JP2022000847A - コンパクトな高温電気化学セルスタックアーキテクチャ - Google Patents

コンパクトな高温電気化学セルスタックアーキテクチャ Download PDF

Info

Publication number
JP2022000847A
JP2022000847A JP2021125974A JP2021125974A JP2022000847A JP 2022000847 A JP2022000847 A JP 2022000847A JP 2021125974 A JP2021125974 A JP 2021125974A JP 2021125974 A JP2021125974 A JP 2021125974A JP 2022000847 A JP2022000847 A JP 2022000847A
Authority
JP
Japan
Prior art keywords
electrochemical cell
fuel
stack
oxidant
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021125974A
Other languages
English (en)
Other versions
JP7240793B2 (ja
Inventor
ケイシー クラウドレス ブラウン,
Cloudless Brown Casy
クン ボン ラック,
Khun Bong Luc
キャメロン ジェイムズ ランキン,
James Rankin Cameron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Versa Power Systems Ltd
Original Assignee
Versa Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Versa Power Systems Ltd filed Critical Versa Power Systems Ltd
Publication of JP2022000847A publication Critical patent/JP2022000847A/ja
Priority to JP2023032085A priority Critical patent/JP2023081944A/ja
Application granted granted Critical
Publication of JP7240793B2 publication Critical patent/JP7240793B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Primary Cells (AREA)
  • Hybrid Cells (AREA)

Abstract

【課題】市場性のある価格、合理的な性能/耐用年数を同時に達成する燃料電池スタックを提供する。【解決手段】燃料電池スタック110は複数の電気化学セル154、複数の電気化学セル154の間に介挿された相互接続部152から成る。相互接続部152は燃料電池スタック110の積層方向に沿った長手方向チャネル120を画定する相互接続部主要本体152aを有し、一方の電気化学セル154に面する相互接続部主要本体152aの第1の表面上に複数の燃料チャネル、および他方の電気化学セル154に面する相互接続部主要本体152aの第2の表面上に複数の酸化剤チャネルを画定する複数のコルゲーションを含み、前記複数の燃料チャネルおよび前記複数の酸化剤チャネルの各々が、長手方向チャネル120の周りに位置している。【選択図】図1A

Description

関連出願の相互参照
本出願は、2017年5月4日に出願された、「High Power Density Compact SOFC Stack」という名称の米国仮特許出願第62/501,633号の優先権および利益を主張し、その開示全体は参照により本明細書に組み込まれる。
政府の権利の陳述
本発明は、DOEにより授与された賞番号DE−FE0026093の下で政府の支援を受けて作製された。政府は、本発明において一定の権利を有する。
本開示は、高温燃料電池スタックおよび電解スタックに関し、特に、固体酸化物(SOFC)および固体酸化物電解セル(SOEC)スタックに関し、より具体的には、高出力密度コンパクトSOFCスタックに関する。
固体酸化物燃料電池は、カソードとアノードとの間に挟まれた電解質を含む。酸素は、カソードで電子と反応して、酸素イオンを形成し、酸素イオンは、イオン伝導性セラミック電解質を通じてアノードに伝導される。アノードでは、酸素イオンが、利用可能な燃料(例えば、水素および一酸化炭素、メタン、いくつかの他の炭化水素、または他の適切な燃料)と結合して、生成物(例えば、水および二酸化炭素)を形成し、それにより、電子を解放して、電力を生成する。そのような技術は、逆に操作して電気分解を実行し、適切な反応物(例えば、水および二酸化炭素)および電力が供給されると燃料ガスおよび酸素を形成する。このような実装形態では、この技術は、固体酸化物電解セルと呼ばれる。SOFCの開発では、多数のアプローチ(アノード、カソード、または電解質のサポート、モノリシックセラミック対金属の相互接続、平面対管状、およびそれらの変形)が見られた。この技術を商業化するための最大の課題は、市場性のある価格、合理的な性能、および耐用年数の同時達成である。これらのドライバは密接に関連している。
本明細書に記載の実施形態は、一般に、燃料電池または電解セルなどの電気化学セルに関し、特に、隣接する電気化学セルの間に介挿され、かつそれらに電気的に結合されたコルゲート相互接続部を含む、電気化学セルスタックに関し、コルゲーションは、シール部材を介して流体的に隔離される、一方の側に複数の燃料チャネル、および対向する側に複数の酸化剤チャネルを形成し、相互接続部は、電気化学セルスタックにコンプライアンスを提供するように構成されている。
いくつかの実施形態では、電気化学セルユニットは、第1の酸化剤電極および第1の燃料電極を含む第1の電気化学セルと、第2の酸化剤電極および第2の燃料電極を含む第2の電気化学セルと、を含む。相互接続部は、第1の電気化学セルと第2の電気化学セルとの間に介挿される。相互接続部は、その長手方向軸に沿って長手方向チャネルを画定する相互接続部主要本体を含む。相互接続部主要本体は、第1の電気化学セルに面する相互接続部主要本体の第1の表面に複数の燃料チャネル、および第2の電気化学セルに面する相互接続部主要本体の第2の表面に複数の酸化剤チャネルを画定する、複数のコルゲーションを含む。複数の燃料チャネルおよび複数の酸化剤チャネルの各々は、長手方向チャネルの周りに位置付けられている。
いくつかの実施形態では、複数の燃料チャネルの各々の燃料チャネル基部は、第2の酸化剤電極に電気的に接触しており、複数の酸化剤チャネルの各々の酸化剤チャネル基部は、第1の燃料電極に電気的に接触している。いくつかの実施形態では、電気化学セルユニットは、第1の表面上の相互接続部の外周に位置付けられた、外側シール部材と、長手方向チャネルの周りの第2の表面上の相互接続部の内周に位置付けられた、内側シール部材と、をさらに含む。外側シール部材は、外周の外側の体積から、複数の燃料チャネルまたは複数の酸化剤チャネルのうちの一方を流体的に密封し、内側シール部材は、長手方向チャネルから、複数の燃料チャネルまたは複数の酸化剤チャネルのうちの他方を流体的に密封する。いくつかの実施形態では、相互接続部主要本体は、複数の燃料チャネルの各々に流体的に結合された、少なくとも1つの燃料入口チャネルおよび少なくとも1つの流体出口チャネルを画定し、複数の酸化剤チャネルの各々に流体的に結合された、少なくとも1つの酸化剤入口チャネルおよび少なくとも1つの酸化剤出口チャネルをさらに画定する。
いくつかの実施形態では、外側シール部材は、外周の外側の体積から、複数の燃料チャネルを流体的に密封し、少なくとも1つの燃料入口チャネルおよび少なくとも1つの燃料出口チャネルは、長手方向チャネルの第1の部分から燃料を受容し、かつ長手方向チャネルの第2の部分内に使用済みの燃料を排出するように、長手方向チャネルに流体的に結合されている。いくつかの実施形態では、内側シール部材は、長手方向チャネルから、複数の酸化剤チャネルを流体的に密封してもよく、少なくとも1つの酸化剤入口チャネルおよび少なくとも1つの酸化剤出口チャネルは、外周の外側の体積の第1の部分から酸化剤を受容し、かつ外周の外側の体積の第2の部分から使用済みの酸化剤を排出するように、相互接続部の外周に流体的に結合されている。いくつかの実施形態では、電気化学セルユニットは、相互接続部の外周に近接する第1の電気化学セルおよび第2の電気化学セルの各々の外側エッジ、または長手方向チャネルに近接する第1の電気化学セルおよび第2の電気化学セルの各々の内側エッジのうちの少なくとも1つに配置された、エッジシール部材をさらに含む。
いくつかの実施形態では、電気化学セルスタックは、複数の電気化学セルユニットのスタックを含む。複数の電気化学セルユニットの各々は、第1の酸化剤電極および第1の燃料電極を含む、第1の電気化学セルと、第2の酸化剤電極および第2の燃料電極を含む、第2の電気化学セルと、第1の電気化学セルと第2の電気化学セルとの間に介挿された相互接続部と、を含む。相互接続部は、その長手方向軸に沿って長手方向チャネルを画定する相互接続部主要本体を含む。長手方向チャネルは、電気化学セルスタックの高さに跨っている。相互接続部主要本体は、第1の電気化学セルに面する相互接続部主要本体の第1の表面に複数の燃料チャネル、および第2の電気化学セルに面する相互接続部主要本体の第2の表面に複数の酸化剤チャネルを画定する、複数のコルゲーションを含み、複数の燃料チャネルおよび複数の酸化剤チャネルの各々は、長手方向チャネルの周りに位置付けられている。
いくつかの実施形態では、複数の電気化学セルユニットの各々は、第1の表面上の相互接続部の外周に位置付けられた、外側シール部材と、長手方向チャネルの周りの第2の表面上の相互接続部の内周に位置付けられた、内側シール部材と、をさらに含む。外側シール部材は、外周の外側の体積から、複数の燃料チャネルまたは複数の酸化剤チャネルのうちの一方を流体的に隔離し、内側シール部材は、長手方向チャネルから、複数の燃料チャネルまたは複数の酸化剤チャネルのうちの他方を流体的に隔離する。いくつかの実施形態では、複数の電気化学セルユニットの各々に含まれる相互接続部は、電気化学セルスタックがコンプライアンスを有するように、ベローズ状構造体を協働して形成する。いくつかの実施形態では、電気化学セルスタックは、長手方向チャネル内に配置されたポストをさらに含み、ポストは、燃料または酸化剤のうちの一方を受容するように構成された少なくとも1つのポスト入口と、電気化学セルスタックから使用済みの燃料または使用済みの酸化剤のうちの他方を受容および排出するように構成された少なくとも1つのポスト出口と、を画定し、ポスト入口およびポスト出口は、互いに流体的に隔離されている。
いくつかの実施形態では、電気化学セルスタックは、隙間が上端部プレートとポストとの間に提供されるように、ポストの周りの電気化学セルスタックの上端部に位置付けられた上端部プレートをさらに含み、隙間は、熱的応力を緩和するために、その内部におけるポストの移動を可能にするように構造化されている。いくつかの実施形態では、電気化学セルスタックは、隙間内に位置付けられたコンプライアントなシール部材をさらに含み、コンプライアントなシール部材は、ポストの移動を可能にするように十分なコンプライアンスを提供する。いくつかの実施形態では、電気化学セルスタックは、上端部プレート上に位置付けられた上端部キャップと、上端部プレートと上端部キャップとの間に介挿された2次シール部材と、をさらに含む。いくつかの実施形態では、上端部プレートは、ポストから離れて上端部プレートの表面から軸方向に延在する、ポストインターフェース管を含み、ポストインターフェース管の少なくとも一部分は、ポストの一部分の周りに位置付けられている。
いくつかの実施形態では、電気化学セルスタックは、上端部とは反対の電気化学セルスタックの下端部上に位置付けられた、下端部プレートをさらに含む。上部圧迫プレートは、上端部プレート上に位置付けられている。バイアス部材は、電気化学セルスタックの上端部に近接して位置付けられており、かつ複数の電気化学セルユニットのスタックに圧迫力を及ぼすように構成されている。少なくとも1つの圧迫部材は、上部圧迫プレートに結合されており、かつ上部圧迫プレートから下端部プレートに圧迫力を伝達するように構成されている。いくつかの実施形態では、電気化学セルスタックは、電気化学セルスタックの下端部に位置付けられた下部圧迫プレートをさらに含み、少なくとも1つの圧迫部材は、下部圧迫プレートに結合されている。いくつかの実施形態では、バイアス部材は、上部圧迫プレートと上端部プレートとの間に介挿されたベレヴィルばねのスタックを含む。
いくつかの実施形態では、電気化学セルスタックは、電気化学セルスタックの下端部上に位置付けられた、基部プレートアセンブリをさらに含む。基部プレートアセンブリは、少なくとも1つの燃料ポートおよび少なくとも1つの酸化剤ポートを画定する、下端部プレートを含む。高強度シーリングプレートは、下端部プレートと軸方向に整列されており、かつ下端部プレートに対して降伏して、高強度シーリングプレートから下端部プレートへの機械的応力の伝達を低減するように構成されている。いくつかの実施形態では、高強度シーリングプレートは、複数の電気化学セルユニットのスタックと下端部プレートとの間に位置付けられており、基部プレートアセンブリは、高強度シーリングプレートと下端部プレートとの間に位置付けられた複数の短い管をさらに含む。いくつかの実施形態では、下端部プレートは、複数の電気化学セルユニットのスタックと高強度シーリングプレートとの間に介挿されており、基部プレートアセンブリは、高強度シーリングプレートと下端部プレートとの間に位置付けられた、複数の短い管をさらに含む。短い管は、高強度シーリングプレートが、下端部プレートへの応力伝達を低減するために、下端部プレートに対して横方向に自由に移動するように、熱的応力に応答して降伏するように構成されている。
いくつかの実施形態では、電気化学セルスタックは、複数の電気化学セルユニットのスタックの周りに配置されたマニホルドを含む。マニホルドは、外周の周りの体積を画定する。体積の第1の部分は、電気化学セルスタック内への燃料または酸化剤のうちの1つのための入口を提供し、体積の第2の部分は、電気化学セルスタックからの使用済みの燃料または酸化剤のための出口を提供する。いくつかの実施形態では、電気化学セルスタックは、体積内に位置付けられており、かつ体積の第1の部分を、体積の第2の部分から流体的に密封するように構成されている、誘電性シール部材をさらに含む。
いくつかの実施形態では、電気化学セルアセンブリは、ハウジング基部を含むハウジングを含む。電気化学セルスタックのアレイは、ハウジング内のハウジング基部上に配置されている。アレイ内に含まれる電気化学セルスタックの各々は、複数の電気化学セルユニットのスタックを含む。複数の電気化学セルユニットの各々は、第1の酸化剤電極および第1の燃料電極を含む、第1の電気化学セルと、第2の酸化剤電極および第2の燃料電極を含む、第2の電気化学セルと、第1の電気化学セルと第2の電気化学セルとの間に介挿された相互接続部と、を含む。相互接続部は、その長手方向軸に沿って長手方向チャネルを画定する相互接続部主要本体を含み、長手方向チャネルは、電気化学セルスタックの高さに跨っている。相互接続部主要本体は、第1の電気化学セルに面する相互接続部主要本体の第1の表面に複数の燃料チャネル、および第2の電気化学セルに面する相互接続部主要本体の第2の表面に複数の酸化剤チャネルを画定する、複数のコルゲーションを含み、複数の燃料チャネルおよび複数の酸化剤チャネルの各々は、長手方向チャネルの周りに位置付けられている。
いくつかの実施形態では、電気化学セルアセンブリは、電気化学セルスタックの各々の周りに位置付けられた、リングセパレータと、電気化学セルスタックのアレイ内に含まれる4つの電気化学セルスタックの各セット間に位置付けられた、クロスセパレータと、をさらに含む。いくつかの実施形態では、電気化学セルアセンブリは、4つの電気化学セルスタックの各セット間に、対応するクロスセパレータを介して位置付けられた、酸化剤予熱管をさらに含む。いくつかの実施形態では、電気化学セルアセンブリは、ハウジング基部を通じて電気化学セルスタックのアレイに流体的に結合された、燃料入口、燃料出口、酸化剤入口、および酸化剤出口をさらに含む。ハウジング基部は、燃料入口を通じてハウジング基部に入る燃料と、燃料出口を通じてハウジング基部から出る使用済みの燃料との間の熱交換を提供するように構成されている、少なくとも1つの熱交換チャネルを画定する。いくつかの実施形態では、電気化学セルアセンブリは、ハウジング基部を通って電気化学セルスタックのアレイに流体的に結合された、燃料バイパス入口をさらに含み、燃料バイパス入口は、少なくとも1つの熱交換チャネルをバイパスする。
上記は開示の要約であり、したがって、必然的に簡略化、一般化、および詳細の省略を含んでいる。結果として、当業者は、要約が例示にすぎず、決して限定することを意図していないことを認識するであろう。特許請求の範囲によって定義される、本明細書に記載のデバイスおよび/またはプロセスの他の態様、特徴、および利点は、本明細書に記載され、添付図面と併せて解釈される詳細な説明で明らかになるであろう。
本開示の前述および他の特徴は、添付の図面と併せて得られる以下の説明および添付の特許請求の範囲からより完全に明らかになるであろう。これらの図面は、本開示によるいくつかの実装形態のみを示し、したがって、その範囲を限定するものと見なされるべきではないことを理解し、本開示は、添付の図面の使用を通じて追加の特異性および詳細で説明されることになる。
一実施形態による、密封封止された燃料電池ユニットを有する燃料電池スタックの一部分の断面斜視図である。
一実施形態による、図1Aの電気化学セルスタックに含まれ得る、燃料電池ユニットの概略図である。
一実施形態による、製造された燃料電池スタックの正面図である。
内部燃料マニホルドの上部概略図であり、燃料インから燃料アウトへの潜在的な漏れ経路を示している。
一実施形態による燃料電池ユニットの上部概略図であり、内部および外部マニホルド設計の異なる組み合わせに基づいて、燃料および酸化剤ガスの異なる可能な流路を各々示している。図4Aは、単一の燃料入口、単一の燃料出口、単一の酸化剤入口、および単一の酸化剤出口を備えた燃料電池ユニットを示す。図4Bは、2つの燃料入口、2つの燃料外形、2つの酸化剤入口、および2つの酸化剤出口を備えた燃料電池ユニットを示す。図4Cは、単一の燃料入口、単一の燃料出口、2つの酸化剤入口、および2つの酸化剤出口を備えた燃料電池ユニットを示す。
一実施形態による、燃料電池スタックのアレイの斜視図である。
図5に示すアレイの一部分の斜視図を示し、酸化剤予熱管を示すために、いくつかの燃料電池スタックが取り外されている。
2つの異なる実施形態による、燃料電池スタックのアレイの斜視図である。
図7Aに示す燃料電池スタックの漸進的なアレイに基づいて、40kW〜350kWの配備スケールを示す。
図7Aおよび図7Bに示されるアレイの基部部分の斜視図であり、アレイの燃料および酸化剤の入口および出口を示している。
図7Aおよび図7Bに示されるアレイの一部分の上部図であり、酸化剤予熱管およびスタック装着点を示している。
当技術分野で知られている、重なり合うシール設計を有する燃料電池スタックの斜視図である。
一実施形態による、相互接続部の断面斜視図である。
図11に示された相互接続部のそれぞれの上部図および下部図である。図12Aは、相互接続部の上部の燃料側面を示す。図12Bは、相互接続部の下部の酸化剤側面を示す。
一実施形態による、ベローズ状構造体を有する燃料電池スタックの概略断面図である。
電気化学セルのエッジを密封するためにエッジがスプレーされた、電気化学セルの断面を示す写真である。
3つの異なる実施形態による、燃料電池スタックの一部分の上部断面図であり、スタックの長手方向チャネルに置かれたポストを示している。
それぞれ図15Aおよび図15Cの燃料電池スタックの上部部分の断面斜視図であり、上部プレートおよび上部キャップとともに中央ポストを示している。
実施形態による、基部プレートアセンブリの3つの異なる設計の下部斜視図である。
一実施形態による、上部圧迫プレートアセンブリの主要上部プレートおよびポスト界面管の上部斜視図である。
2つの異なる実施形態による、上部圧迫プレートアセンブリの上部斜視図である。
一実施形態による、図19Aの上部圧迫プレートアセンブリで使用され得る、ベレヴィルばねパックのばね応答を示すグラフである。 別の実施形態による、図19Bの上部圧迫プレートアセンブリで使用され得る、コイルばねのクリープを示すグラフである。
2つの異なる実施形態による、外側マニホルドを含む燃料電池スタックの下部斜視図である。
典型的な天然ガス燃焼システムの適用を代表するガス組成物で動作する、225セル(〜1kW)のスタックを使用して実行した試験から得られた試験データを示す。
蒸気を水素に変換する電解槽として動作する図7Aの燃料電池スタックアレイによる、20セル実装形態を使用して実行した試験から得られた試験データを示す。
様々な水素燃料電池条件を実行する図7Aの燃料電池スタックアレイによる60セルの実装形態の結果を示しており、ここにおいて、総試験時間は1年を超えている。
0.25A/cmの燃料電池条件(発電)で動作している図7Bの燃料電池スタックアレイによる、45セル実装形態の結果を示す。
−1A/cmの電気分解(水素生成)条件で動作している燃料電池スタックアレイによる、45セル実装形態の結果を示す。
以下の詳細な説明全体を通じて、添付の図面を参照する。図面において、文脈からそうでないことが示されない限り、同様の記号は通常、同様の構成要素を識別する。詳細な説明、図面、および特許請求の範囲に記載されている例示の実装形態は、限定することを意味していない。本明細書に提示される主題の趣旨または範囲から逸脱することなく、他の実装形態が利用されてもよく、他の変更が行われてもよい。本開示の態様は、本明細書で一般的に説明され、図面に示されるように、多種多様な異なる構成で配設され、置換され、組み合わされ、かつ設計されてもよく、そのすべてが、明示的に企図され、本開示の一部をなすことが容易に理解されよう。
本明細書に記載の実施形態は、一般に、燃料電池および電解セルなどの電気化学セルに関し、特に、隣接する電気化学セルの間に介挿され、かつそれらに電気的に結合されたコルゲート相互接続部を含む、電気化学セルスタックに関し、コルゲーションは、シール部材を介して流体的に隔離される、一方の側に複数の燃料チャネル、および対向する側に複数の酸化剤チャネルを形成し、相互接続部は、電気化学セルスタックにコンプライアンスを提供するように構成されている。
特定の実施形態によれば、現在のスタック技術に対する設計全体の実現可能性を維持する(多くの場合、改善する)一方で、スタック内の材料含有量を減らすことに焦点を当てた設計アプローチを表す、機械的スタックレイアウトが提供される。特定の実施形態は、比較的小さい一般に環状の固体酸化物燃料電池および薄い相互接続部を使用し、それらの統合により、現在のベースラインよりも電力密度(W/kg)が1桁分の増加がもたらされる。これは、セルの活性面積(発熱位置)とスタック環境との間の最大限の熱的通信を確実にするために、慎重な熱的設計によって達成され得る。
価格を下げる努力は、寿命を直接的に短くする傾向がある。これは、燃料電池をより強く運転する戦略を伴うためである。性能を向上させる(高出力)努力は、寿命および効率性を低下させる傾向がある。寿命を延ばすための努力は、多くの場合、高価な材料および/または低電力密度での動作を伴い、それはどちらも価格を高くする。例えば、管状技術は、長期間(5年以上)にわたって実証されてきたが、実際の市場用途では受け入れられないと一般に認められている価格および性能レベルである。逆に言えば、平面SOFC技術は、価格および性能の目標を達成するのに近いが、実用的な耐用寿命の目標を達成するという課題に直面している。この価格/性能/耐用寿命のギャップを埋めるための一般的な焦点は、主に製造コストを削減するためにサイズを大きくしながら、高性能のセルを開発することである。これは、表面積の大きい管状設計の開発であっても、または平面設計の開発であっても、ほとんどすべてのSOFC開発活動で明らかである。この傾向の例外は、微小管SOFCセルの形態で存在し、急速な熱過渡現象が必要な用途のために、主に大学の研究所によって提唱されている。微小管システムは、大規模システム(通常は、最大数百Wの出力の範囲)の実行可能な解決策として進歩していない。
一般に、モバイルアプリケーションには追加の制約セットが存在する。現在のSOFC技術は、体積および質量指数の出力密度が200 W/Lおよび100W/kg程度であることを示している。したがって、70kWの電源ユニットは、スタックのみで〜350Lおよび重量約700kgを占有し、電源システム全体で大幅に増加する。小型車は、これらの重量および容積ではSOFCベースのプライムパワーシステムに適応できなかった。自動車用途の第2の制約は、昇温時間である。現在のスタックは、周囲温度から摂氏約750度の動作温度に達するのに約1時間必要とする。実際のモバイルアプリケーションでは、通常、数秒程度の起動時間が予期されるが、数分程度の起動時間は、期待値の変更および/または最初の数分間の動作をカバーするためのバッテリーなどの二次電源で許容される場合がある。
最後に、多くの燃料電池技術の重要な課題の1つは、スタック内の廃熱および温度分布を管理することである。スタックのサイズが大きくなると、環境への直接的な熱除去は、ますます実行できなくなる。代わりに、大きなスタックは、吸熱反応(改質)および/またはガス流への対流冷却に依存している。実際の経験は、合理的なスタック内温度差で対流冷却を実現するには、流量を高くする必要があることを示す。
本明細書に記載の実施形態は、主要な課題に対処しながら、電気化学セル(例えば、燃料電池または電解セル)の価格、性能および/または寿命目標を満たすための異なるアプローチを提供する。本明細書に記載の実施形態はまた、電気化学セルのモバイルアプリケーションによってもたらされる重量および体積の課題に対処する一方で、昇温時間は数分程度と予測される。
簡単に説明すると、本明細書に記載の実施形態は、セルのサイズおよび性能を徐々に大きくするという現在の傾向を逆転することを提案し、代わりに、セルのサイズを小さくし、セルの性能への依存を減らし、小さなセルでの動作に最適化された構成要素の緊密な統合に焦点を当てることを提案する。慎重な統合により、本明細書に記載の特定の実施形態は、体積の1/7、および重量の1/10で、現在のスタックと同じかそれよりも大きい出力のスタックをもたらすことができる。
本明細書に記載の様々な実施形態は、例えば、以下を含む利点を提供し得る。(1)セル性能の向上を必要としない単位電力出力あたりの体積の削減(例えば、7倍以上の削減)、(2)セル性能の向上を必要としない単位電力出力あたりの重量の削減(例えば、10倍以上の削減)、(3)おおよそのコスト削減に対応する期待(例えば、10倍以上の削減)、(4)急速な過渡応答(例えば、現在の電気化学セルスタックよりも10倍高速であり、数時間ではなく数分程度の加熱時間を提供する)、(5)モバイルおよび固定アプリケーションの両方で同じスタックで、例えば、1kWから多くのMWまでの電力範囲をサポートするモジュール性のレベル、(6)アノードからカソードへの漏れを大幅に削減して、効率性を高め、用途の可能性を広げること、(7)より高い電圧およびより低い電流出力(パワーエレクトロニクス内でより高い効率を提供する)、(8)より大きなkW定格(例えば、10kW以上)での固有の負荷分散および冗長性、(9)スタックコアとスタックエッジとの間の伝導距離が短く、熱を環境に放出できるため、スタック内部の間接的な熱的管理を可能にすること、ならびに(10)より少ない空気流、より簡単な圧迫要件、より高い電圧/より低い電流電力、および/またはより短い過渡現象による、プラント要件のバランスの低下。
例えば、本明細書に記載の実施形態は、物理的ハードウェアおよび試験結果が利用可能な本明細書に記載のSOFCスタックの2つの特定のサイズおよび実装を説明する。これらは、本明細書に記載の実施形態の用途の具体例として提供されるが、これらの実施形態のより小さい、より大きい、およびサイズ間の変形も同様に可能である。重要なサイズの考慮事項は、セルサイズおよびセルカウントである。本明細書に記載のいくつかの実施形態は、21cmまたは25cmの活性面積を有するセルを含み、スタックあたり最大234セルで実証された。本明細書に記載の他の実施形態は、81cmの活性面積を有するセルを有し、スタックあたり350セル以上で動作するように設計され、スタックあたり最大45セルで実証された。
本明細書に記載の様々な実施形態は、それぞれ電気化学セルユニットおよび電気化学セルスタックを、燃料電池ユニットおよび燃料電池スタックと呼ぶが、本明細書に記載の電気化学セルユニットおよび電気化学セルスタックの様々な実施形態は、電解セルユニットおよび電気化学セルスタックを含むように、または任意の他の電気化学セルユニットもしくはスタックを含むように、逆流で動作し得ることを理解されたい。
図1Aは、一実施形態による、図2に示す燃料電池スタック110の一部分の断面斜視図である。燃料電池スタック110は、一実施形態によれば、複数の燃料電池ユニット150、より詳細には、密封封止された燃料電池ユニット110のスタックを含む。燃料電池スタック110は、複数の相互接続部152と交互する、複数の固体酸化物燃料電池ユニット150を含む。例えば、図1Bは、燃料電池スタック110に含まれ得る、燃料電池ユニット150の概略図を示す。各燃料電池ユニット150は、第1の燃料電極153a(例えば、アノード)および第1の酸化剤電極155a(例えば、カソード)を含む、第1の電気化学セル154aを含み、第1の燃料電極153aと第1の酸化剤電極155aとの間に介挿された、電解質を含み得る。第2の電気化学セル154bはまた、第2の燃料電極153b、第2の酸化剤電極155bを含み、第2の燃料電極153aと第2の酸化剤電極155aとの間に介挿された、電解質も含み得る。いくつかの実施形態では、アノードの各々は、任意選択的にアノード支持体を含む。いくつかの実施形態では、燃料電池スタック110は、逆流で、すなわち、電解セルスタックとして動作することができる。そのような実施形態では、電気化学セル154a/bの燃料電極153a/bは、カソードを含むことができ、電気化学セル154a/bの酸化剤電極155a/bは、アノードを含むことができる。
相互接続部152は、第1の電気化学セル154aと第2の電気化学セル154bとの間に介挿されている。相互接続部152は、その長手方向軸(例えば、電気化学セルスタック110の長手方向軸、そのため、長手方向チャネル120が燃料電池スタック110に跨り得る)に沿って長手方向チャネル120を画定する、相互接続部主要本体152aを含む。相互接続部主要本体152aは、第1の電気化学セル154aに面する相互接続部主要本体152aの第1の表面に複数の燃料チャネル157、および第2の電気化学セル154bに面する相互接続部主要本体の第2の表面に複数の酸化剤チャネル159を画定する、複数のコルゲーションを含む。複数の燃料チャネル157および複数の酸化剤チャネル159の各々は、例えば、対称的および/または環状構成で、長手方向チャネル120の周りに位置付けられ得る。複数の燃料チャネル157の各々の燃料チャネル基部は、第2の酸化剤電極155bに電気的に接触し得、複数の酸化剤チャネル159の各々の酸化剤チャネル基部は、第1の燃料電極153aに電気的に接触し得る。
例えば、電気化学セル154a/bおよび相互接続部152は、燃料電池スタック110が形成されると、長手方向チャネル120が燃料電池スタック110を通じて長手方向に延在するように成形される。図1Aの実施形態では、電気化学セル154a/bおよび相互接続部152は、環状の形状を有し、長手方向チャネル120は、燃料電池スタック110の軸中心に置かれる中央チャネルである。燃料電池スタック110は、環状形状を有するものとして説明されているが、任意の他の適切な形状、例えば、卵形、六角形、正方形もしくは非正方形を有していてもよく、または長手方向チャネル120が燃料電池スタック110を通じて長手方向に延在する限り、他の形状を有していてもよい。さらに、長手方向チャネル120は燃料電池スタック110の幾何学的中心に沿って延在するものとして説明されているが、他の実施形態では、長手方向チャネル120は、長手方向チャネル120が燃料電池スタック110の外側エッジと部分的に重ならない限り、燃料電池スタック110の幾何学的中心からオフセットされてもよい。
電気化学セル154a/bは、図1Aおよび図1Bに示されるように、内周および外周で交互に各相互接続部152に封止される。これにより、密封封止されるが、熱応力が蓄積する可能性を減らすために、ユニットセルレベルでコンプライアントな構造体が得られる。
燃料または酸化剤のうちのいずれかの一方のガスは、長手方向チャネル120を介して燃料電池ユニット150に流入し、および燃料電池ユニット150から抽出され、一方で、他方のガスは、燃料電池スタック110の外周で燃料電池ユニット150に流入し、および燃料電池ユニット150から抽出される。特定の実施形態では、燃料は、長手方向チャネル120に流入し、および、長手方向チャネル120から抽出され、酸化剤は、燃料電池スタック110の外周で受け入れられ、および抽出される。密閉セルと相互接続部のシールは、ガスの混合を防止する。例えば、図1Aに示すように、第1の電気化学セル154aに近接する第1の表面上の相互接続部152の外周に、外側シール部材158が位置付けられてもよく、長手方向チャネル120の周りの第2の電気化学セル154bに近接する第2の表面上の相互接続部152の内周に、内側シール部材156が位置付けられてもよい。外側シール部材158は、燃料電池スタック110の外周の外側の体積から複数の燃料チャネル157または複数の酸化剤チャネル159のうちの一方を流体的に密封することができ、内側シール部材156は、長手方向チャネル120から複数の燃料チャネル157または複数の酸化剤チャネル159のうちの他方を流体的に密封することができる。特に、図1Aに示すように、外側シール部材158は、燃料チャネル157を外周の外側の体積から流体的に密封し、内側シール部材156は、酸化剤チャネル159を長手方向チャネル120から流体的に密封する。
燃料と酸化剤の混合および燃焼をもたらす漏れを回避することにより、(i)システムへの反応物の損失の減少、(ii)スタック上の熱負荷(および特に、スタック構成要素を損傷する可能性のある局所的な加熱)の減少、(iii)酸化剤側の蒸気生成の減少(これは酸化剤電極の重大な劣化メカニズムとなり得るクロムの揮発と輸送を減少する)、(iv)昇温および冷却中のクロスリークの低減による、保護カバーガスの使用量の減少を含む、いくつかの利点が得られる。
燃料電池スタック110は、例えば、20〜400個の燃料電池ユニット150を含むことができ、アスペクト比が高すぎると製造および包装が困難になる可能性がある完成スタックのアスペクト比(直径または幅に対する高さ)によってのみ制限される。様々な実施形態において、アスペクト比は、4:1〜5:1の範囲であり得るが、より短いスタックは、特定の用途および開発目的に有用であり得る。複数の燃料電池ユニット150は、中間の金属相互接続部152とともにタワーに垂直に積み重ねられてもよい。
各燃料電池スタックの出力範囲は、動作条件およびスタックサイズに応じて、約50W〜20kW(例えば、それらの間のすべての範囲と値を含む、0.5kW〜20kW、1kW〜15kW、または5kW〜10kW)である。一実施形態では、スタックは約7kWの電力範囲を有する。セルカウントを減らして、動作条件を調整することによって、約50Wの実用的なスタックを製造することができる。
本明細書に記載の燃料電池スタック110または任意の他の電気化学セルスタックは、適切な幾何学的配置を利用して、電気化学セルスタックを熱的制御する能力を向上させ、一方で、セルの製造中およびその後のスタック動作中に誘発される機械的応力を軽減する、セル設計を提供する。これらの2つの利点により、相互接続部152およびセルの両方を、それらの構造体を損なうことなく薄くすることが可能になる。
相互接続部152の厚さは、0.05〜0.7mmの範囲(例えば、その間のすべての範囲および値を含む、0.075〜0.4mm、または0.08mm〜0.15mmの範囲)であることができる。電気化学セルユニットの厚さは、0.2〜0.4mmの範囲であり得る。特定の実施形態では、厚さは、0.25〜0.35mmの範囲であり得る。0.12mmの相互接続部152と0.3mmのセルを組み込んだこの設計のスタックで、1年以上の動作が実証されている。これは、相互接続部の材料の厚さのおおよそ1/10であり、一般的なSOFCスタック設計で使用されるセルの厚さの1/2である。完全なスタックを形成する端部プレート、圧迫システム、および他のすべての部品が含まれる場合、1つの実施形態で提案されるスタック重量は、活性面積ごとに従来のスタックの重量の約1/10で確認された。
言い換えれば、電気化学セルスタックの材料含有量が減少し、その減少は有意である。この設計では、特殊な材料を使用する必要がなく、多くの分野で、従来の電気化学セルスタックに比べて材料の要件が簡素化されている。圧迫システムは、以下でより詳細に説明するように、負荷が低いため簡素化される場合がある。以下でまたより詳細に説明するように、シーリング要件が低いため、マニホルドも簡素化される。この材料含有量の低下により、電気化学セルスタックの本質的なコストが削減される。kWあたりの部品数は増加するが、小さな部品の使用、層ごとの異なる部品の削減、および操作者の介入を必要とする大きな許容誤差の欠如により、自動化に対する部品の適合性も向上する。したがって、材料の含有量が少ないことのコスト上の利点は、全体的な部品数の増加を上回る場合がある。
図2に示される燃料電池スタック110は、234個のセルを含む。各燃料電池ユニット150は、形状が環状であり、60mmの外側セル直径、300ミクロンの厚さ、および21cmの活性面積を有していた。各相互接続部152は、材料の厚さが100ミクロン、流れチャネルの高さが390ミクロンのスタンプされた金属相互接続部であった。燃料電池スタック110はまた、複数の燃料電池ユニット150のスタックの周りに位置付けられたマニホルド112を含み、燃料電池スタック110の外周の周りの燃料および酸化剤のうちの1つを導入および排出するために使用され得る、燃料電池スタック110の外周の周りの体積を画定し得る。例えば、体積の第1の部分は、燃料電池スタック110内への燃料または酸化剤のうちの1つのための入口を提供し得、体積の第2の部分は、燃料電池スタック110からの使用済みの燃料または酸化剤のための出口を提供し得る。
本明細書に記載の実施形態は、材料含有量を一桁分減らすことができる一方で、例えば、スタックおよびシステムレベルでのkWあたりのコストを削減するなど、他の多くの利点を提供する。改善された熱的レイアウトにより、改善された温度制御によって、同時に性能が向上し、かつ劣化が減少し得る。さらに、本明細書に記載の実施形態は、電気化学セルスタックの熱的制御を改善し得、それにより、冷却空気流を低くし、かつ入口温度を低くすることができ、その両方は、プラント効率性のバランスを改善することができる。
燃料入口/出口シールおよび酸化剤入口/出口シール
燃料アウトからの燃料インと酸化剤アウトからの酸化剤インの分離は、スタックコアとは別個である構造的に独立したマニホルド(例えば、マニホルド112)を通じて達成され、圧迫可能で、かつスタックコアとマニホルドとの間の相対運動を可能にするコンプライアントなシールを介してそれはシールされ得る。これにより、マニホルドとは無関係に熱的誘導負荷によりスタックコアが成長および屈曲し、そのことは、構造全体の熱的誘導機械的応力を防止または低減し、それにより個々の構成要素を保護する。例えば、セラミックセルは、過度に応力がかかると、脆性破壊を受けやすくなる。コンプライアントなシールは、同じガス流の入口と出口との間を密封する。言い換えれば、コンプライアントなシールは、燃料入口を燃料出口から分離し、かつ酸化剤入口を酸化剤出口から分離する。好ましくは、コンプライアントなシールは、いかなる場所においても、燃料と酸化剤ガスとの間を密封しない。コンプライアントな高温セラミックシールは、それらが典型的には、多孔性が含まれ、接続された充填セラミック構造体ことであることによってコンプライアンスを達成するので、漏れがあることが知られている。本明細書に記載の実施形態では、そのような漏れは、燃焼をもたらさず、漏れ率が低い限り(例えば、総流量の約5%未満)、全体的な効率性にわずかな影響しか及ぼさないため、許容可能であり得る。これにより、外部マニホルド設計手法の有利な使用が可能になり、コスト、重量、および体積の利点を提供する。図3は、燃料マニホルド230、例えば、電気化学セルスタックの長手方向チャネル内に置かれるポスト(例えば、中央ポスト)、および結果として生じる燃料インから燃料アウトまでの漏れ経路の表示を示す。
スタックの周囲の周りの入口ガスと出口ガスの分離は、コンプライアントなシールをスタックコア(「スタックコア」は、セル、相互接続部、シール、ならびに端部プレートなどの繰り返されたスタック部品のアセンブリを意味する)に圧迫する、シート金属マニホルド(例えば、マニホルド112)構造体を通じて達成され得る。金属ガス分離構成要素は、スタックがマニホルドに短絡するのを防ぐために誘電性コーティングで被覆されていてもよい。
環状セル設計により、セルの発熱面積の任意の部分から、スタックの外側表面までの伝導経路が最小限に保たれ、それは、スタックの熱的制御の維持を支持する。
図4A〜図4Cは、様々な実施形態による燃料電池ユニット250a/b/cの上部概略図であり、内部および外部マニホルド設計の異なる組み合わせに基づいて、燃料および酸化剤ガスの異なる可能な流路を各々示している。他の実施形態では、燃料電池ユニット250a/b/cは、電解セルユニットとして動作するように逆に動作する、電気化学セルユニットを含んでもよい。図4Aは、単一の燃料入口、単一の燃料出口、単一の酸化剤入口、および単一の酸化剤出口を備えた燃料電池ユニット250aを示す。図4Bは、2つの燃料入口、2つの燃料出口、2つの酸化剤入口、および2つの酸化剤出口を備えた燃料電池ユニット250bを示す。図4Cは、単一の燃料入口、単一の燃料出口、2つの酸化剤入口、および2つの酸化剤出口を備えた燃料電池ユニット250cを示す。これらの異なる流れ戦略は、スタックに対して異なる熱および圧力降下プロファイルを提供し、特定の用途に最適なものを選択され得る。
例えば、燃料電池ユニット250a/b/cの各々に含まれる相互接続部(例えば、相互接続部152)の相互接続部主要本体(例えば、相互接続部主要本体152a)は、複数の燃料チャネル(例えば、燃料チャネル157)の各々に流体的に結合された、少なくとも1つの燃料入口チャネルおよび少なくとも1つの流体出口チャネルを画定し得る。相互接続部主要本体は、複数の酸化剤チャネル(例えば、酸化剤チャネル159)の各々に流体的に結合された、少なくとも1つの酸化剤入口チャネルおよび少なくとも1つの酸化剤出口チャネルをさらに画定し得る。少なくとも1つの燃料入口チャネルおよび少なくとも1つの燃料出口チャネルは、長手方向チャネルの第1の部分から燃料を受容し、使用済みの燃料を長手方向チャネルの第2の部分に排出するように、長手方向チャネルに流体的に結合され得る。外側シール部材(例えば、外側シール部材158)は、外周の外側の体積から複数の燃料チャネルを流体的に密封してもよい。さらに、少なくとも1つの酸化剤入口チャネルおよび少なくとも1つの酸化剤出口チャネルは、第1の部分から酸化剤を受容し、外周の外側の体積の第2の部分から使用済みの酸化剤を排出するように、相互接続部の外周に流体的に結合されてもよい。内側シール部材(例えば、内側シール部材156)は、複数の酸化剤チャネルを、長手方向チャネルから流体的に密封してもよい。
モジュラアレイ
大規模なシステムの場合、スタックは、モジュラアレイに配備され、例えば、図5のアレイ100もしくは図7Aに示すアレイ200に示すような20kW〜250kW以上のアレイに、または図7Bのアレイ300に示すような40kW〜500kWのアレイに配備される。大規模なシステムは、複数のアレイで構成されてもよい。スタック設計は、統合された圧迫システム、統合されたガス接続を備えた直接ボルト接続、環境への短い伝導経路、および高電圧−低電流出力のため、配列されたレイアウトに特に適している。スタックからモジュールへのインターフェースを単純化または削除することにより、スタックは、大規模なシステムの設計を単純化する可能性がある。図2のスタック110に基づくスタックアレイの2つの実施形態を以下に説明する。スタックは、用途に応じて異なるパッケージサイズに配列され得る。可能なサイズの範囲は、単一のスタック(〜1.2kW)から15x15アレイのスタック(250kW)以上である。実施例として、10x10、100kWのパッケージは、圧迫、電流収集、ダクトを含めて約0.6mx0.6mx0.3m(113L)を測定し、それは内燃エンジンと競争力がある。
図5は、一実施形態による、燃料電池スタック110のアレイ100の斜視図である。この実施形態では、燃料は、燃料電池スタック110の基部から供給および抽出され、一方で、酸化剤ガス(例えば、空気)は、スタックの上方の収容体積に入れられ、燃料電池スタック110の基部から抽出される。空気は一般に、対流熱容量が高いため、電気化学セルスタック110を冷却する主な手段として使用され得る。空気は、比較的低い温度で燃料電池スタック110(またはスタックアレイ)の上方に入り、燃料電池スタック110の上方の面積を冷却する。ばね圧迫および電流収集は、この領域に統合され得、この領域では、温度が低いと、適切な強度および電流容量を維持しながら、特殊な材料の使用および/または全体的な材料の使用がより少なくなる。
いくつかの実施形態では、空気は、図6に示すように、上部低温領域から、酸化剤予熱管116または入口管を通じて、スタック110を囲む体積に流れる間、適切な入口温度まで加熱される。上部ゾーンとスタックゾーンとの間のシーリングは、完全ではない場合があり、全体的なレイアウトが大幅に簡素化される。図6は、上部冷却ゾーンと下部スタックゾーンとの間の分離が、個々の燃料電池スタック110に装着されたセパレータを重ね合わせることによって行われることを示している。図6に示す実施形態では、2つのセパレータタイプ、各スタックの周りのリングセパレータ114、および4つの燃料電池スタック110の各グループの間に位置するクロスセパレータ115がある。例えば、リングセパレータ114は、アレイ100に含まれる燃料電池スタック110の各々の周りに位置付けられてもよく、クロスセパレータ115は、アレイ100に含まれる4つの燃料電池スタック110の各セットの間に位置付けられてもよい。酸化剤予熱管116は、対応するクロスセパレータ115を通じて位置付けられてもよい。
セパレータ114、115は、重なり合って、ガスを酸化剤予熱管116に優先的に導く障壁を提供する。この重なり合うセパレータの幾何学的配置は、燃料電池スタック110に横荷重を追加したり、ゾーン間の分離を壊したりすることなく、燃料電池スタック110が熱的負荷の下で揺れる完全な自由を維持する。酸化剤予熱管116は、放射熱伝達表面として作用し、酸化剤(例えば、空気)をスタック空気マニホルドに直接接触させる前に、高温燃料電池スタック110からの放射を使用して入口空気を加熱する。燃料電池スタック110への空気入口は、垂直面全体に沿った空気マニホルドの開口部であり得、ここで、最初に上部ゾーンで、2番目に酸化剤予熱管116で、3番目にスタックマニホルドとの直接接触により予熱された空気が、最終的に適切に燃料電池スタック110に入ることができる。大きなSOFCスタックの主な課題であるスタック冷却は、酸化剤の流れを加熱することによって達成され得る。直接対流冷却とは異なり、多段式入口アプローチでは、酸化剤(例えば、空気)を燃料電池スタック110コアに直接入れる場合よりもはるかに大きな温度上昇が可能である。適切なサイズ設定を行うと、従来のスタックの摂氏600度と比較して、摂氏200度程度(例えば、摂氏150〜250度)の入口温度が達成され得る。この大きな温度デルタ許容値により、空気の流れが少なくなり、予熱負荷が少なくなり、アレイ100を含む電気化学セルアセンブリ(例えば、燃料電池アセンブリまたは電解セルアセンブリ)の構成要素のバランスの効率性が単純化し、かつ向上する。
各燃料電池スタック110は、空気入口ダクトおよび外側断熱を除いて自己内蔵型であってもよい。本明細書に記載のパッケージング解決策は、複数の燃料電池スタック110間で空気入口と外側断熱シェルを共有することにより効率性を提供する。いくつかの実施形態において、燃料電池アセンブリ(例えば、図7Aの燃料電池アセンブリ20)は、以下の繰り返しユニットを含み得る。(1)ユニットセル(セル+相互接続部):〜8W、〜0.8V、(2)燃料電池スタック(数百セル+マニホルド、圧迫など):〜1200W、160V〜250V、(3)アレイ(可変、最大200以上のスタック、エンクロージャ、断熱など):〜20〜250+kW、kV範囲、および(4)モジュール(可変、道路で輸送可能なサイズのアレイの構造体):1MW+、kV範囲。他の実施形態において、燃料電池アセンブリ(例えば、図7Bの燃料電池アセンブリ40)は、以下の繰り返しユニットを含み得る。(1)ユニットセル(セル+相互接続部):〜20W、〜0.8V、(2)スタック(数百セル+マニホルド、圧迫など):7,000W、160V〜350V、(3)40〜350+kW、kV範囲、(4)モジュール(可変、道路で輸送可能なサイズのアレイの構造体):1MW+、kV範囲。
大電力の実装(〜10kW以上)では、モジュラアプローチが追加の利点を提供する。第1に、スタック電圧は十分に高いため、それらは、並列または直列−並列電気構成で接続され得る。これにより、自動負荷制限が提供される。性能が低下するいくつかのスタックは、現在の負荷を電気的に並列のスタックに自動的に流す。大規模なマルチスタックアレイでスタックが完全に失われても、ほとんど悪影響はない。第2に、故障したスタックは、他のスタックに影響を与えることなく、比較的低コストで交換され得る。スタックが比較的少ない従来のシステムでは、単一の脆弱性が発生した場合に管理が困難な大きなスタックの取り外しおよび改修が必要になる場合があるが、小さいスタックのアレイでは、弱いスタック、より小さなデバイス、およびより迅速で低コストのプロセスのみを交換することにより、局所的な弱点を修正することができる。
図7Aおよび図7Bは、2つの異なる実施形態による、電気化学セルスタックのアレイを含む電気化学セルアセンブリの斜視図である。実施形態は、入口空気を含むすべてのガスサービスが下部から供給されることを除いて、図5および図6の実施形態と同様である。これにより、スタックアレイの最上部の複雑さが軽減され、初期アセンブリおよびサービスに利点がもたらされ得る。また、システムへの統合が容易であるという点で利点が提供され、流入気流と流出気流との間の追加の熱伝達の可能性が提供される。本明細書で説明されるように、図7Aおよび図7Bの電気化学セルアセンブリは、燃料電池スタックのアレイを有する燃料電池アセンブリを含む。他の実施形態では、図7Aおよび図7Bの電気化学セルアセンブリは、電解セルスタックのアレイを含む電解セルアセンブリとして動作するように逆流で動作されてもよい。
図7Aは、一実施形態による燃料電池アセンブリ20を示す。燃料電池アセンブリ20は、ハウジング基部30を有するハウジング22を含む。燃料電池スタック(例えば、電気化学セルスタック110)のアレイ200は、ハウジング基部30上に配置される。アレイ200は、燃料電池スタックの6×6アレイ(40+kWアレイ)を含み、すべてのガスサービスが下部から供給される。図7Bは、別の実施形態による燃料電池アセンブリ40を示す。燃料電池アセンブリ40は、燃料電池スタック(例えば、燃料電池スタック110)のアレイ300が位置付けられるハウジング基部50を有する、ハウジング42を含む。アレイ300は、8×5アレイ(280+kwアレイ)を含み、すべてのガスサービスが下部から供給される。これらのレイアウトでは、ハウジング基部30、50は、熱交換機能を組み込み、すべての燃料電池スタックに均等にガスを分配および収集する。図8Aは、図7Aに示す燃料電池アセンブリ20の基部部分の斜視図であり、アレイの燃料および酸化剤の入口および出口を示している。図7Aの左側では2つのスタックが省略されているため、酸化剤予熱管のうち2つを見ることができる。図8Aに示すように、電気化学セルアセンブリ20は、ハウジング基部30を通じて電気化学セルスタックのアレイ200に流体的に結合された、燃料入口22、燃料出口24、酸化剤入口26、および酸化剤出口28を含む。ハウジング基部30はまた、燃料入口22を通じてハウジング基部30に入る燃料と、燃料出口24を通じてハウジング基部30から出る使用済みの燃料との間の熱交換を提供するように構成されている、少なくとも1つの熱交換チャネル34を画定する。アレイ200とハウジング基部30との間で燃料および酸化剤を連通させるための複数のスタックインターフェース32(例えば、貫通穴)、ならびに1つ以上のガス分配チャネル36がまた、ハウジング基部30内に設けられてもよい。さらに、燃料バイパス入口29は、燃料バイパス入口29が少なくとも1つの熱交換チャネルをバイパスするように、ハウジング基部32を介して電気化学セルスタックのアレイ200に流体的に結合される。したがって、燃料入口22および燃料バイパス入口29は、二重燃料入口を提供し、その燃料バイパス入口29は、燃料電池スタックのアレイ200にまっすぐに進み、燃料入口22は、熱交換および改質セクションを通じて移動する。これらの二重入口は、選択的であるが、スタック入口温度およびスタック内改質の付加的な制御可能性を提供する。
図7Cは、全体的なモジュールの単純性を維持しながら、アレイサイズの柔軟性を示している。図7Bに示される燃料電池スタックのアレイ300に基づいて、40kWから350kWまでの概念的なアレイを示している。
図8Bは、図7Bに示される燃料電池アセンブリ40の基部部分の斜視図であり、アレイ300に流体的に結合された、燃料入口42、燃料出口44、酸化剤入口46、および酸化剤出口48を示している。これらの実施形態では、ハウジング基部50の上側部分56は、燃料を取り入れて熱交換を燃料排出し、燃料改質セクションも含むことができる。複数のスタックインターフェース52がまた、ハウジング基部50に設けられている。図7Bに示される燃料電池アセンブリ40は、二重入口を有していない。
これらの実施形態では、冷気入口は、下部からスタック高温ゾーンに入る。図9Aは、図7Aに示される燃料電池スタック200の一部分の上面図であり、酸化剤予熱管216およびスタック装着インターフェース32を示している。図9Bは、図7Bに示される燃料電池スタック300の一部分の上面図であり、酸化剤予熱管316、燃料予熱管318、およびスタック装着インターフェース52を示している。図9Aおよび図9Bに見られるように、これらの実施形態のアレイ200、300はまた、燃料電池スタックから熱を吸収し、それを使用して入ってくるガスを予熱するために放射表面として機能する、酸化剤予熱管316を含む。しかしながら、これらの実施形態では、酸化剤予熱管316は、(アレイの上部から下にではなく)高温ゾーンに通じる。アレイのこれらの実施形態では、上部からの唯一の接続は、上部電流収集接続である。これらは、各スタックで流れる電流が小さい(通常、燃料電池動作では30A未満、および通常、電解動作では150A未満)ため、比較的単純な接続である。
相互接続設計
小さなセル用に設計する場合、課題のうちの1つはシーリングである。シール面積に比例し、かつ漏れ方向のシールの厚さに反比例するいくつかの特徴的な漏れがあるシールが与えられる場合、漏れを最小限に抑えるように設計すると、より大きなセルが有利になる。第1に、セルの活性面積とエッジの長さ(シールされた長さ)の比率は、おおよそセルサイズを基準にする。
Figure 2022000847
第2に、大きなセルの場合、所与のシール幅に対して、比例的に少ない活性面積がシーリングにわたって与えられる。
Figure 2022000847
これは、合理的な活性面積比を維持するために、より小さなセルはより狭いシールを必要とし、同じ全体の漏れ率を維持するために、単位シール長さあたりのより低い漏れも必要とすることを意味する。
これらの制約は、小さなセルの周囲に基づく高性能で低い漏れのスタックをサポートするために、低い漏れ率の狭いシールが望ましいことを意味している。このタイプのシーリングは、ガラスセラミックシール、ろう付け接合部、または溶接接合部の形態で存在する。このようなシールの1つの欠点は、コンプライアントではないことである。SOFCスタックではコンプライアンスが望ましい場合があり、これは、SOFCスタックが広い温度範囲で動作し、昇温中または動作条件の変更中にスタックの部品が相互に移動して、応力の蓄積の損傷を防ぐからである。いくつかのスタック設計は、剛性接合部を可能にするために、シート金属相互接続にコンプライアント機能を構築するが、コンプライアント機能自体は、比較的かさばり、幅広シールと同じ問題を抱えている。それらは、小さなセル設計では空間効率が悪くなる。
図10は、当技術分野で知られている重なり合うシール設計を有する燃料電池スタックの斜視図であり、クロスフロースタック構成における典型的なコンプライアンスの課題を示している。議論のために、燃料が左下から右上に流れ、酸化剤が右下から左上に流れていると仮定する。スタック外部の酸化剤から燃料を分離するマニホルドは、示されていない。
1番上の可視的なシールは、スタックの右下の面に対する酸化剤からセルを通過する燃料を分離する、燃料シールである。上部セルの真下には、左端に沿って酸化剤シールがある。これにより、セルを流れる酸素と、左端に露出した燃料が分離される。パターンは、スタック全体にわたって繰り返され、何百ものセル層を含み得る。
図10の前景のように、シールが重なり合う場所で、コンプライアンスの問題が発生する。中央の前景の構造体は、シール、セル、シール、および相互接続の繰り返し層で作製される。構成要素のうちの1つ以上が降伏しない限り、この領域の歪み(X、Y、またはZ)を吸収する能力は存在しない。目標が非コンプライアントな密封シールまたはほぼ密封のシールの使用である場合、セルは多くの場合、構造体の最も弱い構成要素である。この場合、ほとんどの場合で、応力が蓄積すると、セルは降伏する前に破損する。このタイプの構造体は、実世界の状況に対して堅牢ではない。
避けられない熱的応力を緩和するためには、スタック設計にコンプライアンスを組み込む必要がある。コンプライアンスを組み込むためには、主に2つのアプローチがある。第1のアプローチでは、シールはコンプライアントに作製され、多くの場合、充填された繊維/粉末セラミック複合材、または構成要素間で移動して応力を緩和することができる、プレート状の材料(例えば、マイカ)として作製される。これらのシールは、それらの構造体の結果として必然的に漏れるため、漏れが性能を支配し始める前に、セルを小さく使用できる程度を制限する。第2のアプローチでは、コンプライアンス機能を組み込んだ特別な相互接続部または追加の構成要素が使用される。これは、例えば、薄い金属シート構成要素をセルに剛直にシールし、セルの周囲を効果的に延伸し、次にこのセル延伸構成要素を相互接続部にレーザー溶接することにより行われる。この戦略では、周囲および細胞接合部の両方から離れて置かれる周囲シールおよび内部ポートシールが存在する。例えば、周囲シールには、燃料が含まれ得、ポートシールには、酸化剤が含まれ得る。このコンプライアントな部分に必要な追加の周囲部は、小さなセルサイズが好ましくないことを意味する。
対照的に、本明細書に記載の実施形態では、相互接続部および全体的な構造体は、所望のコンプライアンスを直接的に提供するが、シール性質を損なうことなく、設計に余分な構成要素または空間を追加することはない。この設計により、幅の狭い剛性シールを使用できるようになり、構造体のサイズを増すことなく、コンプライアントなベローズ状構造体を達成する。小さな面積での良好なシーリングとコンプライアント構造体のこの組み合わせにより、小さなセルを効果的に使用することができる。
コンプライアントな相互接続設計には、多くの競合する設計制約があり得る。第1に、相互接続には次のことが望ましい場合がある。(1)制御された流量分布を、セル燃料電極およびセル酸化剤電極の両方に提供すること、(2)コンプライアンスを提供して、応力を吸収すること、(3)適切な燃料および酸化剤の圧力低下を提供すること、(4)適切な電流伝導経路を提供すること、および(5)スタックの寿命を通じて、燃料の流れを酸化剤の流れから隔離すること。
図11は、一実施形態による、相互接続部452の断面斜視図である。相互接続部452は、複数の燃料チャネル457および複数の酸化剤チャネル459を画定する、相互接続部主要本体452aを含む。図11では、燃料側面は上にある。燃料チャネル457は、セル酸化剤電極への電気的接触面積を同時に形成する。酸化剤チャネル459は、セル燃料電極への電気的接触面積を同時に形成する。燃料チャネル457は、相互接続部452の上部面のリブによって分離され、一方で、酸化剤チャネル459は、相互接続部452の下部側のリブによって分離される。すなわち、燃料側リブは酸化剤チャネル459を形成し、逆もまた同様である。図12Aおよび図12Bは、図11に示す相互接続部452のそれぞれの上部図および下部図であり、それらの幾何学的中心に貫通する、長手方向チャネル420が記載されている。図12Aは、燃料チャネル457の各々に流体的に結合された燃料入口チャネル463(または流れの方向に応じる燃料出口チャネル)を示す、相互接続部の上部の燃料側面を示す。図12Bは、酸化剤入口チャネル465(または流れの方向に応じる酸化剤出口チャネル)を示す、相互接続部の下部の酸化剤側面を示す。図12Aおよび図12Bは、相互接続部452の燃料側面(図12A)のチャネル457および酸化剤側面(図12B)のチャネル459の各々によって供給される有効な活性面積を示す。相互接続部452に重ねられた平坦な半円形面積は、各相互接続部チャネル457、459に露出されたセル活性面積を表す。活性面積は各々、位置およびサイズの両方、ならびに各チャネル457、459の関数である。相互接続部452は、各チャネル457、459の下方へ流れる流れを提供するように設計されており、各チャネル457、459は、そのチャネル457、459によって供給される活性面積に比例する。これは、両方のセル電極から適切な電流収集を提供するサイズおよび間隔の制約に関して達成される。幾何学的配置のいくつかの変更は、相互接続部452の両側の流れおよび電気特性に影響を与える。任意選択的に、電気的接触を支援するために、各セルと各相互接続部452との間に接触中間層を追加してもよい。
図12Aおよび図12Bに示される実施例では、外側シール部材458は、この実施例において、外周上にある燃料シール部材である(図12A)。この実施例では、内側シール部材456は、酸化剤シール部材であり、燃料電池スタックの長手方向チャネル420の周りの内周上にある(図12B)。空間における酸化剤シール部材からの燃料シール部材の分離およびコルゲート相互接続部設計は、スタックの周囲または厚さを増すことなく、必要なコンプライアンスを提供する。もちろん、酸化剤が長手方向チャネル420を通じて流れる実施形態では、内側シール部材456は、燃料シールとして作用し、一方で外側シール部材458は、酸化剤シールとして作用する。
相互接続部452の基部材料は、厚さ0.1mm程度(例えば、厚さ0.07から0.13mm)である。これは、セルの活性面積が小さく、セル上の任意の点からエッジまでの距離が比較的小さいため、スタック温度が適切に制御されることを可能にする。大規模なスタックの場合、または距離が大きい場合、スタックおよびセルの温度の制御を維持するのに十分な熱伝導率を得るために、相互接続部の厚さを増やす必要がある。
内部シール設計
相互接続部452とセルとの間にあり、かつ酸化剤ガスから燃料ガスを分離する内部シールは、アレイ100、200または300に含まれる電気化学セルスタック内のガラスセラミックシールとして実装されてもよい。それらの位置は、相互接続部452を含み、かつ上部プレート440と下部プレート460との間で圧迫される燃料セルスタック410を含む電気化学セルスタックの概略図を示す、図13の概略断面図で見ることができるベローズ状構造体を生成する手段において内径と外径との間で互い違いであってもよい。言い換えれば、燃料電池スタック410に含まれる複数の相互接続部452は、燃料電池スタック410がコンプライアンスを有するように、協働してベローズ状構造体を形成する。相互接続部452は、0.1mm程度の厚さであり得る。流れ場を生成するコルゲーションと結合された薄い材料は、その層内の応力を容易に緩和する相互接続部452を作製する。これにより、層から層への応力の蓄積を防ぐ堅牢な構造体が生成される。図13に示されるように、応力緩和機能を提供するために、追加のセパレータまたは金属構成要素は使用されないことが好ましい。すなわち、燃料電池スタック410のベローズ状構造体は、セル454、外側シール458、相互接続部452、および内側シール456が交互になったもので作製されている。
内側シール456および外側シール458に加えて、エッジシール部材461は、相互接続部452の外周に近接した電気化学セル454(例えば、電気化学セルユニット、例えば、燃料電池ユニットまたは電解セルユニットを含む、第1の電気化学セルおよび第2の電気化学セルの各々)の外側エッジ、または長手方向チャネル420に近接した電気化学セル454の内側エッジのうちの少なくとも1つに配置されてもよい。例えば、セルアノード支持体のエッジは、通常、多孔性である。図13に示されている実施形態では、エッジシール部材461は、燃料ガスと酸化剤ガスとの間の追加的なシーリングを提供するように、電気化学セル454の外側エッジに配置されている。図14は、密封された電気化学セル(例えば、図1Bに示される電気化学セル154a/b)に対応し得る、燃料電池の断面を示す写真である。
ポスト設計
長手方向チャネルを通過して電気化学セルに至るガス(燃料または酸化剤のいずれか)のマニホルドとして、ポストを使用することができる。ポストは、長手方向チャネルに置かれ、長手方向チャネルから電気化学セル内へのガス入口を、電気化学セルから長手方向チャネル内へのガス出口から分離するように構成されてもよい。ポストは、セラミックスラリー、ペースト、バットまたはそれらの組み合わせで所定の位置に密封され、入口の流れと出口の流れとの間のコンプライアントなシーリングを提供する。ポストは、コンプライアントなシール材料が追加される垂直チャネルを形成する機能を備えた、機械加工された金属、複数の部品からなるシート金属、ろう付け、またはセラミックであり得る。
図15A〜図15Cは、3つの異なる実施形態による、燃料電池スタック510の一部分の上部断面図であり、スタック510の長手方向チャネル520に置かれた様々なポストを示している。これらの実施形態では、長手方向チャネル520は、スタック510の軸方向中心に沿って延在する中央チャネルであり、したがって、チャネル内のポストは「中央ポスト」と呼ばれる。しかしながら、他の実施形態では、ポストは、スタック510の中心からオフセットされたチャネルに配置されてもよい。この実施形態では、燃料ガスが長手方向チャネル420を通過することも仮定されている。図15Aは、一実施形態による円形ポスト530aを示す。ポスト530は、燃料を受容するように構成されたポスト入口532aと、使用済み燃料を受容して、電気化学セルスタック510に排出するように構成されたポスト出口534aと、を画定するように、その周囲に軸対称に置かれた深い溝を画定する。ポスト入口532aおよびポスト出口534aは、シールくぼみ536aを介して互いに流体的に隔離されている。図15Bは、長手方向チャネル520に配置された、別の実施形態によるポスト530bを示す。ポスト530bは、長手方向チャネル520を、ポスト入口532b、ポスト出口534b、およびポスト入口532bをポスト出口534bから流体的に隔離するシールくぼみ536に分割する、2つの平行プレートを含む。図15Aおよび図15Bの実施形態では、中央ポストであるポスト530a/bは、1つの燃料入口ポートおよび1つの燃料出口ポートを含む。
図15Cは、互いに対向して位置付けられた2つの燃料入口プレート531cを含むポストアセンブリ530cを示す。2つの燃料出口プレート537cは、互いに対向する2つのポスト出口534cを画定するように、燃料入口プレート531cに垂直に位置付けられる。図15Cの実施形態では、ポスト534cは、中央チャネル533c、例えば、複数の開口部535cを有する燃料入口プレート531cによって2つの側面ポストチャネル532c(例えば、側面燃料ポート)から分離された、燃料入口ポートを含む。燃料は、中央チャネル533cに流れ込み、次に開口部535cを介して側面ポストチャネル532cに流れ込む。この実施形態の中央ポストアセンブリ530cは、燃料出口ポートを含む2つのポスト出口534cを有する。セラミックコーキング材などのシール部材539cが、シールくぼみ536cに挿入されて、入口燃料を出口燃料から分離する。このシールは密閉されている必要はなく、それは、漏れ経路が燃料と空気の結合をもたらさないからである。むしろ、このシールを通過した漏れの影響は、スタック自体を通る燃料の流れを減らすことである。中程度の漏れ(全体の流れの最大数パーセント)は、スタックの性能に大きな影響を与えない。固体酸化物燃料電池システムは通常、燃料電極から反応生成物(HO、COなど)を掃引するために過剰な燃料で動作するため、中程度の漏れであっても、システム特性に顕著な影響はない場合がある。
ポスト530cで使用されるシール部材539cの材料は、熱的応力が構造体内で散逸することを可能にするために、いくらかコンプライアントなように設計されてもよい。コンプライアンス要件の結果として、シール部材539cは、セル層に強固に接着されておらず、密閉されていない。しかしながら、同時にコンプライアントであり、燃料がシールを介して漏れるよりも相互接続部の周りを優先的に流れるように十分に低い漏れとなるように設計することができる。
図16Aおよび図16Bは、それぞれ図15Aおよび図15Cの燃料電池スタック510の上部部分の断面斜視図であり、上部プレート540a/bおよび上部キャップ542a/bとともに中央ポスト530a、530cを示している。スタックの上部および下部のプレートに直接接着すると、不要な熱的応力が誘引する可能性がある。これを防ぐために、上部(および任意選択的に下部)接合部は、コンプライアントなフィット部として構造化されている。中央ポストと上部プレートおよび/または下部プレートとの間の隙間に、シール材(例えば、ポストの側面で使用されるものと同じシール材)が提供される。熱的応力を緩和するのに十分である限り、中央ポストと上部プレートとの間の許容される動きを大きくする必要はない。所望の相対運動の計算の大きさの程度は次の通りである。
Figure 2022000847
この計算は、中央ポストが平均スタック温度より50°C暖かい(または冷たい)場合に、12E−6 K−1のSOFC材料に典型的な平均熱膨張係数で、300mmの高さのスタックは、中央ポストの上部と上部プレートとの間で0.18mmの動きを必要とすることを示す。この計算は、特定の試験事例を表すものではなく、発生する可能性のある熱膨張差の大きさを理解することのみを目的としている。
さらに拡大すると、図16Aおよび図16Bに示すように、上部プレート540a/cが、ポスト530a/cの周りの燃料電池スタック510の上端部に位置付けられ、そのため上端部プレート540a/cとポスト530a/cとの間に、隙間541a/cが設けられている。隙間541a/cは、熱的応力を緩和するために、その中のポスト530a/cの移動を可能にするように構造化されてもよい。いくつかの実施形態では、コンプライアントなシール部材を、隙間541a/c内に位置付けることができる。例えば、図16Bは、ポストアセンブリ530cにわたる隙間541a/cに位置付けられた、コンプライアントなシール部材543cを示している。コンプライアントなシール部材543cは、隙間541a/c内でポスト530cの移動を可能にするように十分なコンプライアンスを提供するように構成され得る。上端部キャップ542a/cは、例えば、スタックを閉じるために上端部プレート540a/c上に位置付けられてもよい。2次シール部材544a/cは、上端部プレート540a/cと上端部キャップ542a/cとの間に介挿されてもよい。
中央ポスト530a/cと上部プレート540a/cおよび/または下部プレートとの間のコンプライアントなシール部材543a/cが漏れる可能性がある。2次シール部材544aおよび上端部キャップ542a/cが、ポスト530a/cの上方に追加される。2次シール部材544aからのコンプライアンスは望ましくない場合があるため、剛性で漏れが生じないようにすることができる。
端部プレートの設計
本明細書で説明される電気化学セルスタック(例えば、燃料電池スタックまたは電解セルスタック)はまた、上端部プレート(例えば、上端部プレート540a/c)に加えて、下端部プレートを含み得る。下端部プレートは、スタックを機械的に支持し、反応物(燃料および酸化剤ガス)のガス接続を提供する。下端部プレートは、燃料スタックおよび/またはアレイインターフェースの他のシールに対するシール表面を提供し、さらにスタック外側マニホルド(例えば、酸化剤マニホルド)およびポストのシール表面を提供する。下端部プレートは、装着に余裕を与え、スタックコア(セル、相互接続部、およびシール)を、シール面およびボルトの位置で生じる応力から隔離する。また、下端部プレートは、圧迫システムからスタックに圧迫荷重を伝達する。さらに、下端部プレートは、スタックの電気接続点のうちの1つとして機能し得る。
図17A〜図17Cは、実施形態による、基部プレートアセンブリ660a/b/cの3つの異なる設計の下部斜視図である。基部プレートアセンブリ660a/b/cの各々は、少なくとも1つの燃料ポート666a/b/cおよび少なくとも1つの酸化剤ポート668a/b/cを画定する、下端部エンドプレート662a/b/cと、高強度シーリングプレート664a/b/cと、を含む。高強度シーリングプレート664a/b/cは、下端部プレート662a/b/cと軸方向に整列されており、かつ下端部プレート662a/b/cに対して降伏して、高強度シーリングプレート664a/b/cから下端部プレート662a/b/cへの機械的応力の伝達を低減するように構成されている。下端部プレート662a/b/cに、複数の取り付け点665a/b/cを設けることができ、それにより、電気化学セルスタック(例えば、燃料電池または電解セルスタック)の下端部プレート662a/b/cへの結合が可能になる。
図17Aおよび図17Bの実施形態では、高強度シーリングプレート664a/bは、(例えば、ヘインズ230などの高強度超合金で作製された)高強度シーリング表面を有する最上部である。これは、圧迫シーリング部材とのインターフェースに必要な表面強度を提供する。しかしながら、高強度超合金の熱膨張係数は、通常、スタック構成要素のバランスで許容されるよりも高くなる。したがって、高強度シール表面とスタックの残りの部分との間の分離が提供される。図17Aは、高強度シーリングプレート664aが、課せられた熱的応力の下で降伏して、熱応力がスタック内に伝達されるのを制限するように設計された短い管663aによって、下端部プレート662aから分離されている、基部プレートアセンブリ660aを示している。
図17Bは、高強度シーリングプレート664bが降伏点を含み、その結果、高強度シーリングプレート660bは、下端部プレート662bを通ってスタック内に応力を伝達するのに十分な強度を有さない、基部プレートアセンブリ660bを示している。図17Aおよび図17Bに示される実施形態では、1つの酸化剤ポートは、2つの燃料ポートと同様に、下端部プレート662a/bを通って送られる。燃料ではなく酸化剤がポストを介して提供される実施形態では、下端部プレートは、その代わりに、1つの燃料ポートおよび2つの酸化剤ポートを含んでもよい。下端部プレートの装着を可能にするねじ状部材が、導入されている。ねじ状部材は、スタック構造体に応力が伝わることを防ぐために設計内で隔離されている。端部プレートの内部構造体は、圧縮システムからスタックに荷重を運ぶように設計されている。この設計では、下端部プレートとシステムとの間の接続部での電流収集損失が0.1%未満であることが実証されている。上端部プレートは、酸化剤マニホルドおよびポストのシール表面を提供する。また、圧縮システムからスタック内に圧迫荷重を伝達し、圧迫システムによって誘発される応力からスタックコア(セル、相互接続部、シール)を隔離する。上端部プレートは、ポストの上部にコンプライアントな摺動接合部を提供する。上端部プレートはまた、スタックの電気接続点のうちの1つとして機能し得る。
図17Cは、高強度シーリングプレート665cが機械的に分離されているが、下端部プレート662c内に含まれており、それにより、熱膨張係数(CTE)の不一致によりスタック構造体に熱的応力をかけることなく、スタックとそれが取り付けられているマニホルドとの間のシーリングを達成するために必要な強度を提供する、基部プレートアセンブリ660cを示している。言い換えれば、下端部プレート662cは、複数の燃料電池ユニットのスタックと高強度シーリングプレート664cとの間に介挿されている。複数の取り付け点665cが、高強度シーリングプレート664c上に提供され得る。高強度シーリングプレート664cは、下端部プレート662aに対して横方向に自由に移動して、それに対する応力伝達を低減するが、システム内のその嵌合マニホルドにボルトで固定されると、それ自体と嵌合マニホルドシステムとの間の下端部プレート662cの一部分を捕捉する。したがって、シーリングのための機械的強度は、高強度シーリングプレート664cからもたらされ、一方で、嵌合マニホルドからスタック内へのガスの輸送は、機械的に分離され、かつ熱膨張が一致した下端部プレート662cによって起こる。高強度シーリングプレート664cと、捕捉された低強度で低CTEの下端部プレート662cとの間の摩擦は、セラミック剥離層によって部分的に緩和され得るが、下端部プレート662cの捕捉された部分は、高強度シーリングプレート664cおよび下端部プレート662cに隣接して位置付けられた複数の低降伏管(例えば、短い低強度管)によって、高強度シーリングプレート664cからさらに隔離されており、それによって、熱膨張応力をスタック構造体に伝達する可能性が最小限に抑えられる。
図18は、上端部プレートが電気化学セルスタック(例えば、燃料電池スタックまたは電解セルスタック)上に位置付けられている場合に、ポストから離れて上端部プレート740の表面から軸方向に延在するポストインターフェース管748を含む、上端部プレート740の上面斜視図である。いくつかの実施形態によれば、上端部プレート740は、上部圧迫プレートアセンブリに含まれてもよい。ポストインターフェース管748の少なくとも一部分は、ポスト(例えば、中央ポスト)の一部分の周りに位置付けられてもよい。ポストインターフェース管748は、ポストと上端部プレート740との間のわずかな相対運動を可能にするための滑り面を提供することができる。
いくつかの実施形態では、スタックは、一体型の圧迫システムを含む。これにより、スタックをアレイに簡単に統合することができる。小さなセル面積およびガラスセラミックシールの利点の1つは、圧迫荷重が比較的小さくてもよいことである。例えば、図7A)のアレイ200で使用される図2に示されるスタックは、3.5kgf〜9kgf(34N〜88N)で動作するように設計されており、例えば、図7Bのアレイ300で使用される別のスタックは、既知の121cmおよび550cmのスタックのそれぞれ360kgfおよび900kgfと比較して、9kgf〜36kgfで動作するように設計されている。これにより、圧迫要素の設計および圧迫プレートの設計の両方が簡素化される。第1に、高いレベルでの圧迫プレートの剛性要件を考慮する。ピン留めされた端部接続部を有する均一に荷重された2Dビームの最大撓みは、以下によって与えられる。
Figure 2022000847
これは、所定の許容最大撓み(例えば、電気的接触に大きな影響を与えずに許容できる撓み)に対して、ビーム剛性は、総荷重(wL)に正比例して、ビーム長さの3乗で増加する必要があることを示している。同様に、所与のスタックのビーム長さは、セルの活性面積の平方根として近似され得る。したがって、2つのスタックを比率で比較することができる。
Figure 2022000847
これは大きさの位数の比較にすぎないことに注意して、上記の式を使用して、圧迫プレートの剛性要件を従来の550cmのスタックの剛性要件と比較することができる。計算は、図2の燃料電池スタック110、または図7Aのアレイ200に含まれる、例えば、25cmの活性面積を有する燃料電池スタックは、同じ最大撓みを与えながら、約10,000倍剛性が低くなり得、一方で、図7Bのアレイ300に含まれる燃料電池スタックは、例えば、同じ最大撓みに対して約440倍剛性が低くなり得ることを示唆している。これにより、圧迫プレートの設計が大幅に簡素化されることが可能になる。撓みにより電気接触が失われるため、最大許容撓みは本質的にセルサイズに依存しないことに留意されたい。
図19Aおよび図19Bは、2つの異なる実施形態による、上部圧迫プレートアセンブリ870a/bの上部斜視図である。上部圧迫プレートアセンブリ870a/bの各々は、電気化学セルスタックおよび基部プレートアセンブリ(例えば、基部プレートアセンブリ660a/b/c)の上端部に位置付けられてもよく、または下端部プレート(例えば、下端部プレート662a/b/c)は、上端部とは反対の電気化学セルスタックの下端部に位置付けられてもよい。上部圧迫プレートアセンブリ870a/bは、上部端プレート840a/bと、上部端プレート840a/b上に位置付けられた上部圧迫プレート872a/bと、を含む。バイアス部材876a/bは、電気化学セルスタックの上端部に近接して位置付けられており、かつ複数の電気化学セルユニットのスタックに圧迫力を及ぼすように構成されている。さらに、少なくとも1つの圧迫部材879a/bは、圧迫プレート872a/bを、基部プレートアセンブリ、例えば、基部プレートアセンブリの高強度シーリングプレートなどの下部圧迫プレートに結合し、かつ上部圧迫プレート872a/bから基部プレートアセンブリに圧縮力を伝達するように構成されている。
さらに拡大すると、図19Aは、図7Aのアレイ200に含まれる燃料電池スタックに配備される実施形態による、上部圧迫プレート872aとともに上部端プレート840aおよびポストインターフェース管848a(例えば、図18の上部端プレート740)、基礎部材876a(例えば、ばねパック)、ならびに圧迫部材879aを含む、上部圧迫プレートアセンブリ870の上部斜視図である。本明細書で前述したように、上端プレート840は、その間に隙間が存在するようにポスト830aの周りに位置付けられる。コンプライアントなシーリング部材843aは、ポスト830aの上方の隙間に位置付けられる。この実施例では、バイアス部材876aは、上部圧迫プレート872aと上部端プレート840aとの間に介挿されている、高温ベレヴィルばねのスタックである。他の実施形態は、コイルばね、または様々な形態の波ワッシャーを使用することができる。バイアス部材876aは、スタックを圧迫するための圧迫力を生成する。2つの圧迫部材879a(例えば、テンションロッド)は、圧迫プレート(図示せず)が荷重を下端部プレートに伝えるスタックの上部から下部へ力を運ぶ。バイアス部材876aの個々のベレヴィルばねは、ばねを整列させて案内するガイドシムで分離されており、その結果、ベレヴィルばねが横方向にドリフトしたり、ベレヴィルばねを過度に圧迫したりすることがない。ベレヴィルばねは、動作温度での応力が少ないように設計されている。圧迫部材879aは、温度で高い強度を有する超合金で作製されている。それらは、スタックよりも熱膨張係数が高く、昇温するとばねパックがわずかに解放される効果を有する。
図19Bの上部圧迫プレートアセンブリ870bは、図19Bの圧迫プレートアセンブリ870bのバイアス部材876bが、ベレヴィルばねパックではなくむしろ複数のコイルばねセット(この実施形態では8つ)を含むことを除いて、図19Aのものと同様である。さらに、ポスト830bは、図15Cに関して説明されたポストアセンブリ530cと同様であり得る、その上に位置付けられたコンプライアントなシーリング部材843bを有する。上部圧迫プレートアセンブリ870bは、図7Bのアレイ300に含まれる燃料電池スタックに実装された。
図20Aは、一実施形態による、図19Aの上部圧迫プレートアセンブリ870aで使用され得る、ベレヴィルばねパックのばね応答を示すグラフである。図20Bは、別の実施形態による、図19Bの上部圧迫プレートアセンブリで使用され得る、コイルばねのクリープを示すグラフである。テンションロッドに対するスタックの成長の違いは、昇温中にスタックをアンローディングする効果を有することである。これは設計によるものであり、温度が低く、材料のクリープが問題にならない輸送中に、よりスタック圧迫を提供するという副次的な利点がある。幾何学的配置は、動作時に圧迫が目的の圧迫まで緩和されるように選択される。円はピークの力点を表し、ばねが不安定になる場所でもある。この限界まで押されると、ばねは、力変位グラフの左側でそれ自体を反転させるリスクを生じさせる。これが発生する場合、ばねは、スタックに有効な荷重を提供しなくなり、分解しないと回復できなくなる。
そのため、スタックが冷えているときの設計では、変位がトップダイヤモンドポイント(約97ニュートン)以下に制限される。スタックが加熱されると、熱膨張差により、ばねセットが下のダイヤモンドポイントに弛緩することを可能にし、ここにおいて、スタックが82ニュートンに負荷され、ばね応力は、特定の超合金(例えば、ワスパロイ、ヘインズ282)のクリープ制限内である50MPa未満に低下する。「+」ポイントは、テンションロッドの0.5%クリープ後にスタックに残る圧迫荷重を表す。このクリープ後、荷重は許容できる18ニュートンのままであり、この時点で、ばねのピーク応力は10MPaに降下する。ばねおよび圧迫部材のこのアンローディングは、システム全体の正味のクリープ速度を遅くする。ばね特性を最大限に活用するために、材料のクリープが問題にならない室温で、より高い応力を経験することが許可されている。提供されている数字は、特定のケースを例示している。一般に、寒冷対高温条件、および動作中のシステムクリープを考慮した設計戦略は、すべての設計に適用されるが、詳細は特定のスタックの目標および要件に依存するであろう。
同様に、図19Bのコイルばねは、設計負荷がより低温であり、動作中にそれらの高温圧迫目標まで緩和することができる。図20Bは、純粋なクリープにおける動作温度でのサンプルコイルばねの1.5年以上の試験を示している。このばねの望ましい動作範囲は、9kgf〜36kgfである。この試験では、29kgfでいくらかのクリープが発生することが示されているが、荷重が21kgfに減少すると、ばねはさらなるクリープに対して安定している。これらの結果は、目標要件に対する高温ばね設計を確証する。
マニホルド設計
外側マニホルドは、各ユニットセルから基部プレートに酸化剤ポートを接続し、ここで、酸化剤が、燃料接続部に隣接する酸化剤接続部に(またはそこから)送られ得る。スタックの反対側の面は、酸化剤がすべてのセルから(またはすべてのセルに)直接流れることができる環境に開放されたままである。例えば、図21A(燃料電池スタック110、およびアレイ200に含まれている燃料電池スタック)、および図21B(アレイ300の電気化学セルスタック)は、外側マニホルド912a/bを含む電気化学セルスタック910a/b(例えば、燃料電池スタックまたは電解セルスタック)の下部斜視図である。
図21Aは、2つの入口(前面および後面)および2つの出口(左側および右側の面、基部接続点に経路が定められている)を備えた構成を示している。下端部プレート962aは、電気化学セルスタック910aの基部に位置付けらており、下部圧迫プレート982aは、下端部プレート962aの下に位置付けられている。圧迫部材979aは、上部圧迫プレートから下部圧迫プレート982aに圧迫力を伝達して、それにより、下部圧迫プレート982aを付勢し、それにより、下端部プレート962aが電気化学セルスタック910aに向かって押され、それにより、電気化学セルスタック910aが固定される。図21Bは、図21Aに示された構造体の代替的な実装形態を示す。図21Aの実施形態に示されるように、取り付けボルト983bが、下部からではなく、下部圧迫プレート982bの上部から下がるような異なる構成を除いて、同じ機能部分が存在する。図21Aおよび図21Bを参照すると、マニホルド912a/bは、シート金属で作製されており、ボルト止めされたクリップ918a/bによって所定の位置に保持されている。マニホルド912a/bと端部プレートおよびスタックコアとの間には、電気化学セルスタックの周囲のマニホルド912a/bによって画定された体積内に位置付けらており、かつ体積の第1の部分を、体積の第2の部分から流体的に密封するように構成されている、誘電性シール部材914a/bがある。誘電性シール部材914a/bは、酸化剤入口を酸化剤出口から分離する。誘電性シール部材914abによって形成されたシールを横切る小さな漏れが、スタック動作を損なうことなく許容される場合がある。
図21Bに示される特定の実施例では、酸化剤出口(または入口)ポートは、2つに分割されており、下部圧迫プレート982bと電気化学セルスタック910bとの間に位置付けられた下端部プレート(図示せず)の左下および右上の開口部からなる。これらは、下端部プレート内で、電気化学セルスタック910bの左および右のマニホルド982bに画定された体積に経路が定められている。この特定の実施例では、酸化剤の流れに対する低い寄生圧力降下を提供する、2つのポートが示されている。残りのポート(左および右の開口部)は、燃料入力ポートおよび燃料出力ポートであり、必要に応じてその位置を入れ替えることができる。
用途に応じて、開いたマニホルドまたは閉じたマニホルドが好ましい場合がある。図21Aに示された開いたマニホルド912aは、環境への熱的結合を助ける。これは、例えば、電気化学セルスタック910aが環境から熱を吸収する必要がある動作条件が存在する、電気分解システムまたはエネルギー貯蔵システムで有用である。スタックが発熱的に正味で動いているレベルに改質が制限される純粋な電気化学セルシステムでは、完全なマニホルドが好ましい場合がある。
完全な(閉じた)マニホルドは、動作中のスタックコアをその環境から効果的に隔離する。発熱動作条件の場合、これにより、環境温度を潜在的に最大100°C下げることが可能になる。これにより、スタックまたはスタックアレイの周囲の断熱要件を削減するという点で、およびスタックの周囲で低品質の材料を使用することができるという点で、顕著な利益がもたらされ得る。これにより、システムレベルのコストの節約がもたらされ得る。また、クロムの揮発などの他のシステムレベルの課題、および他の材料の輸送または材料の酸化の課題を軽減することができる。
以下のセクションでは、本明細書に記載の実施形態による様々な電気化学セルスタックの性能の実施例を説明する。これらの実施例は、単に説明を目的とするものであり、本明細書に記載の概念の範囲を限定することを意図したものではない。
実験に基づく実施例
構成要素のサイズを小さくすることで、全体の電力密度(kgあたり、およびLあたり)を増やすことができるということは、現在の知恵に反している。容認されている知恵は、電力密度を高めてコストを下げるための行程が各部品を大きくしながら部品数を減らすことである。これは、スタックの体積およびコストがスタックの非アクティブ部分(シール面積、端部プレート、圧迫など)によって大きく左右されること、およびより大きなセルに移動することにより、これらの非アクティブ面積の全体的なスタックコストへの寄与が低下することを前提としている。セルが薄いセラミック構成要素である平面SOFCでは、大きなセルを生成することは困難である。SOFCセルのサイズを拡大しようとして、多くの努力が続けられている。
対照的に、本明細書に記載の実施形態は、新規設計により、部品が小さいほど電力密度が高くなり得、低コストになる可能性があることを実証している。現在の知恵に反して、より小さなセルに移動すると、活性面積全体または電力出力に比例して考慮された場合であっても、それらがより大きな対応物よりも小さくかつシンプルにできるようにすることによって、非アクティブ構成要素のコストを削減することができることが示されている。
3つの異なる既知の燃料電池スタックを、1つの実施形態による例示的な燃料電池スタックと比較する実験が行われた。すべてのスタックは、同じ基本材料を使用して製造された。各スタックは、平面固体酸化物燃料電池設計のものであった。各スタックは、同じタイプのニッケル−イットリア安定化ジルコニアセルに支持されたアノードを使用したが、サイズと厚さは特定のスタックに適している。各スタックは、フェライト系ステンレス鋼で作製された金属相互接続部を有していた。各スタックは、スタック動作に必要な圧縮力を支持する適切なサイズおよび強度の端部プレートを有していた。本明細書に記載の実施形態に従って製造されたスタックはまた、圧迫システムを含んでいた。121cmの活性面積セルを備えたベースライン28のセルスタックは、390mA/cmで動作し、1200Wの総電力を供給した。それは、総体積5.4L、および重さ17kgの190mm×190mm×150mmの大きさで、69W/kgの電力重量比および225W/Lの電力体積比を実現することが測定される。550cmの活性面積セルを備えた120のセルスタックは、290mA/cmで動作し、16,900Wの総電力を供給した。それは、総体積96L、および重さ238kg(エンドプレートを含む)の395mm×395mm×618mmの大きさで、71W/kgの電力重量比および176W/Lの電力体積比を実現することが測定される。対照的に、25cmの活性面積セルを各々備えた225のセルを有する一実施形態に従って作製されたスタックは、0.39mA/cmで動作し、1760Wの総電力を供給した。それは、総体積1.4L、および重さ2.4kgの79mm×71mm×254mmの大きさで、733W/kgの電力重量比および1257W/Lの電力体積比を実現することが測定される。他のスタック設計と比較すると比較的若いが、この実施形態のスタックはすでに、重量で10倍の電力密度および体積で約7倍の電力密度を達成した。この結果は、特に、電力密度を高めてコストを下げるための行程が各部品を大きくしながら部品数を減らすことであるという容認された信念の観点から予想外であった
試験データの選択を図22〜図24に提示する。図22は、典型的な天然ガス燃焼システム用途を表すガス組成物で動作する、燃料電池スタック110の実施形態による、アレイ200に含まれる225セル(〜1kW)スタックを示す。ガス条件には、入口天然ガスを、水素、一酸化炭素、および二酸化炭素に変換するための代表的なレベルのガス利用率、代表的な電流密度および温度、ならびに代表的なレベルのスタック内蒸気改質が含まれる。スタックは5000時間以上にわたって安定した動作を実証しており、使用されたセル材料から予想される劣化率と一致した劣化率を示す。つまり、スタック設計にリンクされ得る劣化の側面は存在しない。これにより、スタックが天然ガス燃焼システムの典型的なフローとスタック内改質を含む熱的条件を処理する能力を実証する一方で、基礎となる繰り返しセル材料の可能性を最大限に引き出すことがもたらされる。
図23は、同じスタックの20セルの実装形態の結果を示しており、−2A/cmの非常に攻撃的な電解条件を実行している。プラントのバランスの障害(スタックのせいではない)に起因する一部の試験中断は、試験の初期に発生しており、約25,125、および250時間の経過時間でデータのスパイクとして見ることができる。試験中断によって引き起こされた可能性のある初期劣化(電気分解の劣化は電圧の増加として現れる)の後、スタックは、攻撃的な条件にもかかわらず劣化なしで1000時間より長い動作を実証した。これは、多種の熱およびフロー条件で動作するスタックの柔軟性、ならびに劣化に対するその相対的な免疫性を示している。
図24は、様々な純粋な水素燃料電池条件を実行する同様のスタックの60セルの実装形態の結果を示しており、ここにおいて、総試験時間は1年を超えている。条件の変化により劣化率の決定が困難になる一方で、スタックは、非常に発熱性の高い試験条件を含む、試験の年間を通じて高い安定性(低劣化)を表示した。これは、電圧曲線の相対的な平坦性として見ることができ、ステップの変化は、テスト条件の変化に対応する。これは、スタックの比較的長期の安定性と、発熱モードで、その発熱の一部を吸収するための内部改質なしで動作するときに熱を拒否するその能力を実証する。
図23および図24は、熱サイクルを含む結果を示しており、ここにおいて、熱サイクルの前および後で性能の変化は観察されず、ガラスセラミックシールの使用に関係なくスタックの熱サイクル能力を示している。これは、本質的にコンプライアントな構造体の成功を実証し、そのことは、密封またはほぼ密封のガラスセラミックシールの使用を可能にする一方で、他の点では、シールまたはセルの故障を引き起こす熱的応力の蓄積を防ぐ。
図25は、0.25A/cmで電気化学セルモードで動作する、アレイ300による電気化学セルスタックの45セルの実装形態の結果を示し、1熱サイクル後の非常に低い劣化を実証している。これらの結果は、やや大きめのセルスタック(81cmの活性面積)が、熱的応力を排除し、かつ材料セットからすべての可能性を引き出す能力を妨げていないケースを示している。
図26は、−1A/cmで電解モードで動作し、非常に低い劣化、および実際には1600時間の試験後の全体的な性能のわずかな改善を実証する、アレイ300による燃料電池スタックの個々の45セルの実装形態の結果を示している。また、この試験は、スタックの性能に悪影響を及ぼさなかったプラント故障(スタック関連ではない)のバランスのために、攻撃的な熱サイクルを受け、攻撃的な過渡に対するその堅牢性を実証した。
上述の統合設計は、SOFC技術と現在の市場との間の主要な障壁の多くに対処し、一部には、スタックレベル(材料の含有量が減少し、部品の自動化が容易になることによる)およびシステムレベルの両方での大幅なコスト削減の機会を提供することにより、そのスタック特性は、システム簡素化(高電圧出力、低電流、コンパクトなパッケージング、低外部熱交換要件、外部圧迫負荷要件なしなど)の機会を提供する。
すべての場合において、上述の配設は、本発明の用途を表す多くの可能な特定の実施形態の単なる例示であることが理解される。本発明の趣旨および範囲から逸脱することなく、本明細書に記載された概念の原理に従って、異なる電解質の使用を含む多数の様々な他の配設を容易に考案することができる。
本明細書で利用される場合、用語「およそ」、「約」、「実質的に」、および同様の用語は、本開示の主題が関係する当業者によって一般に受け入れられている使用法と調和した広い意味を有することを意図している。これらの用語が提供される正確な数値範囲にこれらの特徴の範囲を制限することなく、説明および主張される特定の特徴の説明を可能にすることを意図していることは、本開示を検討する当業者によって理解されるべきである。したがって、これらの用語は、説明および主張される主題の実質的または重要でない修正または変更が、添付の特許請求の範囲に列挙される本発明の範囲内にあると見なされることを示すと解釈されるべきである。
本明細書で使用される「結合された」、「接続された」などの用語は、2つの部材が互いに直接または間接的に接合することを意味する。そのような接合は、固定的(例えば、恒久的)または可動的(例えば、取り外し可能または解放可能)であり得る。そのような接合は、2つの部材もしくは2つの部材および追加の中間部材が互いに単一のまとまった本体として一体的に形成されるか、または2つの部材もしくは2つの部材および追加の中間部材が互いに取り付けられることで達成され得る。
本明細書における要素の位置(例えば、「上」、「下」、「上方」、「下方」など)への言及は、単に図中の様々な要素の配向を説明するために使用される。様々な要素の配向は、他の例示的な実施形態に従って異なる場合があり、そのような変形形態は、本開示に包含されることが意図されることに留意されたい。
様々な例示的な実施形態の構築および配設は例示にすぎないことに留意することが重要である。本開示ではいくつかの実施形態のみを詳細に説明したが、本開示を検討する当業者は、本明細書に記載の主題の新規な教示および利点から実質的に逸脱することなく、多くの修正(例えば、様々な要素のサイズ、寸法、構造体、形状、および比率、パラメータの値、装着配設、材料の使用、色、配向の変化など)が可能であることを容易に理解するであろう。例えば、一体的に形成されて示した要素は、複数の部品または要素で構成されてもよく、要素の位置を逆にし、または別の方法で変更してもよく、個別の要素または位置の性質または数を変え、または変更してもよい。任意のプロセスまたは方法のステップの順序またはシーケンスは、代替の実施形態に従って変更されてもよく、または並べ直されてもよい。本発明の範囲から逸脱することなく、様々な例示的な実施形態の設計、動作条件、および配設において、他の置換、修正、変更、および省略を行うこともできる。例えば、穴あきバッフルをさらに最適化して、デッドゾーンを作成せずに滞留時間を延長する意図を達成することができる。

Claims (29)

  1. 電気化学セルユニットであって、
    第1の酸化剤電極および第1の燃料電極を含む、第1の電気化学セルと、
    第2の酸化剤電極および第2の燃料電極を含む、第2の電気化学セルと、
    前記第1の電気化学セルと前記第2の電気化学セルとの間に介挿された相互接続部であって、前記相互接続部が、その長手方向軸に沿って長手方向チャネルを画定する相互接続部主要本体を含み、前記相互接続部主要本体が、前記第1の電気化学セルに面する前記相互接続部主要本体の第1の表面上に複数の燃料チャネル、および前記第2の電気化学セルに面する前記相互接続部主要本体の第2の表面上に複数の酸化剤チャネルを画定する、複数のコルゲーションを含み、前記複数の燃料チャネルおよび前記複数の酸化剤チャネルの各々が、前記長手方向チャネルの周りに位置付けられている、相互接続部と、を含む、電気化学セルユニット。
  2. 前記複数の燃料チャネルの各々の燃料チャネル基部が、前記第2の酸化剤電極に電気的に接触しており、前記複数の酸化剤チャネルの各々の酸化剤チャネル基部が、前記第1の燃料電極に電気的に接触している、請求項1に記載の電気化学セルユニット。
  3. 前記第1の表面上の前記相互接続部の外周に位置付けられた、外側シール部材と、
    前記長手方向チャネルの周りの前記第2の表面上の前記相互接続部の内周に位置付けられた、内側シール部材と、をさらに含み、
    前記外側シール部材が、前記外周の外側の体積から、前記複数の燃料チャネルまたは前記複数の酸化剤チャネルのうちの一方を流体的に密封し、前記内側シール部材が、前記長手方向チャネルから、前記複数の燃料チャネルまたは前記複数の酸化剤チャネルのうちの他方を流体的に密封する、請求項1に記載の電気化学セルユニット。
  4. 前記相互接続部主要本体が、前記複数の燃料チャネルの各々に流体的に結合された、少なくとも1つの燃料入口チャネルおよび少なくとも1つの流体出口チャネルを画定し、前記複数の酸化剤チャネルの各々に流体的に結合された、少なくとも1つの酸化剤入口チャネルおよび少なくとも1つの酸化剤出口チャネルをさらに画定する、請求項3に記載の電気化学セルユニット。
  5. 前記外側シール部材が、前記外周の外側の前記体積から、前記複数の燃料チャネルを流体的に密封し、前記少なくとも1つの燃料入口チャネルおよび前記少なくとも1つの燃料出口チャネルが、前記長手方向チャネルの第1の部分から燃料を受容し、かつ前記長手方向チャネルの第2の部分内に使用済みの燃料を排出するように、前記長手方向チャネルに流体的に結合されている、請求項4に記載の電気化学セルユニット。
  6. 前記内側シール部材が、前記長手方向チャネルから、前記複数の酸化剤チャネルを流体的に密封し、前記少なくとも1つの酸化剤入口チャネルおよび前記少なくとも1つの酸化剤出口チャネルが、前記外周の外側の前記体積の第1の部分から酸化剤を受容し、かつ前記外周の外側の前記体積の第2の部分から使用済みの酸化剤を排出するように、前記相互接続部の前記外周に流体的に結合されている、請求項5に記載の電気化学セルユニット。
  7. 前記相互接続部の前記外周に近接する前記第1の電気化学セルおよび前記第2の電気化学セルの各々の外側エッジ、または前記長手方向チャネルに近接する前記第1の電気化学セルおよび前記第2の電気化学セルの各々の内側エッジのうちの少なくとも1つに配置された、エッジシール部材をさらに含む、請求項3に記載の電気化学セルユニット。
  8. 電気化学セルスタックであって、
    複数の電気化学セルユニットのスタックを含み、前記複数の電気化学セルユニットの各々は、
    第1の酸化剤電極および第1の燃料電極を含む、第1の電気化学セルと、
    第2の酸化剤電極および第2の燃料電極を含む、第2の電気化学セルと、
    前記第1の電気化学セルと前記第2の電気化学セルとの間に介挿された相互接続部であって、前記相互接続部が、その長手方向軸に沿って長手方向チャネルを画定する相互接続部主要本体を含み、前記長手方向チャネルが、前記電気化学セルスタックの高さに跨り、前記相互接続部主要本体が、前記第1の電気化学セルに面する前記相互接続部主要本体の第1の表面上に複数の燃料チャネル、および前記第2の電気化学セルに面する前記相互接続部主要本体の第2の表面上に複数の酸化剤チャネルを画定する、複数のコルゲーションを含み、前記複数の燃料チャネルおよび前記複数の酸化剤チャネルの各々が、前記長手方向チャネルの周りに位置付けられている、相互接続部と、を含む、電気化学セルスタック。
  9. 前記複数の電気化学セルユニットの各々が、
    前記第1の表面上の前記相互接続部の外周に位置付けられた、外側シール部材と、
    前記長手方向チャネルの周りの前記第2の表面上の前記相互接続部の内周に位置付けられた、内側シール部材と、をさらに含み、
    前記外側シール部材が、前記外周の外側の体積から、前記複数の燃料チャネルまたは前記複数の酸化剤チャネルのうちの一方を流体的に隔離し、前記内側シール部材が、前記長手方向チャネルから、前記複数の燃料チャネルまたは前記複数の酸化剤チャネルのうちの他方を流体的に隔離する、請求項8に記載の電気化学セルスタック。
  10. 前記複数の電気化学セルユニットの各々に含まれる前記相互接続部は、前記電気化学セルスタックがコンプライアンスを有するように、ベローズ状構造体を協働して形成する、請求項8に記載の電気化学セルスタック。
  11. 前記長手方向チャネル内に配置されたポストをさらに含み、前記ポストが、前記燃料または酸化剤のうちの一方を受容するように構成された少なくとも1つのポスト入口と、前記電気化学セルスタックから使用済みの燃料または使用済みの酸化剤のうちの他方を受容および排出するように構成された少なくとも1つのポスト出口と、を画定し、前記ポスト入口および前記ポスト出口が、互いに流体的に隔離されている、請求項8に記載の電気化学セルスタック。
  12. 隙間が上端部プレートと前記ポストとの間に提供されるように、前記ポストの周りの前記電気化学セルスタックの上端部に位置付けられた前記上端部プレートをさらに含み、前記隙間が、熱的応力を緩和するために、その内部における前記ポストの移動を可能にするように構造化されている、請求項11に記載の電気化学セルスタック。
  13. 前記隙間内に位置付けられたコンプライアントなシール部材をさらに含み、前記コンプライアントなシール部材が、前記ポストの前記移動を可能にするように十分なコンプライアンスを提供する、請求項12に記載の電気化学セルスタック。
  14. 前記上端部プレート上に位置付けられた上端部キャップと、
    前記上端部プレートと前記上端部キャップとの間に介挿された2次シール部材と、をさらに含む、請求項13に記載の電気化学セルスタック。
  15. 前記上端部プレートが、前記ポストから離れて前記上端部プレートの表面から軸方向に延在する、ポストインターフェース管を含み、前記ポストインターフェース管の少なくとも一部分が、前記ポストの一部分の周りに位置付けられている、請求項12に記載の電気化学セルスタック。
  16. 前記上端部とは反対の前記電気化学セルスタックの下端部上に位置付けられた、下端部プレートと、
    前記上端部プレート上に位置付けられた、上部圧迫プレートと、
    電気化学セルスタックの前記上端部に近接して位置付けられており、かつ前記複数の電気化学セルユニットの前記スタックに圧迫力を及ぼすように構成されている、バイアス部材と、
    前記上部圧迫プレートに結合されており、かつ前記上部圧迫プレートから前記下端部プレートに前記圧迫力を伝達するように構成されている、少なくとも1つの圧迫部材と、をさらに含む、請求項12に記載の電気化学セルスタック。
  17. 前記電気化学セルスタックの前記下端部に位置付けられた下部圧迫プレートをさらに含み、前記少なくとも1つの圧迫部材が、前記下部圧迫プレートに結合されている、請求項16に記載の電気化学セルスタック。
  18. 前記バイアス部材が、前記上部圧迫プレートと前記上端部プレートとの間に介挿されたベレヴィルばねのスタックを含む、請求項16に記載の電気化学セルスタック。
  19. 前記バイアス部材が、前記上部圧迫プレートに動作可能に結合された複数のコイルばねを含む、請求項16に記載の電気化学セルスタック。
  20. 前記電気化学セルスタックの下端部に位置付けられた基部プレートアセンブリをさらに含み、前記基部プレートアセンブリが、
    少なくとも1つの燃料ポートおよび少なくとも1つの酸化剤ポートを画定する、下端部プレートと、
    前記下端部プレートと軸方向に整列されており、かつ前記下端部プレートに対して降伏して、高強度シーリングプレートから前記下端部プレートへの機械的応力の伝達を低減するように構成されている、前記高強度シーリングプレートと、を含む、請求項8に記載の電気化学セルスタック。
  21. 前記高強度シーリングプレートが、前記複数の電気化学セルユニットの前記スタックと前記下端部プレートとの間に位置付けられており、前記基部プレートアセンブリが、前記高強度シーリングプレートと前記下端部プレートとの間に位置付けられた複数の短い管をさらに含む、請求項20に記載の電気化学セルスタック。
  22. 前記下端部プレートが、前記複数の電気化学セルユニットの前記スタックと前記高強度シーリングプレートとの間に介挿されており、前記基部プレートアセンブリが、前記高強度シーリングプレートと前記下端部プレートとの間に位置付けられた、複数の短い管をさらに含み、前記短い管は、前記高強度シーリングプレートが、前記下端部プレートへの応力伝達を低減するために、前記下端部プレートに対して横方向に自由に移動するように、熱的応力に応答して降伏するように構成されている、請求項20に記載の電気化学セルスタック。
  23. 前記複数の電気化学セルユニットの前記スタックの周りに配置されたマニホルドをさらに含み、前記マニホルドが、前記外周の周りの前記体積を画定し、前記体積の第1の部分が、前記電気化学セルスタック内への前記燃料または酸化剤のうちの1つのための入口を提供し、前記体積の前記第2の部分が、前記電気化学セルスタックからの使用済みの燃料または酸化剤のための出口を提供する、請求項9に記載の電気化学セルスタック。
  24. 前記体積内に位置付けられており、かつ前記体積の前記第1の部分を、前記体積の前記第2の部分から流体的に密封するように構成されている、誘電性シール部材をさらに含む、請求項23に記載の電気化学セルスタック。
  25. 電気化学セルアセンブリであって、
    ハウジング基部を含むハウジングと、
    前記ハウジング内の前記ハウジング基部上に配置された電気化学セルスタックのアレイと、を含み、前記アレイ内に含まれる前記電気化学セルスタックの各々が、
    複数の電気化学セルユニットのスタックを含み、前記複数の電気化学セルユニットの各々は、
    第1の酸化剤電極および第1の燃料電極を含む、第1の電気化学セルと、
    第2の酸化剤電極および第2の燃料電極を含む、第2の電気化学セルと、
    前記第1の電気化学セルと前記第2の電気化学セルとの間に介挿された相互接続部であって、前記相互接続部が、その長手方向軸に沿って長手方向チャネルを画定する相互接続部主要本体を含み、前記長手方向チャネルが、前記電気化学セルスタックの高さに跨り、前記相互接続部主要本体が、前記第1の電気化学セルに面する前記相互接続部主要本体の第1の表面上に複数の燃料チャネル、および前記第2の電気化学セルに面する前記相互接続部主要本体の第2の表面上に複数の酸化剤チャネルを画定する、複数のコルゲーションを含み、前記複数の燃料チャネルおよび前記複数の酸化剤チャネルの各々が、前記長手方向チャネルの周りに位置付けられている、相互接続部と、を含む、電気化学セルアセンブリ。
  26. 前記電気化学セルスタックの各々の周りに位置付けられた、リングセパレータと、
    前記電気化学セルスタックのアレイ内に含まれる4つの電気化学セルスタックの各セット間に位置付けられた、クロスセパレータと、をさらに含む、請求項25に記載の電気化学セルアセンブリ。
  27. 4つの電気化学セルスタックの各セット間に、対応するクロスセパレータを介して位置付けられた、酸化剤予熱管をさらに含む、請求項25に記載の電気化学セルアセンブリ。
  28. 前記ハウジング基部を通って前記電気化学セルスタックのアレイに流体的に結合された、燃料入口、燃料出口、酸化剤入口、および酸化剤出口をさらに含み、前記ハウジング基部が、前記燃料入口を通って前記ハウジング基部に入る前記燃料と、前記燃料出口を通って前記ハウジング基部から出る使用済みの燃料との間の熱交換を提供するように構成された、少なくとも1つの熱交換チャネルを画定する、請求項25に記載の電気化学セルアセンブリ。
  29. 前記ハウジング基部を通って前記電気化学セルスタックのアレイに流体的に結合された、燃料バイパス入口をさらに含み、前記燃料バイパス入口が、前記少なくとも1つの熱交換チャネルをバイパスする、請求項25に記載の電気化学セルアセンブリ。
JP2021125974A 2017-05-04 2021-07-30 コンパクトな高温電気化学セルスタックアーキテクチャ Active JP7240793B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023032085A JP2023081944A (ja) 2017-05-04 2023-03-02 コンパクトな高温電気化学セルスタックアーキテクチャ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762501633P 2017-05-04 2017-05-04
US62/501,633 2017-05-04
JP2019560325A JP6924278B2 (ja) 2017-05-04 2018-05-04 コンパクトな高温電気化学セルスタックアーキテクチャ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019560325A Division JP6924278B2 (ja) 2017-05-04 2018-05-04 コンパクトな高温電気化学セルスタックアーキテクチャ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023032085A Division JP2023081944A (ja) 2017-05-04 2023-03-02 コンパクトな高温電気化学セルスタックアーキテクチャ

Publications (2)

Publication Number Publication Date
JP2022000847A true JP2022000847A (ja) 2022-01-04
JP7240793B2 JP7240793B2 (ja) 2023-03-16

Family

ID=64016043

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019560325A Active JP6924278B2 (ja) 2017-05-04 2018-05-04 コンパクトな高温電気化学セルスタックアーキテクチャ
JP2021125974A Active JP7240793B2 (ja) 2017-05-04 2021-07-30 コンパクトな高温電気化学セルスタックアーキテクチャ
JP2023032085A Pending JP2023081944A (ja) 2017-05-04 2023-03-02 コンパクトな高温電気化学セルスタックアーキテクチャ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019560325A Active JP6924278B2 (ja) 2017-05-04 2018-05-04 コンパクトな高温電気化学セルスタックアーキテクチャ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023032085A Pending JP2023081944A (ja) 2017-05-04 2023-03-02 コンパクトな高温電気化学セルスタックアーキテクチャ

Country Status (7)

Country Link
US (3) US11728494B2 (ja)
EP (1) EP3619760A4 (ja)
JP (3) JP6924278B2 (ja)
KR (3) KR102350940B1 (ja)
CN (2) CN115692756A (ja)
CA (3) CA3177691A1 (ja)
WO (1) WO2018203285A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3646405B1 (en) 2017-06-29 2023-11-01 Versa Power Systems Ltd Selectively rotated flow field for thermal management in a fuel cell stack
US11476484B1 (en) * 2018-11-14 2022-10-18 Precision Combustion, Inc. Thermally integrated hotbox combining a steam reformer with SOFC stacks
US20220274829A1 (en) * 2019-09-06 2022-09-01 National University Corporation Kobe University Photodecomposition module, photodecomposition cell, decomposition system, living environment sustaining system, and supply amount adjustment system
KR102656220B1 (ko) * 2021-11-12 2024-04-12 주식회사 이엔코아 응력 완화 구조물
GB2614270A (en) * 2021-12-22 2023-07-05 Enapter S R L Modular electrochemical system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11503858A (ja) * 1994-03-21 1999-03-30 ジーテック コーポレーション 圧力分布が最適である電気化学変換器
JP2005276780A (ja) * 2004-03-26 2005-10-06 Nissan Motor Co Ltd 燃料電池スタック
JP2010033865A (ja) * 2008-07-29 2010-02-12 Nissan Motor Co Ltd 燃料電池
JP2014143052A (ja) * 2013-01-23 2014-08-07 Nissan Motor Co Ltd 固体電解質型燃料電池ユニットおよびその製造方法
US20150180079A1 (en) * 2012-08-14 2015-06-25 Powerdisc Development Corporation Ltd. Fuel Cell Components, Stacks and Modular Fuel Cell Systems

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910100A (en) * 1989-07-21 1990-03-20 Fuji Electric Co., Ltd. Solid electrolyte fuel cell
JPH06290798A (ja) * 1993-02-08 1994-10-18 Fuji Electric Co Ltd 固体電解質型燃料電池
US5549983A (en) * 1996-01-22 1996-08-27 Alliedsignal Inc. Coflow planar fuel cell stack construction for solid electrolytes
US6344290B1 (en) * 1997-02-11 2002-02-05 Fucellco, Incorporated Fuel cell stack with solid electrolytes and their arrangement
EP0926755B1 (de) 1997-11-25 2002-06-05 Sulzer Hexis AG Brennstoffzellenmodul mit integrierter Zusatzheizung
CA2241566A1 (en) 1998-06-23 1999-12-23 Bondface Technology Inc. Flow field plate
US6296962B1 (en) * 1999-02-23 2001-10-02 Alliedsignal Inc. Design for solid oxide fuel cell stacks
AU5721600A (en) * 1999-02-23 2002-01-08 Allied-Signal Inc. Interconnector design for solid oxide fuel cell stacks
EP1199760B1 (en) 1999-05-31 2010-04-21 Central Research Institute of Electric Power Industry Unit cell of flat solid electrolytic fuel battery and cell stack comprising the same
JP3673155B2 (ja) * 2000-08-11 2005-07-20 本田技研工業株式会社 燃料電池スタック
GB0024106D0 (en) 2000-10-03 2000-11-15 Rolls Royce Plc A solid oxide fuel cell stack and a method of manufacturing a solid oxide fuel cell stack
JPWO2003012903A1 (ja) * 2001-07-31 2004-11-25 住友精密工業株式会社 燃料電池
US20030054215A1 (en) 2001-09-20 2003-03-20 Honeywell International, Inc. Compact integrated solid oxide fuel cell system
US7222406B2 (en) 2002-04-26 2007-05-29 Battelle Memorial Institute Methods for making a multi-layer seal for electrochemical devices
US6844100B2 (en) 2002-08-27 2005-01-18 General Electric Company Fuel cell stack and fuel cell module
US7014934B2 (en) 2003-03-18 2006-03-21 Ford Motor Company Tubular flat plate fuel cells and method of making the same
WO2005034277A1 (en) 2003-09-29 2005-04-14 Utc Fuel Cells, Llc Compliant stack for a planar solid oxide fuel cell
JP4854237B2 (ja) 2004-10-22 2012-01-18 日産自動車株式会社 固体電解質型燃料電池及びスタック構造体
US20060286428A1 (en) 2005-06-20 2006-12-21 General Electric Company Composite sealing structure for SOFC modules and stacks and related method
JP5087894B2 (ja) 2005-10-28 2012-12-05 日産自動車株式会社 燃料電池スタック構造体
US9017838B2 (en) * 2005-11-21 2015-04-28 Ford Motor Company Spinning electrode fuel cell
JP5035589B2 (ja) 2005-11-22 2012-09-26 日産自動車株式会社 燃料電池
ATE546848T1 (de) 2007-04-02 2012-03-15 Staxera Gmbh Kontaktanordnung und verfahren zum fügen eines brennstoffzellenstapels aus zumindest einer kontaktanordnung
US8623569B2 (en) 2008-12-09 2014-01-07 Bloom Energy Corporation Fuel cell seals
CN102686592B (zh) 2010-01-30 2013-11-27 海洋王照明科技股份有限公司 含芴卟啉-蒽共聚物、其制备方法和应用
CA2800518C (en) 2010-05-26 2015-01-27 Ngk Spark Plug Co., Ltd. Solid oxide fuel cell including gas sealing with at least first and second gas flowing paths
JP5491299B2 (ja) * 2010-06-30 2014-05-14 日本電信電話株式会社 平板型固体酸化物形燃料電池モジュール
JP5331252B2 (ja) * 2010-07-30 2013-10-30 コリア インスティチュート オブ エナジー リサーチ 平管型固体酸化物セルスタック
US8968956B2 (en) * 2010-09-20 2015-03-03 Nextech Materials, Ltd Fuel cell repeat unit and fuel cell stack
JP5437222B2 (ja) 2010-12-01 2014-03-12 本田技研工業株式会社 燃料電池スタック
US8563180B2 (en) * 2011-01-06 2013-10-22 Bloom Energy Corporation SOFC hot box components
KR101184486B1 (ko) 2011-01-12 2012-09-19 삼성전기주식회사 고체산화물 연료전지용 밀봉부재 및 이를 채용한 고체산화물 연료전지
JP2014072028A (ja) * 2012-09-28 2014-04-21 Toto Ltd 固体酸化物型燃料電池装置
US8968509B2 (en) * 2013-05-09 2015-03-03 Bloom Energy Corporation Methods and devices for printing seals for fuel cell stacks
JP6025691B2 (ja) * 2013-11-05 2016-11-16 本田技研工業株式会社 差圧式高圧水電解装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11503858A (ja) * 1994-03-21 1999-03-30 ジーテック コーポレーション 圧力分布が最適である電気化学変換器
JP2005276780A (ja) * 2004-03-26 2005-10-06 Nissan Motor Co Ltd 燃料電池スタック
JP2010033865A (ja) * 2008-07-29 2010-02-12 Nissan Motor Co Ltd 燃料電池
US20150180079A1 (en) * 2012-08-14 2015-06-25 Powerdisc Development Corporation Ltd. Fuel Cell Components, Stacks and Modular Fuel Cell Systems
JP2014143052A (ja) * 2013-01-23 2014-08-07 Nissan Motor Co Ltd 固体電解質型燃料電池ユニットおよびその製造方法

Also Published As

Publication number Publication date
KR102542635B1 (ko) 2023-06-13
KR102350940B1 (ko) 2022-01-13
JP7240793B2 (ja) 2023-03-16
US20230253578A1 (en) 2023-08-10
CA3062176C (en) 2024-01-23
WO2018203285A1 (en) 2018-11-08
JP2020518986A (ja) 2020-06-25
KR20230088513A (ko) 2023-06-19
JP6924278B2 (ja) 2021-08-25
KR20200015512A (ko) 2020-02-12
CA3177691A1 (en) 2018-11-08
EP3619760A4 (en) 2021-02-24
CN115692756A (zh) 2023-02-03
CN110710039B (zh) 2022-12-13
CA3062176A1 (en) 2018-11-08
JP2023081944A (ja) 2023-06-13
US20200106110A1 (en) 2020-04-02
KR20220008398A (ko) 2022-01-20
US11728494B2 (en) 2023-08-15
US20230275240A1 (en) 2023-08-31
EP3619760A1 (en) 2020-03-11
CN110710039A (zh) 2020-01-17
CA3177720A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6924278B2 (ja) コンパクトな高温電気化学セルスタックアーキテクチャ
KR102123785B1 (ko) 전기화학 전지에 사용하기 위한 양극판의 디자인
US9318758B2 (en) SOFC stack with temperature adapted compression force means
EP2647076B1 (en) Fuel cell stack
US20150311559A1 (en) Fuel cell stack
US8709672B2 (en) Fuel cell module
US8153330B2 (en) Fuel cell separator stacked on an electrolyte electrode assembly
JP5588911B2 (ja) 燃料電池システム
US11335919B2 (en) Selectively rotated flow field for thermal management in a fuel cell stack
JP5377835B2 (ja) 燃料電池モジュール
US9379407B2 (en) Fuel cell module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230302

R150 Certificate of patent or registration of utility model

Ref document number: 7240793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150