of Zn shown in FIG. 7 is about 75%, it is about 755 mg ⁇ kg after the subcritical water treatment.
  • zinc and copper are based on soil concentration, not fertilizer, and when mixed with soil after application of sewage sludge as fertilizer, 120 mg ⁇ kg -1 It is required to become. With careful application, the soil environmental standards shown in Tables 1 to 3 can be observed. From Table 3, the maximum value of Ni is 417 mg ⁇ kg. -1 Assuming that the average solidification rate of Ni shown in FIG. 7 is about 60%, it is about 167 mg ⁇ kg after the subcritical water treatment.
  • the value of 120 ppm is a management concentration related to the soil after being sprayed on the farmland.
  • the elution standards soil environmental standards listed in Table 3 are set for the purpose of preventing heavy metal groundwater contamination. This is set as a standard that is safe to drink groundwater containing heavy metals for a lifetime, and is determined by performing a certain elution operation and measuring the concentration of the eluate. As described above, it was confirmed that all heavy metals were below the elution standard value after the subcritical water treatment. It was found that by treating sub-critical water for all samples, organic fertilizers (including compost) that are safer than heavy metals and less than agricultural standards can be used.
  • the separated liquid is subjected to appropriate water treatment and drainage according to the drainage standards because it contains environmental contaminants and drainage standards for water related to heavy metals and also contains water pollutants other than heavy metals. In the sewage treatment plant, it is returned to the water treatment system for treatment before being discharged into the public water area. Next, the economics of the subcritical water treatment facility will be described.
  • the subcritical water treatment equipment is composed of (1) a high-pressure steam boiler, (2) a pressure tank (with a stirrer), (3) a temperature and pressure control panel, and (4) raw materials and treatment.
  • the main input resources are boiler fuel (A heavy oil, etc.), drive motor and water. These energy consumptions are about 20 L / t of water and power consumption of about 25 kwh / t per processing amount. Compared with the case of conventional carbonization equipment, the energy input is about 1/3 and the construction cost is about 1/3 to 1/4.
  • sewage sludge can be made a safe organic resource by subcritical water treatment.
  • the waste treatment apparatus containing heavy metals of the present invention is a single device that safely treats waste containing heavy metals using high-temperature and high-pressure steam to immobilize and elute the heavy metals. Suppressed and treated, the waste material and the liquid fixed with the heavy metals processed continuously can be separated and recovered by a simple operation, the structure is simple, and the cost is low. There is no need to take out mixed waste that is difficult to handle, and it can be separated and recovered directly from the first sealed container that has been processed, and the operation can be performed easily and smoothly. Low-cost, waste collected separately from liquid is in a state of low moisture, convenient for handling, transport, management, etc. For example, carbonized waste can be improved in fuel and soil in a short period of time. It has a remarkable effect that it can be processed into materials, etc. In, high utility value on the industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

Provided are a simple, low-cost treatment device and treatment method for waste matter containing heavy metals, the treatment device comprising: a sealed container having a closed space for storing a Ca component material and a SiO2 component material in an amount sufficient for forming 5CaO•6SiO2•5H2O crystals (tobermorite) for sealing, inside a crystal structure, waste matter containing heavy metals or at least the heavy metals undergoing treatment; a steam jetting means for jetting high-temperature, high-pressure steam into the closed space; a cooling means for cooling and liquefying the vapor inside the closed container after treatment; and a separation and recovery means for discharging a mixture of the waste matter containing tobermorite in which the treated heavy metals are sealed, and a liquid containing the liquefied components, and then separating both from each other. Waste matter containing heavy metals can thereby be safely treated using high-temperature, high-pressure steam, the heavy metals are immobilized to inhibit elution, and the mixture containing a liquid and waste matter in which the heavy metals have been immobilized can be separated and recovered using a simple operation.

Description

重金属類を含む廃棄物の処理装置およびそれを用いた重金属類を含む廃棄物の処理方法Waste treatment apparatus containing heavy metals and waste treatment method using heavy metals using the same
 本発明は、下水汚泥、産業汚泥、医療系廃棄物、家庭廃棄物、産業廃棄物等の重金属類を含む廃棄物を高温高圧の蒸気を用いて処理し、処理後には、処理して固定化された重金属類を含む廃棄物と液体とを含む混合物を排出して両者を分離する、重金属類を含む廃棄物の処理装置およびそれを用いた重金属類を含む廃棄物の処理方法に関するものである。 The present invention treats waste containing heavy metals such as sewage sludge, industrial sludge, medical waste, household waste, and industrial waste using high-temperature and high-pressure steam, and after the treatment, it is treated and fixed. The present invention relates to an apparatus for treating waste containing heavy metals and a method for treating waste containing heavy metals using the same, which discharges and separates a mixture containing a waste containing heavy metals and a liquid. .
 有機系廃棄物の処理方法として、例えば、密閉された容器内で廃棄物に高温高圧の水蒸気中で処理する方法が知られている(例えば、特許文献1参照)。従来の廃棄物を蒸気で処理する方法では、焼却処理する場合のように有害な窒素酸化物、硫黄酸化物等の発生がほとんどないとされており、環境汚染の問題がなく、安全な廃棄物処理を期待できるものであった。
 しかしながら、処理後は容器内に処理された固体物と液体とが混在する状態になっており、処理済みの廃棄物を取出した後の運搬や保管等が不便で扱いにくいという問題があり、かつ処理した後に、分離機を用いて処理された固体物と液体を分離すると、処理工程が煩雑となり多くの労力が必要がある、処理に長時間がかかる、反応容器と分離機とを別々に設置するための用地を広く確保する必要がある、などの問題が生じていた。
 そのため、一台の装置で、廃棄物を高温高圧の蒸気を用いて安全に処理できるとともに、この処理に連続して、処理された廃棄物と液体とを分離して回収できる処理装置が提案された(特許文献2参照)。しかしこの処理装置は、廃棄物を高温高圧の水蒸気中で処理するための密閉容器からなるリアクターと、分離した液体を回収するための、前記密閉容器からなるリアクターと連結された他の回収用密閉容器を必要とするので、設備費が高くなり、操作が複雑となるなどの問題があった。
 一方、例えば、下水処理施設から排出される下水汚泥は、病原微生物や重金属を含むため、それらによる環境リスクの回避のため、濃縮、消化、脱水、コンポスト、焼却、溶融など様々な方法で処理・処分が行われてきた。しかしながら、これらのいずれの処理方法も、減量・廃棄するものであり、電力や熱エネルギーを多量に投入する消費型技術であり、かつ温室効果ガスの排出源となるなど環境への影響が大きい方法であり、資源の再生原理に沿った処理ではなく、高い維持費が投入されているため、地域経済を圧迫する原因となっている。
 現状では、下水汚泥に含まれる前記重金属による蓄積問題や有害化学物質、病原微生物やウィルスなど感染汚染の問題があり、下水汚泥の有効利用は進んでいない。このような背景から、近年「下水汚泥の資源化」の政策について方向付けがなされるようになっている(非特許文献1参照)。
 一方、無機系廃棄物を石灰添加などの調質をして亜臨界水条件で処理することにより、重金属の固化による土壌浄化法が提案されている(非特許文献2参照)。
 しかしながら、具体的な資源の再生を目的とし、安全に処理して、かつ前記重金属類を固定化して溶出を抑制し、処理装置の構造を簡素化して、操作が簡単で、低コストであるような資源化技術の導入には至っていなかった。
As a method for treating organic waste, for example, a method of treating waste in high-temperature and high-pressure steam in a sealed container is known (see, for example, Patent Document 1). In the conventional method of treating waste with steam, there is almost no generation of harmful nitrogen oxides, sulfur oxides, etc. as in the case of incineration treatment, and there is no problem of environmental pollution and safe waste The process could be expected.
However, after processing, the processed solid matter and liquid are in a mixed state, and there is a problem that transportation and storage after taking out the processed waste is inconvenient and difficult to handle, and Separation of solids and liquids processed using a separator after processing requires a complicated process and requires a lot of labor. The processing takes a long time. The reaction vessel and the separator are installed separately. There was a problem that it was necessary to secure a wide site for the purpose.
For this reason, a processing apparatus has been proposed that can safely process waste using high-temperature and high-pressure steam with a single device, and that can separate and recover the processed waste and liquid following this processing. (See Patent Document 2). However, this processing apparatus is composed of a reactor composed of a sealed container for treating waste in high-temperature and high-pressure steam, and another recovery sealed connected to the reactor composed of the sealed container for recovering separated liquid. Since a container is required, there are problems such as high equipment costs and complicated operations.
On the other hand, for example, sewage sludge discharged from sewage treatment facilities contains pathogenic microorganisms and heavy metals, and in order to avoid environmental risks caused by them, it can be treated and treated by various methods such as concentration, digestion, dehydration, composting, incineration, and melting. Disposal has been done. However, any of these treatment methods is a method of reducing or discarding, a consumption type technology that inputs a large amount of electric power or thermal energy, and a method that has a large impact on the environment, such as being a greenhouse gas emission source. This is a cause of squeezing the local economy because of high maintenance costs rather than processing according to the principle of resource recycling.
At present, there are problems of accumulation due to the heavy metals contained in sewage sludge, infectious contamination such as harmful chemical substances, pathogenic microorganisms and viruses, and effective utilization of sewage sludge is not progressing. Against this background, in recent years, the direction of “sewage sludge recycling” policy has been directed (see Non-Patent Document 1).
On the other hand, a soil purification method by solidifying heavy metals has been proposed by treating inorganic waste with lime addition and processing under subcritical water conditions (see Non-Patent Document 2).
However, for the purpose of concrete resource regeneration, it is safe to process and immobilize the heavy metals to suppress elution, simplify the structure of the processing equipment, and it seems easy to operate and low cost. New resource recycling technology has not been introduced.
特開2000−33355号公報JP 2000-33355 A 特許第4864884号公報Japanese Patent No. 4864884
 本発明は上記従来の課題に鑑みてなされたものであり、本発明の第1の目的は、一台の装置だけで、重金属類を含む廃棄物を高温高圧の蒸気を用いて安全に処理して、前記重金属類を固定化して溶出を抑制し、処理後には、前記重金属類を固定化した廃棄物と液体とを含む混合物を排出して両者を簡単な操作で分離して回収できる、構造が簡単で、操作が簡単で、低コストである、重金属類を含む廃棄物の処理装置を提供することにある。
 さらに、本発明の第2の目的は、重金属類を含む廃棄物を高温高圧の蒸気を用いて簡便に処理して、前記重金属類を固定化して溶出を抑制した廃棄物と液体を含む混合物を排出して、両者を簡単な操作で分離して回収できる、重金属類を含む廃棄物の処理方法を提供することにある。
The present invention has been made in view of the above-described conventional problems, and a first object of the present invention is to safely treat waste containing heavy metals using high-temperature and high-pressure steam with a single device. The heavy metal is immobilized to suppress elution, and after the treatment, the mixture containing the waste and liquid in which the heavy metal is immobilized can be discharged and separated and recovered by a simple operation. It is an object of the present invention to provide an apparatus for treating waste containing heavy metals that is simple, easy to operate, and low in cost.
Furthermore, a second object of the present invention is to provide a mixture containing waste and liquid, in which waste containing heavy metals is simply treated using high-temperature and high-pressure steam, and the heavy metals are immobilized to suppress elution. It is an object of the present invention to provide a method for treating waste containing heavy metals that can be discharged and separated and recovered by a simple operation.
 上記課題を解決するための本発明の請求項1記載の発明は、内部に、重金属類を含む廃棄物、および処理中に少なくとも前記重金属類を5CaO・6SiO・5HO結晶(トバモライト)構造中に封じ込めるための5CaO・6SiO・5HO結晶(トバモライト)が形成されるのに十分な量のCa成分原料およびSiO成分原料を収容する閉鎖空間を有する密閉容器と、密閉容器内に収容した前記廃棄物およびCa成分原料およびSiO成分原料を処理するための高温高圧の蒸気を噴出する蒸気噴出手段と、処理後に密閉容器内の蒸気を冷却して液化するための冷却手段と、密閉容器内の底側に設けられ開閉機構を有する排出口と、排出口から処理された前記重金属類が封じ込められたトバモライトを含む廃棄物と液化した成分を含む液体との混合物を排出し、排出した前記混合物から前記廃棄物と前記液体を分離する分離回収手段とを備えた重金属類を含む廃棄物の処理装置であって、前記分離回収手段は、前記混合物を一旦回収容器に回収してから前記廃棄物と前記液体を分離する分離回収手段および/または前記混合物をベルトコンベア装置に供給して移動中に前記廃棄物と前記液体を分離する分離回収手段であることを特徴とする重金属類を含む廃棄物の処理装置である。
 本発明の請求項2記載の発明は、開閉自在の排出口を有するとともに閉鎖空間を有する密閉容器内で重金属類を含む廃棄物を高温高圧の蒸気を噴出しながら処理するにあたり、前記密閉容器内での処理中に少なくとも前記重金属類を5CaO・6SiO・5HO結晶(トバモライト)構造中に封じ込めるための5CaO・6SiO・5HO結晶(トバモライト)が形成されるのに十分な量のCa成分原料およびSiO成分原料を存在させて前記処理を行った後に、冷却して、液化した前記重金属類の水溶性化合物を含む処理された液体と前記重金属類が封じ込められたトバモライトを含む処理された廃棄物とを分離回収することを特徴とする重金属類を含む廃棄物の処理方法である。
 本発明の請求項3記載の発明は、請求項2記載の処理方法において、重金属類を含む廃棄物中に予め含まれるCa成分の含有量(A−1)およびSiO成分の含有量(A−2)を分析して求め、かつ処理中に少なくとも前記重金属類を5CaO・6SiO・5HO結晶(トバモライト)構造中に封じ込めるための5CaO・6SiO・5HO結晶(トバモライト)が形成されるのに十分な量のCa成分(B−1)およびSiO成分の量(B−2)を算出し、下記の式(1)および式(2)により、重金属類を含む廃棄物に添加するCa成分原料の添加量(C−1)およびSiO成分原料の添加量(C−2)を求め、重金属類を含む廃棄物にCa成分原料(C−1)およびSiO成分原料(C−2)を添加して前記処理を行うことを特徴とする。
 [(B−1)−(A−1)]=(C−1)   ・・・式(1)
 [(B−2)−(A−2)]=(C−2)   ・・・式(2)
 本発明の請求項4記載の発明は、請求項2あるいは請求項3記載の処理方法において、前記重金属類が、クロム、鉛、カドミウム、砒素、水銀、亜鉛、銅、ニッケルから選択される少なくとも1つであり、前記重金属類が処理後の廃棄物中の5CaO・6SiO・5HO結晶(トバモライト)構造中に封じ込められているので、処理後の廃棄物は水環境基準、土壌環境基準、特殊肥料基準、食品安全基準から選択される少なくとも1つを満足させるものであることを特徴とする。
 本発明の請求項5記載の発明は、請求項2から請求項4のいずれか1項に記載の処理方法において、前記処理を、120~250℃、1.1~2.1MPaで1~8時間行なうことを特徴とする。
The invention according to claim 1 of the present invention for solving the above-mentioned problems is characterized in that a waste containing heavy metals is contained therein, and at least the heavy metals are treated with a 5CaO · 6SiO 2 · 5H 2 O crystal (tobermorite) structure. A sealed container having a closed space for containing a sufficient amount of Ca component raw material and SiO 2 component raw material to form 5CaO.6SiO 2 .5H 2 O crystal (tobermorite) for containment in the sealed container, Steam ejection means for ejecting high-temperature and high-pressure steam for treating the waste, the Ca component raw material and the SiO 2 component raw material, and cooling means for cooling and liquefying the steam in the sealed container after the treatment; Waste and liquefaction containing a tobermorite containing a discharge port provided on the bottom side in a sealed container and having an opening and closing mechanism, and the heavy metals treated from the discharge port A waste treatment apparatus containing heavy metals, comprising: a separation / recovery means for separating the waste and the liquid from the discharged mixture. Separates and collects the waste and the liquid while moving by separating and collecting means for separating the waste and the liquid after the mixture is once collected in a collection container and / or supplying the mixture to a belt conveyor device. It is a waste processing apparatus containing heavy metals, which is a separation and recovery means.
In the invention according to claim 2 of the present invention, when processing waste containing heavy metals in a sealed container having an openable and closable discharge port and having a closed space while jetting high-temperature and high-pressure steam, A sufficient amount of 5CaO.6SiO 2 .5H 2 O crystals (tobermorite) to be contained in the 5CaO.6SiO 2 .5H 2 O crystal (tobermorite) structure during the treatment with After the treatment is performed in the presence of the Ca component raw material and the SiO 2 component raw material, the treatment is cooled and treated with the treated liquid containing the water-soluble compound of the heavy metal liquefied and the tobermorite in which the heavy metal is contained. A method for treating waste containing heavy metals, characterized in that separated waste is collected.
The invention according to claim 3 of the present invention is the treatment method according to claim 2, wherein the content of the Ca component (A-1) and the content of the SiO 2 component (A) previously contained in the waste containing heavy metals. -2) is analyzed, and 5CaO · 6SiO 2 · 5H 2 O crystals (tobermorite) are formed during the treatment to contain at least the heavy metals in the 5CaO · 6SiO 2 · 5H 2 O crystal (tobermorite) structure. The amount of Ca component (B-1) and the amount of SiO 2 component (B-2) sufficient to be calculated are calculated, and the waste containing heavy metals is calculated by the following formulas (1) and (2). The addition amount (C-1) of the Ca component raw material to be added and the addition amount (C-2) of the SiO 2 component raw material are obtained, and the Ca component raw material (C-1) and the SiO 2 component raw material ( C-2) is added to the treatment It is characterized by performing.
[(B-1)-(A-1)] = (C-1) Formula (1)
[(B-2)-(A-2)] = (C-2) Formula (2)
According to a fourth aspect of the present invention, in the treatment method according to the second or third aspect, the heavy metal is at least one selected from chromium, lead, cadmium, arsenic, mercury, zinc, copper, and nickel. Since the heavy metals are contained in the 5CaO.6SiO 2 .5H 2 O crystal (tobermorite) structure in the waste after treatment, the waste after treatment is classified into water environment standard, soil environment standard, It is characterized by satisfying at least one selected from special fertilizer standards and food safety standards.
According to a fifth aspect of the present invention, in the treatment method according to any one of the second to fourth aspects, the treatment is performed at 120 to 250 ° C. and 1.1 to 2.1 MPa. It is characterized by performing time.
 本発明の請求項1記載の発明は、内部に、重金属類を含む廃棄物、および処理中に少なくとも前記重金属類を5CaO・6SiO・5HO結晶(トバモライト)構造中に封じ込めるための5CaO・6SiO・5HO結晶(トバモライト)が形成されるのに十分な量のCa成分原料およびSiO成分原料を収容する閉鎖空間S1を有する密閉容器12と、密閉容器12内に収容した前記廃棄物およびCa成分原料およびSiO成分原料を処理するための高温高圧の蒸気を噴出する蒸気噴出手段14と、処理後に密閉容器12内の蒸気を冷却して液化するための冷却手段70と、密閉容器12内の底側に設けられ開閉機構26を有する排出口16と、排出口16から処理された前記重金属類が封じ込められたトバモライトを含む廃棄物と液化した成分を含む液体との混合物を排出し、排出した前記混合物から前記廃棄物と前記液体を分離する分離回収手段18とを備えた重金属類を含む廃棄物の処理装置10であって、前記分離回収手段18は、前記混合物を一旦回収容器50−1あるいは50−2に回収してから前記廃棄物と前記液体を分離する分離回収手段および/または前記混合物をベルトコンベア装置80−1あるいは80−2に供給して移動中に前記廃棄物と前記液体を分離する分離回収手段であることを特徴とする重金属類を含む廃棄物の処理装置であり、一台の装置だけで、重金属類を含む廃棄物を高温高圧の蒸気を用いて安全に処理して、前記重金属類を固定化して溶出を抑制し、処理後には、前記重金属類を固定化した廃棄物と液体とを含む混合物を排出して両者を簡単な操作で分離して回収でき、構造が簡単で、操作が簡単で、低コストであるという顕著な効果を奏する。
 本発明の処理装置10は、シンプルな構成であるとともに、簡単操作、低コスト構造であり、処理された廃棄物と液体とを良好に分離回収できる。
 また、装置全体が大型化せず、低コストで製造できる。また、液体と分離して回収した廃棄物は水分の少ない状態であり、取り扱いや搬送、管理等に便利であり、例えば、炭化された廃棄物を短期間で燃料や土壌改良材等に加工し得る。
 密閉容器12の形状は、例えば、矩形箱形、立体多角筒形、円筒形、樽型、ドラム型等その他任意形状でよいが、下面側に設けられている排出口16から重力を利用して排出されるような形状が好ましい。密閉容器12の下面が排出口16へ向けて下り傾斜に設けられていると好適である。
 また、本発明の処理装置10は、前記混合物を一旦回収容器50−1あるいは50−2に回収してから前記廃棄物と前記液体を分離する分離回収手段および/または前記混合物をベルトコンベア装置80−1あるいは80−2に供給して移動中に前記廃棄物と前記液体を分離する分離回収手段18を備えている。
 図1および図3(a)に示すように排出口16付近で処理された前記廃棄物と前記液体の混合物は一旦回収容器50−1に回収すると、回収容器50−1の底部を形成する前記廃棄物は通過させないが前記液体を通過させるステンレス製メッシュ56により、前記液体が分離されて回収容器50−1の下部に配置された他の回収容器50−3内に回収される。
 前記廃棄物は回収容器50−1のステンレス製メッシュ56上に前記液体が分離されて残留するので、取り出す際には回転軸52を中心として図示しない制御された駆動装置により駆動してステンレス製メッシュ56を矢印方向に回転させ、係止部53を開放して、重力により下方に落下させ、図示しない回収容器に前記廃棄物を回収する。シンプルな構成であるとともに、簡単、低コスト構造で、処理された廃棄物と液体とを良好に分離回収できる。
 本発明の請求項2記載の発明は、開閉自在の排出口を有するとともに閉鎖空間を有する密閉容器内で重金属類を含む廃棄物を高温高圧の蒸気を噴出しながら処理するにあたり、前記密閉容器内での処理中に少なくとも前記重金属類を5CaO・6SiO・5HO結晶(トバモライト)構造中に封じ込めるための5CaO・6SiO・5HO結晶(トバモライト)が形成されるのに十分な量のCa成分原料およびSiO成分原料を存在させて前記処理を行った後に、冷却して、液化した前記重金属類の水溶性化合物を含む処理された液体と前記重金属類が封じ込められたトバモライトを含む処理された廃棄物とを分離回収することを特徴とする重金属類を含む廃棄物の処理方法であり、一台の装置だけで、重金属類を含む廃棄物を高温高圧の蒸気を用いて安全に簡便に処理して、前記重金属類を固定化して溶出を抑制し、処理後には、連続して処理された前記重金属類を固定化した廃棄物と冷却して、液化した前記重金属類の水溶性化合物を含む処理された液体とを簡単な操作で分離して回収できるという顕著な効果を奏する。
 本発明の請求項3記載の発明は、請求項2記載の処理方法において、重金属類を含む廃棄物中に予め含まれるCa成分の含有量(A−1)およびSiO成分の含有量(A−2)を分析して求め、かつ処理中に少なくとも前記重金属類を5CaO・6SiO・5HO結晶(トバモライト)構造中に封じ込めるための5CaO・6SiO・5HO結晶(トバモライト)が形成されるのに十分な量のCa成分(B−1)およびSiO成分の量(B−2)を算出し、前記の式(1)および式(2)により、重金属類を含む廃棄物に添加するCa成分原料の添加量(C−1)およびSiO成分原料の添加量(C−2)を求め、重金属類を含む廃棄物にCa成分原料(C−1)およびSiO成分原料(C−2)を添加して前記処理を行うことを特徴とするものであり、前記重金属類を効率良く封じ込めることができるというさらなる顕著な効果を奏する。
 本発明の請求項4記載の発明は、請求項2あるいは請求項3記載の処理方法において、前記重金属類が、クロム、鉛、カドミウム、砒素、水銀、亜鉛、銅、ニッケルから選択される少なくとも1つであり、前記重金属類が処理後の廃棄物中の5CaO・6SiO・5HO結晶(トバモライト)構造中に封じ込められているので、処理後の廃棄物は水環境基準、土壌環境基準、特殊肥料基準、食品安全基準から選択される少なくとも1つを満足させるものであることを特徴とするものであり、前記重金属類を効率良く封じ込めて、前記基準から選択される少なくとも1つを満足させることができるというさらなる顕著な効果を奏する。
 本発明の請求項5記載の発明は、請求項2から請求項4のいずれか1項に記載の処理方法において、前記処理を、120~250℃、1.1~2.1MPaで1~8時間行なうことを特徴とするものであり、前記第1の密閉容器12内での処理中に5CaO・6SiO・5HO結晶(トバモライト)を効率良く生成させ、しかもその結晶構造中に前記重金属類が封じ込めることができるというさらなる顕著な効果を奏する。
 密閉容器12内には、廃棄物を撹拌する撹拌手段30を有することとしてもよい。また、廃棄物を撹拌する撹拌手段を有する構成とすることにより、廃棄物をむらなく、早期に処理することができる。
 また、密閉容器12は、左右中央部の底側に排出口16が設けられつつ、径が左右中央部から左右両端側に向けて次第に縮径された横倒し樽型形状に形成され、撹拌手段30は、密閉容器12内に横長に設けられて回転自在に軸支された回転軸49と、回転軸49に取り付けられ同回転軸49の周方向に広がる部位を有する撹拌羽根48と、を有し、撹拌羽根48の回転軸49から羽根先端までの長さは、密閉容器12の横倒し樽型形状に対応して、回転軸49の長手方向の中央位置で長く、両端側に行くにしたがって次第に短くなるように形成されたこととしてもよい。
 このような構成とすることにより、第1の密閉容器内の廃棄物を取出す際に重力を利用して簡便に取出すことができる。同時に、密閉容器の形状に対応して廃棄物をむらなく確実に撹拌することができる。
 また、蒸気噴出手段14は、回転軸49を中空管とし、前記中空管の周面に複数個の蒸気噴出孔44を形成して構成された回転軸兼蒸気噴出管28を含むこととしてもよい。
 このような構成とすることにより、廃棄物に直接に高温高圧の蒸気を噴出して、効率的な廃棄物の処理を行なえ、さらに、第1の密閉容器内における蒸気噴出手段及び撹拌手段の効率のよい配置構成を実現できる。
The invention according to claim 1 of the present invention includes a waste containing heavy metals therein, and 5CaO · for containing at least the heavy metals in a 5CaO · 6SiO 2 · 5H 2 O crystal (tobermorite) structure during processing. A closed container 12 having a closed space S1 for storing a sufficient amount of Ca component raw material and SiO 2 component raw material for forming 6SiO 2 .5H 2 O crystal (tobermorite), and the waste stored in the closed container 12 Vapor jetting means 14 for jetting high-temperature and high-pressure steam for treating the product, Ca component raw material and SiO 2 component raw material, cooling means 70 for cooling and liquefying the vapor in the sealed container 12 after the treatment, and sealing A discharge port 16 provided on the bottom side in the container 12 and having an opening / closing mechanism 26; and a tobermorite containing the heavy metal treated from the discharge port 16 A waste treatment apparatus 10 containing heavy metals, comprising a separation and recovery means 18 for discharging a mixture of waste and liquid containing liquefied components and separating the waste and liquid from the discharged mixture. The separation / recovery means 18 recovers the mixture into a recovery container 50-1 or 50-2 and then separates the waste and the liquid and / or the mixture into a belt conveyor device 80. -1 or 80-2 is a separation and recovery means for separating the waste and the liquid during the movement, and is a waste treatment apparatus containing heavy metals, and only by one apparatus , Wastes containing heavy metals are treated safely using high-temperature and high-pressure steam, and the heavy metals are immobilized to suppress elution. Including The product can be discharged and separated and recovered by a simple operation. The structure is simple, the operation is simple, and the cost is low.
The processing apparatus 10 of the present invention has a simple configuration, a simple operation, and a low-cost structure, and can satisfactorily separate and collect processed waste and liquid.
Further, the entire apparatus is not enlarged and can be manufactured at low cost. In addition, waste collected separately from liquid is in a state of low moisture, which is convenient for handling, transportation, management, etc. For example, carbonized waste is processed into fuel, soil conditioner, etc. in a short period of time. obtain.
The shape of the airtight container 12 may be, for example, a rectangular box shape, a three-dimensional polygonal cylinder shape, a cylindrical shape, a barrel shape, a drum shape, or any other arbitrary shape, but using gravity from the discharge port 16 provided on the lower surface side. A shape that is discharged is preferred. It is preferable that the lower surface of the sealed container 12 is provided in a downward slope toward the discharge port 16.
The processing apparatus 10 of the present invention also separates and collects the mixture from the waste and the liquid after the mixture is once collected in the collection container 50-1 or 50-2 and / or removes the mixture from the belt conveyor device 80. -1 or 80-2, and separation and recovery means 18 for separating the waste and the liquid during movement.
As shown in FIG. 1 and FIG. 3A, once the mixture of the waste and the liquid treated in the vicinity of the discharge port 16 is recovered in the recovery container 50-1, the bottom of the recovery container 50-1 is formed. The liquid is separated by a stainless steel mesh 56 that does not allow the waste to pass through but allows the liquid to pass through, and is recovered in another recovery container 50-3 disposed below the recovery container 50-1.
Since the waste material is separated and remains on the stainless steel mesh 56 of the recovery container 50-1, the waste is driven by a controlled driving device (not shown) around the rotating shaft 52 when taken out. Rotate 56 in the direction of the arrow to release the locking portion 53 and drop it downward by gravity to collect the waste in a collection container (not shown). In addition to a simple configuration, the waste and liquid that have been processed can be separated and recovered satisfactorily with a simple and low-cost structure.
In the invention according to claim 2 of the present invention, when processing waste containing heavy metals in a sealed container having an openable and closable discharge port and having a closed space while jetting high-temperature and high-pressure steam, A sufficient amount to form 5CaO.6SiO 2 .5H 2 O crystals (tobermorite) to contain at least the heavy metals in the 5CaO.6SiO 2 .5H 2 O crystal (tobermorite) structure during the treatment with After the treatment is performed in the presence of the Ca component raw material and the SiO 2 component raw material, the treatment is cooled and treated with the treated liquid containing the water-soluble compound of the heavy metal liquefied and the tobermorite in which the heavy metal is contained. Waste material containing heavy metals, characterized by separating and recovering the collected waste, and waste containing heavy metals with only one device Is treated safely and simply using high-temperature and high-pressure steam to immobilize the heavy metals to suppress elution, and after treatment, the heavy metals treated continuously are cooled with the immobilized waste. As a result, it is possible to separate and recover the liquefied liquid containing the water-soluble compound of the heavy metal by a simple operation.
The invention according to claim 3 of the present invention is the treatment method according to claim 2, wherein the content of the Ca component (A-1) and the content of the SiO 2 component (A) previously contained in the waste containing heavy metals. -2) is analyzed, and 5CaO.6SiO 2 .5H 2 O crystals (tobermorite) are formed during the treatment to contain at least the heavy metals in the 5CaO.6SiO 2 .5H 2 O crystal (tobermorite) structure. A sufficient amount of Ca component (B-1) and SiO 2 component (B-2) are calculated, and the waste containing heavy metals is calculated by the above formulas (1) and (2). The addition amount (C-1) of the Ca component raw material to be added and the addition amount (C-2) of the SiO 2 component raw material are obtained, and the Ca component raw material (C-1) and the SiO 2 component raw material ( C-2) is added to the treatment This is characterized in that the heavy metal can be efficiently contained.
According to a fourth aspect of the present invention, in the treatment method according to the second or third aspect, the heavy metal is at least one selected from chromium, lead, cadmium, arsenic, mercury, zinc, copper, and nickel. Since the heavy metals are contained in the 5CaO.6SiO 2 .5H 2 O crystal (tobermorite) structure in the waste after treatment, the waste after treatment is classified into water environment standard, soil environment standard, It is characterized in that it satisfies at least one selected from special fertilizer standards and food safety standards, and efficiently contains the heavy metals to satisfy at least one selected from the standards There is a further remarkable effect of being able to.
According to a fifth aspect of the present invention, in the treatment method according to any one of the second to fourth aspects, the treatment is performed at 120 to 250 ° C. and 1.1 to 2.1 MPa. 5CaO.6SiO 2 .5H 2 O crystals (tobermorite) are efficiently generated during the treatment in the first closed vessel 12, and the heavy metal is contained in the crystal structure. There is a further remarkable effect that the species can be contained.
It is good also as having the stirring means 30 which stirs a waste in the airtight container 12. FIG. In addition, by having a configuration having a stirring means for stirring the waste, the waste can be processed quickly without unevenness.
Further, the sealed container 12 is formed in a side-down barrel shape in which the discharge port 16 is provided on the bottom side of the left and right center part, and the diameter is gradually reduced from the left and right center part toward both left and right sides. Includes a rotating shaft 49 that is provided horizontally in the sealed container 12 and rotatably supported, and a stirring blade 48 that is attached to the rotating shaft 49 and has a portion that extends in the circumferential direction of the rotating shaft 49. The length from the rotating shaft 49 of the stirring blade 48 to the tip of the blade is long at the central position in the longitudinal direction of the rotating shaft 49 corresponding to the sideways barrel shape of the sealed container 12, and gradually decreases toward both ends. It is good also as having been formed.
By setting it as such a structure, when taking out the waste in a 1st airtight container, it can take out easily using gravity. At the same time, it is possible to reliably stir the waste uniformly, corresponding to the shape of the sealed container.
Further, the steam jetting means 14 includes a rotary shaft / steam jet pipe 28 constituted by forming the rotary shaft 49 as a hollow tube and forming a plurality of steam jet holes 44 on the peripheral surface of the hollow tube. Also good.
By adopting such a configuration, high-temperature and high-pressure steam can be directly ejected to the waste for efficient waste disposal, and the efficiency of the steam ejection means and the stirring means in the first sealed container A good arrangement configuration can be realized.
 図1は、本発明の実施形態に係る重金属類を含む廃棄物の処理装置の一例の断面説明図である。
 図2は、図1の重金属類を含む廃棄物の処理装置の排出口周辺の拡大一部断面説明図である。
 図3(a)は、図1に示した分離回収手段の一部を説明する説明図であり、図3(b)は、図1に示した分離回収手段の他の例を説明する説明図であり、図3(c)は、混合物をベルトコンベア装置に供給して移動中に廃棄物と液体を分離する分離回収手段の例を説明する説明図であり、図3(d)は、図3(c)に示した分離回収手段の他の例を説明する説明図である。
 図4は、形成されたトバモライトの層状結晶構造を模式的に説明する説明図である。
 図5は、クロム、鉛イオンがトバモライトの層状結晶構造中に取り込まれて封じ込められる状態を説明する説明図である。
 図6は、亜臨界水反応を行なう際の反応領域を説明する説明図である。
 図7は、重金属類の種類と亜臨界水処理による固化率(原料下水脱水汚泥中の重金属濃度に対する処理汚泥の濃度減少分の比率)の平均値及び標準偏差の関係を示す説明図である。
FIG. 1 is a cross-sectional explanatory view of an example of a waste treatment apparatus containing heavy metals according to an embodiment of the present invention.
FIG. 2 is an enlarged partial cross-sectional explanatory view of the vicinity of the discharge port of the waste processing apparatus containing heavy metals of FIG.
FIG. 3A is an explanatory diagram for explaining a part of the separation / recovery unit shown in FIG. 1, and FIG. 3 (b) is an explanatory diagram for explaining another example of the separation / recovery unit shown in FIG. FIG. 3C is an explanatory view for explaining an example of a separation and recovery means for separating the waste and the liquid during the movement by supplying the mixture to the belt conveyor device, and FIG. It is explanatory drawing explaining the other example of the isolation | separation collection | recovery means shown to 3 (c).
FIG. 4 is an explanatory diagram schematically illustrating the layered crystal structure of the tobermorite formed.
FIG. 5 is an explanatory diagram for explaining a state in which chromium and lead ions are taken in and contained in the layered crystal structure of tobermorite.
FIG. 6 is an explanatory diagram for explaining a reaction region when performing a subcritical water reaction.
FIG. 7 is an explanatory diagram showing the relationship between the types of heavy metals and the average value and standard deviation of the solidification rate by subcritical water treatment (the ratio of the decrease in the concentration of treated sludge to the concentration of heavy metals in the raw sewage dewatered sludge).
 以下、図面を用いて本発明の重金属類を含む廃棄物の処理装置および重金属類を含む廃棄物の処理方法の例を説明する。
 図1は、後述するように本発明の実施形態に係る重金属類を含む廃棄物の処理装置の一例の断面説明図である。
 図1に示す開閉自在の排出口16を有するとともに閉鎖空間S1を有する密閉容器12内に重金属類を含む廃棄物および前記重金属類を5CaO・6SiO・5HO結晶(トバモライト)構造中に封じ込めるための5CaO・6SiO・5HO結晶(トバモライト)が形成されるのに十分な量のCa成分原料およびSiO成分原料(以下、重金属類を含む廃棄物および前記Ca成分原料およびSiO成分原料を含む廃棄物を、略して廃棄物と称すことがある)を供給して高温高圧の蒸気を噴出しながら処理(120~250℃、1.1~2.1MPaで1~8時間)(以下、亜臨界水反応あるいは水熱反応と称すことがある)すると、飽和水蒸気圧下で処理中に、下記式(3)により廃棄物に予め含まれるCa成分や新たに添加したCa成分と廃棄物に予め含まれるSiO成分や新たに添加したSiO成分が水熱反応して、安定なケイ酸カルシウム(トバモライト:5CaO・6SiO・5HO)と称される鉱物の結晶が形成される。
 6SO+5CaO+5HO→5CaO・6SiO・5HO  ・・・式(3)
 トバモライトの結晶は図4に模式的に示すようにSi−O四面体層、Ca−O八面体層、Si−O四面体層が繰り返され、Si−O四面体層とSi−O四面体層の間にカルシウムイオンがインターカレートされた層状に成長する構造になっている。
 そしてこの層状結晶構造形成過程で、重金属類は前記カルシウムイオンとイオン交換反応によりカルシウムイオンを置換して層状結晶構造中に取り込まれて封じ込められる。重金属類はトバモライトの層状結晶構造中に取り込まれて封じ込められ、そのために溶出が抑制される。
 前記亜臨界水反応条件(温度、圧力、時間)は重要である。廃棄物を処理してトバモライトの層状結晶構造が形成されるとともに、層状結晶構造形成過程で重金属類がカルシウムイオンとイオン交換反応によりカルシウムイオンを置換してトバモライトの層状結晶構造中に取り込まれて封じ込められるような亜臨界水反応条件を使用することが重要である。
 図5は、重金属類としてクロムおよび鉛を含む汚染土壌を、この汚染土壌に予め含まれるSiO成分を利用し、前記式(3)を満足するように新たにSiO成分および新たにCa成分としてCaOを添加して、前記のようにして高温高圧の蒸気を噴出しながら水熱反応処理を行うと、クロムおよび鉛がトバモライトの層状結晶構造中に取り込まれて封じ込められる状態を説明する説明図である。
 前記のようにして高温高圧の蒸気により処理(120~250℃、1.1~2.1MPaで1~8時間)すると、クロムおよび鉛はクロムイオンおよび鉛イオンとなって、新たに添加したCaOはカルシウムイオンとなって、そして汚染土壌に予め含まれるSiO成分および新たに添加したSiO成分はシリカイオンとなって土粒子80の表面反応層81に移行して水熱反応が行われ、土粒子80の表面にトバモライト層状結晶層82が形成される。この層状結晶構造形成過程でクロムイオンおよび鉛イオンはカルシウムイオンとイオン交換反応によりカルシウムイオンを置換してトバモライトの層状結晶構造中に取り込まれて封じ込められる。
 このように土壌中のシリカ(SiO2)および新たに添加したSiO成分と添加剤中の石灰分(CaO)を比較的低温(120~250℃)で化学反応(1.1~2.1MPaで1~8時間)させることにより、トバモライトを合成し、化学的に安定した強度の高い結晶に成長させ、重金属類をこの層状結晶中に閉じ込めることにより、溶出を抑えることができる。
 図5に示した場合は、汚染土壌に予め含まれるSiO成分を利用し、前記式(3)を満足するように新たにSiO成分およびCa成分として新たにCaOを添加して、水熱反応を行った例を示した。
 前記式(3)に従えば、Ca/Siのモル比(理論値)は約0.8である。
 しかし前記水熱反応を行うとSiO成分の一部が水に溶解して珪酸イオンとなり、このSiO成分がトバモライト層状結晶形成に寄与しない場合が発生する。そこで、前記式(3)を満足するSiO成分に、その分だけ予め多く配合することが好ましい。
 しかしあまり多量に配合すると、珪酸イオン濃度が高くなって後述するように重金属類がトバモライト層状結晶中に閉じ込められなくなる。
 発明者は、Ca/Siのモル比が0.6~0.8の範囲となるように、SiO成分を多くして、SiO成分およびCa成分を配合すると、トバモライト層状結晶中への重金属類の閉じ込め率を高く維持することができることを見出した。
 このように、強固なトバモライト結晶に重金属類を閉じ込めることができるため、従来は処理困難であったクロム、鉛、カドミウム、砒素、水銀、亜鉛、銅、ニッケルなどの重金属類の溶出抑制が可能となる。
 例えば、鉛および砒素汚染の土壌で比較した場合、従来法のセメント固化では処理土が高アルカリ性になるため、原料の土壌よりも鉛の溶出量が増えてしまうが、亜臨界水処理した場合には、鉛、砒素ともに効果的に溶出が抑制され、環境庁(旧)告示46号に規定される溶出基準をクリアすることができる。
 廃棄物を前記のようにして高温高圧の蒸気を噴出しながら処理すると、大部分の重金属類は前記のようにトバモライトの層状結晶構造中に取り込まれて封じ込められるが、例えば、前記廃棄物中に陰イオンとして塩素イオン、珪酸イオン、炭酸イオン、硫酸イオン、燐酸イオンなどが存在している場合には、水蒸気に溶け込んだり、水に溶解することがある。
 そのために本発明は、密閉容器12内で廃棄物を高温高圧の蒸気を噴出しながら処理を行った後に、密閉容器12を冷却手段70により冷却して、閉鎖空間S1内の水蒸気を液化し、前記重金属類の水溶性化合物を含む処理された液体とし、この液体と前記重金属類が封じ込められたトバモライトを含む処理された廃棄物とを分離回収する構成としている。
 密閉容器12を冷却するための冷却手段70は、図1に示したように、密閉容器12の外部表面の大部分を一体的に覆って固定して設置した中空の金属製チャンバーであって、図示しない冷却媒体源から供給される、必要に応じて温度調節された水や油や、空気や窒素などの気体などの冷却媒体が金属製チャンバーの内部を流れて密閉容器12と熱交換して冷却するように構成されている。
 一体的に覆う金属製チャンバーの例を示したが、この例に限定されることはなく、密閉容器12の外部表面の大部分を複数の金属製チャンバーで覆って固定して設置した冷却装置や、密閉容器12の外部表面に固定して設置した中空の金属製パイプであって、図示しない冷却媒体源から供給される、必要に応じて温度調節された水や油や空気や窒素などの気体などの冷却媒体が金属製パイプの内部を流れて密閉容器12と熱交換して冷却するような冷却装置や、密閉容器12の内部表面に固定して設置した中空の金属製パイプであって、図示しない冷却媒体源から供給される、必要に応じて温度調節された水や油や空気や窒素などの気体などの冷却媒体が金属製パイプの内部を流れて密閉容器12と熱交換して冷却するような冷却装置などを挙げることができる。これらは2つ以上組み合わせて使用することもできる。
 本発明の重金属類を含む廃棄物の処理装置は、例えば、合成樹脂製の注射器、血液の付着したガーゼ、紙おむつ、手術した内臓等の医療関係機関等から廃棄された医療系廃棄物、生ごみ、プラスチック等の合成樹脂製容器等の一般家庭から廃棄された家庭系廃棄物、食品加工廃棄物、農水産廃棄物、各種工業製品廃棄物、下水汚泥等の産業廃棄物等に含まれる廃棄物を高温高圧の蒸気を介して処理する装置である。さらに、処理して得られた重金属類が封じ込められたトバモライトを含む廃棄物と前記のようにして液化した液体とを簡単な操作で有効に分離して、前記廃棄物と液体とを別々に回収できる装置である。
 図1,図2には、本発明の重金属類を含む廃棄物の処理装置(以下、単に「処理装置」ともいう)の実施の形態を示している。図1に示すように、本実施形態に係る処理装置10は、内部に廃棄物を収容する密閉容器12と、密閉容器12内に高温高圧の蒸気を噴出する蒸気噴出手段14と、密閉容器12の底側に設けられた排出口16と、処理された廃棄物と液体とを分離回収する分離回収手段18と、を備えている。
 図1に示すように、密閉容器12は、内部に処理する廃棄物を収容する閉鎖空間S1を有する閉鎖容器であって、前記閉鎖空間S1内において高温高圧下で廃棄物を処理する容器である。
 本実施形態では、密閉容器12は、支持脚13で地面からある程度の高さに配置されるように支持されている。密閉容器12は、その径が左右方向中央部から左右両端側の端壁12a側に向けて次第に縮径された横倒し樽型形状に形成されている。密閉容器12は、例えば、耐熱耐圧性を有するように金属板を加工して形成され、廃棄物を約2m収容できる程度の大きさで設けられている。密閉容器12には、中央部の上方に投入部20が、中央部の底側に排出部22がそれぞれ設けられており、それぞれ開閉機構24,26により開閉されるように設けられている。
 本実施形態では、密閉容器12の閉鎖空間S1内には、蒸気噴出手段14を構成している蒸気噴出管28と、廃棄物を撹拌する撹拌手段30と、が配置されている。なお、密閉容器12には、内部圧力が設定値よりも高くなると内部蒸気を開放させる、例えば設定圧を調整可能な安全弁32が設けられている。また、安全弁32に接続された排気用管の途中には、消音・消臭・重金属類回収装置34が設けられており、安全弁32を介して排気される蒸気は消音消臭され、重金属類や重金属類化合物が回収されて、外気側に排出される。
 本実施形態では、排出口16は、図1,図2に示すように、密閉容器12の左右中央部の底面側に開口されており、処理された廃棄物の排出方向を下方にして設けられている。本実施形態では、排出口16の径は、例えば、300mm程度に設けられている。
 本実施形態では、排出口16には、下方に突設された排出筒36が接続されて処理された廃棄物の排出経路R1を形成しているとともに、前記排出経路R1の途中に設けられて排出口16を開閉する開閉機構26が設けられている。
 すなわち、本実施形態では、排出部22は、排出口16と、排出筒36と、開閉機構26と、を含む構成となっている。本実施形態では、開閉機構26は、例えば、中心に排出経路R1に連通する貫通孔37が設けられたボール状の弁体38を排出経路に対して直交方向に設けられた回転軸40の回りに回転させることにより前記排出経路R1を開閉するボールバルブ等の開閉弁からなる。
 密閉容器12が横倒し樽型形状に形成されているから、重力により内部の廃棄物は排出口16が設けられている中央部に向けて集まりやすく、開閉機構26を開くだけで、簡便に処理された廃棄物を排出口16から排出させることができる。
 投入部20は、本実施形態では、密閉容器12に上側に投入口42が開口されており、投入口42には上方へ突設された投入筒43が取り付けられ、投入筒43内を開閉するように例えばボールバルブ等の開閉機構24が設けられている。
 開閉機構24を介して、投入口を開いて重金属を含む廃棄物および前記Ca成分原料およびSiO成分原料を密閉容器12内に投入でき、処理時には閉鎖して密閉容器12内の閉鎖空間S1の閉鎖状態を維持する。
 本実施形態において、蒸気噴出手段14は、密閉容器12内に高温高圧の蒸気を噴出するとともに、前記密閉容器12内を高温高圧状態とし、廃棄物を蒸気を介して処理させる。
 本実施形態では、図1に示すように、蒸気噴出手段14は、密閉容器12内に配置され周面側に多数の蒸気噴出孔44が形成された中空管からなる蒸気噴出管28と、ボイラー等の蒸気発生装置46と、蒸気発生装置46から蒸気噴出管28内に蒸気を供給する蒸気送管47と、を含む。
 蒸気噴出手段14から密閉容器12内に噴出される蒸気は、前記密閉容器12内での処理中に5CaO・6SiO・5HO結晶(トバモライト)を効率良く生成させ、しかもその結晶構造中に前記重金属類を封じ込めることができる程度の高温高圧に設定される。本実施形態では、例えば、蒸気噴出管28から噴出される蒸気は、温度が120~250℃、圧力が1.1~2.1MPaである。そして、密閉容器12内を、温度120~250℃、圧力1.1~2MPa程度にするようになっており、1~8時間処理を行う。
 温度が下限値未満であると、トバモライト結晶が形成されない恐れがあり、上限値を越えると、トバモライト結晶ではない他の結晶になる恐れがある。
 圧力が下限値未満であると、トバモライト結晶が形成されない恐れがあり、上限値を越えると、トバモライト結晶ではない他の結晶になる恐れがある。
 処理時間が下限値未満であると、トバモライト結晶が形成されない恐れがあり、上限値はないが処理時間があまり長いと不経済となる。
 前記範囲内で処理すると、5CaO・6SiO・5HO結晶(トバモライト)を効率良く生成させ、しかもその結晶構造中に前記重金属類を封じ込めることができる。
 本実施形態では、蒸気噴出管28は、密閉容器12の上下方向略中央位置で横方向に長く配置され、密閉容器12の両端壁12aに設けられた軸受45を介して回転自在に軸支されている。すなわち、蒸気噴出管28は、横軸周りに回転しながら放射状に蒸気を噴出しつつ蒸気を廃棄物に直接に当てるようになっている。
 なお、蒸気噴出管28は、モータ等の回転駆動装置51からチェーン等を介して回転駆動力を得て回転するようになっている。さらに、本実施形態では、蒸気噴出管28には、撹拌羽根48が取り付けられており、蒸気噴出管28が撹拌手段の回転軸49を兼用している。すなわち、本実施形態では、蒸気噴出手段14は、撹拌手段30の回転軸49を中空管とし、前記中空管の周面に複数個の蒸気噴出孔44を形成して構成された回転軸兼蒸気噴出管28を含む。
 なお、蒸気噴出手段14は、本実施形態の構成に限らず、例えば、密閉容器12内に差し込んだ管の先端から蒸気を噴出する構成、複数の蒸気噴出管を配置させた構成等、その他任意の構成でもよい。
 撹拌手段30は、密閉容器12内で処理される廃棄物を撹拌する手段であり、廃棄物をむらなく、早期に処理できる。本実施形態では、撹拌手段30は、上記の蒸気噴出管28からなる回転軸49と、前記回転軸49に取り付けられ同回転軸の周方向に広がる部位を有する撹拌羽根48と、を含む。本実施形態では、撹拌羽根48は、回転軸49の軸方向略中央位置で互いに逆巻きに設けられた、右巻き螺旋羽根48aと、左巻き螺旋羽根48bと、で形成されている。
 撹拌羽根48は、回転軸49から羽根先端までの長さが左右中央部から両端側に向けて次第に縮径されるように設けられている。これにより密閉容器12の横倒し樽型形状に対応して廃棄物を確実に撹拌できる。さらに、羽根先端と密閉容器12の内壁との間にある程度の隙間Hを形成するように設けられている。
 本実施形態では、螺旋羽根48a、48bは、廃棄物を中央部から両端壁側に向けて搬送しつつ、固形状の廃棄物を破砕しながら廃棄物を撹拌する。なお、本実施形態では、撹拌手段30により、廃棄物は最終的に、例えば、0.3~0.8mm程度に破砕されるように設けられている。
 撹拌羽根48により両端壁12a側に搬送された廃棄物は、前記端壁12a側で後から搬送されてくる廃棄物によって押送され、密閉容器12の内壁に沿いつつ隙間Hを介してから中央に戻るように搬送されるようになっている。
 なお、撹拌手段30は、本実施形態のものに限らず、例えば、回転軸49に取り付けられた複数の板状や翼状の撹拌羽根体やロッド体で撹拌する構成、蒸気等の圧力流体で撹拌する構成等その他任意の構成でもよい。また、破砕された廃棄物の大きさは、任意に設定してもよい。
 本実施形態では、上記のように密閉容器12内で高温高圧下で撹拌しながら、所要時間、例えば1~8時間程度処理することにより、5CaO・6SiO・5HO結晶(トバモライト)を効率良く生成させ、しかもその結晶構造中に前記重金属類を封じ込めることができる。
 なお、上記のような処理では、例えば廃棄物中に含まれるPCBの分解も期待できる。例えば、トランス油が混じった廃棄物等を処理した場合、PCB濃度が処理前には80ppmあったものが処理後には0.005ppm程度に減少したことが確認されている。
 密閉容器12内で廃棄物を高温高圧の蒸気を噴出しながら処理を行った後に、密閉容器12を冷却手段70により冷却して、閉鎖空間S1内の水蒸気を液化すると、前記重金属類の水溶性化合物を含む処理された液体が溜まり、この液体と前記重金属類が封じ込められたトバモライトを含む処理された廃棄物とが混在した状態となる。
 次に、分離回収手段18について説明する。
 分離回収手段18の1例は、前記のように、図1および図3(a)に示されている。図3(a)は、図1に示した分離回収手段の一部を説明する説明図である。
 排出口16付近で処理された前記廃棄物と前記液体の混合物は一旦回収容器50−1に回収する。回収容器50−1の底部を形成する前記廃棄物は通過させないが前記液体を通過させるステンレス製メッシュ56により、前記液体が分離されて回収容器50−1の下部に配置された他の回収容器50−3内に回収される。
 前記廃棄物は回収容器50−1のステンレス製メッシュ56上に前記液体が分離されて残留するので、取り出す際には回転軸52を中心として図示しない制御された駆動装置により駆動してステンレス製メッシュ56を矢印方向に回転させ、係止部53を開放して、重力により下方に落下させ、図示しない回収容器に前記廃棄物を回収する。シンプルな構成であるとともに、簡単操作、低コスト構造で、処理された廃棄物と液体とを良好に分離回収できる。
 図3(b)は、図1に示した分離回収手段の他の例を説明する説明図である。
 図3(b)に示すように、排出口16付近で処理された前記廃棄物と前記液体の混合物は一旦回収容器50−2に回収する。そして、回収容器50−2の側壁に設置した回転軸54を中心として図示しない制御された駆動装置により駆動して回収容器50−2を回転させて傾けて、前記液体を他の回収容器50−4に回収する。前記液体を分離された前記廃棄物は回収容器50−2内に残留している。
 図3(c)は、混合物をベルトコンベア装置に供給して移動中に廃棄物と液体を分離する分離回収手段の例を説明する説明図である。
 図3(c)に示すように排出口16付近で処理された前記廃棄物と前記液体の混合物は、前記廃棄物は通過させないが前記液体を通過させるステンレス製メッシュ56により形成されたベルトを備えたベルトコンベア装置80−1のベルトの一端部上に供給される。するとステンレス製メッシュ56により、前記液体は分離されてベルトコンベア装置80−1の下部に配置された他の回収容器50−5内に回収される。
 前記廃棄物はベルトコンベア装置80−1のベルトの進行方向の末端部において重力により分離されて下方に落下し、回収容器50−6に回収する。
 図3(d)は、図3(c)に示した分離回収手段の他の例を説明する説明図である。
 図3(d)に示すように排出口16付近で処理された前記廃棄物と前記液体の混合物は、水平方向に対して角度θだけ傾斜させて配置した合成ゴムなどで作成されたベルトを備えたベルトコンベア装置80−2のベルトの一端部上に供給される。
 すると、前記のように角度θだけ傾斜させてあるので前記混合物から前記液体が重力により分離されて、ベルト上を進行方向の末端に向かって矢印で示したように前記廃棄物より速く流下して回収容器50−7内に回収される。
 前記角度θは前記混合物、前記廃棄物、前記液体の物性や、ベルトの材質やベルトの移動速度などに依存するので、前記混合物から前記液体が重力により分離されて、ベルト上を進行方向の末端に向かって矢印で示したように前記廃棄物より速く流下するような角度θを予めテストして決めることが好ましい。
 55は掻き取り手段であり、ベルトとは前記液体が通過する図示しない間隙をおいてベルト上方に配置されている。そして、ベルト上の前記液体が分離された前記廃棄物が掻き取り手段55により矢印で示したように掻き取られて、回収容器50−8内に回収される。
 これにより、廃棄物と同時にこの廃棄物中に含まれる細菌や悪臭成分等を含んだ状態の液体は、高温高圧の蒸気で処理させることができる。そして、処理後に分離回収される液体は、重金属類の水溶性化合物を含むが、悪臭・有害成分は分解等された状態で回収することができるので、分離回収した液体を二次処理する必要がなくなり、労力がかからず、時間短縮を図ることができる。
 しかし、重金属類の水溶性化合物を液体から分離する必要がある場合は二次処理する必要がある。
 次に、本実施形態に係る重金属類を含む廃棄物の処理装置の作用について、実施形態に係る液体回収方法とともに説明する。本実施形態では、処理対象の重金属類を含む廃棄物としては、例えば、病院、大学、その他の研究所等の医療関係機関から排出される血液、手術後の内臓、脱脂綿、紙おむつ、血液供給用チューブ、点滴容器、樹脂製注射器等の医療系廃棄物とする。
 なお、注射針等の金属類やガラス製のものは予め分別して取り除かれる。排出口16の開閉機構26を閉じた状態で、密閉容器12の投入口42の開閉機構24を開いて、例えば、2m程度の重金属を含む廃棄物および前記Ca成分原料およびSiO成分原料を投入する。投入口42の開閉機構24を閉じて密閉容器12を閉鎖した状態で、前記密閉容器内に蒸気噴出手段14の蒸気噴出管28から、例えば、250℃、25atm程度に設定された高温高圧の蒸気を噴出する。
 噴出された蒸気により、密閉容器12内は例えば、250℃、2.1MPa程度の高温高圧状態となる。
 密閉容器12内で高温高圧の条件下で、回転する撹拌羽根48により廃棄物を撹拌、破砕させながら廃棄物を処理する。
 処理すると、廃棄物に予め含まれるCa成分や新たに添加したCa成分と廃棄物に予め含まれるSiO成分や新たに添加したSiO成分が水熱反応して、安定なケイ酸カルシウム(5CaO・6SO・5HOトバモライト)と称される鉱物の層状構造を有する結晶が形成され、この層状結晶構造形成過程で、重金属類は層状結晶構造中に取り込まれて封じ込められる。
 大部分の重金属類は前記のようにトバモライトの層状結晶構造中に取り込まれて封じ込められるが、前記廃棄物中に陰イオンが存在している場合には、水蒸気に溶け込んだり、水に溶解する。
 また、廃棄物に含まれる(あるいは付着している)病原体等は十分に滅菌されるとともに、悪臭成分等を分解しながら処理される。
 また、処理中では、廃棄物と同時に廃棄物に含まれる水分も高温高圧の蒸気で処理される。このような処理を所要時間、例えば、約40分間行なうと、廃棄物中の有機物は、例えば、0.3~0.8mm程度の粒状に破砕された炭状態に処理される。
 上記のように廃棄物を処理した後には、密閉容器12を冷却手段70により冷却して、閉鎖空間S1内の水蒸気を液化すると、前記重金属類の水溶性化合物を含む処理された液体が溜まり、この液体と前記重金属類が封じ込められたトバモライトを含む処理された廃棄物とが混在した状態となっているので、分離回収手段18により、たとえば図1および図3(a)に示したように、前記混合物を一旦回収容器50−1に回収すると、回収容器50−1の底部を形成する前記廃棄物は通過させないが前記液体を通過させるステンレス製メッシュ56により、前記液体が分離されて回収容器50−1の下部に配置された他の回収容器50−3内に回収される。前記廃棄物は回収容器50−1のステンレス製メッシュ56上に前記液体が分離されて残留するので、取り出す際には回転軸52を中心として図示しない制御された駆動装置により駆動してステンレス製メッシュ56を矢印方向に回転させ、係止部53を開放して、重力により下方に落下させ、図示しない回収容器に前記廃棄物を回収する。
 処理された廃棄物は、例えば、液体が分離されており、有機物は炭となっており、重金属類が封じ込められたトバモライトおよび処理された土粒子などとなっており、運搬、管理等の際にも扱いやすい状態で回収することができる。
 これにより、一台の装置だけで、廃棄物の処理とともに、廃棄物と液体とを分離して回収することができる。また、液体と混ざった状態の扱いにくい廃棄物を外部に出す必要がなく、処理に引き続き連続して、密閉容器から直接に簡単な操作で分離回収できる。また、分離回収の構成も簡単であり、低コストで製造できる。なお、各開閉機構は、手動操作で開閉する構成でもよく、或いは電気等を用いた機械的な操作で開閉させる構成でもよい。
 以上説明した亜臨界水反応は高圧水蒸気のみを反応の原動力として使うため、薬品等の人工資材を一切使わず最も安全な処理技術といえる。亜臨界水反応(温度100~374℃前後、圧力0.1~22.1Mpa)は水蒸気の温度と圧力条件により図6に示したように様々な反応領域がある。
 例えば、下水汚泥の再資源化で利用する亜臨界水処理条件は、温度200℃前後、圧力1.2~1.6Mpaの「加水分解反応」を主反応とする領域で、人を含む動物や発酵微生物等が行う分解反応と同じ反応原理の領域を活用する。下水汚泥は加水分解によって低分子化し繊維質をグルコースやオリゴ糖類に、蛋白質はアミノ酸やペプチドへ、脂質類は有機酸類にそれぞれ加水分解が進む。このため処理汚泥の直接的マテリアル利用やメタン発酵の効率化等、多目的な資源再生システムに導入することが可能となる。
 また病原微生物やウィルス等の滅菌・破壊を行え、農薬等の有害化学物質の分解及び重金属類の固化による溶出抑制等ができるなど様々な環境安全性を確保できる特徴がある。
 下水汚泥に関しては、下記のように多様な再生資源としての利用ができる。
(1)農耕地土壌改良材:下水汚泥の亜臨界水処理は安定した加水分解処理が行え、顆粒化された状態で生成できるため、利便性の高い緑農地土壌改良材とすることができる。
(2)汚泥有機肥料:下水汚泥は乾燥化や発酵させ、肥効成分や重金属の農用基準等の安全性を確認できれば「普通肥料」の一種として利用できる。
(3)メタン発酵の前処理機能
 高分子の有機物が加水分解されているため微生物分解、すなわち一次発酵の速度が速くなると同時に、ガス収率が高くなる。たとえばメタン発酵の場合は約1.5~2.8倍にメタンガス収率が増強され、マテリアルやエネルギー回収率の増強が可能となる。
 また生活系生ごみや食品廃棄物等との混合処理も可能で、下水処理場で合同処理した場合、メタン発酵発電により電力と熱源自給システムも可能となる。
 以上のように様々な利用性があるが、いずれにしても重金属類の安全性確保は重要な課題となる。
 重金属類を含む下水脱水汚泥の亜臨界水処理による重金属固化特性について試験した。
(1)試験装置:図1に示した亜臨界水処理装置は実用タイプのものとし、反応容積2mのバッチ処理タイプである。ボイラー能力500kg/hのものを用いた。
(2)試験条件:有機物の加水分解が主反応となる亜臨界水領域は温度200°C前後、圧力は当該温度の飽和蒸気圧で1.2~1.6MPaである。温度・圧力条件がこれより高いと過分解となり養分の損失が生じる領域となる。したがって温度は180~200°Cの範囲とした。
(3)試験操作:Ca成分およびSiO成分が予め少ないことが判っている下水脱水汚泥(含水率約78質量%)を前記亜臨界水処理装置内での処理中に少なくとも下水脱水汚泥300Kgに含まれる重金属類をトバモライト結晶構造中に封じ込めるためのトバモライトが形成されるのに十分な量のCa成分原料[CaO)]10KgおよびSiO成分原料[シリカ(SiO)]13Kgを添加し、Ca成分原料およびSiO成分原料を下水脱水汚泥とよく混和して添加混合後の原料を投入後、亜臨界水反応条件になるまで蒸気を圧入し、この所定条件を保ちながら必要時間の亜臨界水処理を行った。この反応時間は30minから1時間の範囲である。反応終了後は常温まで冷却し、脱気し常圧に戻したあと液化した成分を含む液体10Kgを分離し、次いで前記重金属類が封じ込められたトバモライトを含む汚泥約300Kg強(飽和蒸気の水和反応が起こり重量がやや増加)、を分離し取り出した。
 計30検体についての原料下水脱水汚泥および液化した成分を含む液体および前記重金属類が封じ込められたトバモライトを含む汚泥について、下記の分析方法で、肥料成分を含む一般有機成分と重金属類および微量化学物質の理化学分析を行った。
 処理汚泥について、その結果を、まとめて、亜臨界水処理による固化率(原料下水脱水汚泥中の重金属濃度に対する処理汚泥の濃度減少分の比率)を算出し、その平均値及び標準偏差の範囲を図7に示した。
MPa分析方法:
 昭和48年総理府令第5号に基づく重金属の溶出試験法に準拠した。
 前記重金属類が封じ込められたトバモライトを含む汚泥の分析結果の内の2つの例を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 一方、表3に、国土交通省土木研究所が行った調査結果(「土壌の汚染に係る環境基準」環境庁告示第46号、平成3年8月)に基づいて作成した日本の下水汚泥の重金属濃度を示す。
 下水汚泥の全国調査結果から、表3中に記載の土壌環境基準の最大値を亜臨界水処理によってクリアできれば、下水汚泥重金属に関する安全化を全国的に安心して図れることになる。
Figure JPOXMLDOC01-appb-T000003
 表3から、Crは最大値が約650mg・kg−1であり、図7に示したCrの固化率平均45%を適用すると、亜臨界水処理を行った後には約360mg・kg−1となるので、表1~表3に示した肥料基準を満足する。
 表3から、Pbは最大値が約180mg・kg−1であり、図7に示したPbの固化率平均45%を適用すると、亜臨界水処理を行った後に約99mg・kg−1となり、100mg・kg−1を僅かであるが下回り表1~表3に示した肥料基準値以下となる。
 表3から、Cdは最大値が7.4mg・kg−1であり、図7に示したCdの固化率平均約58%を適用すると、亜臨界水処理を行った後に約3.1mg・kg−1となり表1~表3に示した肥料基準値を下回る。
 表3から、Asは最大値が101mg・kg−1であり、図7に示したAsの固化率平均約57%とすると、亜臨界水処理を行った後に約44mg・kg−1となるので、表1~表3に示した肥料基準を満足する。
 同様にして表3から、Hgは最大値が7.3mg・kg−1であり、図7に示したHgの固化率平均約78%とすると、亜臨界水処理を行った後に約1.6mg・kg−1となるので、表1~表3に示した肥料基準を満足する。
 表3から、Znは最大値が3020mg・kg−1であり、図7に示したZnの固化率平均約75%をすると、亜臨界水処理を行った後に約755mg・kg−1となるが、亜鉛、銅については肥料基準ではなく土壌濃度基準にしており、下水汚泥を肥料として施用後の土壌と混合した時に、120mg・kg−1となることが求められている。注意深い施用によって、表1~3に示した土壌環境基準を守ることが出来る。
 表3から、Niは最大値が417mg・kg−1であり、図7に示したNiの固化率平均約60%とすると、亜臨界水処理を行った後に約167mg・kg−1となるので、表1~表3に示した肥料基準を満足する。
 以上から、亜臨界水処理によって、全国的に下水汚泥の重金属の固化による農用地基準値(肥料基準)を満足できる汚泥資源化製品を製造することが可能であると考えられる。
 なお、亜鉛については土壌汚染の未然防止を目的に、監視上有効な物質であることから農用地土壌の自然賦存量から亜鉛濃度120ppmの管理基準が定められている(「農用地における土壌中の重金属などの蓄積防止に係る管理基準について」、昭和59年11月環境庁水質保全局長通達)。これは亜鉛を指標にすることにより、カドミウムやヒ素など有害物質の蓄積を最小限に抑えることを目的として設定されている。この120ppmという値は、あくまで農地に散布した後の土壌に関する管理濃度であることに留意する必要がある。
 表3に記載した溶出基準(前記土壌環境基準)は重金属の地下水汚染防止を目的として設定されているものである。これは重金属を含む地下水を生涯飲み続けても安全である基準として設定されており、一定の溶出操作をして溶出液の濃度を測定して判定される。
 前記のように、どの重金属類も亜臨界水処理後は溶出基準値以下であることが確認された。
 全ての試料について、亜臨界水処理をすることにより、土壌環境基準はもとより、農用基準を下回り重金属に対し安全な有機肥料(堆肥を含む)とすることができることが判った。
 「亜臨界水処理技術」を下水汚泥に適用することにより、重金属を無害化レベルまで固化し溶出抑制が可能であることを示した。すなわち、農用の重金属含有基準を既往の最大濃度の下水汚泥でも満足させることができ、また短時間で安全な汚泥肥料化が直接行えることを実証的に示した。
 分離した前記液体についても、前記の分析方法で、肥料成分を含む一般有機成分と重金属類および微量化学物質の理化学分析を行った一例を次に示す。
 前記液体中の92.7質量%はpH4.8の水であった。前記液体中の固形分中の有機炭素は3.6質量%であった。
 前記液体中の肥料分および重金属の含有量を次に示す。
  全窒素      6.700mg/L
  全燐酸(P)2.100mg/L
  重金属:
   Cr   0.3mg/L
   Pb   0.01mg/L
   Cd   0.01mg/L未満
   As   0.27mg/L
   Hg   0.0005mg/L未満
   Zn   43.05mg/L未満
   Cu   2.1mg/L
   Ni   0.6mg/L
 分離した前記液体は、重金属に関する水の環境基準と排水基準に従って、また重金属以外の水質汚染物質も含まれているので、排水基準に従って、しかるべき水処理を行って、排水する。また下水処理場では水処理系統に返送して処理してから公共水域に排水する。
 次に、亜臨界水処理設備の経済性について記載する。
 亜臨界水処理設備の構成は、図1にも示したように、(1)高圧蒸気ボイラー、(2)圧力タンク(撹拌機付)、(3)温度圧力制御盤、(4)原料及び処理性製品の投入・移送・貯留設備の4つである。
 主な投入資源はボイラー用燃料(A重油等)と駆動モーター及び水である。これらのエネルギー消費量は処理量当たり、水約20L/t、電力消費量は25kwh/t程度である。
 従来の炭化設備の場合と対比すると、エネルギー投入では1/3程度また建設費では1/3~1/4程度となり経済性の高い方法である。
 以上のように、亜臨界水処理により、下水汚泥を安全な有機質資源にできることを示した。我が国では農業経済の衰退傾向から農業従事者の減少とともに遊休農地が拡大している。農業生産は生活を支える基盤産業として重要であり、地域生産の向上策は重要である。このためには農耕地土壌を活性化させ再生生産能力のある土壌づくりは重要である。
 加えて、機能性の高い堆肥製造が可能なため農産品の品質向上と相まって農業経済の効率化が達成可能である。また我が国の耕作放棄地などの農耕地土壌の修復には有機質による改質改善が重要であり、亜臨界水処理による安全化された下水処理汚泥の積極的有効利用の促進が費用対効果の面から強く望まれるところである。
 以上説明した本発明の重金属を含む廃棄物の処理装置及び重金属類を含む廃棄物の処理方法は、上記した実施形態のみの構成に限定されるものではなく、特許請求の範囲に記載した本発明の本質を逸脱しない範囲において、任意の改変を行ってもよい。
Hereinafter, an example of a waste treatment apparatus containing heavy metals and a method for treating waste containing heavy metals according to the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional explanatory view of an example of a waste treatment apparatus including heavy metals according to an embodiment of the present invention as will be described later.
Waste containing heavy metals in the sealed container 12 having the openable / closable discharge port 16 and the closed space S1 shown in FIG. 1 and the heavy metals are converted into 5CaO · 6SiO. 2 ・ 5H 2 5CaO · 6SiO for containment in O crystal (tobermorite) structure 2 ・ 5H 2 A sufficient amount of Ca component raw material and SiO to form O crystals (tobermorite) 2 Component raw materials (hereinafter referred to as waste containing heavy metals and the Ca component raw materials and SiO 2 Waste containing component raw materials may be referred to as waste for short) and processing while blowing high-temperature and high-pressure steam (120 to 250 ° C, 1.1 to 2.1 MPa, 1 to 8 hours) (Hereinafter, it may be referred to as subcritical water reaction or hydrothermal reaction.) Then, during treatment under saturated water vapor pressure, the Ca component previously contained in the waste by the following formula (3) or newly added Ca component and disposal SiO contained in advance 2 Components and newly added SiO 2 The component reacts hydrothermally to produce stable calcium silicate (tobermorite: 5CaO · 6SiO 2 ・ 5H 2 A mineral crystal called O) is formed.
6SO 2 + 5CaO + 5H 2 O → 5CaO ・ 6SiO 2 ・ 5H 2 O ... Formula (3)
As shown schematically in FIG. 4, the tobermorite crystal is composed of a Si—O tetrahedral layer, a Ca—O octahedral layer, and a Si—O tetrahedral layer, and the Si—O tetrahedral layer and the Si—O tetrahedral layer are repeated. In this structure, calcium ions are grown in a layered manner intercalated.
In the process of forming the layered crystal structure, heavy metals are substituted into the layered crystal structure by substituting calcium ions with the calcium ions by an ion exchange reaction. Heavy metals are incorporated and contained in the layered crystal structure of tobermorite, which suppresses elution.
The subcritical water reaction conditions (temperature, pressure, time) are important. The layered crystal structure of tobermorite is formed by treating the waste, and in the process of forming the layered crystal structure, heavy metals replace calcium ions by ion exchange reaction with calcium ions, and are taken into the layered crystal structure of tobermorite and containment It is important to use such subcritical water reaction conditions.
FIG. 5 shows a case in which contaminated soil containing chromium and lead as heavy metals is mixed with SiO contained in the contaminated soil in advance. 2 Using the components, SiO 2 is newly added to satisfy the above formula (3). 2 When CaO is added as a component and a new Ca component, and hydrothermal reaction treatment is performed while jetting high-temperature and high-pressure steam as described above, chromium and lead are taken in and contained in the layered crystal structure of tobermorite. It is explanatory drawing explaining a state.
When treated with steam at a high temperature and high pressure as described above (120 to 250 ° C., 1.1 to 2.1 MPa for 1 to 8 hours), chromium and lead become chromium ions and lead ions, and newly added CaO is added. Becomes calcium ions and is pre-contained in contaminated soil 2 Components and newly added SiO 2 The component becomes silica ions and moves to the surface reaction layer 81 of the soil particles 80 to undergo a hydrothermal reaction, and the tobermorite layered crystal layer 82 is formed on the surface of the soil particles 80. In this layered crystal structure formation process, chromium ions and lead ions are replaced by calcium ions and exchanged with calcium ions to be incorporated into the tobermorite layered crystal structure.
Thus, silica (SiO2) in the soil and newly added SiO 2 Tobermorite was synthesized by chemically reacting components and additives with lime (CaO) at a relatively low temperature (120 to 250 ° C) (1.1 to 2.1 MPa for 1 to 8 hours). Elution can be suppressed by growing a stable and strong crystal and confining heavy metals in the layered crystal.
In the case shown in FIG. 5, SiO contained in the contaminated soil in advance. 2 Using the components, SiO 2 is newly added to satisfy the above formula (3). 2 The example which added CaO newly as a component and Ca component, and performed the hydrothermal reaction was shown.
According to the formula (3), the molar ratio (theoretical value) of Ca / Si is about 0.8.
However, when the hydrothermal reaction is performed, SiO 2 Part of the component dissolves in water to form silicate ions, and this SiO 2 In some cases, the component does not contribute to tobermorite layered crystal formation. Therefore, SiO satisfying the formula (3) 2 It is preferable to add a larger amount to the component in advance.
However, if added too much, the silicate ion concentration becomes high and heavy metals cannot be confined in the tobermorite layered crystal as will be described later.
The inventors have determined that the SiO / Si molar ratio is in the range of 0.6 to 0.8. 2 Increasing the ingredients, SiO 2 It has been found that when the component and the Ca component are blended, the confinement ratio of heavy metals in the tobermorite layered crystal can be kept high.
In this way, since heavy metals can be confined in a strong tobermorite crystal, it is possible to suppress elution of heavy metals such as chromium, lead, cadmium, arsenic, mercury, zinc, copper, nickel, which has been difficult to process in the past. Become.
For example, when compared with soil contaminated with lead and arsenic, the amount of lead elution will increase compared to the soil of the raw material because the treated soil becomes highly alkaline in cement solidification by the conventional method. Elution of both lead and arsenic is effectively suppressed, and the elution standard stipulated in the Environmental Agency (Old) Notification No. 46 can be cleared.
When the waste is treated while jetting high-temperature and high-pressure steam as described above, most heavy metals are taken in and contained in the layered crystal structure of tobermorite as described above. For example, in the waste, When a chloride ion, a silicate ion, a carbonate ion, a sulfate ion, a phosphate ion, or the like is present as an anion, it may dissolve in water vapor or dissolve in water.
Therefore, the present invention treats waste in the sealed container 12 while ejecting high-temperature and high-pressure steam, and then cools the sealed container 12 by the cooling means 70 to liquefy the water vapor in the closed space S1, A treated liquid containing the water-soluble compound of heavy metals is used, and the liquid and the treated waste containing tobermorite containing the heavy metals are separated and recovered.
As shown in FIG. 1, the cooling means 70 for cooling the sealed container 12 is a hollow metal chamber that is installed so as to integrally cover and fix most of the outer surface of the sealed container 12, A cooling medium, such as water or oil whose temperature is adjusted as necessary, or a gas such as air or nitrogen, supplied from a cooling medium source (not shown) flows inside the metal chamber and exchanges heat with the sealed container 12. It is configured to cool.
Although an example of a metal chamber that is integrally covered is shown, the present invention is not limited to this example, and a cooling device that is installed by covering and fixing most of the outer surface of the sealed container 12 with a plurality of metal chambers, A hollow metal pipe fixedly installed on the outer surface of the hermetic container 12 and supplied from a cooling medium source (not shown), such as water, oil, air, nitrogen, etc., temperature-controlled as necessary A cooling device in which the cooling medium flows through the inside of the metal pipe and exchanges heat with the sealed container 12 for cooling, or a hollow metal pipe fixedly installed on the inner surface of the sealed container 12, A cooling medium such as water, oil, gas such as air or nitrogen, which is supplied from a cooling medium source (not shown) and whose temperature is adjusted as necessary, flows inside the metal pipe and exchanges heat with the hermetic container 12 for cooling. Such as a cooling device It can gel. Two or more of these can be used in combination.
The waste processing apparatus containing heavy metals of the present invention includes, for example, a syringe made of synthetic resin, a gauze with blood attached, a disposable diaper, a medical waste discarded from a medical organization such as a visceral organ operated, a garbage Waste from household waste, food processing waste, agricultural and fishery waste, various industrial product waste, industrial waste such as sewage sludge, etc. Is a device that processes high temperature and high pressure steam. Furthermore, the waste containing the tobermorite encapsulated in the heavy metals obtained from the treatment and the liquid liquefied as described above are effectively separated by a simple operation, and the waste and the liquid are recovered separately. It is a device that can.
1 and 2 show an embodiment of a waste treatment apparatus containing heavy metals of the present invention (hereinafter also simply referred to as “treatment apparatus”). As shown in FIG. 1, the processing apparatus 10 according to the present embodiment includes a sealed container 12 that contains waste therein, a steam ejection means 14 that ejects high-temperature and high-pressure steam into the sealed container 12, and the sealed container 12. And a separation and recovery means 18 for separating and recovering the treated waste and liquid.
As shown in FIG. 1, the sealed container 12 is a closed container having a closed space S <b> 1 that accommodates waste to be processed therein, and is a container that processes waste in the closed space S <b> 1 under high temperature and high pressure. .
In the present embodiment, the sealed container 12 is supported by the support legs 13 so as to be disposed at a certain height from the ground. The sealed container 12 is formed in a side-down barrel shape whose diameter is gradually reduced from the central portion in the left-right direction toward the end walls 12a on the left and right ends. The sealed container 12 is formed, for example, by processing a metal plate so as to have heat and pressure resistance, and waste is about 2 m. 3 It is provided with a size that can be accommodated. The closed container 12 is provided with an input part 20 above the center part and a discharge part 22 at the bottom side of the center part, and is provided to be opened and closed by opening / closing mechanisms 24 and 26, respectively.
In the present embodiment, a steam ejection pipe 28 constituting the steam ejection means 14 and a stirring means 30 for stirring the waste are disposed in the closed space S1 of the sealed container 12. The sealed container 12 is provided with a safety valve 32 that can release the internal steam when the internal pressure becomes higher than a set value, for example, the set pressure can be adjusted. Further, a silencer / deodorant / heavy metal recovery device 34 is provided in the middle of the exhaust pipe connected to the safety valve 32, and the steam exhausted through the safety valve 32 is silenced, deodorized, Heavy metal compounds are collected and discharged to the outside air side.
In this embodiment, as shown in FIGS. 1 and 2, the discharge port 16 is opened on the bottom surface side of the left and right central part of the sealed container 12, and is provided with the treated waste discharged in a downward direction. ing. In the present embodiment, the diameter of the discharge port 16 is, for example, about 300 mm.
In the present embodiment, the discharge port 16 is connected to a discharge tube 36 projecting downward to form a discharge path R1 for the treated waste, and is provided in the middle of the discharge path R1. An opening / closing mechanism 26 for opening and closing the discharge port 16 is provided.
That is, in the present embodiment, the discharge unit 22 includes the discharge port 16, the discharge tube 36, and the opening / closing mechanism 26. In the present embodiment, the opening / closing mechanism 26 has, for example, a ball-shaped valve body 38 provided with a through-hole 37 communicating with the discharge path R1 at the center around a rotary shaft 40 provided in a direction orthogonal to the discharge path. And an opening / closing valve such as a ball valve that opens and closes the discharge path R1.
Since the sealed container 12 is laid sideways and formed into a barrel shape, the waste inside easily gathers toward the center where the discharge port 16 is provided due to gravity, and is simply processed by simply opening the opening / closing mechanism 26. Waste can be discharged from the discharge port 16.
In the present embodiment, in the present embodiment, the closing opening 12 is opened on the upper side of the sealed container 12, and a loading cylinder 43 protruding upward is attached to the loading opening 42 to open and close the loading cylinder 43. For example, an opening / closing mechanism 24 such as a ball valve is provided.
Waste including heavy metal, the Ca component raw material, and SiO are opened through an opening / closing mechanism 24. 2 The component raw materials can be charged into the sealed container 12 and closed during processing to maintain the closed state of the closed space S1 in the sealed container 12.
In the present embodiment, the steam ejection means 14 ejects high-temperature and high-pressure steam into the sealed container 12, puts the sealed container 12 into a high-temperature and high-pressure state, and processes the waste through the steam.
In the present embodiment, as shown in FIG. 1, the steam ejection means 14 includes a steam ejection pipe 28 that is a hollow pipe disposed in the sealed container 12 and formed with a large number of steam ejection holes 44 on the peripheral surface side, A steam generator 46 such as a boiler, and a steam feed pipe 47 that supplies steam from the steam generator 46 into the steam ejection pipe 28 are included.
The steam ejected from the steam ejection means 14 into the sealed container 12 is 5CaO · 6SiO during processing in the sealed container 12. 2 ・ 5H 2 The high temperature and high pressure are set so that O crystals (tobermorite) can be efficiently produced and the heavy metals can be contained in the crystal structure. In the present embodiment, for example, the steam ejected from the steam ejection pipe 28 has a temperature of 120 to 250 ° C. and a pressure of 1.1 to 2.1 MPa. The inside of the sealed container 12 is set to a temperature of 120 to 250 ° C. and a pressure of about 1.1 to 2 MPa, and the treatment is performed for 1 to 8 hours.
If the temperature is less than the lower limit, there is a risk that tobermorite crystals will not be formed, and if the temperature exceeds the upper limit, other crystals that are not tobermorite crystals may be formed.
If the pressure is less than the lower limit, the tobermorite crystals may not be formed, and if the pressure exceeds the upper limit, other crystals that are not tobermorite crystals may be formed.
If the treatment time is less than the lower limit, a tobermorite crystal may not be formed, and there is no upper limit, but if the treatment time is too long, it becomes uneconomical.
When processed within the above range, 5CaO · 6SiO 2 ・ 5H 2 O crystals (tobermorite) can be efficiently produced, and the heavy metals can be contained in the crystal structure.
In the present embodiment, the steam ejection pipe 28 is long in the lateral direction at a substantially central position in the vertical direction of the sealed container 12, and is rotatably supported via bearings 45 provided on both end walls 12 a of the sealed container 12. ing. That is, the steam ejection pipe 28 is adapted to directly apply the steam to the waste while rotating radially around the horizontal axis and ejecting the steam radially.
Note that the steam ejection pipe 28 is rotated by obtaining a rotational driving force from a rotational driving device 51 such as a motor via a chain or the like. Furthermore, in this embodiment, the stirring blade 48 is attached to the steam ejection pipe 28, and the steam ejection pipe 28 also serves as the rotating shaft 49 of the stirring means. That is, in the present embodiment, the steam jetting unit 14 is a rotary shaft that is configured by forming the rotating shaft 49 of the stirring unit 30 as a hollow tube and forming a plurality of steam jetting holes 44 on the peripheral surface of the hollow tube. It also includes a steam jet pipe 28.
In addition, the vapor | steam ejection means 14 is not restricted to the structure of this embodiment, For example, the structure which ejects a vapor | steam from the front-end | tip of the pipe | tube inserted in the airtight container 12, the structure which has arrange | positioned several vapor | steam ejection pipes, etc. The structure of may be sufficient.
The stirring unit 30 is a unit that stirs the waste to be processed in the sealed container 12 and can process the waste at an early stage without unevenness. In the present embodiment, the stirring means 30 includes a rotating shaft 49 composed of the steam ejection pipe 28 and a stirring blade 48 attached to the rotating shaft 49 and having a portion extending in the circumferential direction of the rotating shaft. In the present embodiment, the stirring blade 48 is formed of a right-handed spiral blade 48a and a left-handed spiral blade 48b that are provided in a reversely wound manner at approximately the center position in the axial direction of the rotating shaft 49.
The stirring blade 48 is provided such that the length from the rotation shaft 49 to the blade tip is gradually reduced from the left and right central portions toward both ends. As a result, the waste can be reliably agitated corresponding to the barrel shape of the closed container 12. Furthermore, a certain gap H is provided between the blade tip and the inner wall of the sealed container 12.
In the present embodiment, the spiral blades 48a and 48b agitate the waste while crushing the solid waste while conveying the waste from the center toward the both end walls. In the present embodiment, the waste is finally provided by the stirring means 30 so as to be crushed to about 0.3 to 0.8 mm, for example.
The waste conveyed to the both end walls 12a side by the stirring blades 48 is pushed by the waste conveyed later on the end wall 12a side, passes through the gap H along the inner wall of the sealed container 12, and then enters the center. It is transported back.
The agitation means 30 is not limited to the one in the present embodiment. For example, the agitation means 30 is agitated with a plurality of plate-like or wing-like agitation blades or rods attached to the rotary shaft 49, or a pressure fluid such as steam. Any other configuration such as a configuration to be used may be used. Moreover, you may set arbitrarily the magnitude | size of the crushed waste.
In the present embodiment, 5CaO · 6SiO is obtained by processing for a required time, for example, about 1 to 8 hours, while stirring in the sealed container 12 under high temperature and high pressure as described above. 2 ・ 5H 2 O crystals (tobermorite) can be efficiently produced, and the heavy metals can be contained in the crystal structure.
In the above-described processing, for example, decomposition of PCB contained in waste can be expected. For example, when wastes mixed with transformer oil or the like are processed, it has been confirmed that the PCB concentration of 80 ppm before the processing has decreased to about 0.005 ppm after the processing.
After processing the waste in the sealed container 12 while jetting high-temperature and high-pressure steam, when the sealed container 12 is cooled by the cooling means 70 and the water vapor in the closed space S1 is liquefied, the water solubility of the heavy metals is increased. The treated liquid containing the compound accumulates, and the liquid and the treated waste containing tobermorite containing the heavy metals are mixed.
Next, the separation / recovery means 18 will be described.
One example of the separation and recovery means 18 is shown in FIGS. 1 and 3A as described above. FIG. 3A is an explanatory view for explaining a part of the separation and recovery means shown in FIG.
The mixture of the waste and the liquid processed in the vicinity of the discharge port 16 is once recovered in the recovery container 50-1. The waste forming the bottom of the recovery container 50-1 is not allowed to pass through, but is separated from the liquid by the stainless steel mesh 56 that allows the liquid to pass through, and the other recovery container 50 disposed below the recovery container 50-1. -3.
Since the waste material is separated and remains on the stainless steel mesh 56 of the recovery container 50-1, the waste is driven by a controlled driving device (not shown) around the rotating shaft 52 when taken out. Rotate 56 in the direction of the arrow to release the locking portion 53 and drop it downward by gravity to collect the waste in a collection container (not shown). In addition to a simple configuration, the waste and liquid that have been processed can be separated and recovered satisfactorily with an easy operation and a low cost structure.
FIG. 3B is an explanatory view for explaining another example of the separation and recovery means shown in FIG.
As shown in FIG. 3B, the waste and liquid mixture treated in the vicinity of the discharge port 16 is once recovered in a recovery container 50-2. Then, the liquid is driven by a controlled driving device (not shown) around the rotation shaft 54 installed on the side wall of the recovery container 50-2 to rotate the recovery container 50-2 and tilt the liquid to another recovery container 50-. 4 to collect. The waste from which the liquid has been separated remains in the collection container 50-2.
FIG. 3C is an explanatory diagram illustrating an example of a separation and recovery unit that supplies the mixture to the belt conveyor device and separates waste and liquid during movement.
As shown in FIG. 3C, the waste and liquid mixture treated in the vicinity of the discharge port 16 includes a belt formed of a stainless steel mesh 56 that does not allow the waste to pass but allows the liquid to pass. Supplied to one end of the belt of the belt conveyor device 80-1. Then, the liquid is separated by the stainless steel mesh 56 and collected in another collection container 50-5 disposed at the lower part of the belt conveyor device 80-1.
The waste material is separated by gravity at the end of the belt conveyor device 80-1 in the traveling direction of the belt, falls down, and is collected in a collection container 50-6.
FIG. 3D is an explanatory view for explaining another example of the separation and recovery means shown in FIG.
As shown in FIG. 3 (d), the waste and liquid mixture treated in the vicinity of the discharge port 16 includes a belt made of synthetic rubber or the like disposed at an angle θ with respect to the horizontal direction. Supplied to one end of the belt of the belt conveyor device 80-2.
Then, since the liquid is inclined by the angle θ as described above, the liquid is separated from the mixture by gravity, and flows down faster than the waste as indicated by an arrow toward the end in the traveling direction on the belt. It collect | recovers in the collection | recovery container 50-7.
Since the angle θ depends on the physical properties of the mixture, the waste, the liquid, the material of the belt, the moving speed of the belt, and the like, the liquid is separated from the mixture by gravity, and the end of the traveling direction on the belt It is preferable to test and determine in advance an angle θ that flows faster than the waste as indicated by an arrow.
55 is scraping means, and the belt is disposed above the belt with a gap (not shown) through which the liquid passes. Then, the waste from which the liquid on the belt has been separated is scraped off by the scraping means 55 as indicated by an arrow, and recovered in the recovery container 50-8.
Thereby, the liquid in a state containing bacteria, malodorous components and the like contained in the waste at the same time as the waste can be treated with high-temperature and high-pressure steam. The liquid separated and recovered after the treatment contains water-soluble compounds of heavy metals, but malodors and harmful components can be recovered in a decomposed state, so that the separated and recovered liquid needs to be subjected to secondary treatment. This eliminates the need for labor and saves time.
However, when it is necessary to separate the water-soluble compound of heavy metals from the liquid, it is necessary to perform a secondary treatment.
Next, the operation of the waste treatment apparatus including heavy metals according to the present embodiment will be described together with the liquid recovery method according to the embodiment. In this embodiment, the waste containing heavy metals to be treated includes, for example, blood discharged from hospitals, universities, other medical institutions such as laboratories, internal organs after surgery, cotton wool, disposable diapers, and blood supply. Medical waste such as tubes, infusion containers, and plastic syringes.
In addition, metals such as injection needles and those made of glass are separated and removed in advance. With the opening / closing mechanism 26 of the discharge port 16 closed, the opening / closing mechanism 24 of the inlet 42 of the sealed container 12 is opened, for example, 2 m 3 Waste containing heavy metals and the Ca component raw material and SiO 2 Ingredient raw materials are charged. With the open / close mechanism 24 of the inlet 42 closed and the sealed container 12 closed, a high-temperature and high-pressure steam set to, for example, about 250 ° C. and about 25 atm from the steam ejection pipe 28 of the steam ejection means 14 in the sealed container. Erupt.
Due to the jetted steam, the inside of the sealed container 12 is in a high temperature and high pressure state of, for example, about 250 ° C. and about 2.1 MPa.
In the sealed container 12, the waste is treated while being stirred and crushed by the rotating stirring blade 48 under high-temperature and high-pressure conditions.
When treated, the Ca component previously contained in the waste or the newly added Ca component and the SiO contained in the waste in advance. 2 Components and newly added SiO 2 The component reacts hydrothermally to produce stable calcium silicate (5CaO · 6SO 2 ・ 5H 2 A crystal having a layered structure of mineral called O tobermorite is formed, and in the process of forming the layered crystal structure, heavy metals are taken into the layered crystal structure and contained.
Most heavy metals are taken in and contained in the layered crystal structure of tobermorite as described above, but when anions are present in the waste, they are dissolved in water vapor or dissolved in water.
Further, pathogens contained in (or adhering to) the waste are sufficiently sterilized and treated while decomposing malodorous components.
Further, during the treatment, the moisture contained in the waste is also treated with high-temperature and high-pressure steam at the same time as the waste. When such treatment is performed for a required time, for example, about 40 minutes, the organic matter in the waste is processed into a charcoal state crushed into particles of, for example, about 0.3 to 0.8 mm.
After the waste is treated as described above, when the airtight container 12 is cooled by the cooling means 70 and the water vapor in the closed space S1 is liquefied, the treated liquid containing the water-soluble compound of the heavy metals is collected, Since this liquid and the treated waste containing tobermorite containing the heavy metals are mixed, the separation and recovery means 18 can, for example, as shown in FIG. 1 and FIG. Once the mixture is recovered in the recovery container 50-1, the liquid is separated by the stainless steel mesh 56 that does not allow the waste forming the bottom of the recovery container 50-1 to pass but allows the liquid to pass. -1 is recovered in another recovery container 50-3 arranged at the lower part of -1. Since the waste material is separated and remains on the stainless steel mesh 56 of the recovery container 50-1, the waste is driven by a controlled driving device (not shown) around the rotating shaft 52 when taken out. Rotate 56 in the direction of the arrow to release the locking portion 53 and drop it downward by gravity to collect the waste in a collection container (not shown).
The treated waste is, for example, liquid separated, organic matter is charcoal, tobermorite containing heavy metals and treated soil particles, etc. Can be recovered in a state that is easy to handle.
Thereby, it is possible to separate and collect the waste and the liquid together with the disposal of the waste with only one device. In addition, it is not necessary to take out unwieldy waste mixed with liquid, and it can be separated and recovered by simple operation directly from the sealed container continuously after processing. Also, the separation and recovery configuration is simple and can be manufactured at low cost. Each open / close mechanism may be configured to open and close manually, or may be configured to open and close by mechanical operation using electricity or the like.
Since the subcritical water reaction described above uses only high-pressure steam as the driving force of the reaction, it can be said to be the safest treatment technology without using any artificial materials such as chemicals. The subcritical water reaction (temperature of about 100 to 374 ° C., pressure of 0.1 to 22.1 MPa) has various reaction regions as shown in FIG. 6 depending on the temperature and pressure conditions of water vapor.
For example, the subcritical water treatment conditions used for recycling sewage sludge are regions where the main reaction is a “hydrolysis reaction” at a temperature of about 200 ° C. and a pressure of 1.2 to 1.6 Mpa. Utilize the same reaction principle as the decomposition reaction performed by fermenting microorganisms. Sewage sludge is reduced in molecular weight by hydrolysis, and the fiber is hydrolyzed to glucose and oligosaccharides, the protein is hydrolyzed to amino acids and peptides, and the lipids are hydrolyzed to organic acids. For this reason, it becomes possible to introduce into a multipurpose resource reproduction system, such as direct material utilization of processing sludge, and efficiency improvement of methane fermentation.
In addition, it can sterilize and destroy pathogenic microorganisms, viruses, etc., and can ensure various environmental safety such as decomposition of harmful chemical substances such as agricultural chemicals and suppression of elution by solidification of heavy metals.
Regarding sewage sludge, it can be used as various recyclable resources as follows.
(1) Agricultural land soil improvement material: Subcritical water treatment of sewage sludge can be stably hydrolyzed and can be generated in a granulated state, so that it can be a highly convenient green agricultural land soil improvement material.
(2) Sludge organic fertilizer: Sewage sludge can be used as a kind of “ordinary fertilizer” if it can be dried and fermented to confirm the safety of fertilizer components and agricultural standards for heavy metals.
(3) Pretreatment function of methane fermentation
Since the macromolecular organic matter is hydrolyzed, the rate of microbial decomposition, that is, primary fermentation is increased, and at the same time, the gas yield is increased. For example, in the case of methane fermentation, the yield of methane gas is enhanced by about 1.5 to 2.8 times, and the material and energy recovery rate can be enhanced.
It can also be mixed with household waste, food waste, etc., and when it is jointly treated at a sewage treatment plant, it can also be used as a power and heat source self-sustained system by methane fermentation power generation.
As described above, there are various utilities, but in any case, ensuring the safety of heavy metals is an important issue.
The heavy metal solidification characteristics of sewage dewatered sludge containing heavy metals by subcritical water treatment were tested.
(1) Test apparatus: The subcritical water treatment apparatus shown in FIG. 1 is of a practical type and has a reaction volume of 2 m. 3 This is a batch processing type. A boiler with a boiler capacity of 500 kg / h was used.
(2) Test conditions: The subcritical water region in which hydrolysis of organic substances is the main reaction has a temperature of around 200 ° C., and the pressure is a saturated vapor pressure at the temperature of 1.2 to 1.6 MPa. If the temperature and pressure conditions are higher than this, it will be over-decomposed, resulting in a loss of nutrients. Therefore, the temperature is in the range of 180 to 200 ° C.
(3) Test procedure: Ca component and SiO 2 Sewage dewatered sludge (water content of about 78% by mass), which is known to have a small amount of components, is contained in the tobermorite crystal structure at least in 300 kg of sewage dewatered sludge during treatment in the subcritical water treatment device. A sufficient amount of Ca component raw material [CaO)] 10 Kg and SiO to form tobermorite for 2 Component raw materials [silica (SiO 2 )] 13 kg added, Ca component raw material and SiO 2 The component raw material was mixed well with sewage dewatered sludge, and after adding and mixing the raw material, steam was injected until the subcritical water reaction conditions were reached, and subcritical water treatment was performed for the required time while maintaining the predetermined conditions. This reaction time ranges from 30 min to 1 hour. After completion of the reaction, the mixture is cooled to room temperature, degassed and returned to normal pressure, and then 10 kg of liquid containing the liquefied component is separated. Then, about 300 kg of sludge containing tobermorite containing the heavy metals (saturated steam hydration) The reaction occurred and the weight increased slightly).
About 30 samples of raw sewage dewatered sludge, liquid containing liquefied components, and sludge containing tobermorite containing the heavy metals, general organic components including fertilizer components, heavy metals and trace chemical substances by the following analysis method The physicochemical analysis was conducted.
For the treated sludge, the results are summarized and the solidification rate by subcritical water treatment (the ratio of the decrease in the treated sludge concentration to the heavy metal concentration in the raw sewage dewatered sludge) is calculated, and the average value and standard deviation range are calculated. This is shown in FIG.
MPa analysis method:
It conformed to the heavy metal dissolution test method based on Prime Minister's Ordinance No. 5 in 1973.
Tables 1 and 2 show two examples of analysis results of sludge containing tobermorite in which the heavy metals are contained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
On the other hand, Table 3 shows the results of a survey conducted by the Public Works Research Institute of the Ministry of Land, Infrastructure, Transport and Tourism (“Environmental Standards Concerning Soil Contamination” Environmental Agency Notification No. 46, August 1991). Indicates heavy metal concentration.
From the results of the national survey on sewage sludge, if the maximum value of the soil environmental standards listed in Table 3 can be cleared by subcritical water treatment, the safety of sewage sludge heavy metals can be secured nationwide.
Figure JPOXMLDOC01-appb-T000003
From Table 3, the maximum value of Cr is about 650 mg · kg. -1 And applying the average solidification ratio of 45% shown in FIG. 7 to about 360 mg · kg after the subcritical water treatment. -1 Therefore, the fertilizer standards shown in Tables 1 to 3 are satisfied.
From Table 3, the maximum value of Pb is about 180 mg · kg. -1 When the average solidification rate of Pb shown in FIG. 7 is 45%, it is about 99 mg · kg after the subcritical water treatment. -1 And 100mg / kg -1 However, it is below the fertilizer reference value shown in Tables 1 to 3.
From Table 3, the maximum value of Cd is 7.4 mg · kg. -1 When the average solidification rate of Cd of about 58% shown in FIG. 7 is applied, about 3.1 mg · kg after the subcritical water treatment -1 It is below the fertilizer standard value shown in Tables 1 to 3.
From Table 3, the maximum value of As is 101 mg · kg. -1 Assuming that the average solidification rate of As shown in FIG. 7 is about 57%, it is about 44 mg · kg after the subcritical water treatment. -1 Therefore, the fertilizer standards shown in Tables 1 to 3 are satisfied.
Similarly, from Table 3, the maximum value of Hg is 7.3 mg · kg. -1 Assuming that the average solidification rate of Hg shown in FIG. 7 is about 78%, it is about 1.6 mg · kg after the subcritical water treatment. -1 Therefore, the fertilizer standards shown in Tables 1 to 3 are satisfied.
From Table 3, the maximum value of Zn is 3020mg · kg -1 When the average solidification rate of Zn shown in FIG. 7 is about 75%, it is about 755 mg · kg after the subcritical water treatment. -1 However, zinc and copper are based on soil concentration, not fertilizer, and when mixed with soil after application of sewage sludge as fertilizer, 120 mg · kg -1 It is required to become. With careful application, the soil environmental standards shown in Tables 1 to 3 can be observed.
From Table 3, the maximum value of Ni is 417 mg · kg. -1 Assuming that the average solidification rate of Ni shown in FIG. 7 is about 60%, it is about 167 mg · kg after the subcritical water treatment. -1 Therefore, the fertilizer standards shown in Tables 1 to 3 are satisfied.
From the above, it is considered possible to produce sludge resource recycling products that can satisfy the agricultural land standard value (fertilizer standard) by solidification of heavy metals in sewage sludge nationwide by subcritical water treatment.
In addition, since zinc is an effective monitoring substance for the purpose of preventing soil contamination, a management standard for zinc concentration of 120 ppm has been established based on the naturally existing amount of agricultural land soil (such as “heavy metals in soil on agricultural land”). "Regarding the management standards related to the prevention of accumulation of water," the Environmental Agency Water Quality Conservation Bureau Director General in November 1984). This is set for the purpose of minimizing the accumulation of harmful substances such as cadmium and arsenic by using zinc as an index. It should be noted that the value of 120 ppm is a management concentration related to the soil after being sprayed on the farmland.
The elution standards (soil environmental standards) listed in Table 3 are set for the purpose of preventing heavy metal groundwater contamination. This is set as a standard that is safe to drink groundwater containing heavy metals for a lifetime, and is determined by performing a certain elution operation and measuring the concentration of the eluate.
As described above, it was confirmed that all heavy metals were below the elution standard value after the subcritical water treatment.
It was found that by treating sub-critical water for all samples, organic fertilizers (including compost) that are safer than heavy metals and less than agricultural standards can be used.
It was shown that by applying "subcritical water treatment technology" to sewage sludge, heavy metals can be solidified to a detoxification level and elution suppression can be achieved. In other words, it was demonstrated empirically that the heavy metal content standard for agriculture can be satisfied even with sewage sludge of the past maximum concentration, and that safe sludge fertilizer can be directly produced in a short time.
Regarding the separated liquid, an example in which physicochemical analysis of general organic components including fertilizer components, heavy metals, and trace chemical substances was performed by the above-described analysis method is shown below.
92.7 mass% in the liquid was water having a pH of 4.8. The organic carbon in the solid content in the liquid was 3.6% by mass.
The fertilizer content and heavy metal content in the liquid are shown below.
Total nitrogen 6.700mg / L
Total phosphoric acid (P 2 O 5 ) 2.100mg / L
heavy metal:
Cr 0.3mg / L
Pb 0.01mg / L
Cd less than 0.01 mg / L
As 0.27mg / L
Hg less than 0.0005 mg / L
Zn less than 43.05 mg / L
Cu 2.1mg / L
Ni 0.6mg / L
The separated liquid is subjected to appropriate water treatment and drainage according to the drainage standards because it contains environmental contaminants and drainage standards for water related to heavy metals and also contains water pollutants other than heavy metals. In the sewage treatment plant, it is returned to the water treatment system for treatment before being discharged into the public water area.
Next, the economics of the subcritical water treatment facility will be described.
As shown in FIG. 1, the subcritical water treatment equipment is composed of (1) a high-pressure steam boiler, (2) a pressure tank (with a stirrer), (3) a temperature and pressure control panel, and (4) raw materials and treatment. There are four types of equipment for introducing, transferring and storing products.
The main input resources are boiler fuel (A heavy oil, etc.), drive motor and water. These energy consumptions are about 20 L / t of water and power consumption of about 25 kwh / t per processing amount.
Compared with the case of conventional carbonization equipment, the energy input is about 1/3 and the construction cost is about 1/3 to 1/4.
As described above, it was shown that sewage sludge can be made a safe organic resource by subcritical water treatment. In Japan, due to the decline in the agricultural economy, idle farmland is expanding along with a decrease in the number of farmers. Agricultural production is important as a basic industry that supports daily life, and measures to improve regional production are important. For this purpose, it is important to revitalize agricultural soil and create soil with regenerative production capacity.
In addition, since it is possible to produce compost with high functionality, it is possible to achieve an efficient agricultural economy in combination with improved quality of agricultural products. In addition, improvement of organic soil is important for the restoration of farmland soil such as abandoned farmland in Japan. Promoting active and effective use of sewage sludge that has been made safe by subcritical water treatment is a cost-effective aspect. Is strongly desired.
The above-described waste metal-containing waste processing apparatus and heavy metal-containing waste processing method of the present invention is not limited to the configuration of the above-described embodiment alone, and the present invention described in the claims. Any modification may be made without departing from the essence of.
 本発明の重金属類を含む廃棄物の処理装置は、一台の装置だけで、重金属類を含む廃棄物を高温高圧の蒸気を用いて安全に処理して、前記重金属類を固定化して溶出を抑制し、処理後には、連続して処理された前記重金属類を固定化した廃棄物と液体とを簡単な操作で分離して回収できる、構造が簡単で、低コストであり、特に、液体と混ざった状態の扱いにくい廃棄物を外部に出す必要がなく、処理した第1の密閉容器から直接に分離回収でき、作業を簡便に、スムーズに行うことができ、装置全体が大型化せず、低コストであり、また、液体と分離して回収した廃棄物は水分の少ない状態であり、取り扱いや搬送、管理等に便利であり、例えば、炭化された廃棄物を短期間で燃料や土壌改良材等に加工し得るという顕著な効果を奏するので、産業上の利用価値が高い。 The waste treatment apparatus containing heavy metals of the present invention is a single device that safely treats waste containing heavy metals using high-temperature and high-pressure steam to immobilize and elute the heavy metals. Suppressed and treated, the waste material and the liquid fixed with the heavy metals processed continuously can be separated and recovered by a simple operation, the structure is simple, and the cost is low. There is no need to take out mixed waste that is difficult to handle, and it can be separated and recovered directly from the first sealed container that has been processed, and the operation can be performed easily and smoothly. Low-cost, waste collected separately from liquid is in a state of low moisture, convenient for handling, transport, management, etc. For example, carbonized waste can be improved in fuel and soil in a short period of time. It has a remarkable effect that it can be processed into materials, etc. In, high utility value on the industry.
 10 重金属類を含む廃棄物の処理装置
 12 密閉容器
 14 蒸気噴出手段
 16 排出口
 18 分離回収手段
 18−1,18−2 ベルトコンベア装置
 26 開閉機構
 30 撹拌手段
 50−1~50−8 回収容器
 70 冷却手段
DESCRIPTION OF SYMBOLS 10 Waste processing apparatus containing heavy metals 12 Sealed container 14 Steam ejection means 16 Discharge port 18 Separation and recovery means 18-1, 18-2 Belt conveyor device 26 Opening / closing mechanism 30 Stirring means 50-1 to 50-8 Recovery container 70 Cooling means

Claims (5)

  1.  内部に、重金属類を含む廃棄物、および処理中に少なくとも前記重金属類を5CaO・6SiO・5HO結晶(トバモライト)構造中に封じ込めるための5CaO・6SiO・5HO結晶(トバモライト)が形成されるのに十分な量のCa成分原料およびSiO成分原料を収容する閉鎖空間を有する密閉容器と、
     密閉容器内に収容した前記廃棄物およびCa成分原料およびSiO成分原料を処理するための高温高圧の蒸気を噴出する蒸気噴出手段と、
     処理後に密閉容器内の蒸気を冷却して液化するための冷却手段と、
     密閉容器内の底側に設けられ開閉機構を有する排出口と、
     排出口から処理された前記重金属類が封じ込められたトバモライトを含む廃棄物と液化した成分を含む液体との混合物を排出し、排出した前記混合物から前記廃棄物と前記液体を分離する分離回収手段とを備えた重金属類を含む廃棄物の処理装置であって、
     前記分離回収手段は、前記混合物を一旦回収容器に回収してから前記廃棄物と前記液体を分離する分離回収手段および/または前記混合物をベルトコンベア装置に供給して移動中に前記廃棄物と前記液体を分離する分離回収手段であることを特徴とする重金属類を含む廃棄物の処理装置。
    Inside, wastes containing heavy metals, and at least the heavy metals to 5CaO · 6SiO 2 · 5H 2 O crystals (tobermorite) structure 5CaO · 6SiO 2 · 5H 2 O crystals for containing during during processing (tobermorite) is A sealed container having a closed space containing a sufficient amount of Ca component raw material and SiO 2 component raw material to be formed;
    Steam ejection means for ejecting high-temperature and high-pressure steam for treating the waste, the Ca component raw material, and the SiO 2 component raw material contained in a sealed container;
    A cooling means for cooling and liquefying the vapor in the sealed container after the treatment;
    A discharge port provided on the bottom side in the sealed container and having an opening and closing mechanism;
    Separation and recovery means for discharging a mixture of a waste containing tobermorite containing the heavy metals treated from a discharge port and a liquid containing a liquefied component, and separating the waste and the liquid from the discharged mixture An apparatus for treating waste containing heavy metals, comprising:
    The separation and recovery means collects the mixture once in a recovery container and then separates and collects the waste and the liquid, and / or supplies the mixture to a belt conveyor device and moves the waste and the An apparatus for treating waste containing heavy metals, which is a separation and recovery means for separating a liquid.
  2.  開閉自在の排出口を有するとともに閉鎖空間を有する密閉容器内で重金属類を含む廃棄物を高温高圧の蒸気を噴出しながら処理するにあたり、
     前記密閉容器内での処理中に少なくとも前記重金属類を5CaO・6SiO・5HO結晶(トバモライト)構造中に封じ込めるための5CaO・6SiO・5HO結晶(トバモライト)が形成されるのに十分な量のCa成分原料およびSiO成分原料を存在させて前記処理を行った後に、
     冷却して、液化した前記重金属類の水溶性化合物を含む処理された液体と前記重金属類が封じ込められたトバモライトを含む処理された廃棄物とを分離回収することを特徴とする重金属類を含む廃棄物の処理方法。
    When processing waste containing heavy metals in a sealed container having an openable and closable discharge port and a closed space while jetting high temperature and high pressure steam,
    5CaO · 6SiO 2 · 5H 2 O crystals (tobermorite) are formed to contain at least the heavy metals in the 5CaO · 6SiO 2 · 5H 2 O crystal (tobermorite) structure during the treatment in the sealed container. After performing the treatment in the presence of a sufficient amount of Ca component raw material and SiO 2 component raw material,
    A waste containing heavy metal, characterized by separating and recovering the treated liquid containing the water-soluble compound of the heavy metal liquefied and the treated waste containing tobermorite in which the heavy metal is contained How to handle things.
  3.  重金属類を含む廃棄物中に予め含まれるCa成分の含有量(A−1)およびSiO成分の含有量(A−2)を分析して求め、かつ処理中に少なくとも前記重金属類を5CaO・6SiO・5HO結晶(トバモライト)構造中に封じ込めるための5CaO・6SiO・5HO結晶(トバモライト)が形成されるのに十分な量のCa成分(B−1)およびSiO成分の量(B−2)を算出し、下記の式(1)および式(2)により、重金属類を含む廃棄物に添加するCa成分原料の添加量(C−1)およびSiO成分原料の添加量(C−2)を求め、重金属類を含む廃棄物にCa成分原料(C−1)およびSiO成分原料(C−2)を添加して前記処理を行うことを特徴とする請求項2記載の処理方法。
     [(B−1)−(A−1)]=(C−1)  ・・・式(1)
     [(B−2)−(A−2)]=(C−2)  ・・・式(2)
    The content (A-1) of the Ca component and the content (A-2) of the SiO 2 component contained in the waste containing the heavy metals in advance are determined by analysis, and at least the heavy metals are treated with 5CaO · A sufficient amount of Ca component (B-1) and SiO 2 component to form a 5CaO · 6SiO 2 · 5H 2 O crystal (tobermorite) for containment in a 6SiO 2 · 5H 2 O crystal (tobermorite) structure The amount (B-2) is calculated, and the addition amount (C-1) of the Ca component raw material added to the waste containing heavy metals and the addition of the SiO 2 component raw material according to the following formulas (1) and (2) The amount (C-2) is obtained, and the treatment is performed by adding the Ca component raw material (C-1) and the SiO 2 component raw material (C-2) to the waste containing heavy metals. The processing method described.
    [(B-1)-(A-1)] = (C-1) Formula (1)
    [(B-2)-(A-2)] = (C-2) Formula (2)
  4.  前記重金属類が、クロム、鉛、カドミウム、砒素、水銀、亜鉛、銅、ニッケルから選択される少なくとも1つであり、前記重金属類が処理後の廃棄物中の5CaO・6SiO・5HO結晶(トバモライト)構造中に封じ込められているので、処理後の廃棄物は水環境基準、土壌環境基準、特殊肥料基準、食品安全基準から選択される少なくとも1つを満足させるものであることを特徴とする請求項2あるいは請求項3記載の処理方法。 The heavy metal is at least one selected from chromium, lead, cadmium, arsenic, mercury, zinc, copper and nickel, and the heavy metal is a 5CaO · 6SiO 2 · 5H 2 O crystal in waste after treatment. (Tobermorite) Since it is contained in the structure, the waste after treatment satisfies at least one selected from water environmental standards, soil environmental standards, special fertilizer standards, and food safety standards. The processing method according to claim 2 or 3.
  5.  前記処理を、120−250℃、1.1−2.1MPaで1−8時間行なうことを特徴とする請求項2から請求項4のいずれか1項に記載の処理方法。 The treatment method according to any one of claims 2 to 4, wherein the treatment is performed at 120 to 250 ° C and 1.1 to 2.1 MPa for 1 to 8 hours.
PCT/JP2012/059822 2012-04-04 2012-04-04 A treatment device for waste matter containing heavy metals and a method for treating waste matter containing heavy metals using same WO2013150660A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014508992A JP6872101B2 (en) 2012-04-04 2012-04-04 Waste treatment equipment containing heavy metals and waste treatment methods containing heavy metals using it
PCT/JP2012/059822 WO2013150660A1 (en) 2012-04-04 2012-04-04 A treatment device for waste matter containing heavy metals and a method for treating waste matter containing heavy metals using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/059822 WO2013150660A1 (en) 2012-04-04 2012-04-04 A treatment device for waste matter containing heavy metals and a method for treating waste matter containing heavy metals using same

Publications (1)

Publication Number Publication Date
WO2013150660A1 true WO2013150660A1 (en) 2013-10-10

Family

ID=49300179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059822 WO2013150660A1 (en) 2012-04-04 2012-04-04 A treatment device for waste matter containing heavy metals and a method for treating waste matter containing heavy metals using same

Country Status (2)

Country Link
JP (1) JP6872101B2 (en)
WO (1) WO2013150660A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113877952A (en) * 2021-08-20 2022-01-04 重庆理工大学 Method for repairing hexavalent chromium polluted soil by domestic wastewater
JP2022001362A (en) * 2020-06-22 2022-01-06 南京▲農業▼大学 Forced ventilation-spiral agitation thermal desorption device for restoring organic contaminated soil
JP7134523B1 (en) 2021-07-28 2022-09-12 株式会社松井三郎環境設計事務所 Manufacturing method of useful material
WO2023119489A1 (en) * 2021-12-22 2023-06-29 G-8 International Trading株式会社 Processing device and processing method for organic waste

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143379A (en) * 1994-11-17 1996-06-04 Toyo Tire & Rubber Co Ltd Production of light weight and high strength calcium silicate compact
JP2000033355A (en) * 1998-07-21 2000-02-02 Hitachi Plant Eng & Constr Co Ltd Treatment of organic waste using high-temperature and high-pressure steam
WO2006126273A1 (en) * 2005-05-27 2006-11-30 Miyashiro, Tomonao Apparatus for treatment of organic waste material and method for separating and recovering liquid material
JP2008000689A (en) * 2006-06-22 2008-01-10 Kobe Steel Ltd Treatment method and treatment apparatus of waste

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126264A (en) * 2003-10-22 2005-05-19 Maeda Corp Method for suppressing elution of harmful substance from zeolite
JP3742097B1 (en) * 2005-02-15 2006-02-01 ガラス・リソーシング株式会社 Waste disposal method including waste plastics and organic waste and waste recycling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143379A (en) * 1994-11-17 1996-06-04 Toyo Tire & Rubber Co Ltd Production of light weight and high strength calcium silicate compact
JP2000033355A (en) * 1998-07-21 2000-02-02 Hitachi Plant Eng & Constr Co Ltd Treatment of organic waste using high-temperature and high-pressure steam
WO2006126273A1 (en) * 2005-05-27 2006-11-30 Miyashiro, Tomonao Apparatus for treatment of organic waste material and method for separating and recovering liquid material
JP2008000689A (en) * 2006-06-22 2008-01-10 Kobe Steel Ltd Treatment method and treatment apparatus of waste

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022001362A (en) * 2020-06-22 2022-01-06 南京▲農業▼大学 Forced ventilation-spiral agitation thermal desorption device for restoring organic contaminated soil
JP7017679B2 (en) 2020-06-22 2022-02-09 南京▲農業▼大学 Forced Ventilation for Restoring Organically Contaminated Soil-Spiral Stirring Heat Desorption Device
JP7134523B1 (en) 2021-07-28 2022-09-12 株式会社松井三郎環境設計事務所 Manufacturing method of useful material
WO2023007957A1 (en) * 2021-07-28 2023-02-02 株式会社松井三郎環境設計事務所 Method for producing useful materials
JP2023018706A (en) * 2021-07-28 2023-02-09 株式会社松井三郎環境設計事務所 Method of manufacturing usable material
CN113877952A (en) * 2021-08-20 2022-01-04 重庆理工大学 Method for repairing hexavalent chromium polluted soil by domestic wastewater
WO2023119489A1 (en) * 2021-12-22 2023-06-29 G-8 International Trading株式会社 Processing device and processing method for organic waste

Also Published As

Publication number Publication date
JPWO2013150660A1 (en) 2015-12-17
JP6872101B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
US20220097110A1 (en) Mechanochemical process
Li et al. Hydrothermal liquefaction of typical livestock manures in China: Biocrude oil production and migration of heavy metals
CN101184560B (en) Apparatus for treatment of organic waste material and method for separating and recovering liquid material
Joo et al. Sustainable approaches for minimizing biosolids production and maximizing reuse options in sludge management: A review
He et al. Phosphorus recovery from biogas slurry by ultrasound/H2O2 digestion coupled with HFO/biochar adsorption process
JP7076163B2 (en) How to treat contaminated soil
KR101337393B1 (en) Reactor for fertilizer manufacturing apparatus from food waste
WO2013150660A1 (en) A treatment device for waste matter containing heavy metals and a method for treating waste matter containing heavy metals using same
JP7344805B2 (en) Adsorption system and method
CN110050057A (en) Adsorbent for anaerobic digestion process
JP5773541B2 (en) Biological purification agent of treated water, biological purification system, and biological purification method
CN107188383A (en) A kind of preparation method of Sludge deodorant
CN102557363B (en) Residual sludge cell wall breaking method
KR100450882B1 (en) Organic waste cleanser and method of recycling organic waste
KR20130123799A (en) Method for treating organic waste matter
WO2023119489A1 (en) Processing device and processing method for organic waste
TWI542416B (en) Wastewater treatment equipment containing heavy metals and disposal method for heavy metals
KR102223941B1 (en) The method of high-calcium manure using organic waste and its apparatus
TW201404764A (en) Facultative fermentation treatment method for kitchen waste and its system
KR101097854B1 (en) An Organic Fertilizer and Manufacturing Method thereof
JP3601693B2 (en) Water treatment method and apparatus using mineral hold material
KR101333082B1 (en) Fertilizer manufacturing device from food waste
KR100489976B1 (en) A solidifying device of sewage sludge and organic
Glasner et al. Win Win Win: Biosolids+ Pulpmill solids+ Compost worms= Fertile soils (The Western Bay Way)
KR102132577B1 (en) Odor reduction composition and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508992

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873867

Country of ref document: EP

Kind code of ref document: A1