JP2021533380A - ガラスリボン製造装置および方法 - Google Patents

ガラスリボン製造装置および方法 Download PDF

Info

Publication number
JP2021533380A
JP2021533380A JP2021509172A JP2021509172A JP2021533380A JP 2021533380 A JP2021533380 A JP 2021533380A JP 2021509172 A JP2021509172 A JP 2021509172A JP 2021509172 A JP2021509172 A JP 2021509172A JP 2021533380 A JP2021533380 A JP 2021533380A
Authority
JP
Japan
Prior art keywords
wavelength component
molten material
light beam
wavelength
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021509172A
Other languages
English (en)
Other versions
JP7342108B2 (ja
Inventor
オリヴィエ フンクぺヴィ,フランク
ラロンツ,ピエール
シエ,シー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2021533380A publication Critical patent/JP2021533380A/ja
Application granted granted Critical
Publication of JP7342108B2 publication Critical patent/JP7342108B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/24Automatically regulating the melting process
    • C03B5/245Regulating the melt or batch level, depth or thickness
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/24Automatically regulating the melting process
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • G01F23/2921Light, e.g. infrared or ultraviolet for discrete levels
    • G01F23/2928Light, e.g. infrared or ultraviolet for discrete levels using light reflected on the material surface

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

ガラス製造装置は、槽と、光ビームを受光するように配置されたフィルタとを含む。フィルタは、光ビームの第2の波長成分を通すが、光ビームの第1の波長成分を通さない。ガラス製造装置は、フィルタを通って、次に、槽内で反射された第2の波長成分を受光するように配置されたセンサを含む。更に、ガラス製造装置内の溶融材料の高さ特定方法、および、ガラス製造方法を提供する。

Description

関連出願の相互参照
本願は、米国特許法第119条の下、2018年8月21日出願の米国仮特許出願第62/720,446号の優先権の利益を主張し、その内容は依拠され、全体として参照により本明細書に組み込まれる。
本開示は、ガラスリボン製造装置および方法に関する。
ガラス製造処理中に、溶融材料の高さを、高さセンサで測定することが知られている。
溶融材料と高さセンサの接触により、望ましくない不純物が溶融材料に導入されうる。更に、溶融材料の高さの変動により、ある位置では、高さセンサが使用できないことがありうる。
次に、本開示の概要を簡略に示し、詳細な記載に記載するいくつかの実施形態の基本的理解を提供する。
本開示は、概して、ガラスリボンの製造方法および装置に関し、特に、ガラス測定装置を用いたガラスリボンの製造方法に関する。
いくつかの実施形態において、ガラス製造装置は、槽を含みうる。ガラス製造装置は、光ビームを受光するように配置されたフィルタを含みうる。フィルタは、光ビームの第2の波長成分を通すが、光ビームの第1の波長成分を通さないものでありうる。ガラス製造装置は、フィルタを通って、次に、槽内で反射された第2の波長成分を受光しうるセンサを含みうる。
いくつかの実施形態において、第2の波長成分は、第1の波長成分の波長より短い波長を含みうる。
いくつかの実施形態において、第2の波長成分は、約600ナノメートル未満の波長を含み、第1の波長成分は、約600ナノメートルより長い波長を含みうる。
いくつかの実施形態において、ガラス製造装置は、槽内に位置する自由表面を有する溶融材料を、更に含みうる。
いくつかの実施形態において、センサは、槽内に位置する溶融材料の自由表面から反射された第2の波長成分を受光するように配置されうる。
いくつかの実施形態において、ガラス製造装置は、光ビームを出射するように配置された光源を、更に含みうる。
いくつかの実施形態において、ガラス製造装置は、光ビームを、第1の波長成分および第2の波長成分を含む複数の波長成分に分割するように構成されたレンズを、更に含み、フィルタは、分割された光ビームをレンズから受光するように配置されうる。
いくつかの実施形態において、ガラス製造装置は、その中にフィルタまたはセンサの1つ以上が配置された覆い内部を画定する覆い部を、更に含みうる。
いくつかの実施形態において、覆い部は、光学的に透明でありうる。
いくつかの実施形態において、ガラス製造装置内の溶融材料の高さ特定方法は、第2の波長成分を含む光ビームを、溶融材料の自由表面から反射させる工程を含みうる。方法は、溶融材料の自由表面から反射された光ビームから、第2の波長成分を感知する工程を含みうる。方法は、溶融材料の高さを、光ビームの感知した第2の波長成分に基づいて特定する工程を含みうる。
いくつかの実施形態において、ガラス製造装置内の溶融材料の高さ特定方法は、第2の波長成分を含む光ビームを反射させる工程の前に、第1の波長成分を光ビームから除去する工程を、更に含みうる。
いくつかの実施形態において、ガラス製造装置内の溶融材料の高さ特定方法は、第2の波長成分を含む光ビームを反射させる工程の前に、第1の波長成分を光ビームから除去する工程を、更に含みうる。
いくつかの実施形態において、ガラス製造装置内の溶融材料の高さ特定方法は、第1の波長成分を光ビームから除去する工程の前に、光ビームを、第1の波長成分および第2の波長成分を含む複数の波長成分に分割する工程を、更に含みうる。
いくつかの実施形態において、第2の波長成分は、第1の波長成分の波長より短い波長を含みうる。
いくつかの実施形態において、ガラス製造装置内の溶融材料の高さ特定方法は、第2の波長成分を感知するセンサを冷却する工程を、更に含みうる。
いくつかの実施形態において、ガラス製造装置内の溶融材料の高さ特定方法は、第1の波長成分を光ビームから除去するフィルタを冷却する工程を、更に含みうる。
いくつかの実施形態において、ガラス製造装置内の溶融材料の高さ特定方法は、溶融材料の流量を、溶融材料の特定した高さに基づいて変化させる工程を、更に含みうる。
いくつかの実施形態において、流量を変化させる工程は、溶融材料の温度を調節する工程を含むものである。
いくつかの実施形態において、流量を変化させる工程は、更に、溶融材料から形成されたガラスリボンの質量に基づいて行われるものでありうる。
いくつかの実施形態において、ガラス製造方法は、バッチ材料を溶融槽にバッチ充填速度で供給する工程を含みうる。方法は、バッチ材料を融解させて溶融材料にする工程を含みうる。方法は、第2の波長成分を含む光ビームを、溶融材料の自由表面から反射させる工程を含みうる。方法は、溶融材料の自由表面から反射された光ビームから、第2の波長成分を感知する工程を含みうる。方法は、バッチ充填速度を、感知した第2の波長成分に基づいて変化させる工程を含みうる。
いくつかの実施形態において、ガラス製造方法は、溶融材料の高さを、感知した第2の波長成分に基づいて特定する工程を、更に含みうる。
いくつかの実施形態において、バッチ充填速度を変化させる工程は、溶融材料の特定した高さに基づいて行われるものでありうる。
いくつかの実施形態において、第2の波長成分は、第1の波長成分の波長より短い波長を含むものでありうる。
いくつかの実施形態において、ガラス製造方法は、第2の波長成分を感知するセンサを冷却する工程を、更に含みうる。
いくつかの実施形態において、ガラス製造方法は、第1の波長成分を光ビームから除去するフィルタを冷却する工程を、更に含みうる。
いくつかの実施形態において、ガラス製造方法は、溶融材料の温度を、感知した第2の波長成分に基づいて調節する工程を、更に含みうる。
いくつかの実施形態において、バッチ充填速度を変化させる工程は、更に、溶融材料から形成されたガラスリボンの質量に基づいて行われるものでありうる。
ここまでの概略的記載および次の詳細な記載の両方が、本開示の実施形態を提供し、記載し請求した実施形態の本質および特徴を理解するための概観または枠組みを提供することを意図すると、理解すべきである。添付の図面は、実施形態の更なる理解のために含められ、本明細書に組み込まれて、その一部を構成する。図面は、本開示の様々な実施形態を示し、記載と共に、本開示の原理および動作を説明する。
これらの、および、他の本開示の特徴、実施形態、および利点は、添付の図面を参照して読むことで、更に理解されうる。
本開示の実施形態によるガラス製造装置の例示的な実施形態を概略的に示す。 本開示の実施形態によるガラス製造装置の図1の2−2線に沿った断面を示す斜視図である。 本開示の実施形態によるガラス測定装置のいくつかの実施形態を概略的に示す前面図である。 本開示の実施形態によるガラス測定装置および槽のいくつかの実施形態を概略的に示す前面図である。 本開示の実施形態によるガラス製造装置の更なる実施形態を概略的に示す。 本開示の実施形態により、バッチ材料のバッチ充填速度を、特定した溶融材料の高さに基づいて変化させる処理の例示的な実施形態を概略的に示す。 本開示の実施形態により、バッチ材料のバッチ充填速度、および、溶融材料の温度を制御しうる制御部を含むガラス製造装置の更なる実施形態を概略的に示す。 本開示の実施形態により、バッチ材料のバッチ充填速度、および、溶融材料の温度を制御しうる制御部を含むガラス製造装置の更なる実施形態を概略的に示す。 本開示の実施形態により、バッチ材料のバッチ充填速度、および、溶融材料の温度を制御しうる制御部を含むガラス製造装置の更なる実施形態を概略的に示す。
ここで、例示的な実施形態を示す添付の図面を参照して、実施形態をより完全に記載する。全図を通して、同じ、または、類似の部分を称するには、可能な限り同じ参照番号を用いている。しかしながら、本開示は、多数の異なる形態で実施しうるものであり、本明細書に示した実施形態に限定されると解釈されるべきではない。
本開示の装置および方法は、次に分割されてガラスシートになるガラスリボンを提供しうる。いくつかの実施形態において、ガラスシートは、矩形(例えば、正方形)などの平行四辺形、台形、または、他の形状を形成する4つの縁部を備えうる。更なる実施形態において、ガラスシートは、1つの連続した縁部を有する円形、長円、または、楕円のガラスシートでありうる。2つ、3つ、5つなどの湾曲した、および/または、直線の縁部を含む他のガラスシートも提供されうるものであり、本開示の範囲に含まれることを企図している。様々な長さ、高さ、および、厚さを含む様々な大きさのガラスシートも企図している。いくつかの実施形態において、ガラスシートの平均厚さは、ガラスシートの反対側を向いた主面の間の様々な平均厚さでありうる。いくつかの実施形態において、ガラスシートの平均厚さは、約50マイクロメートル(μm)から約1ミリメートル(mm)、約100μmから約300μmなど、50μmより厚くてもよく、更なる実施形態において、他の厚さも提供されうる。ガラスシートを、限定するものではないが、液晶表示装置(LCD)、電気泳動表示装置(EPD)、有機発光ダイオード表示装置(OLED)、および、プラズマ表示パネル(PDP)などの広範囲の表示装置利用で用いうる。
図1に概略的に示すように、いくつかの実施形態において、例示的なガラス製造装置100は、ガラスリボン103を大量の溶融材料121から製造するように設計された形成槽140を含むガラス形成装置101を含みうる。いくつかの実施形態において、ガラスリボン103は、ガラスリボン103の第1の側縁部153および第2の側縁部155に沿って形成された両側の比較的厚い縁部ビード部の間に位置する中心部分152を含みうる。更に、いくつかの実施形態において、ガラスシート104を、ガラスリボン103から、ガラス分離部149(例えば、スクライブ、スコアホイール、ダイヤモンドチップ、レーザ装置など)によって、分離経路151に沿って分離しうる。いくつかの実施形態において、ガラスリボン103をガラス分離部149を用いて分離する前または後に、第1の側縁部153および第2の側縁部155に沿って形成された比較的厚い縁部ビード部を取り除いて、中心部分152を、均一な厚さを有する高品質ガラスリボン103として提供しうる。
いくつかの実施形態において、ガラス製造装置100は、バッチ材料107を保存容器109から受け取るように向いた溶融槽105を含みうる。バッチ材料107は、モータ113によって動力を与えられたバッチ送出装置111によって導入されうる。いくつかの実施形態において、ガラス製造方法は、バッチ材料107を溶融槽105にバッチ充填速度で供給する工程を含みうる。いくつかの実施形態において、制御部115は、モータ113を作動させて、矢印117が示すように、望ましい量のバッチ材料107が溶融槽105に導入されるように動作しうる。溶融槽105は、バッチ材料107を加熱して、溶融材料121を提供しうる。ガラス製造方法は、バッチ材料107を融解させて溶融材料121にする工程を含みうる。
いくつかの実施形態において、ガラス測定装置119a、119bを用いて、槽(例えば、清澄槽127、混合室131、送出槽133、1つ以上の接続管135、137など)内の溶融材料121の高さを測定して、測定した情報を、通信線120a、120bを介して、制御部115に通信しうる。制御部115は、バッチ充填速度を、ガラス測定装置119a、119bによって測定した溶融材料121の高さに基づいて、モータ113の速度を調節することなどによって変化させうる。例えば、制御部115は、高さを、槽301内の溶融材料121の高さを測定したガラス測定装置119a、119b(図3を参照)から、高さ通信線120a、120bを介して受信しうる。いくつかの実施形態において、所定の高さ設定点123を、制御部115に、溶融材料121の高さを制御するために提供しうる。制御部115は、モータ113への速度コマンドを、所定の高さ設定点123と、高さ通信線120a、120bによって制御部115に提供されたガラス高さの差に基づいて、速度コマンド線122を介して調節しうる。次に、モータ113は、バッチ送出装置111の速度を調節して、バッチ材料107の溶融槽105へのバッチ充填速度を増減させうる。
更に、いくつかの実施形態において、ガラス製造装置100は、溶融槽105の下流側に位置し、溶融槽105に第1の接続管129を介して連結された清澄槽127を含む第1の調整部を含みうる。いくつかの実施形態において、溶融材料121は、溶融槽105から清澄槽127へ、第1の接続管129を介して重力送りされうる。例えば、いくつかの実施形態において、重力は、溶融材料121を、第1の接続管129の内側経路を通って、溶融槽105から清澄槽127へ押し出しうる。更に、いくつかの実施形態において、気泡を、清澄槽127内の溶融材料121から、様々な技術によって除去しうる。
いくつかの実施形態において、ガラス製造装置100は、更に、清澄槽127の下流側に位置しうる混合室131を含む第2の調整部を含みうる。混合室131を用いて、均一な組成の溶融材料121を提供し、それにより、そうでない場合には清澄槽127を出る溶融材料121内に存在しうる不均一性を削減、または、なくしうる。図示したように、清澄槽127は、第2の接続管135を介して、混合室131に連結されうる。いくつかの実施形態において、溶融材料121は、清澄槽127から混合室131へ、第2の接続管135を介して重力送りされうる。例えば、いくつかの実施形態において、重力は、溶融材料121を、第2の接続管135の内側経路を通して、清澄槽127から混合室131へ押し出しうる。
更に、いくつかの実施形態において、ガラス製造装置100は、混合室131の下流側に位置しうる送出槽133を含む第3の調整部を含みうる。いくつかの実施形態において、送出槽133は、形成槽140の投入管に供給される溶融材料121を調整しうる。例えば、送出槽133は、蓄積部、および/または、流れ制御部として機能して、調節を行い、一貫した流れの溶融材料121を投入管141に提供しうる。図示したように、混合室131は、第3の接続管137を介して、送出槽133に連結されうる。いくつかの実施形態において、溶融材料121は、混合室131から送出槽133へ、第3の接続管137を介して重力送りされうる。例えば、いくつかの実施形態において、重力は、溶融材料121を、第3の接続管137の内側経路を通して、混合室131から送出槽133へ押し出しうる。更に図示したように、いくつかの実施形態において、送出管139(例えば、下降管)は、溶融材料121を投入管141に送出するように配置されうる。
本開示の特徴に応じた形成槽の様々な実施形態を提供しうるもので、ガラスリボンをフュージョンドローする楔形部を含む形成槽、スロットを有し、ガラスリボンをスロットドローする形成槽、または、押圧ロールを備えて、ガラスリボンを形成槽から押圧ロール形成する形成槽を含みうる。例としては、図示し、以下に開示する形成槽140は、溶融材料121を形成楔形部209の根元部145からフュージョンドローして、ガラスリボン103を製造するように提供されうる。例えば、いくつかの実施形態において、溶融材料121は、投入管141から形成槽140に送出されうる。次に、溶融材料121は、部分的には形成槽140の構造に基づいて、ガラスリボン103へと形成されうる。例えば、図示したように、溶融材料121は、形成槽140の底縁部(例えば、根元部145)から、ガラス製造装置100のガラスリボン進行方向154に延伸するドロー経路に沿って引き出されうる。いくつかの実施形態において、縁部方向付け部163、164は、形成槽140を離れる溶融材料121を方向付けて、部分的には、ガラスリボン103の幅「W」を画定しうる。いくつかの実施形態において、ガラスリボン103の幅「W」は、ガラスリボン103の第1の側縁部153とガラスリボン103の第2の側縁部155の間に延伸しうる。
いくつかの実施形態において、ガラスリボンの幅「W」は、約50mm以上、約100mm以上、約500mm以上、約1000mm以上、約2000mm以上、約3000mm以上、約4000mm以上など、約20mm以上でありうるが、更なる実施形態において、上記幅より狭いか、または、広い他の幅を提供しうる。例えば、いくつかの実施形態において、ガラスリボン103の幅「W」は、約50mmから約4000mm、約100mmから約4000mm、約500mmから約4000mm、約1000mmから約4000mm、約2000mmから約4000mm、約3000mmから約4000mm、約20mmから約3000mm、約50mmから約3000mm、約100mmから約3000mm、約500mmから約3000mm、約1000mmから約3000mm、約2000mmから約3000mm、約2000mmから約2500mmなど、約20mmから約4000mmでありうるもので、全ての範囲、および、それらの間の部分範囲を含みうる。
図2は、ガラス製造装置100の図1の2−2線に沿った断面を示す斜視図である。いくつかの実施形態において、形成槽140は、溶融材料121を投入管141から受け付けるように向いた桶部201を含みうる。明瞭に図示するために、図2では、溶融材料121の網目模様を除いている。形成槽140は、更に、形成楔形部209の両端部210、211(図1を参照)の間に延伸する1対の下方に向かって傾斜して収束する表面部分207、208を含む形成楔形部209を含みうる。形成楔形部209の下方に向かって傾斜して収束する1対の表面部分207、208は、ガラスリボンの進行方向154に沿って収束し、形成楔形部209の底縁部に沿って交差して、形成槽140の根元部145を画定しうる。ガラス製造装置100のドロー平面213は、根元部145を通って、ガラスリボンの進行方向154に沿って延伸しうる。いくつかの実施形態において、ガラスリボン103は、ガラスリボンの進行方向154に、ドロー平面213に沿って引き出されうる。図示したように、ドロー平面213は、形成楔形部209を根元部145を通って二等分しうるが、いくつかの実施形態において、ドロー平面213は、根元部145に対して他の向きに延伸しうる。
更に、いくつかの実施形態において、溶融材料121は、方向156に、形成槽140の桶部201に流れうる。次に、溶融材料121は、対応する堰部203、204を同時に越えて、対応する堰部203、204の外面205、206の上を下方に向かって流れることによって、桶部201から溢れうる。次に、溶融材料121の各流れは、形成楔形部209の下方に向かって傾斜して収束する表面部分207、208に沿って流れて、形成槽140の根元部145から引き出され、そこで、流れは収束して融着されて、ガラスリボン103になる。次に、ガラスリボン103は、根元部145から、ドロー平面213で、ガラスリボンの進行方向154に沿ってフュージョンドローされうる。いくつかの実施形態において、次に、ガラス分離部149(図1を参照)は、ガラスリボン103の一部を、分離経路151に沿って分離しうる。例えば、図1に示したように、ガラスシート104の形状のガラスリボン103の一部を、ガラスリボン103から、分離経路151に沿って分離しうる。図示したように、いくつかの実施形態において、分離経路151は、ガラスリボン103の第1の側縁部153と第2の側縁部155の間の幅「W」に沿って延伸しうる。更に、いくつかの実施形態において、分離経路151は、ガラスリボンの進行方向154に垂直に延伸しうる。更に、いくつかの実施形態において、ガラスリボンの進行方向154は、ガラスリボン103が形成槽140から、その方向に沿ってフュージョンドローされうる方向を画定しうる。いくつかの実施形態において、ガラスリボン103は、≧50mm/秒、≧100mm/秒、または、≧500mm/秒、例えば、約50mm/秒から約500mm/秒、約100mm/秒から約500mm/秒であるガラスリボンの進行方向154に沿って横切る時の速度を含みうるもので、全ての範囲、および、それらの間の部分範囲を含みうる。
図2に示したように、ガラスリボン103の第1の主面215とガラスリボン103の第2の主面216が、反対方向を向いて、ガラスリボン103の厚さ「T」(例えば、平均厚さ)を画定する状態で、ガラスリボン103を、根元部145から引き出しうる。いくつかの実施形態において、ガラスリボン103の厚さ「T」は、約2ミリメートル(mm)以下、約1ミリメートル以下、約0.5ミリメートル以下、例えば、約300マイクロメートル(μm)以下、約200マイクロメートル以下、または、約100マイクロメートル以下でありうるが、更なる実施形態において、他の厚さで提供されうる。例えば、いくつかの実施形態において、ガラスリボン103の厚さ「T」は、約50μmから約750μm、約100μmから約700μm、約200μmから約600μm、約300μmから約500μm、約50μmから約500μm、約50μmから約700μm、約50μmから約600μm、約50μmから約500μm、約50μmから約400μm、約50μmから約300μm、約50μmから約200μm、約50μmから約100μmでありうるもので、全ての範囲、および、それらの間の部分範囲の厚さを含みうる。更に、ガラスリボン103は、様々な組成物を含み、限定するものではないが、ソーダライムガラス、ホウケイ酸ガラス、アルミノホウケイ酸ガラス、含アルカリガラス、または、無アルカリガラスを含みうる。
図3を参照すると、いくつかの実施形態において、ガラス測定装置119aを、槽301に近接して配置しうる。槽301は、ガラス製造装置100のいくつかの異なる構造物を含みうるので、図3では、槽301を概略的に示しているのが分かるだろう。例えば、槽301は、清澄槽127、第1の接続管129、混合室131、送出槽133、第2の接続管135、第3の接続管137などの1つ以上を含みうる。いくつかの実施形態において、ガラス製造装置100は、槽301内に位置する自由表面303を有する溶融材料121を含みうる。自由表面303は、溶融材料121の最も高い高さを含みうるもので、それより上には、自由表面303との界面を有する雰囲気が存在しうる。槽301は、ガラス測定装置119aが、そこを通って溶融材料121の高さを測定しうる槽開口部305を画定しうる槽壁部を含みうる。
図3は、1つのガラス測定装置119aを示しているが、他のガラス測定装置(例えば、ガラス測定装置119b)も、構造および機能が略同様でありうる。例えば、複数のガラス測定装置119a、119bをガラス製造装置100内に備えて、1つ以上の槽301内の溶融材料121の高さを測定しうる。図1を簡単に参照すると、1つのガラス測定装置119aを混合室131に取り付け、他のガラス測定装置119bを送出槽133に取り付けうる。したがって、溶融材料121の高さを、ガラス製造装置100内の複数の位置で、ガラス測定装置119a、119bによって測定しうる。
ガラス測定装置119aは、槽開口部305に対向することなどによって、槽301に対向するように向けられうる光源307を含みうる。いくつかの実施形態において、光源307は、光ビーム309を槽301に向けて、更に、槽開口部305を通るように出射するように配置されうる。例えば、光ビーム309は、白色光を含み、槽301の槽開口部305を通り抜け、そこで、光ビーム309は、溶融材料121の自由表面303から反射されうる。
ガラス測定装置119aは、レンズ311を含みうる。いくつかの実施形態において、レンズ311は、光ビーム309を光源307から受光するように配置されうる。レンズ311は、光源307と槽301の間に、例えば、光源307と槽開口部305の間に配置されうる。いくつかの実施形態において、レンズ311は、光ビーム309を、第1の波長成分315および第2の波長成分317を含みうる複数の波長成分313に分割する。複数の波長成分313は、第3の波長成分319など、他の更なる波長成分を含みうる。複数の波長成分313は、赤色スペクトル波長成分、緑色スペクトル波長成分、青色スペクトル波長成分など、光ビーム309のスペクトル波長成分を含みうる。いくつかの実施形態において、赤色スペクトル波長成分を第1の波長成分315と表し、緑色スペクトル波長成分を第2の波長成分317と表し、更に、青色スペクトル波長成分を第3の波長成分319と表しうる。複数の波長成分313は、レンズ311からの焦点距離に位置する焦点で収束しうる。
いくつかの実施形態において、異なる波長成分(例えば、第1の波長成分315、第2の波長成分317、第3の波長成分319など)は、レンズ311から測定した異なる焦点距離を有しうる。異なる焦点距離は、第1の波長成分315、第2の波長成分317、および、第3の波長成分319の異なる波長に基づきうる。例えば、第2の波長成分317は、第1の波長成分315の波長より短い波長を含みうる。第3の波長成分319は、第1の波長成分315および第2の波長成分317の波長より短い波長を含みうる。いくつかの実施形態において、第2の波長成分317は、約600ナノメートル(nm)未満の波長を含み、第1の波長成分315は、約600nmより長い波長を含みうる。より短い波長を含む波長成分は、より短い焦点距離を有し、それにより、よりレンズから近い距離で合焦しうる。より長い波長を含む波長成分は、より長い焦点距離を有し、それにより、よりレンズから遠い距離で合焦しうる。例えば、第1の波長成分315(例えば、最も長い波長を含む赤色スペクトル波長成分)は、最も長い焦点距離を有しうる。第2の波長成分317(例えば、赤色スペクトル波長成分より短いが、青色スペクトル波長成分より長い波長を含む緑色スペクトル波長成分)は、第1の波長成分315の焦点距離より短いが、第3の波長成分319の焦点距離より長い焦点距離を有しうる。第3の波長成分319(例えば、最も短い波長を含む青色スペクトル波長成分)は、第1の波長成分315の焦点距離、および、第2の波長成分317の焦点距離より短い焦点距離を有しうる。いくつかの実施形態において、第1の波長成分315は、第2の波長成分317より長い焦点距離を有し、第2の波長成分317は、第3の波長成分319より長い焦点距離を有しうる。
ガラス測定装置119aは、フィルタ329を含みうる。いくつかの実施形態において、フィルタ329は、光ビーム309を受光するように配置されうる。例えば、フィルタ329は、(例えば、複数の波長成分313を含む)分割された光ビームをレンズ311から受光するように配置されうる。フィルタ329は、レンズ311と槽開口部305の間など、レンズ311と槽301の間に配置されうる。いくつかの実施形態において、フィルタ329は、光ビーム309の1つ以上の波長成分を通し、光ビーム309の1つ以上の他の波長成分を通さないものでありうる。例えば、フィルタ329は、光ビーム309の第2の波長成分317を通し、光ビームの第1の波長成分315を通さない。このようにして、フィルタ329は、ある波長を含む波長成分を通さず、他の波長を含む波長成分を通しうる。例えば、フィルタ329は、第2の波長成分317(例えば、緑色スペクトル波長成分)および第3の波長成分319(例えば、青色スペクトル波長成分)を通し、第1の波長成分315(例えば、赤色スペクトル波長成分)を通さないようにしうる。いくつかの実施形態において、ガラス製造装置100内の溶融材料121の高さ特定方法は、第1の波長成分315を光ビーム309から除去する前に、光ビーム309を、第1の波長成分315、第2の波長成分317、および、第3の波長成分319を含む複数の波長成分313に分割する工程を含みうる。
いくつかの実施形態において、第2の波長成分317および第3の波長成分319を含む光ビーム309は、槽開口部305を通って、次に溶融材料121の自由表面303から反射されうる。いくつかの実施形態において、ガラス製造装置100内の溶融材料121の高さ特定方法は、第2の波長成分317を含む光ビーム309を、溶融材料121の自由表面303から反射させる工程を含みうる。例えば、いくつかの実施形態において、波長成分(例えば、第2の波長成分317、第3の波長成分319など)の1つの焦点距離は、溶融材料121の自由表面303とフィルタ329の間の距離に略一致しうる。例えば、図3に示すように、第2の波長成分317の焦点距離は、自由表面303とフィルタ329の間の距離に略一致しうる。しかしながら、自由表面303は、槽301内のそのような高さに限定されない。むしろ、他の実施形態において、自由表面303は、フィルタ329から異なる距離に位置して、他の1つの波長成分(例えば、第3の波長成分319)の焦点距離が、自由表面303とフィルタ329の間の距離に略一致しうる。略一致することによって、波長成分(例えば、第2の波長成分317、第3の波長成分319など)の1つの焦点距離は、溶融材料121の自由表面303とフィルタ329の間の距離に近いが同一ではなく、この距離に、他の波長成分より近くなりうる。
いくつかの実施形態において、自由表面303によって反射された光ビーム309の波長成分(例えば、第2の波長成分317、第3の波長成分319など)は、フィルタ329を通って、次にレンズ311を通って、逆の経路に沿って進行する。いくつかの実施形態において、溶融材料121は、例えば、(例えば、第1の波長成分315と同じ波長を含む)赤色スペクトル波長成分などの出射波長成分322を出射しうる。出射波長成分322は、ノイズを生じて、ガラス測定装置119aが溶融材料121の高さを検出するのに悪影響を与えうる。これらの影響を削減するために、フィルタ329は、溶融材料121によって出射された出射波長成分322を通さないようにしうる。いくつかの実施形態において、ガラス製造装置100内の溶融材料121の高さ特定方法は、第2の波長成分317を含む光ビーム309を反射させる前に、光ビーム309から第1の波長成分315を除去する工程を含みうる。このようにして、フィルタ329は、両方向に、第1の波長成分315および出射波長成分322(例えば、自由表面303に向かう(例えば、図3で下方に向かう)第1の波長成分315、および、自由表面303から離れる(例えば、図3で上方に向かう)出射波長成分322)を通さないようにしうる。
ガラス測定装置119aは、ビームスプリッタ331を含みうる。いくつかの実施形態において、ビームスプリッタ331は、第2の波長成分317および第3の波長成分319を含む光ビーム309を受光するように配置されうる。例えば、ビームスプリッタ331は、レンズ311から、(例えば、第2の波長成分317および第3の波長成分319を含む)光ビーム309を受光するように配置されうる。ビームスプリッタ331は、レンズ311と光源307の間に配置されうる。いくつかの実施形態において、光ビーム309は、溶融材料121の自由表面303から反射された後に、光ビーム309は、フィルタ329を通り、次にレンズ311を通って、逆の経路に沿って進行しうる。光源307に向かってレンズ311を通った後に、光ビーム309は、レンズ311と光源307の間の光路内に配置されうるビームスプリッタ331によって反射されうる。いくつかの実施形態において、ビームスプリッタ331は、光ビーム309を、光源307から離れた位置に反射させうる。
ガラス測定装置119aは、回折格子333を含みうる。回折格子333は、(例えば、第2の波長成分317および第3の波長成分319を含む)ビーム光309をビームスプリッタ331から受光するように配置されうる。いくつかの実施形態において、回折格子333は、そこを通して波長成分(例えば、第2の波長成分317、第3の波長成分319など)の1つを受光しうる開口335(例えば、孔、スリットなど)を画定しうる。いくつかの実施形態において、回折格子333は、ビームスプリッタ331から、ある距離で離間して、波長成分(例えば、第2の波長成分317、第3の波長成分319など)が回折格子333に向かって合焦されるようにしうる。波長成分の1つ(例えば、第2の波長成分317)は、回折格子333とビームスプリッタ331の間の距離と同様の焦点距離を有して、1つの波長成分(例えば、第2の波長成分317)が開口335を通るようにしうる。他の波長成分(例えば、第3の波長成分319)は、回折格子333とビームスプリッタ331の間の距離と異なる焦点距離を有して、他の波長成分(例えば、第3の波長成分319)は、開口335を通らないようにしうる。
ガラス測定装置119aは、波長成分(例えば、第2の波長成分317、第3の波長成分319など)の1つをビームスプリッタ331から受光するように配置されうるセンサ341を含みうる。いくつかの実施形態において、センサ341は、フィルタ329を通って、次に槽301内で反射された第2の波長成分317を受光するように配置されうる。いくつかの実施形態において、センサ341は、槽301内に位置する溶融材料121の自由表面303から反射された第2の波長成分317を受光するように配置されうる。いくつかの実施形態において、ガラス製造装置100内の溶融材料121の高さ特定方法は、溶融材料121の自由表面303から反射した光ビーム309から、第2の波長成分317を感知する工程を含みうる。センサ341は、センサ341によって受光された波長成分(例えば、第2の波長成分317)の色スペクトルを検出しうる色検出センサを含みうる。
いくつかの実施形態において、ガラス製造装置100内の溶融材料121の高さ特定方法は、溶融材料121の高さを、光ビーム309の感知した第2の波長成分317に基づいて特定する工程を含みうる。例えば、ガラス測定装置119aは、センサ341に連結されうる信号処理部343を含みうる。いくつかの実施形態において、信号処理部343は、センサ341に連結されることによって、データ、例えば、センサ341によって受光された波長成分に関するデータを、センサ341から受信しうる。いくつかの実施形態において、信号処理部343は、溶融材料121の自由表面303とレンズ311の間の距離を、センサ341によって受光された第2の波長成分317の波長および/または色に基づいて特定しうる。例えば、センサ341によって受光された波長成分の波長は、回折格子333によって遮られた他の波長より高い強度でありうる。いくつかの実施形態において、センサ341のよって受光された(例えば、図3の第2の波長成分317に対応する)この波長は、グラフに、ピーク強度の波長として示され、一方、回折格子333によって遮られた他の波長成分(例えば、第3の波長成分319)に対応する他の波長は、より低い強度として示されうる。センサ341によって受光されたこの波長は、溶融材料121の自由表面303とレンズ311の間の距離に対応しうる。
いくつかの実施形態において、ガラス製造装置100内の1つ以上のパラメータを、溶融材料121の高さに基づいて変化させうる。例えば、ガラス製造方法は、バッチ充填速度を、感知した第2の波長成分317に基づいて変化させる工程を含みうる。感知した第2の波長成分317は、信号処理部343によって受信されて分析され、感知した第2の波長成分317の波長を特定しうる。この波長は、溶融材料121の高さを示しうる溶融材料121の自由表面303とレンズ311の間の距離に対応しうる。いくつかの実施形態において、バッチ充填速度は、特定した溶融材料121の高さに基づいて変化されうる。
ガラス測定装置119aは溶融材料121に接触しないように構成されるので、ガラス測定装置119aを、高さ測定装置が溶融材料121に接触するのが適さない、いくつかの異なる槽で用いうる。例えば、ガラス測定装置119aを用いて、混合室131、および/または、送出槽133内の溶融材料121の高さを測定しうる。混合室131、および/または、送出槽133内の溶融材料121の高さは変化するので、接触型の高さ測定装置は、変動する高さにより、望ましくないことがありうる。更に、接触型の高さ測定装置は、高さ測定装置と溶融材料121の接触により、望ましくない不純物を溶融材料121に導入しうる。非接触型の高さ測定装置119aは、これらの欠点を最小にしうる。
図4を参照すると、ガラス測定装置119aを槽301と共に示す側面図である。槽301は、ガラス製造装置100内のいくつかの異なる構造物、例えば、清澄槽127、混合室131、送出槽133、1つ以上の接続管135、137などを含みうるので、槽301は、概略的に示されているのが分かるだろう。いくつかの実施形態において、ガラス測定装置119aは、壁部403に取り付けられうる。例えば、取付けアセンブリ404を、壁部403の側面に、1つ以上の固定部(例えば、スクリュー、ボルトなど)で取り付けうる。いくつかの実施形態において、ガラス測定装置119aは、壁部403に取り付けられうる覆い部405を含みうる。覆い部405は、(例えば、1つ以上の機械的な固定部などを介して)取付けアセンブリ404に取り付けられて、覆い部405は、壁部403の第1の側面に位置し、取付けアセンブリ404は、壁部403の反対側の第2の側面に位置しうる。取付けアセンブリ404は、覆い部405を、壁部403に対して固定位置で維持して、覆い部405が、壁部403に対して意図せずに移動するのを制限しうる。
いくつかの実施形態において、覆い部405は、略空洞で、1つ以上の波長コンポーネント407を、覆い部405の(例えば、図4で、破線で示した)覆い内部409で受け付けうる。例えば、波長コンポーネント407はガラス測定装置119a、119bのいくつかの異なる波長コンポーネントを含みうるので、図4では、1つ以上の波長コンポーネント407を概略的に示しているのが分かるだろう。いくつかの実施形態において、1つ以上の波長コンポーネント407は、光源307、レンズ311、フィルタ329、ビームスプリッタ331、回折格子333、センサ341などを含みうる。いくつかの実施形態において、覆い部405は、その中にフィルタ329またはセンサ341の1つ以上が配置されうる覆い内部409を画定しうる。覆い部405は、光学的に透明で、光ビーム309は、覆い部405を透過しうる。例えば、覆い内部409は、略空洞で、光ビーム309は、覆い内部409を通って、次に、槽301に向けられうる。いくつかの実施形態において、レンズ311は、光ビーム309の光路内の覆い部405の端部に取り付けられて、光ビーム309が覆い内部409から出る時に、光ビーム309が、レンズ311を通るようにしうる。したがって、いくつかの実施形態において、覆い部405は光学的に透明であることによって、光ビーム309が、(例えば、概して空洞でありうる)覆い内部409を通って、更に、レンズ311を通って、覆い部405の外側に送られるのを可能にしうる。
いくつかの実施形態において、覆い部405が槽301の近くで高温に曝されうるので、覆い部405を冷却して、覆い内部409の波長コンポーネント407を保護しうる。例えば、覆い部405は、覆い部405を冷却しうる冷却線411を含みうる。冷却線411は、冷却された物質、例えば、液体、気体などを送出して、覆い部405の覆い内部409内の温度を低下させうる。いくつかの実施形態において、覆い部405は、覆い内部409を囲む断熱材料を含み、覆い内部409内の低下された温度を維持するようにしうる。覆い部405は、そこを通って、冷却物質(例えば、液体、気体など)が流れうる1つ以上の略空洞な流路を含みうる。覆い部405内の1つ以上の流路は、冷却線411と流体連通して、冷却された物質が、冷却線411を介して、流路に、および、流路から送出されるようにしうる。いくつかの実施形態において、ガラス製造装置100内の溶融材料121の高さ特定方法は、第2の波長成分317を感知するセンサ341を冷却する工程を含みうる。例えば、センサ341を、覆い内部409内に配置した状態で、冷却線411は、冷却された物質を送出して、センサ341を冷却しうる。更に、いくつかの実施形態において、覆い部405は、槽301の槽開口部305から、ある距離で離間しうる。そのような間隔は、槽301内の高温からの覆い部405およびセンサ341への影響を削減しうる。
いくつかの実施形態において、フィルタ329は、覆い部405およびレンズ311から、ある距離で離れて配置されうる。例えば、フィルタ329と槽301の離間距離は、フィルタ329とレンズ311の離間距離より短いものでありうる。そのような配置は、限定することを意図しないが、いくつかの実施形態において、フィルタ329は、例えば、レンズ311に隣接するか、覆い内部409内にレンズ311と配置されることによって、レンズ311に近接して配置されうる。いくつかの実施形態において、フィルタ329は、槽301の槽開口部305に近接するので、フィルタ329は、槽301内からの高温に曝されうる。いくつかの実施形態において、ガラス製造装置100内の溶融材料121の高さ特定方法は、光ビーム309から第1の波長成分315を、更に、溶融材料121からの出射波長成分を除去するフィルタ329を冷却する工程を含みうる。例えば、高温のフィルタ329への影響を削減するために、ガラス測定装置119aは、熱遮蔽部413を含み、フィルタ329を冷却しうる。熱遮蔽部413は、光学的に透明な構造物、例えば、ガラス材料を含み、光ビーム309が、フィルタ329および熱遮蔽部413を通るようにしうる。いくつかの実施形態において、熱遮蔽部413は、フィルタ329に隣接し、接触して配置されうる。例えば、熱遮蔽部413は、フィルタ329と槽301の間に配置されうる。熱遮蔽部413は、フィルタ329より高温に耐えうるもので、熱遮蔽部413を、槽開口部305に、フィルタ329より近接して配置されうる。熱遮蔽部413は、フィルタ329を、溶融材料121によって槽301内で生じた高温、気体、および/または、不純物から、遮蔽、および/または、冷却しうる。
いくつかの実施形態において、ガラス測定装置119aは、エアパージ部415を含みうる。エアパージ部415は、熱遮蔽部413に隣接し、接触して配置されうる。例えば、エアパージ部415は、熱遮蔽部413より槽301に近接して配置され、エアパージ部415は、一方の側が槽301で、他方の側が熱遮蔽部413で、それらの間に配置されうる。いくつかの実施形態において、エアパージ部415の一方の側は、槽301に取り付けられ、反対側は、熱遮蔽部413に取り付けられうる。槽301内の溶融材料121によって気体および不純物が生成されうることから、エアパージ部415は、熱遮蔽部413の光学的透明性を維持して、光ビーム309が熱遮蔽部413を通るようにしうる。例えば、エアパージ部415は、略空洞で、その中を光ビーム309が通る内部を画定しうる。パージ線417は、気体(例えば、空気など)を、エアパージ部415の内部に、および/または、内部から送出しうる。この気体をパージ線417によって送出することで、熱遮蔽部413が槽301からの不純物を実質的に有さないように維持しうる。
図5〜9を参照すると、ガラス製造装置100内の溶融材料121の高さ特定方法およびガラス製造方法の更なる実施形態を示している。図5は、ガラス製造装置500の更なる実施形態を示している。ガラス製造装置500は、いくつかの点で、図1のガラス製造装置100と同様でありうる。例えば、ガラス製造装置500は、ガラス測定装置119a、119b、高さ通信線120a、120b、制御部115などを含みうる。
ガラス測定装置119a、119bは、図3〜4で記載したのと同様に、溶融材料121の高さを特定しうる。いくつかの実施形態において、溶融材料121の高さを、ガラス測定装置119a、119bから演算部501に送信しうる。演算部501は、異なる槽301からのガラス測定装置119a、119b内の多数の高さ測定結果を受信しうる。図5の実施形態において、1つのガラス測定装置119aは、混合室131での溶融材料121の高さを測定し、第2のガラス測定装置119bは、送出槽133での溶融材料121の高さを測定しうる。他の実施形態において、更なるガラス測定装置を、例えば、清澄槽127、接続管135、137などに備えうる。
いくつかの実施形態において、演算部501は、高さ通信線120a、120bに接続されて、演算部501は、ガラス測定装置119a、119bから高さ測定値を受信しうる。演算部501は、単一の高さ値を、高さ通信線503を介して出力しうる。いくつかの実施形態において、演算部501は、次元削減線形または非線形演算部を含みうる。例えば、(例えば、ガラス測定装置119a、119bの位置に対応する)2つの位置の間での高さの差を制御するのが望ましく、演算部501は、2つの高さの差を表す値を出力しうる。制御部115は、単一の高さ値を、演算部501から、通信線503を介して受信しうる。いくつかの実施形態において、制御部115は、所定の高さ設定点123と、演算部501によって制御部に提供された高さを比較しうる。これらの高さの値が異なる場合、制御部115は、モータ113への速度コマンドを調節し、次に、モータ113は、バッチ送出装置111の速度を調節し、したがって、バッチ充填速度を変化させうる。いくつかの実施形態において、制御部115は、モデル予測制御(MPC)、光学制御方法(例えば、Hインフィニティ制御)などを行いうる。
図6を参照すると、ガラス製造方法、および、ガラス製造装置100内の溶融材料121の高さ特定方法を概略的に示す流れ図を示している。いくつかの実施形態において、制御部115は、所定の高さ設定点123を受信しうる。制御部115は、モータ113を作動させるための(例えば、図5の速度コマンド線122に沿って送信される)速度コマンド601を、所定の高さ設定点123に基づいて計算しうる。バッチ材料107は、溶融槽105に、バッチ充填速度603で導入されうる。溶融材料121は、溶融槽105から、ガラス製造装置100を通って、流量605で流れうる。例えば、溶融材料121は、混合室131に、更に、送出槽133に流れうる。
いくつかの実施形態において、ガラス製造方法は、バッチ充填速度603を、感知した第2の波長成分317に基づいて変化させる工程を含みうる。例えば、図3〜4について記載したように、センサ341は、第2の波長成分317を受信し、信号処理部343は、槽301内の溶融材料121の高さを、感知した第2の波長成分317に基づいて特定しうる。したがって、高さ607a、607bは、混合室131および送出槽133に連結されたガラス測定装置119a、119bによって特定され、次に、高さ607a、607bは、(例えば、高さ通信線120a、120bに沿って)演算部501に送信されうる。いくつかの実施形態において、演算部501は、高さ609を、ガラス測定装置119a、119bによって受信された高さ607a、607bに基づいて、制御部115に送信しうる。図5について記載したように、いくつかの実施形態において、この高さ609は、混合室131および送出槽133での2つの高さ607a、607bの間の高さ差を含みうる。制御部115は、高さ609と所定の高さ設定点123を比較して、速度コマンド601を調節しうる。例えば、高さ609が、望ましい高さより低い場合、速度コマンド601を高めて、バッチ充填速度603を上昇させうる。高さ609が、望ましい高さより高い場合、速度コマンド601を下げて、バッチ充填速度603を低下させうる。したがって、いくつかの実施形態において、バッチ充填速度603を、溶融材料121の高さに基づいて変化させうる。
図7を参照すると、ガラス製造装置700の更なる実施形態を示している。ガラス製造装置700は、いくつかの点で、ガラス製造装置100、500の1つ以上と同様でありうる。例えば、ガラス製造装置700は、ガラス測定装置119a、119b、高さ通信線120a、120b、制御部115、演算部501、高さ通信線503などを含みうる。いくつかの実施形態において、制御部115は、溶融材料121の高さをガラス製造装置700の異なる位置で制御しうる多変数制御部を含みうる。いくつかの実施形態において、制御部115は、所定の高さ設定点123および高さ609を、高さ通信線503を介して受信することに限定されない。例えば、制御部115は、溶融材料121の流量605について、流量設定点701を受け取りうる。更に追加で、または、その代わりに、ガラス製造装置700は、ガラスリボン103の質量705を測定するスケール703を含み、次に、制御部115は、質量705をスケール703から受信しうる。いくつかの実施形態において、スケール703は、質量ゲージを含みうる。
いくつかの実施形態において、ガラス製造装置700は、温度制御部707を含みうる。温度制御部707は、溶融材料121の望ましい温度を表す温度設定点709を、制御部115から受信しうる。いくつかの実施形態において、1つ以上の温度センサ715a、715bを、ガラス製造装置700内の様々な位置に備えて、溶融材料121の温度を測定しうる。例えば、1つの温度センサ715aは、混合室131と送出槽133の間の第3の接続管137に位置して、混合室131を出た後で送出槽133に入る前の溶融材料121の温度を測定しうる。他の温度センサ715bは、送出槽133の下流側の送出管139に位置して、送出槽133を出ている溶融材料121の温度を測定しうる。2つの温度センサ715a、715bを図7に示しているが、追加の温度センサを、他の位置に備えうることが分かるだろう。例えば、追加の温度センサを第3の接続管137に備えて、混合室131に近接して位置する1つの温度センサ(例えば、715a)が、混合室131を出た直後の溶融材料121の温度を測定し、送出槽133に近接して位置する他の温度センサが、送出槽133に入る直前の溶融材料121の温度を測定しうる。いくつかの実施形態において、2つの温度センサを、送出管139に備えうる。例えば、1つの温度センサを、送出管139の最上部に(例えば、送出槽133に近く)配置し、他の温度センサを、更に下流側に(例えば、形成槽140の投入管141に近く)配置しうる。溶融材料121の温度測定結果を、温度センサ715a、715bから、温度制御部707に、温度通信線717a、717bを介して送信しうる。
いくつかの実施形態において、1つ以上の加熱装置719a、719bを、ガラス製造装置700内の様々な位置に備えうる。加熱装置719a、719bは、溶融材料121を加熱して、溶融材料121の流量を変化させうる。例えば、1つの加熱装置719aは、温度センサ715aに近接して、混合室131と送出槽133の間の第3の接続管137に位置して、混合室131を出て送出槽133に入る溶融材料121を加熱しうる。他の加熱装置719bは、他の温度センサ715bに近接して、送出槽133の下流側の送出管139に位置して、送出槽133を出る溶融材料121を加熱しうる。温度センサ715a、715bの場合と同様に、2つの加熱装置719a、719bを図7に示しているが、追加の加熱装置719a、719bを、温度センサを備えうる他の位置に備えうることが分かるだろう。いくつかの実施形態において、加熱装置719a、719bの温度設定点を、温度制御部707から加熱装置719a、719bに、加熱線721a、721bを介して送信しうる。
いくつかの実施形態において、ガラス製造装置700内の溶融材料121の高さ特定方法は、溶融材料121の流量を、特定した溶融材料121の高さに基づいて変化させる工程を含みうる。例えば、槽(例えば、図7の混合室131および送出槽133)内の溶融材料121の高さを、ガラス測定装置119a、119bによって特定しうる。この高さ情報を、演算部501に(例えば、高さ通信線120a、120bを介して)送信し、演算部501は、単一の高さの値を、制御部115に、高さ通信線503を介して出力しうる。いくつかの実施形態において、流量を、溶融材料121から形成されたガラスリボン103の質量に基づいて変化させうる。例えば、スケール703は、ガラスリボン103の質量を、ガラスリボン103の質量を測定することによって特定しうる。この質量を、制御部115に、質量線705を介して送信しうる。制御部115は、加熱装置719a、719bでの温度を、ガラスリボン103の質量、および/または、演算部501からの溶融材料121の高さに基づいて変化させ、したがって、溶融材料121の流量を変化させうる。
いくつかの実施形態において、流量を変化させる工程は、溶融材料121の温度を調節する工程を含みうる。例えば、いくつかの実施形態において、ガラス製造方法は、溶融材料121の温度を、感知した第2の波長成分に基づいて調節する工程を含みうる。図3〜4について記載したように、センサ341は、第2の波長成分317を受光し、信号処理部343は、槽301内の溶融材料121の高さを、感知した第2の波長成分317に基づいて特定しうる。高さは、制御部115に送信されうる。いくつかの実施形態において、溶融材料121の流量を、混合室131および送出槽133での高さに基づいて、例えば、溶融材料121の温度を調節することによって変化させるのが望ましいことがありうる。制御部115は、第3の接続管137および送出管139の望ましい温度設定点709を出力しうる。この温度設定点709は、温度制御部707に送信されうる。いくつかの実施形態において、加熱装置719a、719bは、加熱装置719a、719bを介した溶融材料121の温度を、温度センサ715a、715bによって感知された溶融材料121の温度と望ましい温度設定点709との比較に基づいて、調節しうる。例えば、流量を上げるには、制御部115は、より高い温度設定点709を、温度制御部707に出力し、温度制御部707は、加熱装置719a、719bによって生じる温度を高めうる。流量を下げるには、制御部115は、より低い温度設定点709を、温度制御部707に出力し、温度制御部707は、加熱装置719a、719bによって生じる温度を下げうる。
いくつかの実施形態において、バッチ充填速度603を変化させる工程は、溶融材料121から形成されたガラスリボン103の質量に基づいて行われうる。例えば、スケール703は、ガラスリボン103の質量705を測定して、次に、この質量を制御部115に送信しうる。制御部115は、モータ113への速度コマンドを、質量705に基づいて調節し、次に、モータ113は、バッチ送出装置111の速度を調節して、したがって、バッチ充填速度を変化させうる。いくつかの実施形態において、ガラスリボン103の質量705が、望ましい質量より低い場合、制御部115は、バッチ充填速度603を、モータ113への速度コマンドを高めることによって高めうる。ガラスリボン103の質量705が、望ましい質量より高い場合、制御部115は、バッチ充填速度603を、モータ113への速度コマンドを下げることによって下げうる。
図8を参照すると、ガラス製造装置800の更なる実施形態を示している。ガラス製造装置800は、いくつかの点で、ガラス製造装置100、500、700の1つ以上と同様でありうる。例えば、ガラス製造装置800は、ガラス測定装置119a、119b、高さ通信線120a、120b、制御部115、スケール703、温度制御部707、温度センサ715a、715b、加熱装置719a、719bなどを含みうる。いくつかの実施形態において、ガラス製造装置800は、演算部501を含まず、したがって、ガラス測定装置119a、119bが、高さ測定結果を、制御部115に、高さ通信線s120a、120bを介して直接送信しうる。制御部115は、1つの所定の高さ設定点(例えば、図7の所定の高さ設定点123)を受信するものに限定されず、むしろ、多数の所定の高さ設定点801a、801bを受信しうる。例えば、制御部は、混合室131内の高さに対応する1つの所定の高さ設定点801a、および、送出槽133内の高さに対応する他の所定の高さ設定点801bを受信しうる。
いくつかの実施形態において、ガラス製造装置800は、溶融材料121の温度を多数の位置で制御する複数の温度制御部を含みうる。例えば、ガラス製造装置800は、第1の温度制御部803、および、第2の温度制御部805を含みうる。第1の温度制御部803は、第1の温度設定点807を制御部115から受信し、第2の温度制御部805は、第2の温度設定点を制御部115から受信しうる。いくつかの実施形態において、第1の温度制御部803は、温度センサ715aおよび加熱装置719aに連結されうる。このようにして、第1の温度制御部803は、第3の接続管137内の溶融材料121の温度を温度センサ715aから受信して、加熱装置719aを制御しうる。いくつかの実施形態において、第2の温度制御部805は、温度センサ715bおよび加熱装置719bに連結されうる。このようにして、第2の温度制御部805は、送出管139内の溶融材料121の温度を温度センサ715bから受信して、加熱装置719bを制御しうる。
いくつかの実施形態において、ガラス製造装置800内の溶融材料121の高さ特定方法は、溶融材料121の流量を、特定した溶融材料121の高さに基づいて変化させる工程を含みうる。例えば、槽(例えば、図7の混合室131および送出槽133)内の溶融材料121の高さは、ガラス測定装置119a、119bによって特定されうる。この高さ情報は、制御部115に、高さ通信線120a、120bを介して送信されうる。流量を変化させる工程は、特定した溶融材料121の高さに基づくものに限定されない。むしろ、いくつかの実施形態において、流量を変化させる工程は、溶融材料121から形成されたガラスリボン103の質量に基づきうる。図7について記載したように、スケール703は、ガラスリボン103の質量を特定し、次に、この質量を、制御部115に、質量線705を介して送信しうる。制御部115は、ガラスリボン103の質量、および/または、演算部501からの高さに基づいて、加熱装置719a、719bでの温度を変化させて、したがって、溶融材料121の流量を変化させうる。
いくつかの実施形態において、流量を変化させる工程は、溶融材料121の温度を調節する工程を含みうる。例えば、いくつかの実施形態において、制御部115は、ガラス測定装置119a、119bによって感知された高さに応じて、第1の温度制御部803および第2の温度制御部805に提供される第1の温度設定点807、および/または、第2の温度設定点809を調節しうる。温度センサ715aによって感知された温度が第1の温度設定点807と異なる場合、次に、第1の温度制御部803は、温度信号を、加熱装置719aに、加熱線721aを介して送信し、したがって、加熱装置719aが第3の接続管137内の溶融材料121の温度を上げるか、または、下げるようにさせうる。温度センサ715bによって感知された温度が第2の温度設定点809と異なる場合、次に、第2の温度制御部805は、温度信号を、加熱装置719bに、加熱線721bを介して送信し、したがって、加熱装置719bが送出管139内の溶融材料121の温度を上げるか、または、下げるようにさせうる。このようにして、溶融材料121の高さを異なる位置でガラス測定装置119a、119bを用いて特定することによって、溶融材料121の流量を、(例えば、第3の接続管137、および/または、送出管139において)溶融材料121の温度を調節することによって変化させうる。
図9を参照すると、ガラス製造装置900の更なる実施形態を示している。ガラス製造装置900は、いくつかの点で、ガラス製造装置100、500、700、800の1つ以上と同様でありうる。例えば、ガラス製造装置900は、ガラス測定装置119a、119b、高さ通信線120a、120b、制御部115、演算部501、高さ通信線503、スケール703、温度制御部707、温度センサ715a、715b、加熱装置719a、719bなどを含みうる。
いくつかの実施形態において、ガラス製造装置900は、ガラス製造装置900内の2つの位置の間での温度比を制御する温度比制御部901を含みうる。例えば、温度比制御部901は、第3の接続管137での温度設定点の送出管139での温度設定点に対する比を制御しうる。温度制御部707は、温度設定点709を制御部115から受信しうる。温度比制御部901は、温度設定点の比903を制御部115から受信し、比903は、1つの位置(例えば、第3の接続管137)での温度設定点の他の位置(例えば、送出管139)での温度設定点に対する比903を表すものでありうる。この温度比設定点905を温度制御部707に送信し、温度制御部707が、加熱装置719a、719bの温度を、温度比設定点905に応じて調節しうる。例えば、制御部115は、温度設定点を温度制御部707に送信しうる。制御部115は、第3の接続管137の温度の送出管139の温度に対する望ましい比903も特定しうる。例えば、比903が2:1の場合、次に、温度設定点709の2倍の量を、第3の接続管137での加熱装置719aに送信し、温度設定点709と同じ量を、送出管139での加熱装置719bに送信しうる。したがって、溶融材料121の流量は、温度設定点の比903を調節することによって、調節されうる。
本開示のいくつかの実施形態において、ガラス製造装置100、500、700、800、900は、溶融材料121の高さを、非接触で、溶融材料121に不純物を導入させることなく測定しうるガラス測定装置119a、119bを含みうる。接触型の高さ測定装置では測定が不可能でありうるガラス製造装置100、500、700、800、900内のいくつかの位置で、溶融材料121の高さを、測定しうる。非接触型のガラス測定装置119a、119bを新たな位置で用いることにより、バッチ充填速度、流量など、ガラス製造装置100内の1つ以上のパラメータを調節しうる。
本明細書に記載の実施形態および機能的動作は、デジタル電子回路網で、若しくは、コンピュータソフトウェア、ファームウェア、または、本明細書に開示の構造物およびそれらの構造的等価物を含むハードウェアで、若しくは、それらの1つ以上の組合せで実行しうる。本明細書に記載の実施形態は、1つ以上のコンピュータプログラム製品として、つまり、データ処理装置によって実行される有形なプログラム担体上の符号化された1つ以上のコンピュータプログラム命令モジュールとして、または、データ処理装置の動作を制御するように実現されうる。有形のプログラム担体は、コンピュータで読み取り可能な媒体でありうる。コンピュータで読み取り可能な媒体は、機械読取り可能保存装置、機械読取り可能保存基板、メモリ装置、または、それらの1つ以上の組合せでありうる。
「処理部」、または、「制御部」という用語は、データを処理する全ての装置、デバイス、および、機械を包含しうるもので、例えば、プログラマブルプロセッサ、コンピュータ、若しくは、多数のプロセッサまたはコンピュータを含みうる。処理部は、ハードウェアに追加で、当該コンピュータプログラムの実行環境を生成するコード、例えば、プロセッサファームウェア、プロトコールスタック、データベース管理システム、オペレーティングシステム、または、それらの1つ以上の組合せを含みうる。
(プログラム、ソフトウェア、ソフトウェアアプリケーション、スクリプト、または、コードとしても知られる)コンピュータプログラムは、コンパイル型またはインタプリト型言語、若しくは、宣言型または手続き型言語を含む任意の形態のプログラム言語で記述しうると共に、スタンドアローンプログラムとして、若しくは、モジュール、コンポーネント、サブルーチン、または、計算環境での使用に適した他のユニットとしてを含む任意の形態で展開しうる。コンピュータプログラムは、必ずしも、ファイルシステムのファイルと対応していない。プログラムは、他のプログラムまたはデータ(例えば、マークアップ言語ドキュメントに記憶された1つ以上のスクリプト)を保持するファイルの一部に、当該プログラム専用の単一のファイルに、または、多数の協働ファイル(例えば、1つ以上のモジュール、サブプログラム、または、コードの一部を記憶するファイル)に、記憶しうる。コンピュータプログラムは、1つのコンピュータ上で、若しくは、1つの場所に位置する、または、多数の場所に亘って分散されて通信ネットワークによって互いに接続された多数のコンピュータ上で実行するように展開しうる。
本明細書に記載の処理は、1つ以上のコンピュータプログラムを実行して、入力データを処理し出力を生成することによって機能を行う1つ以上のプログラマブルプロセッサによって行いうる。処理および論理フローは、例えば、いくつかを挙げれば、FPGA(フィールドプログラマブルゲートアレイ)、または、ASIC(特定用途向けIC)などの専用論理回路によって行われ、更に、装置も、それらとして実現しうる。
コンピュータプログラムの実行に適したプロセッサは、例えば、汎用および専用マイクロプロセッサの両方、並びに、任意の種類のデジタルコンピュータの1つ以上のプロセッサを含む。概して、プロセッサは、読み取り専用メモリ、または、ランダムアクセスメモリ、若しくは、それらの両方から、命令およびデータを受け取る。コンピュータの必須構成要素は、命令を行うプロセッサ、および、命令およびデータを記憶する1つ以上のデータメモリ装置である。概して、コンピュータは、例えば、磁気、光磁気、または、光ディスクなどの、データを記憶するための1つ以上の大型記憶装置も含むか、若しくは、動作可能に連結されて、そこからデータを受け取ったり、または、そこへデータを転送したりしうる。しかしながら、コンピュータは、そのような装置を有する必要はない。更に、コンピュータは、例えば、いくつかを挙げれば、携帯電話、個人情報端末(PDA)などの他の装置に埋め込まれうる。
コンピュータプログラム命令およびデータの記憶に適したコンピュータ読み取り可能媒体は、不揮発性メモリ、媒体、および、メモリ装置を含む、全ての形態のデータメモリを含み、例として、例えば、EPROM、EEPROM、および、フラッシュメモリ装置などの半導体メモリ装置、例えば、内蔵ハードディスクまたはリムーバブルディスクなどの磁気ディスク、光磁気ディスク、並びに、CD‐ROMおよびDVD−ROMディスクを含む。プロセッサおよびメモリは、専用論理回路によって補助されるか、または、それに組み込まれてもよい。
ユーザとの対話を提供するために、本明細書に記載の実施形態は、例えば、CRT(陰極線管)またはLCD(液晶表示)モニタなどの、ユーザに情報を表示する表示装置、並びに、ユーザが、それによってコンピュータに入力を行いうる、キーボード、および、例えば、マウスまたはトラックボール、若しくは、タッチスクリーンなどのポインティングデバイスを有するコンピュータに実装しうる。他の種類の装置も、ユーザとの対話を提供するために使用でき、例えば、ユーザから、音響、音声、または、触覚入力を含む任意の形態の入力を受け取ることができる。
本明細書に記載の実施形態は、例えば、データサーバとしてバックエンドコンポーネントを含むか、例えば、アプリケーションサーバなどのミドルウェアコンポーネントを含むか、ユーザが、それを通して、実装された本明細書に記載の特徴構造物と対話しうる、例えば、グラフィカルユーザインターフェイスまたはウェブブラウザを有するクライアントコンピュータなどのフロントエンドコンポーネントを含むか、若しくは、そのようなバックエンド、ミドルウェア、または、フロントエンドコンポーネントの1つ以上の任意の組合せを含むコンピューティングシステムに実装しうる。システムの構成要素は、例えば、通信ネットワークなど、任意の形態または媒体のデジタルデータ通信によって、相互接続されうる。通信ネットワークの実施形態は、ローカルエリアネットワーク(「LAN」)および、インターネットなどの広域ネットワーク(WAN)を含む。
コンピュータシステムは、クライアントおよびサーバを含みうる。クライアントおよびサーバは、概して互いに遠隔に位置し、代表的には、通信ネットワークを介して対話する。クライアントとサーバの関係は、各コンピュータ上で動作すると共に、互いにクライアント‐サーバ関係を有するコンピュータプログラムによって生じる。
更に、本明細書で用いるように、原文の英語の定冠詞および不定冠詞は、「少なくとも1つ」を意味すると理解されるべきであり、そうでないことを明示しない限りは、「1つだけ」に限定されるべきではない。同様に、「複数」は、「1つより多いこと」を表すことを意図している。
本明細書において、範囲は、「約」1つの特定の値から、および/または、「約」特定の他の値までと表しうる。そのような範囲を表した場合には、実施形態は、その1つの特定の値から、および/または、その特定の他の値までを含む。同様に、値を、「約」を前に付けて概数で表した場合には、その特定の値が、他の実施態様を形成するものと理解される。更に、各範囲の端点は、他方の端点との関係で、および、他方の端点とは独立にの両方で重要であると理解される。
本明細書で用いた「略」、「実質的に」、および、それらの変化形は、記載した特徴が、値または記載内容に等しいか、または、略等しいことを表すことを意図している。
別段の明示的記載がない限り、本明細書に示した任意の方法の工程が、特定の順番に行われることを要すると解釈されることを全く意図していない。したがって、方法の請求項が、工程の行われるべき順番を実際に記載していないか、または、請求項または記載において、工程が特定の順番に限定されるという別段の特定の記載がない場合には、特定の順番が推定されることを全く意図していない。
特定の実施形態の様々な特徴、構成要素、または、工程を、「含む」という移行句を用いて記載しうるが、「からなる」または、「実質的にからなる」という移行句を用いて記載しうるものを含む代わりの実施形態を含意すると理解されるべきである。したがって、例えば、A+B+Cを含む装置が含意する代わりの実施形態は、装置がA+B+Cからなる実施形態、および、装置が実質的にA+B+Cからなる実施形態を含む。
当業者には、添付の請求項の精神および範囲から逸脱することなく、本開示に様々な変更および変形が可能なことが明らかだろう。したがって、本発明は、実施形態の変更および変形も、添付の請求項および等価物の範囲である限りは、網羅することを意図する。
以下、本発明の好ましい実施形態を項分け記載する。
実施形態1
ガラス製造装置において、
槽と、
光ビームを受光するように配置され、前記光ビームの第2の波長成分を通すが、該光ビームの第1の波長成分を通さないように構成されたフィルタと、
前記フィルタを通って、次に、前記槽内で反射された前記第2の波長成分を受光するように配置されたセンサと
を含む装置。
実施形態2
前記第2の波長成分は、前記第1の波長成分の波長より短い波長を含むものである、実施形態1に記載のガラス製造装置。
実施形態3
前記第2の波長成分は、約600ナノメートル未満の波長を含み、前記第1の波長成分は、約600ナノメートルより長い波長を含むものである、実施形態2に記載のガラス製造装置。
実施形態4
前記槽内に位置する自由表面を有する溶融材料を、
更に含む、実施形態1から3のいずれか1つに記載のガラス製造装置。
実施形態5
前記センサは、前記槽内に位置する前記溶融材料の前記自由表面から反射された前記第2の波長成分を受光するように配置されたものである、実施形態4に記載のガラス製造装置。
実施形態6
前記光ビームを出射するように配置された光源を、
更に含む、実施形態1から5のいずれか1つに記載のガラス製造装置。
実施形態7
前記光ビームを、前記第1の波長成分および前記第2の波長成分を含む複数の波長成分に分割するように構成されたレンズを、
更に含み、
前記フィルタは、前記分割された光ビームを前記レンズから受光するように配置されたものである、実施形態1から6のいずれか1つに記載のガラス製造装置。
実施形態8
その中に前記フィルタまたは前記センサの1つ以上が配置された覆い内部を画定する覆い部を、
更に含む、実施形態1から6のいずれか1つに記載のガラス製造装置。
実施形態9
前記覆い部は、光学的に透明である、実施形態8に記載のガラス製造装置。
実施形態10
ガラス製造装置内の溶融材料の高さ特定方法において、
第2の波長成分を含む光ビームを、溶融材料の自由表面から反射させる工程と、
前記溶融材料の前記自由表面から反射された前記光ビームから、前記第2の波長成分を感知する工程と、
前記溶融材料の高さを、前記光ビームの前記感知した第2の波長成分に基づいて特定する工程と
を含む方法。
実施形態11
前記第2の波長成分を含む前記光ビームを反射させる工程の前に、第1の波長成分を該光ビームから除去する工程を、
更に含む、実施形態10に記載の方法。
実施形態12
前記第1の波長成分を前記光ビームから除去する工程の前に、該光ビームを、該第1の波長成分および前記第2の波長成分を含む複数の波長成分に分割する工程を、
更に含む、実施形態11に記載の方法。
実施形態13
前記第2の波長成分は、前記第1の波長成分の波長より短い波長を含むものである、実施形態11または12に記載の方法。
実施形態14
前記第2の波長成分を感知するセンサを冷却する工程を、
更に含む、実施形態10から12のいずれか1つに記載の方法。
実施形態15
前記第1の波長成分を前記光ビームから除去するフィルタを冷却する工程を、
更に含む、実施形態11から14のいずれか1つに記載の方法。
実施形態16
前記溶融材料の流量を、該溶融材料の前記特定した高さに基づいて変化させる工程を、
更に含む、実施形態10から15のいずれか1つに記載の方法。
実施形態17
前記流量を変化させる工程は、前記溶融材料の温度を調節する工程を含むものである、実施形態16に記載の方法。
実施形態18
前記流量を変化させる工程は、更に、前記溶融材料から形成されたガラスリボンの質量に基づいて行われるものである、実施形態16または17に記載の方法。
実施形態19
ガラス製造方法において、
バッチ材料を溶融槽にバッチ充填速度で供給する工程と、
前記バッチ材料を融解させて溶融材料にする工程と、
第2の波長成分を含む光ビームを、前記溶融材料の自由表面から反射させる工程と、
前記溶融材料の前記自由表面から反射された光ビームから、前記第2の波長成分を感知する工程と、
前記バッチ充填速度を、前記感知した第2の波長成分に基づいて変化させる工程と
を含む方法。
実施形態20
前記溶融材料の高さを、前記感知した第2の波長成分に基づいて特定する工程を、
更に含む、実施形態19に記載の方法。
実施形態21
前記バッチ充填速度を変化させる工程は、前記溶融材料の特定した高さに基づいて行われるものである、実施形態20に記載の方法。
実施形態22
前記第2の波長成分は、第1の波長成分の波長より短い波長を含むものである、実施形態19から21のいずれか1つに記載の方法。
実施形態23
前記第2の波長成分を感知するセンサを冷却する工程を、
更に含む、実施形態19から22のいずれか1つに記載の方法。
実施形態24
第1の波長成分を前記光ビームから除去するフィルタを冷却する工程を、
更に含む、実施形態19から23のいずれか1つに記載の方法。
実施形態25
前記溶融材料の温度を、前記感知した第2の波長成分に基づいて調節する工程を、
更に含む、実施形態19から24のいずれか1つに記載の方法。
実施形態26
前記バッチ充填速度を変化させる工程は、更に、前記溶融材料から形成されたガラスリボンの質量に基づいて行われるものである、実施形態19から25のいずれか1つに記載の方法。
119a、119b ガラス測定装置
301 槽
307 光源
311 レンズ
329 フィルタ
331 ビームスプリッタ
341 センサ

Claims (15)

  1. ガラス製造装置において、
    槽と、
    光ビームを受光するように配置され、前記光ビームの第2の波長成分を通すが、該光ビームの第1の波長成分を通さないように構成されたフィルタと、
    前記フィルタを通って、次に、前記槽内で反射された前記第2の波長成分を受光するように配置されたセンサと
    を含む装置。
  2. 前記第2の波長成分は、前記第1の波長成分の波長より短い波長を含むものであり、
    前記第2の波長成分は、約600ナノメートル未満の波長を含み、前記第1の波長成分は、約600ナノメートルより長い波長を含むものである、請求項1に記載のガラス製造装置。
  3. 前記槽内に位置する自由表面を有する溶融材料を、
    更に含み、
    前記センサは、前記槽内に位置する前記溶融材料の前記自由表面から反射された前記第2の波長成分を受光するように配置されたものである、請求項1に記載のガラス製造装置。
  4. 前記光ビームを出射するように配置された光源を、
    更に含む、請求項1に記載のガラス製造装置。
  5. 前記光ビームを、前記第1の波長成分および前記第2の波長成分を含む複数の波長成分に分割するように構成されたレンズを、
    更に含み、
    前記フィルタは、前記分割された光ビームを前記レンズから受光するように配置されたものである、請求項1に記載のガラス製造装置。
  6. その中に前記フィルタまたは前記センサの1つ以上が配置された覆い内部を画定する覆い部を、
    更に含み、
    前記覆い部は、光学的に透明である、請求項1に記載のガラス製造装置。
  7. ガラス製造装置内の溶融材料の高さ特定方法において、
    第2の波長成分を含む光ビームを、溶融材料の自由表面から反射させる工程と、
    前記溶融材料の前記自由表面から反射された前記光ビームから、前記第2の波長成分を感知する工程と、
    前記溶融材料の高さを、前記光ビームの前記感知した第2の波長成分に基づいて特定する工程と
    を含む方法。
  8. 前記第2の波長成分を含む前記光ビームを反射させる工程の前に、第1の波長成分を該光ビームから除去する工程を、
    更に含み、
    前記第1の波長成分を前記光ビームから除去する工程の前に、該光ビームを、該第1の波長成分および前記第2の波長成分を含む複数の波長成分に分割する工程を、
    更に含む、請求項7に記載の方法。
  9. 前記溶融材料の流量を、該溶融材料の前記特定した高さに基づいて変化させる工程を、
    更に含む、請求項7に記載の方法。
  10. ガラス製造方法において、
    バッチ材料を溶融槽にバッチ充填速度で供給する工程と、
    前記バッチ材料を融解させて溶融材料にする工程と、
    第2の波長成分を含む光ビームを、前記溶融材料の自由表面から反射させる工程と、
    前記溶融材料の前記自由表面から反射された光ビームから、前記第2の波長成分を感知する工程と、
    前記バッチ充填速度を、前記感知した第2の波長成分に基づいて変化させる工程と
    を含む方法。
  11. 前記溶融材料の高さを、前記感知した第2の波長成分に基づいて特定する工程を、
    更に含む、請求項10に記載の方法。
  12. 前記バッチ充填速度を変化させる工程は、前記溶融材料の特定した高さに基づいて行われるものである、請求項10に記載の方法。
  13. 前記第2の波長成分は、第1の波長成分の波長より短い波長を含むものである、請求項10に記載の方法。
  14. 前記溶融材料の温度を、前記感知した第2の波長成分に基づいて調節する工程を、
    更に含む、請求項10に記載の方法。
  15. 前記バッチ充填速度を変化させる工程は、更に、前記溶融材料から形成されたガラスリボンの質量に基づいて行われるものである、請求項10に記載の方法。
JP2021509172A 2018-08-21 2019-08-12 ガラスリボン製造装置および方法 Active JP7342108B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862720446P 2018-08-21 2018-08-21
US62/720,446 2018-08-21
PCT/US2019/046154 WO2020041024A1 (en) 2018-08-21 2019-08-12 Apparatus and methods for manufacturing a glass ribbon

Publications (2)

Publication Number Publication Date
JP2021533380A true JP2021533380A (ja) 2021-12-02
JP7342108B2 JP7342108B2 (ja) 2023-09-11

Family

ID=67841150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021509172A Active JP7342108B2 (ja) 2018-08-21 2019-08-12 ガラスリボン製造装置および方法

Country Status (6)

Country Link
US (1) US20210309554A1 (ja)
JP (1) JP7342108B2 (ja)
KR (1) KR102651570B1 (ja)
CN (1) CN112771008B (ja)
TW (1) TWI830769B (ja)
WO (1) WO2020041024A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612010A (ja) * 1984-06-15 1986-01-08 Hoya Corp 非接触変位検出装置
JPH0843593A (ja) * 1994-07-27 1996-02-16 Ishikawajima Harima Heavy Ind Co Ltd ガラス溶融炉における流下物の制御装置
JP2005060133A (ja) * 2003-08-08 2005-03-10 Hoya Corp 熔融ガラスの製造方法、ガラス成形体の製造方法、光学素子の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2621808A (en) * 1945-08-24 1952-12-16 Frazier Simplex Apparatus responsive to variations in liquid level
SU541799A1 (ru) * 1975-04-08 1977-01-05 Киевский Филиал Всесоюзного Научно-Исследовательского И Проектно-Конструкторского Института По Автоматизации Предприятий Промышленности Строительных Материалов Способ управлени загрузкой сырьевых материалов в стекловаренную печь
IL66382A (en) * 1982-07-23 1988-04-29 Israel Atomic Energy Comm Method and apparatus for measuring linear distances using moire patterns
US4450722A (en) * 1982-07-26 1984-05-29 The Babcock & Wilcox Company Water level gauge with fault detector
DD261426A1 (de) * 1987-05-28 1988-10-26 Glasindustrie Waermetech Inst Verfahren und vorrichtung zum messen des schmelzbadniveaus in glasschmelzoefen
US5021665A (en) * 1989-12-26 1991-06-04 Ames Donald P Oil level monitor
WO1992008088A1 (en) * 1990-10-30 1992-05-14 The Broken Hill Proprietary Company Limited Distance measurement in furnaces
JPH05107100A (ja) * 1991-10-17 1993-04-27 Sumitomo Chem Co Ltd 界面検知方法及び装置
CH695000A5 (de) * 2000-01-31 2005-10-31 Swan Analytische Instr Ag Verfahren zur Detektion von Serum und zur Erfassung seiner Qualitaet und Anordnungen hierzu.
JP2001221746A (ja) * 2000-02-03 2001-08-17 Suntory Ltd 液体充填用容器の撮像方法および装置
US6770883B2 (en) * 2002-01-30 2004-08-03 Beckman Coulter, Inc. Sample level detection system
AU2003249274A1 (en) * 2002-07-16 2004-02-02 Strube, Inc. Liquid level sensor using fluorescence in an optical waveguide
JP3986070B2 (ja) * 2003-08-08 2007-10-03 Hoya株式会社 熔融ガラスの製造方法及びガラス成形体の製造方法
KR102072594B1 (ko) * 2011-08-09 2020-02-03 에이지씨 가부시키가이샤 액면 레벨 검출 장치, 유리 제조 장치, 액면 레벨 검출 방법 및 유리 제조 방법
US9228878B2 (en) * 2012-03-19 2016-01-05 Advanced Energy Industries, Inc. Dual beam non-contact displacement sensor
DE102012211714A1 (de) * 2012-07-05 2014-05-22 Siemens Vai Metals Technologies Gmbh Verfahren und Vorrichtung zur Detektion des Schlackepegels in einem metallurgischen Gefäß
CN103076065B (zh) * 2013-01-27 2017-05-03 中国科学院合肥物质科学研究院 一种用于检测液态金属液位的激光测量装置
JP6460118B2 (ja) * 2014-11-21 2019-01-30 富士通株式会社 水量計測装置及び水量モニタリングシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612010A (ja) * 1984-06-15 1986-01-08 Hoya Corp 非接触変位検出装置
JPH0843593A (ja) * 1994-07-27 1996-02-16 Ishikawajima Harima Heavy Ind Co Ltd ガラス溶融炉における流下物の制御装置
JP2005060133A (ja) * 2003-08-08 2005-03-10 Hoya Corp 熔融ガラスの製造方法、ガラス成形体の製造方法、光学素子の製造方法

Also Published As

Publication number Publication date
CN112771008B (zh) 2023-06-27
TWI830769B (zh) 2024-02-01
KR20210045471A (ko) 2021-04-26
US20210309554A1 (en) 2021-10-07
CN112771008A (zh) 2021-05-07
TW202016527A (zh) 2020-05-01
KR102651570B1 (ko) 2024-03-26
WO2020041024A1 (en) 2020-02-27
JP7342108B2 (ja) 2023-09-11

Similar Documents

Publication Publication Date Title
JP6158342B2 (ja) 基板の厚さ制御
KR101811262B1 (ko) 저간섭성 광간섭법 조립체를 통합한 유리 제조 시스템
US20120127487A1 (en) Methods and apparatuses for measuring the thickness of glass substrates
CN107820459A (zh) 具有测量装置的可生产的制造装置
US10295330B2 (en) Method and system for measuring thickness of glass article
JP2015014608A (ja) 動いている基板の形状変化を検出する方法および装置
US20150353408A1 (en) Sheet glass forming method and sheet glass forming device
JP2021533380A (ja) ガラスリボン製造装置および方法
TW201619078A (zh) 引導玻璃切割及防止碎裂的熱阻障件
EP2418469B1 (en) Hole diameter measuring method and device for holey optical fiber, and manufacturing method and device for holey optical fiber
JP2005350310A (ja) 光ファイバ素線の製造方法
JP2022519650A (ja) 粘性リボンを加工する方法
WO2020129529A1 (ja) ガラス物品の温度測定方法及び製造方法
JP6141047B2 (ja) レーザ切断装置およびレーザ切断方法
JP2022521028A (ja) リボンを製造するための方法及び装置
EP2208716A1 (en) Method and apparatus for manufacturing optical fiber preform using high frequency induction thermal plasma torch
JP2006297198A (ja) マイクロ流路デバイス
TW202334044A (zh) 藉由高解析度加熱改善玻璃條痕的系統和方法
JP2024507336A (ja) ガラスをスロットドローダウンするための調整可能なエッジ冷却手段のためのシステムおよび方法
JPH1039184A (ja) 光学的帯状導体の製造方法および製造装置
CN114929635A (zh) 制造玻璃带之方法及设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230830

R150 Certificate of patent or registration of utility model

Ref document number: 7342108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150