JP2021514469A - マイクロ流体構造体を製造するための方法及び装置、並びにマイクロ流体構造体 - Google Patents

マイクロ流体構造体を製造するための方法及び装置、並びにマイクロ流体構造体 Download PDF

Info

Publication number
JP2021514469A
JP2021514469A JP2020544222A JP2020544222A JP2021514469A JP 2021514469 A JP2021514469 A JP 2021514469A JP 2020544222 A JP2020544222 A JP 2020544222A JP 2020544222 A JP2020544222 A JP 2020544222A JP 2021514469 A JP2021514469 A JP 2021514469A
Authority
JP
Japan
Prior art keywords
liquid
substrate
selection path
contact
continuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2020544222A
Other languages
English (en)
Other versions
JPWO2019162644A5 (ja
Inventor
ウォルシュ、エドモンド
フォイアボルン、アレキサンダー
リチャード クック、ピーター
リチャード クック、ピーター
ソイトゥ、クリスチャン
Original Assignee
オックスフォード ユニヴァーシティ イノヴェーション リミテッド
オックスフォード ユニヴァーシティ イノヴェーション リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オックスフォード ユニヴァーシティ イノヴェーション リミテッド, オックスフォード ユニヴァーシティ イノヴェーション リミテッド filed Critical オックスフォード ユニヴァーシティ イノヴェーション リミテッド
Publication of JP2021514469A publication Critical patent/JP2021514469A/ja
Publication of JPWO2019162644A5 publication Critical patent/JPWO2019162644A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0289Apparatus for withdrawing or distributing predetermined quantities of fluid
    • B01L3/0293Apparatus for withdrawing or distributing predetermined quantities of fluid for liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5088Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above confining liquids at a location by surface tension, e.g. virtual wells on plates, wires
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00531Sheets essentially square
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00617Delimitation of the attachment areas by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00621Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/0074Biological products
    • B01J2219/00743Cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0642Filling fluids into wells by specific techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0442Moving fluids with specific forces or mechanical means specific forces thermal energy, e.g. vaporisation, bubble jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

マイクロ流体構造体を製造するための方法及び装置が開示される。1つの構造体において、第1液体の連続体が第1基板に直接接触して提供される。第2液体が第1液体を覆う。第1液体と混和しない分離流体が、少なくとも第1液体を通って押し出されて、第1基板の表面上の選択経路の全部に沿って第1基板に接触する。初めは選択経路の全部と接触していた第1液体は、選択経路から離れるように移動する。第1液体は分割されて、互いから分離される第1液体の分離体を形成する。1以上の分離体の各々について、分離体実装面積がその分離体と第1基板との間の接触面積を表し、かつ分離体実装面積の境界の全部が分離体実装面積を囲む選択経路の閉ループに接触している。【選択図】図2

Description

本発明は、第1液体の本体(body)を複数の分離された小本体(sub-bodies、以下「分離体」)に分割することによって、マイクロ流体(microfluidic)構造体(arrangement)を作製することに関する。分離体は、生細胞またはその他の生物材料等の研究対象の物質を含む、孤立した(isolated)サンプルまたは液体壁を有するマイクロ流体回路の提供に使用され得る。
マイクロウェルプレートは、生物材料を取り扱う研究に広く使用されている。ウェルを微小化することで、多数のウェルを同一プレート内に提供できる。例えば、1000を超えるウェルを有するプレートであって、数十ナノリットルの領域に各ウェルが容積を持つものが知られている。しかし、ウェルを互いから分離する固体壁を提供する必要が本質的に存在するため、これ以上の微小化は困難である。これらの壁の厚さにより、ウェルに利用できる表面積が減少する。1536ウェルを有する典型的なプレートでは、例えば、現在の設計の利用可能な表面の約60%を壁が占有すると見込まれている。より高密度のものでは、壁によって利用できなくなる表面積の割合はさらに高くなる。
マイクロウェルプレートの微小化のさらなる障害は、物理壁によって規定される小さなウェルへの液体の添加が難しいことである。液体をウェルに確実に(即ち、液体の下に空気をトラッピングしない方法で)添加するには、器具の先端や先端についた液体をウェルの壁に接触させずに、ウェルの底まで正確に器具の先端を前進させる必要がある。液体がウェルの底に到達する前に壁に接触すると、メニスカス(meniscus)を壁との間に形成して液体の下に空気をトラップしてしまう。これは、液体がウェルの底に到達できないことを意味し得る。
また、マイクロウェルプレートは、ウェルの大きさと1プレートあたりのウェル数が固定されているので柔軟性に欠ける。さらにまた、ウェルに相当する構造を効率的な方法で形成できる材料を使用しなければならないことから、生物化学的適合性も制限され得る。例えば、高密度プレートには、ポリジメチルシロキサン(PDMS)のような材料を使用する必要があるかもしれないが、未処理のPDMSは、毒素を浸出させたり有機溶剤と反応したりすることから、生物化学的適合性が低い。
欧州特許公報1527888A2は、インクジェット印刷を使用する、生物材料の培養と分析のための増殖培地の液滴の狭い間隔のアレイを形成する代替的アプローチを開示する。このアプローチは伝統的なマイクロウェルプレートよりも高い柔軟性を提供するが、印刷には高度な装置を必要とする。加えて、液滴の形成後にさらに材料を追加して液滴に添加するには長時間を要するし、得られた定着した滴同士は互いにかみ合って接しないので、これらの滴が濡らさない実装面積(footprint)はかなり大きい。
本発明の目的は、上述した課題の1以上に少なくとも部分的に取り組むマイクロ流体構造体を製造する代替的な方法を提供することである。
本発明のある側面に従えば、マイクロ流体構造体を製造する方法が提供され、該方法は、第1基板に直接接触する第1液体の連続した本体(continuous body、以下「連続体」)を提供することと、第1液体の連続体に直接接触し、かつ第1液体の連続体を覆う第2液体を提供することと、第1液体と混和しない分離流体を押し出して、少なくとも第1液体を通って、第1基板の表面上の選択経路の全部に沿って、第1基板と接触させることを含み、これにより、固体部材が選択経路に直接接触することを全くしないで、かつ固体部材が固体部材の先端で保持された液体の小滴経由で選択経路に接触することを全くしないで、初めは選択経路の全部と接触していた第1液体を選択経路から離れるように移動させ、ここで、該選択経路は、第1液体の連続体を分割して、第2液体によって第1液体の連続体の残りの部分から分離される第1液体の1個の分離体または第2液体によって互いから分離される第1液体の複数の分離体を形成するものであって、該方法において、1以上の分離体の各々について、分離体実装面積がその分離体と第1基板との間の接触面積を表し、かつ分離体実装面積の境界の全部が分離体実装面積を囲む選択経路の閉ループに接触している。
本方法は、分離体の外形を規定するための機械的または化学的構造を予めなんら提供されることなく、液体の分離体が基板上に柔軟に形成されることを可能にする。分離体の形状と大きさは選択経路の外形によって規定され、この外形は、第1液体が移動された(取り除かれた)第1基板上の面積を規定する。第2液体は、第1液体が残した空間を埋めて、分離体を互いから孤立させる。後述する通り、選択経路の選択には比較的制限がない。極めて小さい分離体、例えば100ミクロン以下のオーダーのものの作製が可能であるが、これを標準のマイクロウェルプレート製造技術を使用して、表面を修正/処理せずに、合理的な費用及び/または時間で作成するのは困難ないし不可能であろう。また、分離体は、物理壁を有するマイクロウェルプレートを使用した場合に可能な位置よりも、互いにずっと近接して配置することができる。本願開示の実施形態の液体壁は、典型的には厚さ70〜120ミクロンであり(また、15ミクロン程度まで厚さを減らして作製し得るが)、これは、操作対象の液体の収容にマイクロ流体構造体の90%を超える表面積を利用できるようにする。さらにまた、任意の分離体への追加の液体の添加を妨げる固体壁も存在しない。
インクジェット印刷等により配置される液滴のアレイと比べると、本方法は、高度な印刷装置の必要性をなくし、かつ、(分離体の形状が円形である必要がないので)より高い空間充填効率を実現し得る。研究対象の物質(例、細胞、DNA、タンパク質、または液晶の構成要素等のその他の関心のある分子等の生物材料)及び被験物質(例、薬物)を分離体に分割される前の第1液体の連続体に添加することによって、複数の分離体に同時に添加することができる。第1液体の小片(strip)において濃度の濃淡を作ることも可能であり、小片を分離体に分割して各成分の異なる濃度を含む複数のサンプルを迅速かつ簡単に作製することができる。さらにまた、本発明者らは、円形の実装面積を有しない分離体(例、実質的に正方形ないし長方形の分離体)では、分離体形成後の流体(及び細胞等)の配置をより効率的に行える(より迅速に溶け込む)ことを発見した。理論に拘束されることは望まないが、この効果は、円形でない分離体では対称性が減少していること及び/またはこれらの分離体がより平たいことの影響を受けている可能性があると考えられる。円形でない分離体は、本願開示の方法を使用して簡単に形成することができる。
ある実施形態において、分離流体は、第1基板に対して遠位の先端を移動させながら分離流体を射出部の遠位の先端からポンピングすることによって、第1基板上の選択経路に押し出される。このアプローチは、比較的単純なハードウェアを使用して、費用効果も信頼性も高い方法で実行することができる。固体部材と選択経路とが接触する代替的アプローチ(例、選択経路に沿って固体部材をこするもの)は、第1基板の表面に垂直な(即ち、z方向に)固体部材の移動を可能にするために、固体部材の構造体の取付具にある程度のクリアランスを要する。そのようなアプローチと比べれば、本願のアプローチは第1基板の表面に垂直な(z方向の)射出部の動きを必要としないので、より高い分解能を提供することができる。それゆえ、射出部は、第1基板の表面に平行な方向(xy方向)のクリアランスなしに、しっかりと堅くクランプされ得るので、位置決めの正確性を改善する。位置決めの正確性は、射出部を第1基板上で移動させるのに使用するメカニズムの正確性によってのみ制限され得る。また、射出部と第1基板とを接触させる必要性をなくしたことは、このアプローチが第1基板の表面における高さのばらつきによって生ずる誤差に対してより鈍感であること、及び/またはそのような高さのばらつきを補償する必要性がないことも意味する。また、z方向の動きを要しないことにより、固体部材と選択経路とが接触する(時間を浪費するz方向の動作を要する)代替的アプローチと比べてスピードも改善する。
また、基板表面に押し出された分離流体を使用することで、固体部材と選択経路とが接触する代替的アプローチに比べて向上した柔軟性も提供する。固体部材が選択経路に沿って第1液体を切り離すのに使用される場合は、切断の幅は、固体部材の固定された大きさと形状によって規定される。異なる大きさの切断が必要な場合は、固体部材を異なる固体部材に取り換える必要があるかもしれない。さらにまた、固体部材における製造誤差が、切断の幅における対応する誤差につながり得る。本願のアプローチにおいては、対照的に、切断の幅は、分離流体を表面に押し出すやり方を変更すること、例えば、分離流体の速度や、射出部と表面の間の距離、または一定の位置に射出部が存在する時間(または射出部が表面上で走査される速度)を変更することで変えることができる。射出部における製造誤差は、切断の幅に対応する誤差を生じさせず、また、さらに、一般的に、かつ安価で、高公差で利用可能な管、例えば、ステンレス鋼の針が、射出部として使用できる。
固体部材と選択経路とが接触する代替的アプローチには、不完全に互いから分離された分離体を作製する有意なリスクがあることが分かっている。例えば、代替的アプローチを使って作製した分離体のアレイでは、分離体の小さなサブセット(subset)がつながっていることが認められたことが分かっている。理論に拘束されることは望まないが、これらの望まないつながりは、固体部材が選択経路沿いに移動される間に固体部材に付着したタンパク質またはその他の材料が、固体部材が第1液体を分離体に切断する工程で壊れたものに由来すると考えられる。このメカニズムは本明細書が提案する非接触型の方法では発生せず、実に、他の条件が同様でも望まない不完全な分離体は観察されていないのである。
また、固体部材と選択経路とが接触する代替的アプローチで観察されているのが、選択経路沿いに第1液体の切断に固体部材が使用されている間に、残骸が固体部材上に蓄積し得ることである(例、タンパク質の小胞または塊)。このことは、切断工程が第1液体から物質を取り除いたうえ、これにより、第1液体の組成に望まない改変や破壊をしていることを示唆している。さらにまた、固体部材が接触すると、キズや切れ目を選択経路沿いに導入しうるので、これもまた、タンパク質の小胞または塊等の残骸を引き寄せ得る。本願開示の非接触型のアプローチを使用すれば、そのような改変や破壊はより少なく、または無視できる程度になる。
ある実施形態において、遠位の先端は、選択経路の少なくとも一部について、分離流体を第1基板上の選択経路上に押し出す間、第2液体と第1液体の両方を通って移動する。このタイプの実施形態では、遠位の先端の移動が、第1液体が選択経路に隣接する体積から離れるように移動するのを補助し、これにより効率を改善する。ある実施形態において、射出部の遠位の先端の少なくとも一部は、第1液体よりも第2液体によってより簡単に濡らされるように構成されている。これは、遠位の先端の後に続く第2液体を第1液体を通って効率的に引きずるようにするので、第2液体が第1液体を効率的に移動させるのを容易にする。分割工程は、これにより、より高い信頼性及び/またはより高速で実行することができる。
ある実施形態において、分離流体は、第2液体の一部を含み、該第2液体の一部は、局所共役エネルギーによって、基板上の選択経路に向けて押し出され、第1基板上の選択経路に向けて押し出される第2液体の一部を含むまたはこれに隣接する領域内へと進む。エネルギーの共役は、熱または圧力を、局所的に発生させることを含んでいてもよい。このアプローチは、分割工程が、迅速に、柔軟に、かつ高分解能で形成されるのを可能にする。いくつかの実施形態では、局所共役エネルギーは、電磁放射または超音波の集束ビームを使って実現される。
ある実施形態において、選択経路の閉ループと全部が接触する境界を有する1以上の分離体実装面積の各々について、該境界は、少なくとも1つの直線部分を有する。直線部分を有する実装面積は、液滴を置くことに基づく代替的技術に伴う円形または楕円形の実装面積よりも高い空間充填効率を可能にする。置くのではなく、分割によって分離体を形成することで、そのような直線部分の形成をかなり容易にする。例えば、正方形、長方形またはその他の互いに形がかみ合う形状が形成されてもよい。
ある実施形態において、第2液体は、第1液体よりも高密度である。
本方法は、第1液体よりも高密度である第2液体を使用することで、第1液体を基板との接触から遠ざけるように持ち上げると予想される浮力にもかかわらず、驚くほど効果的である。より高密度の第2液体の使用を可能にすることで、第2液体に使用し得る組成の範囲を有利に広げることができる。さらにまた、第1液体が基板上に横に広がらず、各分離体内で安定して保持され得る第1液体の最大深さが増加する。
ある実施形態において、研究対象の物質が第1液体の連続体内に提供され、分離体への分割により、各々が研究対象の物質の一部を含む、複数の孤立サンプルが生成される。ある実施形態において、研究対象の物質は接着性生細胞を含み、細胞の少なくとも一部は、第1液体の連続体が分離体に分割される前に、基板に接着することが可能である。試薬(例、薬物)は、接着性生細胞の少なくとも一部が基板に接着した後に、第1液体の連続体に添加される。分離体への分割は、被験物質が第1液体の連続体に添加された後に行われる。
こうして、接着性生細胞の基板への接着と、その後の複数の孤立サンプルへの分割が可能になった後、それら接着性生細胞をまとめて処理することを可能にする方法が提供される。これは、先行技術のアプローチを使っては不可能であり、また、特に多数の孤立サンプルの作製と最小限の細胞の破壊が望まれる場合に、時間とシステムの複雑さを相当程度省く。また、各サンプル中の細胞が確実に類似性の高い条件に暴露されるようにするが、これは、被験物質(例、薬物)を個々のウェルまたは液滴に、異なるサンプルの処理間の有意な遅延とインクジェット印刷やDrop-seq法による物理環境を余儀なくする、手作業で添加する場合には、確実に行うのは困難である。細胞は、インクジェット式印刷システムの印刷ノズルを通過させることで課され得るストレスなく表面上に配置することができる。第1液体を分割する前に細胞を接着させることができるので、接着する前に細胞を微小な容積に入れる代替的アプローチ(例、液滴印刷経由)よりも、旧式のウェルプレートの薬物スクリーニング開始状態により近い状態を提供する。さらにまた、本発明者らは、細胞が細胞の接着前に同じ量の液滴に添加されたまたは存在していた場合に比べて、本願開示の実施形態に従い形成された分離体では細胞生存率がより高いことを発見した。
ある実施形態において、分離流体は、第2液体と同一の組成を有する液体を含み、及び、第1液体の連続体に直接接触し、かつ第1液体の連続体を覆う第2液体を提供することは、第1基板に直接接触する第1液体の連続体が提供された後に、分離流体を押し出すことで第1液体を通って、第1液体の上部界面の一部がまだ第2液体と接触していない間に選択経路の少なくとも一部に沿って第1基板に接触させることを含み、該分離流体を押し出すことは、分離流体が、第1液体の連続体に直接接触しかつ第1液体の連続体を覆う第2液体の層を形成するまで続く。
したがって、例えば、第1液体を通って分離流体を押し出す工程は、第2液体がまだ全く存在していない、第1液体が空気にさらされている間に開始してもよい。この工程が進むに従い過剰の分離流体が第1液体の上に上昇し、最終的に第1液体を覆い、これにより、第1液体を覆う第2液体の層を提供する。このアプローチは、第1液体を通って分離流体を押し出して分離体を形成することとは別のステップとして、ユーザーが第2液体の層を提供する必要をなくすので、便利である。これは、時間を節約し、装置を単純化する。さらにまた、第1液体の連続体をその上に重なる第2液体の層が起こす妨害のリスクなく(第2液体の層はまだ存在していないので)、十分事前に準備することができる(分離流体を押し出すことによる分離体の形成の準備が整う)。例えば、第2液体が重なる時間が長時間になると分離体の形成前の第1液体の深さにばらつきが出ることがあり、これが分離体の体積の望まないばらつきにつながり得る。
代替的な側面に従えば、マイクロ流体構造体を製造するための装置が提供され、該装置は、基板を保持するように構成された基板台(table)であって、その上で第1液体の連続体が基板に直接接触して提供され、かつ、第2液体が第1液体に直接接触して提供されて第1液体を覆っている、基板台と、パターン形成ユニットを含み、該パターン形成ユニットは、第1液体と混和しない分離流体を押し出して、少なくとも第1液体を通って、かつ、基板の表面上の選択経路の全部に沿って基盤に接触させるように構成され、これにより、固体部材が選択経路に直接接触することを全くしないで、かつ固体部材が固体部材の先端で保持された液体の小滴経由で選択経路に接触することを全くしないで、初めは選択経路の全部と接触していた第1液体を選択経路から離れるように移動させ、ここで、該選択経路は、第1液体の連続体を分割して、第2液体によって第1液体の連続体の残りの部分から分離される第1液体の1個の分離体または第2液体によって互いから分離される第1液体の複数の分離体を形成するものであって、該装置において、1以上の分離体の各々について、分離体実装面積がその分離体と第1基板との間の接触面積を表し、かつ分離体実装面積の境界の全部が分離体実装面積を囲む選択経路の閉ループに接触している。
よって、本願開示に従う方法を実行することができる装置が提供される。
本発明の実施形態を添付の図面を参照して、例示としてのみ以下に説明する。なお、図面における対応する参照符号は、対応する部分を示す。
図1は、第1液体に直接接触しかつ第1液体を覆う第2液体を有する、基板上の第1液体の連続体の概略側面図である。 図2は、射出部の遠位の先端から分離流体をポンピングして外に出すことによって第1液体の連続体を分割する間の、図1の構造体の概略側面図である。 図3は、図2の構造体の概略平面図である。 図4は、分離体をさらに分割する後続のステップを示す概略側面図である。 図5は、分離体の境界を囲み、かつこれに接触する選択経路の閉ループ示す、図2〜図4のステップを使用して形成されたマイクロ流体構造体の一部の概略平面図である。 図6は、第1液体を基板から離れるように押し出して、これにより第2液体が移動できるようにして基板上の選択経路と接触させるための、基板の中間吸収層内へのレーザービームの集束を示す概略側面断面図である。 図7は、第1液体を通って第2液体の一部を基板上の選択経路へと押し出すための、第2液体内へのレーザービームの集束を示す概略側面断面図である。 図8は、第1液体を基板から離れるように押し出して、これにより第2液体が移動できるようにして基板上の選択経路と接触させるための、第1液体内へのレーザービームの集束を示す概略側面断面図である。 図9は、第1液体を通って第2液体の一部を基板上の選択経路へと押し出すための、第2基板の中間吸収層内へのレーザービームの集束を示す概略側面断面図である。 図10は、第1液体を通って第2液体の一部を基板上の選択経路へと押し出すための、第3液体内へのレーザービームの集束を示す概略側面断面図である。 図11は、等しい体積の分離体が生ずる分割スキームを示す。 図12は、異なる体積の分離体を制御可能に提供するための分割スキームを示す。 図13は、連続体を逆さに保持しながら第1液体の連続体を分割する図である。 図14は、第1液体の連続体が細長い小片に分割され、各小片がその後複数の分離体に分割される、第1のステップの分割スキームの図式化である。 図15は、第1液体の連続体が分割されて、少なくとも1つの槽(reservoir)に接続された導管(conduit)を含む少なくとも1つの分離体を形成する、分割スキームの図式化である。 図16は、第1液体の複数の連続体を作製し、その後連続体の各々を分割して分離体を作製することによって、互いに対して相対的に異なる組成を有する複数のセットの第1液体の分離体を作成するためのスキームの図式化である。 図17は、生物材料を試験するためのマイクロ流体構造体を製造する方法の枠組みを説明するフローチャートである。 図18は、接着性生細胞と被験物質を含むサンプルを試験するためのマイクロ流体構造体を製造する方法の枠組みを説明するフローチャートである。 図19は、細胞集団をグループ分けして増殖するためのマイクロ流体構造体を製造する方法の枠組みを説明するフローチャートである。 図20は、分離流体をポンピングして射出部の遠位の先端の外に出すことが関わる、本願開示の実施形態に従うマイクロ流体構造体を製造するための装置の図である。 図21は、分離流体を押し出して第1(firs)液体を通って基板に接触させるためのレーザービームの使用が関わる、本願開示の実施形態に従うマイクロ流体構造体を製造するための装置の図である。 図22は、代替的技術を使用すると起こり得る、液体の分離体間の望まない接続の画像を示す。 図23及び図24は、分離流体が、第2液体で全く覆われていない第1液体の連続体を通って初めに押し出される、マイクロ流体構造体を製造する方法におけるステップを示す概略側面断面図であり、図23は、分離流体が第1液体を覆い始めたばかりで、第1液体の上部界面の一部は第2液体と全く接触していない、初期段階の図であり、図24は、この時点ではもう第2液体として参照してもよい分離流体が、第1液体を完全に覆っている、より後の段階の図である。 図23及び図24は、分離流体が、初めは第2液体で全く覆われていない第1液体の連続体を通って押し出される、マイクロ流体構造体を製造する方法におけるステップ(複数)を示す概略側面断面図であり、図23は、分離流体が第1液体を覆い始めたばかりで、第1液体の上部界面の一部は第2液体と全く接触していない、初期段階の図であり、図24は、この時点ではもう第2液体として参照してもよい分離流体が、第1液体を完全に覆っている、より後の段階の図である。
これらの図は、説明目的のみに提供するものであり、構成要素が明確に可視化できるように規模を描写するものではない。特に、第1及び第2液体の深さと比べた、第1基板を提供するレセプタクルの幅は、典型的には、図面に描かれるものよりもはるかに大きい。
マイクロ流体構造体を便利かつ柔軟に製造するための方法が提供される。
図1に簡略化して示す通り、第1液体1の連続体が提供される。第1液体1は、第1基板11に直接接触する。ある実施形態において、第1液体1は水性溶液を含むが、他の組成も可能である。第2液体2は、第1液体1に直接接触して提供されている。第2液体2は第1液体と混和しない。ある実施形態において、第1液体1の連続体は、第2液体2を第1液体1に接触させる前に、第1基板11上に形成される。他の実施形態において、第1液体1の連続体は、第2液体2が提供された後に形成される(例、第1液体2を通って第1液体1を注入することによって)。マイクロ流体構造体が生物材料のサンプルを試験するために使用される実施形態において、第1液体1の連続体は、通常、第2液体2が提供される前に形成される。第2液体2は第1液体1を覆う。こうして、第1液体1は、第2液体2と第1基板11の組合せに完全に囲まれ、かつこれと排他的に直接接触する。本方法において、この時点で、第1液体1は、第2液体2と第1基板以外とは全く接触していない。典型的には、第1基板11は、少なくとも第1液体1の連続体と接触している領域(典型的にはそのすぐ下にある)において、パターン形成されない(機械的にも化学的にも形成されない)。ある実施形態において、第1液体1の連続体は、第1基板11の実質的に平坦な部分と第2液体2と排他的に直接接触する。
後続のステップにおいて、図2に示す例示的な実施では、分離流体3は、少なくとも第1液体1を通って(及び任意に、図2の例に示される通り第2液体2の一部も通って)押し出されて、第1基板11の表面5上で選択経路4の全部に沿って第1基板11と接触する。選択経路4は、第1基板11の表面5の表面積の一部からなる。したがって、選択経路4は有限の幅を有する。選択経路の各部分は、実質的に細長くかつ相互接続されていてもよく、選択経路は、こうして、ネットワークないしウェブ状のパターンを形成する。分離流体3は第1液体1と混和しない。分離流体3は、固体部材が選択経路に(例、固体部材の先端を第1液体の表面上で引きずることによって)直接接触することを全くしないで、かつ固体部材が固体部材の先端で保持された液体の小滴経由で(例、先端に対して相対的に不動に保持された液体の小滴を表面上で引きずることによって)選択経路に接触することを全くしないで、第1液体1を選択経路4から離れるように移動させる。第1液体1は、初めは選択経路4の全部と接触していた。したがって、選択経路4によって規定される表面積は、第1液体1を通って押し出される分離流体3によって第1液体1が第1基板11との接触から離れるように移動された、第1基板11の表面積の一部を表す。図2の実施形態において、分離流体3は、射出部の遠位の先端6が第1基板11上で走査される間に、遠位の先端6内の内腔から選択経路4上に押し出される。したがって、この実施形態においては、選択経路4の少なくとも一部の間において、遠位の先端6と選択経路4との間に接触は全くない。選択経路4の少なくとも一部について、選択経路とその他の固体部材との間に、直接の接触または固体部材に対して不動である液体の小滴を経由する接触は全くない。分離流体3の勢いは、第1液体1を強制して選択経路4から離れるように移動させるのに十分である。ある実施形態において、分離流体3は、選択経路の少なくとも一部について、継続的にポンピングされて遠位の先端の外に出される。図2に示す実施形態において、分離流体3は、遠位の先端6の位置における選択経路に実質的に垂直な方向にポンピングされて遠位の先端6から外に出される。他の実施形態において、遠位の先端6は、選択経路4に向けて分離流体3を選択経路4に対して斜角でポンピングするように、傾けてもよい。
例えば図3〜図5に示す通り、選択経路4は、第1液体1の連続体が第1液体1の複数の分離体7に分割されるようにする。各分離体7は、第2液体2によって他の分離体7と互いに分離されている。こうして、第1液体1が押し出される分離流体3によって選択経路4から離れるように移動される時、第2液体2が移動して選択経路4と接触して、選択経路4との接触を安定して維持する。ピン止め線(界面張力と関連する)が、第2液体2によって互いから分離される第1液体1の複数の分離体7を安定して保持する。複数の分離体7は、1つの有用な分離体7と第1液体1の連続体の残部(これは他の分離体と考えてもよい)を含んでいてもよく、または、複数の有用な分離体(例、試薬を受けるための複数の槽等)、及び任意で、第1液体1の連続体の任意の残部を一緒に含んでいてもよい。
本方法は、分離体7の外形を規定するための機械的または化学的構造をあらかじめ作成することなく、第1基板11上に第1液体1の分離体7を柔軟に形成することを可能にする。
第1液体1、第2液体2、分離流体及び第1基板11の具体的な組成は、特に限定されない。ただし、第1液体1と第2液体2は、本方法を効率的に実施するのに十分に第1基板11を濡らすことができることが望ましい。さらにまた、マイクロ流体構造体の製造中に、相が変化しないことが望ましい。例えば、分離流体、第1液体1及び第2液体2は、全て、マイクロ流体構造体が形成される前に液体であり、製造工程中及びマイクロ流体構造体の形成後とマイクロ流体構造体の通常使用期間を含めた長期間においても液体であり続ける。ある実施形態において、第1液体1、第2液体2及び第1基板11は、空気中の第1基板11上の第1液体1の液滴の平衡接触角と空気中の第1基板11上の第2液体2の液滴の平衡接触角の両方が90°未満であるように選択される。ある実施形態において、第1液体1は水性溶液を含む。この場合において、第1基板11は親水性と説明し得る。ある実施形態において、第2液体2は、FC40等のフルオロカーボンを含む(詳細に後述する)。この場合において、第1基板11は、親フルオロ性(fluorophilic)と説明し得る。したがって、第1液体1が水性溶液であり第2液体2がフルオロカーボンである場合は、第1基板11は、親水性と親フルオロ性の両方であると説明し得る。
分離流体3は、気体、液体、第2液体2と同一の組成を有する液体、第1液体1を通って分離流体3を押し出す前に提供される第2液体2の一部のうちの1以上を含んでいてもよい。
いくつかの実施形態では、上述の通り、遠位の先端6が(遠位の先端6と第1基板11の間で、いくらかの第1液体1、及び任意で、第2液体2と一緒に)第1基板11に対して相対的に移動される(例、選択経路4に対応する経路に沿ってその上または下を走査される)間に、分離流体3が、射出部の遠位の先端6内の内腔から第1基板11上の選択経路4上に(例、分離流体3を(任意で、実質的に一定の速度で)内腔の外に継続的にポンピングすることによって)押し出される。このタイプのいくつかの実施形態では、遠位の先端6は、選択経路4の少なくとも一部について、分離流体3を第1基板11上の選択経路4上に押し出す間、第2液体2と第1液体1の両方を通って移動される。こうして、遠位の先端6は、第1基板1の比較的近くに保持される。そのような実施形態においては、遠位の先端6の移動と、第1基板11に向かう分離流体3の流れの両方が、第1液体1を第1基板11から離れるように移動させ、それまで第1液体1が占領していた体積に、第2液体2が移動することを可能にする。ある実施形態において、この工程は、遠位の先端6の少なくとも一部が第1液体1よりも第2液体2よってより簡単に濡らすように調整することで、さらに容易になる。このようにして、エネルギー的により好ましく、移動する遠位の先端6の背後の領域内に第2液体2が流入し、そしてこれにより、第1液体1を効率的に移動させる。好ましくは、第1基板11もまた、第1液体1よりも第2液体2によってより簡単に濡らすように構成して、これにより、選択経路4沿いに第2液体2と第1基板11とをエネルギー的に有利に接触させる。これは、内部で分離体7が選択経路4に接触する第2液体によって互いから分離される、安定な構造体を維持するのに役立つ。他の実施形態において、その一例を図2に示すが、選択経路4の少なくとも一部について、分離流体3を第1基板11上の選択経路4上に押し出す間、遠位の先端6は、第2液体2を通るが第1液体1は通らずに移動される。遠位の先端6は、こうして、第1基板11からさらに離れて保持される。このアプローチは、第1基板11に対して分離流体3をポンピングすることによって起こる、第1液体1の液滴の第1基板11からの脱離を防止するのに役立つ。
図2〜図5は、例示的な実施形態を示す。図2及び図3は、第2液体2を通るが第1液体1は通らない遠位の先端6の水平方向、即ち第1液体1と(典型的にはその下で)接触する第1基板11の平面に平行な方向、の移動を示す。分離流体3は、遠位の先端6からポンピングされる。図2において遠位の先端6から出る垂直の矢印は、ポンピングされた分離流体3の流れを模式的に表している。図2における第1液体1内の矢印は、第1液体1の、選択経路4の一部の上の領域から離れる移動を模式的に表し、この結果、第2液体2が選択経路4沿いに第1基板11に接触できるようになる。図2において、遠位の先端6の移動は、ページの中に入る方向である。図3において、その移動はページの下方向である。ある実施形態において、遠位の先端6は、遠位の先端6が第2液体2を通って移動される間、第1基板11から一定の距離に保たれる。図2及び図3の工程は完了すると、図1の第1液体1の連続体が、2つの分離体に分割されている。この工程を繰り返して及び/または並行に実行して所望の数及び大きさの個々の分離体7を作製することができる。分離流体3のポンピングは、選択経路の異なる部分上の遠位の先端6の移動の間で、任意で停止されたり開始されたりし、あるいは、遠位の先端が選択経路の一部分の終点から選択経路の次の部分の開始点まで移動するのに従って、ポンピングを継続させてもよい。図4は、選択経路4の3本の平行線を作製するために図2及び図3のステップを繰り返した結果を示す(3本の平行線の各々を形成する間に分離流体3のポンピングを任意で停止したり開始したりしてもよく、あるいは、遠位の先端が1本の平行線の終点から次の平行線の開始点に移動する間、ポンピングを継続してもよい。)。直交方向16に本工程を繰り返すことで、正方形の分離体7が提供され得る。実際には、この方法で、数100または数1000の分離体7が提供され得る。本発明者らは、例えば、本アプローチを定型的に使用して100ミクロン未満のピッチの分離体のアレイが得られることを実証した。これは、標準のマイクロウェルプレート製造技術を使用した場合に可能なものよりもかなり小さいものである。
図5に分離体7の1つについて示す通り、選択経路4は、1以上の分離体7の各々について、1つの分離体実装面積は分離体7と第1基板11が接触する面積を表し、分離体実装面積の境界8の全部が分離体実装面積を囲む選択経路4の閉ループ9(その例を図5の陰影の部分で示す。)に接触するようにする。選択経路4の閉ループ9は、選択経路4の一部を形成する第1基板11の表面積の一部を表し、閉ループを形成する、任意の領域として規定され、また、分離体7の境界8の全部に沿って分離体7の境界8に接触している。第1液体1、第2液体2及び第1基板11は、選択経路4の閉ループ9と全部が接触している分離体実装面積の各境界8が、液体の形態にとどまる第1液体1と第2液体2で、界面張力による固定構成にピン止めされるように、(例、それらの組成を選択することによって)構成されている。したがって、界面張力(表面張力と言及されることもある)は、分離体実装面積にそれらの形状を維持させるピン止め線を確立する。このようにして形成される分離体7の安定性が、境界8に沿って前進または後退する接触角によって規定される限界の範囲内で、分離体実装面積を変えることなく、液体が各分離体7に添加され得るまたは各分離体7から除かれ得るようにする。いくつかの実施形態では、選択経路4の閉ループ9と全部が接触する分離体実装面積の境界8は連続的に(即ち、中断なく単一工程で)作られ、また、図5に示す実施形態では、これは4つの異なるステップで作られている。
いくつかの実施形態では、分離流体3は第2液体2の一部を含み、第2液体2の一部は、局所共役エネルギーによって、選択経路4の方向に、第1基板11上の選択経路4に向かって押し出されるべき第2液体2の一部を含むまたはこれに隣接する領域内へと押し出される。エネルギー共役は、熱または圧力を、局所的に発生させることを含んでいてもよい。エネルギーは、押し出されるべき第2液体2の一部に向かって伝達される圧力波となる、材料の膨張、変形、解体、切除やキャビテーション(cavitation、空洞現象)を起こし得る。いくつかの実施形態では、エネルギーの共役は、電磁放射または超音波等の波の集束ビームを使って実行される。エネルギーの共役は、ビームの焦点またはその近傍で起こり得る。
ある実施形態において、ビームの焦点は、選択経路4の外形に基づいて(例、を追う)走査経路に沿って走査される。第1基板11の表面(選択経路4がその上に形成される)に対して垂直に見ると、走査経路は、選択経路4の少なくとも一部に重なり得る及び/または選択経路の少なくとも一部に平行に走り得る。走査経路の全部またはその大部分は、選択経路4(及び、したがって、第1基板の表面11)よりも下、上、または同じ高さにあり得る。
いくつかの実施形態では、第1基板11に吸収されたビームからのエネルギーは、第1液体1が選択経路4沿いに第1基板11から離れるように局所的に強制されるようにして、第2液体2は、第1液体1が離れるように強制された第1基板11に接触するように(即ち、選択経路4沿いに)移動する。第1基板11におけるビームの吸収は、第1基板11の局所的変形または切除を起こし得るが、この局所化された変形または切除は、初めは第1基板11上の選択経路に対応する部分と接触していた第1液体1に、対応する局所化された推力を伝達する。レーザーを使用して局所化した推力を液体にかけることは、フォワード印刷(即ち、初めはパターン形成されていない基板上に物質を移動させてパターンを提供する)の文脈で説明されており、例えば、A. Piqueらによる「Direct writing of electronic and sensor materials using a laser transfer technique」, J. Mater. Res. 15(9), 1872-1875 (2000)がある。このアプローチを使用する方法は、レーザー誘導前方転写法(LIFT)として言及されてきた。本発明者らは、本明細書に説明する第1液体1の連続体の分離体7への分割に、これらの技術を採用し得ることを認識した。
そのような構成の例を概略図として図6に示す。この例において、第1基板11は、第1ベース層11Aと、第1ベース層11Aと第1液体1の間の第1中間吸収層11Bを含んでいる。第1中間吸収層11Bの単位厚さ当たりのビーム吸収度は、第1ベース層11Aの単位厚さ当たりのビーム吸収度よりも高い。第1中間吸収層11Bに吸収されたビームからのエネルギーは、第1液体1が、選択経路4沿いに第1基板11から離れるように局所的に強制されるようにする。離れるように局所的に強制される第1液体1の一部は、図6に陰影によって概略図で示されている。第2液体2は、第1液体1が離れるように強制された第1基板11に接触するように移動する。ベース層11Aよりも吸収する中間吸収層11Bの提供は、第1基板11の組成の選択により高い柔軟性を提供する。例えば、第1基板11は、ビームに対して比較的透過性であるが他の特性について最適化された材料から主に形成することができ、また一方で、薄膜として提供され得る第1中間吸収層11Bは、吸収度及び/または、第1液体1に第1基板11から離れるように効率的に、局所化されて、強制することを推進する他の特性を提供するように特に構成することができる。ある実施形態においては、図6に示す通り、ビームは、第1基板11内に集束されて、及び任意で、提供されている場合には第1中間吸収層11B内で、第1基板11における吸収を最大化し、及び/または第1液体1に対して局所化された推力を十分に伝達しながら、全体的なビーム強度をできる限り低く保つことを可能にする。全体的なビーム強度を最小化することは、第1液体1がビームが悪影響を及ぼし得る生物材料等の物質を含む場合に、特に望ましいといえる。図6の例において、ビーム10は、第1液体1と第2液体2とは反対側の第1基板11の側から(即ち、図6の配置における下から)照射されている。他の実施形態において、ビーム10を第1基板11の反対側から照射して、これにより、第1基板11に作用する前に第2液体2を横切るようにしてもよい。
図7は、第2液体2の一部が第1基板11上の選択経路4に向けて押し出される間、ビーム10の焦点が第2液体2内に配置される、代替的な実施形態の例を示す。このタイプのいくつかの実施形態では、ビームは、第2液体2の局所化された領域にキャビテーションを起こす。キャビテーションは、第2液体2における吸収が、第2液体2の光破壊閾値を克服できる程度に十分高い場合に起こり、その結果、キャビテーション気泡の形成を誘発するプラズマの発生を起こす。ビームは、理想的には非常に短いレーザーパルス(例、ピコ秒以下のレーザーパルス)で強く集束されるべきである。キャビテーション気泡は膨張し、隣接領域において第2液体2に推力をかける。ビームの焦点が選択経路4の一部に隣接して配置される場合は、第2液体2の隣接領域にかかる推力が、第1液体1を通って第2液体2の一部(図7において陰影によって概略的に示される)を押し出して選択経路4に接触させることができる。約1.2ミクロンのビームウエストを有する、ダイオード励起Yb:KYWフェムト秒レーザー(波長1027nm、パルス持続時間450fs、最大繰り返し率1kHz)を使用することも可能であり、例えば、M. Duocastellaらの「Film-free laser forward printing of transparent and weakly absorbing liquids」, OPTICS EXPRESS 11 October 2010 / Vol. 18, No. 21, pp.21815-21825には、液体の本体に面する基板上の液体の本体からの液滴のフォワード印刷を目的とする、レーザーが誘発する液体内のキャビテーションを介した液滴の推進力を記載している。上記のレーザーの本来の仕様からの様々な変更が、操作の根底にある原理から逸脱することなく適用され得ることが理解されるであろう。
図8は、ビーム10が第1液体1にキャビテーションを起こすことによって第2液体2を押し出す、図7に示すアプローチの変形を示す図であり、このキャビテーションは、第1液体1が第1基板11から離れるように局所的に強制されるようにして、第2液体2は、第1液体1が離れるように強制された第1基板11に接触するように移動する。これは、例えば、第1液体1内にビームを集束させることによって実現されてもよい。キャビテーションによって第1基板11から離れるように押し出された第1液体1の部分は、図8において陰影で概略的に示されている。
図9は、第2基板12が提供される、代替的な実施形態の例を示す。第2基板12は、第1基板11の少なくとも一部に面し、かつ、液体に接触する。第2基板12と第1基板11の間には連続的な液体経路がある。図に示す例において、第2基板12は、第2液体2と接触している。この実施形態において、ビーム10からのエネルギーは、第2基板12と第2基板12に隣接する液体のいずれかまたは両方に吸収され、第2液体2が第2基板12から離れるように局所的に強制されるようにして、これにより、第1基板11上の選択経路4に向かう第2液体2の推進力を提供する。図に示す例において、第2基板12は、第2ベース層12Aと、第2ベース層12Aと第2液体2の間の第2中間吸収層12Bを含む。第2中間吸収層12Bの単位厚さ当たりのビーム吸収度は、第2ベース層12Aの単位厚さ当たりのビーム吸収度よりも高い。第2中間吸収層12Bに吸収されたビームからのエネルギーは、第2液体2が第2基板12から離れるように局所的に強制されるようにして、これにより、第1基板11上の選択経路に向かう第2液体2の推進力を提供する。ある実施形態においては、図9に示す通り、ビーム10は、第2基板12内に集束され、及び任意で、提供されている場合には、第2中間吸収層12B内で、第2基板12における吸収を最大化し、及び/または第2液体2に対して局所化された推力を十分に伝達しながら、全体的なビーム強度をできる限り低く保つことを可能にする。
ある実施形態において、第2基板12は、第2基板12に接触する液体(例、第2液体2)上に浮かんでいる。このアプローチは、第2基板12を簡単かつ確実に水平にするのを可能にし、これにより、第2基板12(例、第2中間吸収層12B内)内の焦点位置の正確なアラインメントを容易にする。
図10は、第3液体13の層が第2液体2の上に提供される、図9を参照して上述した実施形態の変形を示す。第3液体13の単位厚さ当たりのビーム吸収度は、第2液体2の単位厚さ当たりのビーム吸収度よりも高い。第3液体13に吸収されたビーム10からのエネルギーは、第2液体2が、第1基板11上の選択経路4に向けて局所的に押し出されるようにする。第2液体2よりも高い吸収度の第3液体13を使用することで、第2液体2の組成の選択により高い柔軟性を提供する。第2液体2を最適化することで、分離体7の安定な分離を提供することができ、例えば、吸収度を十分に提供する必要による制限を受けずに、ビームが、第1液体1を通って第2液体2を押し出すために、第2液体2にキャビテーションを起こすことができる。第3液体13は、第1基板11に向けて第2液体2を局所的に押し出すための、ビーム吸収とキャビテーション気泡の形成開始のために最適化されてもよい。
ある実施形態において、分割工程の手順は、形成される分離体7の相対的な体積を制御するように選択される。ある実施形態において、図11に示す通り、第1液体1の連続体を分離体7に分割することは、以下のステップ、即ち、第1液体1の連続体を対称に2つの等しい体積の分離体に分割するステップと、先行する分割するステップによって形成された各分離体を対称にさらに2つの等しい体積の分離体に繰り返し分割するステップ、をこの順序で含む。この対称の分割は、本体または分割された分離体の鏡面対称の対称軸沿いの分割を含んでいてもよい。図11は、手順の例を示す。ローマ数字は、選択経路4上の射出部の遠位の先端6の直線軌道の順序を示す(この場合においては、直線)。軌道(i)〜(iv)は、まず、第1液体1の正方形の最初の連続体を孤立させる。次に、その後の軌道(v)〜(x)が、16個の分離体のアレイが提供されるまで、連続体とそこから対称に等しい体積に形成された分離体を累進的に分割する。各段階におけるこの対称の分割は、個々の分離体が全て同じ体積を有することを確実にする(したがって、体積はA1=B1=…C4=D4)。任意の数のアレイを作製し得る。
図12は、累進的に体積が増加する分離体を制御可能に提供するための代替的な分割スキームを示す。この場合において、軌道(i)〜(iv)は、再び、第1液体1の正方形の最初の連続体を孤立させることを規定している。次に、その後の軌道(v)〜(x)が、左下の角から右上の角に連続的に走査し、いずれの場合も、連続体またはそこから形成された分離体を(最後の2回の切断を除き)非対称に切断する。この工程の結果として、第1液体が徐々に上向きに右方向に押されて、分離体の相対的な体積を上向きに右方向に累進的に増加させる(即ち、それらの深さの累進的増加)。これは、切断線沿いに第1液体1のカーブした縁(不均一な(non-uninform)深さ)が形成されることに起因する、切断線から離れる第1液体の正味の移動によって起こる。したがって、各切断について、切断によって形成される2つの分離体のうち大きい方に液体の正味の移動があり得る。
ある実施形態において、選択経路4の閉ループと全部が接触している境界8を有する、1以上の分離体実装面積の各々について、境界8は、少なくとも1つの直線部分を含む。これは、例えば、図2〜図5を参照して上述したような、直線切断を使用して分離体7を形成することによって実現できる。したがって、この方法で形成された分離体7のアレイは、液滴を基板の表面に置いていくことを含む代替的技術(そこでは液滴が曲線状の輪郭を持ち得る)とは基本的に異なる。したがって、より高レベルの空間充填が可能になる。ある実施形態において、分離体実装面積の少なくともサブセットは、互いに対して形がかみ合う輪郭を描く。例えば、分離体実装面積は、正方形、長方形または平行四辺形を含んでいてもよい。これらの四辺を有する形状は、全て、図2〜図5を参照して上述したような直線切断を行うことで、効率的に形成し得る。
ある実施形態において、第2液体2は、第1液体1よりも高密度である。本発明者らは、第1液体1上のより高密度の第2液体2によって第1液体1上に浮力がかかるにも関わらず、第1液体1と第1基板11の間の表面張力効果(interfacial energies)のために、第1液体1は驚くほど安定して第1基板11に接触し続けることを発見した。より高密度の第2液体2の使用を可能にすることは、第2液体2に可能な組成の範囲を広げるので、有利である。例えば、第1液体1が水性溶液の場合は、FC40等のフルオロカーボンを使用することができ、これにより十分に高い浸透性を提供して、第2液体2の層を通って、分離体7中の細胞と周囲の外気との間で極めて重要な気体の交換を可能にする。FC40は、液滴ベースのマイクロ流体に広く使用されている、透明な密度1.8555g/mlの完全にフッ素化された液体である。また、第1液体1よりも高密度の第2液体2を使用することは、第1基板11上に第1液体1が横に広がらず、安定して各分離体7内で保持される第1液体1の最大深さを増加させるので、有利である。これは、第1液体1の重さが分離体7を下向きに、したがって、外向きに、強制する傾向があり、この効果が浮力によって打ち消されるからである。また、第2液体2は、空気に比べて、接触角を有利に増加させる。
上述の実施形態において、マイクロ流体構造体は、第1基板11の上側表面上に形成される。他の実施形態においては、図13に図示する通り、マイクロ流体構造体は、第1基板11の下側表面上に形成し得る。よって、第1液体1の連続体の分割は、第1基板11を図2の構造体に対して逆さに実行され得る。この場合において、表面張力が、第1液体1を第1基板11に接触した状態に保持できる。その後、第1基板11と第1液体1は、第1液体1の連続体が分離体に分割される間、第2液体2を含むバス42に浸漬することができる。図2〜図5を参照して上述した後続のステップは、図13の構造体から開始して実行することもできる。このアプローチは、例えば、マイクロ流体構造体が3次元細胞培養の球状体形成に使用される場合に便利であり得る。
ある実施形態において、第1液体1の連続体は、主に表面張力によって横方向に拘束される。例えば、第1液体1の連続体は、遠くの側壁まで広がらずに、第1基板11上の選択された領域内においてのみ提供され得る(例、図1に示す通り、第1基板11が側壁を有するレセプタクルの底面の場合)。よって、連続体は、側壁による横方向の拘束を受けない。この構造体は、第1液体1上の第2液体2からの下向きの力に起因する第1液体1の連続体の厚さの均一性に対する妨害に対して、より高い抵抗性を提供するので、第2液体2が第1液体1よりも高密度である場合に特に望ましい。本発明者らは、第1液体1の深さは、第1液体1が主に表面張力によって横方向に拘束される場合は、その結果としてそうでない場合に比べてより大きくなり得ることを発見した。第1液体1の深さをより大きくして提供すると、第1基板11上の分離体の所定の空間密度について、より大きい分離体の体積を可能にするので、望ましい。そうすれば、例えば、分離体7が細胞の培養に使用される場合、細胞に、必要な物質がより大量に提供され得るので、更に何らかの行動を起こす必要が生ずるまで、より長く及び/またはより均一な条件下で細胞が生存できるようにする。
他の実施形態において、第1液体1の連続体は、第1基板11を提供するレセプタクルの側壁まで広がっていてもよい。この方法では第1液体1の薄膜は、レセプタクルの底を満たす第1液体1の比較的深い層を提供し、その後第1液体1を取り除いて(例、ピペッティングによって)第1液体1の薄膜を残すことによって、便利に形成し得る。
ある実施形態において、第1液体1の連続体は、第1液体1の連続体を分離体に分割する最初のステップにおいて、複数の細長い小片40に分割される(明確にするため、各小片40内の第1液体1を陰影で示す)。ある実施形態において、細長い小片40は、互いに平行である。そのような構造体の例を図14に示す。構造体は、例えば、一連の平行な水平軌道に沿って、分離流体3を押し出して、選択経路4に接触させることによって形成することもできる。後続のステップにおいて、1以上の細長い小片40の1以上の局所化された領域(例、側方の端部)に、物質が添加される。物質は、各細長い小片40の長さに沿って(例、拡散及び/または移流によって)移動し、これにより、細長い小片40の長さに沿って濃度の濃淡を作る。後続のステップにおいて、細長い小片は、複数の分離体に分割され、これにより、迅速かつ簡単に、選択された物質を異なる濃度で含有する分離体のセットを作製する。図14の具体例においては、細長い小片40の複数の分離体への分割は、分離流体3を遠位の先端6から連続して排出しながら、図14において実線の矢印で示す軌道に沿って、射出部の遠位の先端6を移動させることによって行われる。
ある実施形態において、第1液体1の連続体を分離体に分割することによって、より複雑な形状が形成され得る。第1液体1の領域が明確にするために陰影で示されている図15の例では、第1液体1の連続体が分割されて、少なくとも1つの槽32,34に接続された少なくとも1つの導管36を含む少なくとも1つの分離体が形成される。導管36と槽32,34は、使用中に液体を導管36を通って槽32,34に/から移動させるように構成されていてもよい。導管36は、第1基板11に対して垂直に見ると、典型的には細長い形状である。槽32,34は、典型的には円形であり、または導管36の幅よりも大きい横方向の寸法を少なくとも有する。図に示す具体例では、T形状の導管36が提供されて2つのソース槽32及び34をシンク槽34に接続する。使用中には、(例、ラプラス圧、静水圧及び/または槽32内へ、ソース槽32からシンク槽34への、材料のポンピングによって)流れが操作される。
本願開示の実施形態において、第1液体1の連続体は、射出部を第1基板11上で移動させながら射出部から第1液体1を排出することによって、第1液体の連続体の形状を規定するように第1液体1を第1基板11上に置くことによって形成される。このアプローチは、例えば、主に表面張力によって横方向に(壁によるのではなく)拘束されている第1液体1の連続体を形成する場合に使用され得る。あるそのような実施形態においては、図16に示す通り、第1液体1の複数の連続体が、同じ第1基板11上の異なる位置に形成される。第1液体1の連続体の各々は、表面張力(界面張力)によって定位置に保持される。第1液体1の最初の連続体を別個に提供することで、個々の本体は、互いに対して相対的に異なる最初の組成を有し得る。各セット内の分離体は同一の初期条件下に置き、異なるセットの分離体は異なる初期条件下に置いて、複数のセットの分離体を作成し得る。例えば、生細胞等の生物材料が第1液体1の最初の連続体の各々に提供されている場合には、それらが分離体に分割される前に、2以上の最初の連続体に異なる薬物を添加することができる。図16の具体例においては、第1液体1の4つの連続体(実線で描かれた大きい正方形)が提供されている。4つの連続体の各々は、破線に沿って分割されて、4つの正方形のアレイにおける別個のセットの分離体14A〜14Dを形成する。ある実施形態において、この分離体の4つのセット14A〜14Dは、生細胞を含む同一組成の4つの連続体を形成することによって提供される。その後、任意で、生細胞を第1基板11に接着させた後に、異なる薬物を同一組成の4つの連続体の各々に添加する。この4つの連続体が分割されて、4つのセットの分離体14A〜14Dを形成し、その後、細胞に対する異なる薬物の効果を評価するために観察される。
ある実施形態において、製造されたマイクロ流体構造体は、関心のある材料を研究するるために使用される複数の孤立サンプルを含む。研究方法の枠組みは、図17に概略で示されている。ステップS1において、第1液体1の連続体が形成され、研究対象の物質を含むように調整される。連続体を分割して分離体を提供する前に、研究対象の物質が第1液体1の連続体内に提供される。ステップS2において、第2液体が添加される。ステップS3において、連続体が複数の分離体に分割される。連続体を分離体に分割する工程は、複数の孤立サンプルを生成し、その各々が研究対象の物質の一部を含むが、ここでは、特に作成される分離体の数が多い場合及び/または分離体が非常に小さい場合に時間を大きく浪費してしまう、個々のサンプルへの研究対象の物質の添加の必要がない。
ある実施形態において、研究対象の物質は、生物材料を含む(細胞、DNA、タンパク質等)。ある実施形態において、生物材料は、接着性生細胞を含む。本願開示の実施形態の方法は、接着性生細胞の基板への接着が可能になった後に、それら接着性細胞をまとめて処理し、その後に複数の孤立サンプルに分割できるので、この文脈において特に有利である。これは、先行技術のアプローチを使っては不可能であり、また、特に多数の孤立サンプルの作製が望まれる場合に、時間とシステムの複雑さを相当程度省く。
図18は、接着性生細胞の取り扱いに適用される方法の枠組みを示す。ステップS11において、第1液体1の連続体が形成され、接着性生細胞を含むように調整される。ステップS12において、接着性生細胞の少なくとも一部を、任意で接着性生細胞の大多数を、第1基板11に接着させる(これは、例えば、細胞を適切な培養条件下に一晩置くことによって達成されてもよい)。細胞が所望の程度で第1基板11に接着したら、第1液体1はこの場合適切な増殖培地を含んでいてもよいが、ステップS13に進む前に、任意で、流して捨ててから第1液体1の薄膜を残すようにしてもよい。ステップS13において、被験物質(例、薬物)が、接着性生細胞を含む第1液体1の連続体(これは、上記のように流して捨てた後の薄膜であってもよい)に添加される。過剰の被験物質は、任意でこの段階で流して捨てて、(接着した細胞、増殖培地の残存物及び被験物質を含む)第1液体1の薄膜が残るようにしてもよい。ステップS14において、第2液体2が添加される。ステップS15において、第1液体1の連続体が複数の分離体に分割される。連続体を分離体に分割する工程は、被験物質を個々のサンプルに添加する必要をなくし、各々が接着性生細胞と細胞が接着された後に、添加された被験物質を含む複数の孤立サンプルを生成する。
図19は、生細胞を含む孤立サンプルの形成に適用されるさらなる方法の枠組みを示す。ステップS21において、第1液体1の連続体が形成され、生細胞、任意で、接着性生細胞、を含むように調整される。ステップS21は、上述のS11と同一であってもよい。また、ステップS21は、上述のステップS12及びS13のいずれかまたは両方に対応するステップも含んで、接着性生細胞が第1基板11に接着できるようにしてもよく、及び/または被験物質(例、薬物)を接着性生細胞に適用するようにしてもよい。ステップS22において、第2液体2が添加される。ステップS23において、連続体が複数の分離体に分割される。ステップS24において、第2液体2が取り除かれる(例、流して捨てるかまたは注射器によって)。第1液体1もこの段階で取り除かれてもよい。次いで、増殖培地が添加されて第1基板11を覆う。本発明者らは、第1液体1の分離体が第2液体2の下で初めて形成された時にこれらを分離した分割線が、第1液体1と第2液体2が取り除かれて増殖培地に交換されていても、細胞の移動に対するバリアとして作用し続けることを発見した。理論に拘束されることは望まないが、第1基板の表面11が改変されて、及び/または第1液体1及び/または第2液体2の残留物が取り残されて、この効果を生ずると考えられている。この結果、都合よく、互いに孤立した領域内で細胞集団が培養されるようにして、これにより、並行して効率的に、個々の細胞集団の複数の研究を行えるようにする。例えば、分離体に初めは1つの単一細胞だけが含まれていたならば、得られた細胞集団は、全て同じその1つの単一細胞に由来するであろう。
ある実施形態において、上述の方法は、単一細胞または単一分子、または単一タンパク質の研究の実施に適応される。これは、例えば、連続体を分割することによって作成された各分離体の平均占有率が1関心のある細胞/分子/タンパク質に満たないほど低い、第1液体1の最初の連続体における生細胞、関心のある分子、または関心のあるタンパク質の濃縮を提供することによってなし得る。このようにして、唯一の関心のある細胞/分子/タンパク質を含む多くの分離体が作成される。このアプローチは、ウェルが作成された後に、関心のある細胞/分子/タンパク質を別個のウェル内に個別に置く必要がある代替的アプローチよりもかなり迅速である(例、マイクロウェルプレート内に)。
図20及び図21は、本願開示の実施形態に従う方法を実行するための例示的装置30を示す。したがって、装置30は、マイクロ流体構造体を製造するように構成されている。装置30は、基板台16を含む。基板台16は、基板11を保持する。第1液体1の連続体は、基板11に直接接触して提供される。第2液体2は、第1液体1に直接接触して提供される。第2液体2は、第1液体1を覆う。
パターン形成ユニットは、第1液体1を通って分離流体3を押し出して、選択経路4の全部に沿って基板11に接触させるように提供される。分離流体3の押出しは、図1〜図19を参照して上述した方法のいずれを使用して実行されてもよい。
図20の例において、装置30は、分離流体3を射出部15の遠位の先端6の外にポンピングすることによって、分離流体3を押し出す。図20の装置30は、射出システムを含む。射出システムは、分離流体3を射出部15の遠位の先端6の外にポンピングするように構成されている。射出部15は、内腔を含んでいてもよく、また、分離流体3は内腔に沿って遠位の先端6までポンピングされてもよい。ある実施形態において、分離流体3は、遠位の先端6が選択経路4の外形に従って基板11上を移動される間に、遠位の先端6から排出される。射出システムは、射出部15とポンピングシステム17を含む。使用時は、ポンピングシステム17は、分離流体3を含む槽と、槽から射出部15の内腔まで分離流体3を送り出すための導管と、分離流体3を内腔を通って射出部15の遠位の先端6の外にポンピングするためのメカニズムを含む。
ある実施形態において、装置30は、射出部15が基板11上を移動される間、射出部15の遠位の先端6と基板11との間に小さいが有限の分離を維持するように構成されている。これは、少なくとも、マイクロ流体構造体が細胞ベースの研究に使用される場合、この研究は、射出部15が基板11に接触して基板11上を引きずられて生じ得る表面のひっかき傷またはその他の改変によって影響を受け得るので、有益である。いかなるそのような改変も光アクセス及び/または細胞適合性に悪影響を与えうる。ある実施形態において、これは、基板11との接触に由来する力が、マウントの内部で射出部15をスライドさせるように、射出部15をスライド可能にマウントに取り付けることで実現される。射出部15と基板11の間の接触は、マウントに対する射出部15のスライドを検出することで検出される。接触が検出された場合は、射出部15は、射出部15が基板11上を移動される前に(この動作の間に基板11に接触せずに)小量(例、20〜150ミクロン)引き戻される。遠位の先端6と基板11との間の分離を制御するためのこのアプローチは、3Dプリンタにおいて使用される容量性/誘導性の方法あるいは光学的検出技術等の代替的方法に比べて費用効率よく実施され得る。また、このアプローチも伝導性の表面の提供を必要としない。
射出システム、または同様の方法で構成された追加の射出システムは、第1液体1の連続体の形状を規定するために射出部を基板11上で移動させながら、射出部の遠位の先端を通って第1液体1を排出することによって、第1液体1の最初の連続体を基板11に直接接触させることを追加で提供してもよい。実施形態において、射出システムまたは追加の射出システムは、第1液体1を制御可能に(例えば、射出部を通って液体を吸引して戻すことで過剰の第1液体を制御可能に取り除くことによって)抽出するようにさらに構成されてもよい。
ある実施形態において、装置30は、第2液体2を塗布するまたは取り除くためのアプリケーションシステムを含む(例えば、第2液体を保持するための槽と、基板11の上に配置可能な出力/吸引ノズルと、出力/吸引ノズルを通って槽から基板11に/基板11から槽に第2液体2を制御可能にポンピングまたは吸引するためのポンピング/吸引メカニズムを含む。)。他の実施形態において、第2液体2は、手作業で塗布される。
図20の装置30は、コントローラ10をさらに含む。コントローラ10は、基板上11の選択経路上を分離流体3の押出しの間(及び、任意で、第1液体1の連続体を形成する間)、基板11上の射出部15の動きを制御する。ある実施形態において、装置30は、射出部15を支持する処理ヘッド20を含む。処理ヘッド20は、射出部15が選択的に前進したり後退したりするように構成されている。ある実施形態において、前進と後退は、処理ヘッド20上に取り付けられた適切な作動(actuation)メカニズムを有する、コントローラ10によって制御される。ガントリー(gantry)システム21が提供されて、処理ヘッド20を要求通りに移動させることができる。図示する具体例においては、ページ内の左右の動きが示されているが、(処理ヘッド20自体によって提供される射出部15の動きが、射出部15に要求される上向きまたは下向きの移動を十分に提供しないならば)動きは、ページの中に向かう及び外に出る動きや、基板11に向かう及び基板11から離れる動きも含み得ることが理解されるであろう。
図21は、局所共役エネルギーによって選択経路に向けて第2液体2の一部を押し出して、第2液体2の一部を含むまたはこれに隣接する領域内へと進めるように構成された装置30を示す。図21の装置は、図6〜図10を参照して上述した方法のいずれを実行するように構成されていてもよい。装置30は、レーザー源22(例、上述したピコ秒以下のパルスレーザー)と、レーザー源22によって提供されるビームを所望の位置に集束させるように構成された光学投影システム23を含む。ある実施形態において、光学投影システム23は、集束レーザースポットを選択経路4の外形に従う走査経路に沿って走査するためのスキャナを含む。スキャナは、コントローラ10によって制御されていてもよい。ある実施形態において、基板台16は、光学投影システム23に対して移動されて、任意で、スキャナが提供する走査と組み合わせて、走査経路に沿ってレーザースポットの走査を提供する。スキャナは、例えば、基板台が第1の軸に垂直な第2の軸に沿って移動される間に、第1の軸に沿ってスポットを走査してもよい。基板台16の動きは、コントローラ10によって制御されていてもよい。代替的に、マスクを使用して、基板11上の選択経路4の少なくとも一部に対応するビームのパターンで、パターン入りの放射線ビームを基板11上に投影してもよい。
本説明の導入部分で言及した通り、固体部材が選択経路に接触することを伴う代替的アプローチ(例、選択経路沿いにスタイラス(stylus)をこすって、第2液体を選択経路沿いの第1液体と置換できるようにするもの)は、互いからの分離が不完全な分離体を作製する有意なリスクがあり得ることが分かっている。例えば、代替的アプローチを使用して製造された分離体のアレイにおいて、分離体の小さいサブセット(subset)が互いに接続されていることが観察された。図22は、そのような代替的アプローチを使用して製造された、液体の分離体(「チャンバ」という。)間の接続の画像を示す。特にこの事例では、正方形の分離体(チャンバ)のアレイが製造された。
上述の例において、第1液体1の連続体とその上に重なる第2液体2の層は、分離流体3が第1液体1を通って押し出されて分離体7を形成する前に提供される。いくつかの実施形態において、少なくとも分離流体3を押し出す初期段階は、この場合に当たらない。そのような実施形態においては、図23及び図24に簡略化して示す通り、分離流体は、第2液体2と同一の組成を有する液体を含む(例、からなる)。第1液体1の連続体に直接接触し、かつ第1液体1の連続体を覆う第2液体2を提供することは、第1基板11に直接接触する第1液体1の連続体が提供された後に、第1液体1の上部界面の一部50Aがまだ第2液体2に接触しない間に、第1液体1を通って分離流体3を押し出して選択経路の少なくとも一部に沿って第1基板11に接触させることを含む。この状況は、図23に示されている。分離流体3は、垂直の矢印で示す通り、射出部の遠位の先端6から押し出されて、第1基板11上の選択経路4上へと進む。次いで、曲線の矢印で示す通り、過剰の分離流体3が上及び外側に移動して、第1液体1の上部界面を覆い始める。図23に示す時点において、一部50Aは空気に接触しているが、第1液体の上部界面の一部50Bは、前進する分離流体3によって覆われている(これは、この時点ではもう第2液体2の一部と考えることもできる)。分離流体3の押し出しは、図24に示す通り、分離流体3が、第1液体1の連続体に直接接触し、かつ第1液体1の連続体を覆う第2液体2の層を形成するまで継続する。図24に示す段階において、第1液体1の上部界面に空気に接触する部分はない。
いくつかの実施形態では、分離流体3は、選択経路4の少なくとも一部について、連続的な工程において(即ち、中断なく)第1液体1を通って押し出される。例えば、分離流体3は、遠位の先端6が選択経路の一部上を(例、図3に示す下向きの直線方向、または図14における垂直な実線の矢印の1つに沿って)移動される間に、(例、連続的な速度でポンピングすることによって)射出部の遠位の先端6の外に連続的に押し出されてもよい。他の実施形態において、分離流体3を押し出すことは、選択経路4から離れる第1液体1の移動の少なくとも一部の間の、分離流体3の部分の断続的押出しを含む。例えば、分離流体3は、図3に示す選択経路4の部分に沿う、または図14の垂直の実線の矢印によって表される選択経路のいずれか1つの部分に沿う、選択経路4から離れる第1液体1の移動の間、断続的に押し出されてもよい。そのような実施形態においては、この断続的押出しは、第1液体1が、それでも選択経路4から離れる移動をして、選択経路4を連続的な線に沿って第2液体2に接触させるようにしてもよい(例、上記で言及した図3及び図14における1以上の垂直線の各々の全部に沿って)。これは、例えば、断続的に第1基板11に向けて押し出される分離流体3の異なる部分について調整して(即ち、互いに対して相対的に異なる時間で押し出されて)、重なり合う領域において選択経路に接触するように押し出されることで実現され得る。こうして、押し出される分離流体3の1つの部分に関連する第1基板11上のインパクト領域は、押し出される分離流体3の少なくとも1つの他の部分に関連する第1基板11上のインパクト領域と重なり合う(典型的には、例えば、押出しを駆動するヘッドが、第1基板11に対して短い距離を移動した後等、僅かに異なる時間に押し出される。)。断続的押出しを使用する可能性は、圧電性メカニズム等の推進を駆動するための可能なメカニズムの範囲を広げる。
本願開示の代替的な実施形態を以下の番号付きの項において説明する。
1. マイクロ流体構造体を製造する方法であって、該方法は、
第1基板に直接接触する第1液体の連続体を提供することと、
第1液体の連続体に直接接触し、かつ第1液体の連続体を覆う第2液体を提供することと、
第1液体と混和しない分離流体を押し出して、少なくとも第1液体を通って、第1基板の表面上の選択経路の全部に沿って、第1基板と接触させることを含み、これにより、初めは選択経路の全部と接触していた第1液体を選択経路から離れるように移動させ、ここで、該選択経路は、第1液体の連続体を分割して、第2液体によって第1液体の連続体の残りの部分から分離される第1液体の1個の分離体または第2液体によって互いから分離される第1液体の複数の分離体を形成するものであって、該方法において、
1以上の分離体の各々について、分離体実装面積がその分離体と第1基板との間の接触面積を表し、かつ分離体実装面積の境界の全部が分離体実装面積を囲む選択経路の閉ループに接触している、方法。
2. 第1液体、第2液体及び第1基板は、選択経路の閉ループと全部が接触している分離体実装面積の各境界が、界面張力による固定構成にピン止めされるように構成されている、1項の方法。
3. 第1液体と混和しない分離流体は、気体、液体、第2液体と同一の組成を有する液体、第1液体を通って分離流体を押し出す前に提供される第2液体の一部のうちの1以上を含んでいてもよい、1項または2項の方法。
4. 選択経路の閉ループと全部が接触する境界を有する1以上の分離体実装面積の各々について、該境界は、少なくとも1つの直線部分を有する、先行するいずれかの項の方法。
5. 各々が選択経路の閉ループと全部が接触する境界を有する分離体実装面積の少なくともサブセットは、互いに対して形がかみ合う、先行するいずれかの項の方法。
6. 分離流体は、第1基板に対して遠位の先端を移動させながら分離流体を射出部の遠位の先端からポンピングすることによって、第1基板上の選択経路に押し出される、先行するいずれかの項の方法。
7. 選択経路の少なくとも一部について、分離流体を第1基板上の選択経路上に押し出す間、遠位の先端は、第2液体を通るが第1液体は通らずに移動される、6項の方法。
8. 選択経路の少なくとも一部について、分離流体を第1基板上の選択経路上に押し出す間、遠位の先端は、第2液体と第1液体の両方を通って移動する、6項の方法。
9. 射出部の遠位の先端の少なくとも一部は、第1液体よりも第2液体によってより簡単に濡らされるように構成されている、7または8項の方法。
10. 方法において、
分離流体は、第2液体の一部を含み、
該第2液体の一部は、局所共役エネルギーによって、第1基板上の選択経路に向かって、第1基板上の選択経路に向かって押し出される該第2液体の一部を含む領域またはこれに隣接する領域内へと押し出される、先行するいずれかの項の方法。
11. 局所共役エネルギーは、電磁放射または超音波の集束ビームを使って実現される、10項の方法。
12. ビームの焦点は、選択経路の外形に基づく走査経路に沿って走査される、11項の方法。
13. 第1基板に吸収されたビームからのエネルギーは、第1液体が選択経路沿いに第1基板から離れるように局所的に強制されるようにして、第2液体は、第1液体が離れるように強制された第1基板に接触するように移動する、11または12項の方法。
14. 方法において、
第1基板は、第1ベース層と、第1ベース層と第1液体の間の第1中間吸収層を含み、
第1中間吸収層の単位厚さ当たりのビーム吸収度は、第1ベース層の単位厚さ当たりのビーム吸収度よりも高く、
第1中間吸収層に吸収されたビームからのエネルギーは、第1液体が、選択経路沿いに第1基板から離れるように局所的に強制されるようにして、第2液体は、第1液体が離れるように強制された第1基板に接触するように移動する、11〜13項のいずれかの方法。
15. 第2液体の一部が第1基板上の選択経路に向けて押し出される間、ビームの焦点が第1基板内に配置される、11〜14項のいずれかの方法。
16. 第2液体の一部が第1基板上の選択経路に向けて押し出される間、ビームの焦点が第2液体内に配置される、11〜14項のいずれかの方法。
17. ビームは、第2液体にキャビテーションを起こすことによって第2液体を押し出す、16項の方法。
18. 第2液体の一部が第1基板上の選択経路に向けて押し出される間、ビームの焦点が第1液体内に配置される、11〜14項のいずれかの方法。
19. ビームが第1液体にキャビテーションを起こすことによって第2液体を押し出し、該キャビテーションが、第1液体が第1基板から離れるように局所的に強制されるようにして、第2液体は、第1液体が離れるように強制された第1基板に接触するように移動する、18項の方法。
20. 第1基板の少なくとも一部に面し、かつ液体に接触する第2基板をさらに有して、第2基板と第1基板の間に連続的な液体経路があるようにする、11〜14項のいずれかの方法。
21. 第2基板と第2基板に隣接する液体のいずれかまたは両方に吸収されたビームからのエネルギーが、第2液体が第2基板から離れるように局所的に強制されるようにして、これにより、第1基板上の選択経路に向かう第2液体の推進力を提供する、20項の方法。
22. 方法において、
第2基板は、第2ベース層と、第2ベース層と第2液体の間の第2中間吸収層を含み、
第2中間吸収層の単位厚さ当たりのビーム吸収度は、第2ベース層の単位厚さ当たりのビーム吸収度よりも高く、
第2中間吸収層に吸収されたビームからのエネルギーが、第2液体が第2基板から離れるように局所的に強制されるようにして、これにより、第1基板上の選択経路に向かう第2液体の推進力を提供する、20または21項の方法。
23. 第2液体の一部が第1基板上の選択経路に向けて押し出される間、ビームの焦点が第2液体内に配置される、20〜22項のいずれかの方法。
24. 第2基板は、第2基板に接触する液体上に浮かんでいる、20〜23項のいずれかの方法。
25. 方法において、
第3液体の層が第2液体の上に提供され、
第3液体の単位厚さ当たりのビーム吸収度は、第2液体の単位厚さ当たりのビーム吸収度よりも高く、及び、
第3液体に吸収されたビームからのエネルギーは、第2液体が、第1基板上の選択経路に向けて局所的に押し出されるようにする、11〜24項のいずれかの方法。
26. 第2液体は、第1液体よりも高密度である、先行するいずれかの項の方法。
27. 方法において、
研究対象の物質が第1液体の連続体内に提供され、
分離体への分割により、各々が研究対象の物質の一部を含む、複数の孤立サンプルが生成される、先行するいずれかの項の方法。
28. 研究対象の物質は、生物材料を含む、27項の方法。
29. 生物材料は、接着性生細胞を含む、28項の方法。
30. 接着生第1液体の連続体が分離体に分割される前に、細胞の少なくとも一部が基板に接着することが可能である、29項の方法。
31. 方法において、
被験物質は、接着性生細胞の少なくとも一部が基板に接着した後に、第1液体の連続体に添加され、かつ、
分離体への分割は、被験物質が第1液体の連続体に添加された後に行われる、30項の方法。
32. 被験物質は薬物を含む、31項の方法。
33. 分離体への分割後、第2液体が増殖培地に交換される、27〜32項のいずれかの方法。
34. 生物材料が、各分離体の平均占有率の平均が1生細胞未満となる濃度で生細胞を含むか、または各分離体の平均占有率の平均が1関心のある分子未満となる濃度で関心のある分子を含む、27〜33項のいずれかの方法。
35. 第1液体の連続体は、第2液体を第1液体に接触させる前に、基板上に形成される、先行するいずれかの項の方法。
36. 第1液体の連続体は、主に表面張力によって横方向に拘束される、先行するいずれかの項の方法。
37. 第1液体の連続体は、基板の実質的に平坦な部分と第2液体と排他的に直接接触する、先行するいずれかの項の方法。
38. 第2液体を第1液体を通るように強制することは、以下のステップ、即ち、
第1液体の連続体を対称に2つの等しい体積の分離体に分割するステップと、
先行する分割するステップによって形成された各分離体を対称にさらに2つの等しい体積の分離体に繰り返し分割するステップ、をこの順序で含む、先行するいずれかの項の方法。
39. 第1液体は、固体部材が選択経路に直接接触することを全くしないで、かつ固体部材が固体部材の先端で保持された液体の小滴経由で選択経路に接触することを全くしないで、選択経路から離れるように移動される、先行するいずれかの項の方法。
40. 先行するいずれかの項の方法を使用して製造された、マイクロ流体構造体。
41. マイクロ流体構造体を製造するための装置であって、該装置は、
基板を保持するように構成された基板台であって、その上で第1液体の連続体が基板に直接接触して提供され、かつ、第2液体が第1液体に直接接触して提供されて第1液体を覆っている、基板台と、
パターン形成ユニットを含み、該パターン形成ユニットは、第1液体と混和しない分離流体を押し出して、少なくとも第1液体を通って、かつ、基板の表面上の選択経路の全部に沿って基盤と接触させるように構成され、これにより、初めは選択経路の全部と接触していた第1液体を選択経路から離れるように移動させ、該該選択経路は、第1液体の連続体を分割して、第2液体によって第1液体の連続体の残りの部分から分離される第1液体の1個の分離体または第2液体によって互いから分離される第1液体の複数の分離体を形成するものであって、該装置において、
1以上の分離体の各々について、分離体実装面積がその分離体と第1基板との間の接触面積を表し、かつ分離体実装面積の境界の全部が分離体実装面積を囲む選択経路の閉ループに接触している、装置。

Claims (30)

  1. マイクロ流体構造体を製造する方法であって、前記方法は、
    第1基板に直接接触する第1液体の連続体を提供することと、
    第1液体の前記連続体に直接接触し、かつ第1液体の前記連続体を覆う第2液体を提供することと、
    前記第1液体と混和しない分離流体を押し出して、少なくとも前記第1液体を通って、前記第1基板の表面上の選択経路の全部に沿って、前記第1基板と接触させることを含み、これにより、固体部材が前記選択経路に直接接触することを全くしないで、かつ固体部材が固体部材の先端で保持された液体の小滴経由で前記選択経路に接触することを全くしないで、初めは前記選択経路の全部と接触していた第1液体を前記選択経路から離れるように移動させ、ここで、前記選択経路は、前記第1液体の前記連続体を分割して、第2液体によって前記第1液体の前記連続体の残りの部分から分離される第1液体の1個の分離体または前記第2液体によって互いから分離される前記第1液体の複数の分離体を形成するものであって、前記方法において、
    1以上の前記分離体の各々について、分離体実装面積が前記分離体と前記第1基板との間の接触面積を表し、かつ前記分離体実装面積の境界の全部が前記分離体実装面積を囲む前記選択経路の閉ループに接触している、方法。
  2. 前記第1液体、前記第2液体及び前記第1基板は、前記第1液体と前記第2液体が液体の形態にとどまって、前記選択経路の閉ループと全部が接触している分離体実装面積の各境界が、界面張力による固定構成にピン止めされるように構成されている、請求項1に記載の方法。
  3. 前記第1液体と混和しない前記分離流体は、気体、液体、前記第2液体と同一の組成を有する液体、前記第1液体を通って前記分離流体を押し出す前に提供される前記第2液体の一部のうちの1以上を含んでいてもよい、請求項1または2に記載の方法。
  4. 前記選択経路の閉ループと全部が接触する境界を有する1以上の前記分離体実装面積の各々について、前記境界は、少なくとも1つの直線部分を有する、先行するいずれかの請求項に記載の方法。
  5. 各々が前記選択経路の閉ループと全部が接触する境界を有する前記分離体実装面積の少なくともサブセットは、互いに対して形がかみ合う、先行するいずれかの請求項に記載の方法。
  6. 前記分離流体は、前記第1基板に対して遠位の先端を移動させながら前記分離流体を射出部の前記遠位の先端からポンピングすることによって、前記第1基板上の前記選択経路に押し出される、先行するいずれかの請求項に記載の方法。
  7. 前記選択経路の少なくとも一部について、前記分離流体を前記第1基板上の前記選択経路上に押し出す間、前記遠位の先端は、前記第2液体を通るが前記第1液体は通らずに移動される、請求項6に記載の方法。
  8. 前記選択経路の少なくとも一部について、前記分離流体を前記第1基板上の前記選択経路上に押し出す間、前記遠位の先端は、前記第2液体と前記第1液体の両方を通って移動する、請求項6に記載の方法。
  9. 前記射出部の前記遠位の先端の少なくとも一部は、前記第1液体よりも前記第2液体によってより簡単に濡らされるように構成されている、請求項7または8に記載の方法。
  10. 前記方法において、
    前記分離流体は、前記第2液体と同一の組成を有する液体を含み、
    第1液体の前記連続体に直接接触し、かつ第1液体の前記連続体を覆う前記第2液体を前記提供することは、前記第1基板に直接接触する前記第1液体の前記連続体が提供された後に、
    前記分離流体を押し出すことで前記第1液体を通って、前記第1液体の上部界面の一部がまだ前記第2液体と接触していない間に前記選択経路の少なくとも一部に沿って前記第1基板に接触させることを含み、前記分離流体を前記押し出すことは、前記分離流体が、第1液体の前記連続体に直接接触しかつ第1液体の前記連続体を覆う第2液体の層を形成するまで続く、
    先行するいずれかの請求項に記載の方法。
  11. 前記方法において、
    前記分離流体は、前記第2液体の一部を含み、
    前記第2液体の前記一部は、局所共役エネルギーによって、前記第1基板上の前記選択経路に向かって、前記第1基板上の前記選択経路に向かって押し出される前記第2液体の前記一部を含む領域またはこれに隣接する領域内へと押し出される、
    請求項1〜9のいずれかに記載の方法。
  12. エネルギーの前記局所共役は、電磁放射または超音波の集束ビームを使って実現される、請求項11に記載の方法。
  13. 前記ビームの焦点は、前記選択経路の外形に基づく走査経路に沿って走査される、請求項12に記載の方法。
  14. 前記第1基板に吸収された前記ビームからのエネルギーが、前記第1液体が前記選択経路沿いに前記第1基板から離れるように局所的に強制されるようにして、前記第2液体は、前記第1液体が離れるように強制された前記第1基板に接触するように移動する、請求項12または13に記載の方法。
  15. 前記方法において、
    前記第1基板は、第1ベース層と、前記第1ベース層と前記第1液体の間の第1中間吸収層を含み、
    前記第1中間吸収層の単位厚さ当たりのビーム吸収度は、前記第1ベース層の単位厚さ当たりのビーム吸収度よりも高く、
    前記第1中間吸収層に吸収された前記ビームからのエネルギーが、前記第1液体が前記選択経路沿いに前記第1基板から離れるように局所的に強制されるようにして、前記第2液体は、前記第1液体が離れるように強制された前記第1基板に接触するように移動する、請求項12〜14のいずれかに記載の方法。
  16. 前記第2液体の前記一部が前記第1基板上の前記選択経路に向けて押し出される間、前記ビームの焦点が前記第1基板内に配置される、請求項12〜15のいずれかに記載の方法。
  17. 前記第2液体の前記一部が前記第1基板上の前記選択経路に向けて押し出される間、前記ビームの焦点が前記第2液体内に配置される、請求項12〜15のいずれかに記載の方法。
  18. 前記ビームは、前記第2液体にキャビテーションを起こすことによって前記第2液体を押し出す、請求項17に記載の方法。
  19. 前記第2液体の前記一部が前記第1基板上の前記選択経路に向けて押し出される間、前記ビームの焦点が前記第1液体内に配置される、請求項12〜15のいずれかに記載の方法。
  20. 前記ビームが前記第1液体にキャビテーションを起こすことによって前記第2液体を押し出し、前記キャビテーションが、前記第1液体が前記第1基板から離れるように局所的に強制されるようにして、前記第2液体は、前記第1液体が離れるように強制された前記第1基板に接触するように移動する、請求項19に記載の方法。
  21. 前記第1基板の少なくとも一部に面し、かつ液体に接触する第2基板をさらに有して、前記第2基板と前記第1基板の間に連続的な液体経路があるようにする、請求項12〜15のいずれかに記載の方法。
  22. 前記第2基板と前記第2基板に隣接する液体のいずれかまたは両方に吸収された前記ビームからのエネルギーが、前記第2液体が前記第2基板から離れるように局所的に強制されるようにして、これにより、前記第1基板上の前記選択経路に向かう前記第2液体の推進力を提供する、請求項21に記載の方法。
  23. 方法において、
    前記第2基板は、第2ベース層と、前記第2ベース層と前記第2液体の間の第2中間吸収層を含み、
    前記第2中間吸収層の単位厚さ当たりのビーム吸収度は、前記第2ベース層の単位厚さ当たりのビーム吸収度よりも高く、
    前記第2中間吸収層に吸収された前記ビームからのエネルギーが、前記第2液体が前記第2基板から離れるように局所的に強制されるようにして、これにより、前記第1基板上の前記選択経路に向かう前記第2液体の推進力を提供する、請求項21または22に記載の方法。
  24. 前記第2液体の前記一部が前記第1基板上の前記選択経路に向けて押し出される間、前記ビームの焦点が前記第2液体内に配置される、請求項21〜23のいずれかに記載の方法。
  25. 前記第2基板は、前記第2基板に接触する液体上に浮かんでいる、請求項21〜24のいずれかに記載の方法。
  26. 前記方法において、
    第3液体の層が前記第2液体の上に提供され、
    前記第3液体の単位厚さ当たりのビーム吸収度は、前記第2液体の単位厚さ当たりのビーム吸収度よりも高く、及び、
    前記第3液体に吸収された前記ビームからのエネルギーは、前記第2液体が、前記第1基板上の前記選択経路に向けて局所的に押し出されるようにする、
    請求項12〜25のいずれかに記載の方法。
  27. 前記第2液体は、前記第1液体よりも高密度である、先行するいずれかの請求項に記載の方法。
  28. 前記分離流体を前記押し出すことは、前記選択経路から離れる前記第1液体の前記移動の少なくとも一部の間の、前記分離流体の部分の断続的押出しを含む、先行するいずれかの請求項に記載の方法。
  29. 先行するいずれかの請求項に記載の前記方法を使用して製造された、マイクロ流体構造体。
  30. マイクロ流体構造体を製造するための装置であって、前記装置は、
    基板を保持するように構成された基板台であって、その上で第1液体の連続体が基板に直接接触して提供され、かつ、第2液体が前記第1液体に直接接触して提供されて前記第1液体を覆っている、前記基板台と、
    パターン形成ユニットを含み、前記パターン形成ユニットは、前記第1液体と混和しない分離流体を押し出して、少なくとも前記第1液体を通って、かつ、前記基板の表面上の選択経路の全部に沿って前記基盤に接触させるように構成され、これにより、固体部材が前記選択経路に直接接触することを全くしないで、かつ固体部材が前記固体部材の先端で保持された液体の小滴経由で前記選択経路に接触することを全くしないで、初めは前記選択経路の全部と接触していた第1液体を前記選択経路から離れるように移動させ、ここで、前記選択経路は、前記第1液体の前記連続体を分割して、前記第2液体によって第1液体の前記連続体の残りの部分から分離される第1液体の1個の分離体または前記第2液体によって互いから分離される第1液体の複数の分離体を形成するものであって、前記装置において、
    1以上の前記分離体の各々について、分離体実装面積が前記分離体と前記第1基板との間の接触面積を表し、かつ前記分離体実装面積の境界の全部が前記分離体実装面積を囲む前記選択経路の閉ループに接触している、
    装置。

JP2020544222A 2018-02-21 2019-02-05 マイクロ流体構造体を製造するための方法及び装置、並びにマイクロ流体構造体 Withdrawn JP2021514469A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GBGB1802819.1A GB201802819D0 (en) 2018-02-21 2018-02-21 Methods and apparatus for manufacturing a microfluidic arrangement, and a microfluidic arrangement
GB1802819.1 2018-02-21
GB1811977.6A GB2571380B (en) 2018-02-21 2018-07-23 Methods and apparatus for manufacturing a microfluidic arrangement, and a microfluidic arrangement
GB1811977.6 2018-07-23
PCT/GB2019/050303 WO2019162644A1 (en) 2018-02-21 2019-02-05 Methods and apparatus for manufacturing a microfluidic arrangement, and a microfluidic arrangement

Publications (2)

Publication Number Publication Date
JP2021514469A true JP2021514469A (ja) 2021-06-10
JPWO2019162644A5 JPWO2019162644A5 (ja) 2022-02-10

Family

ID=61783876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020544222A Withdrawn JP2021514469A (ja) 2018-02-21 2019-02-05 マイクロ流体構造体を製造するための方法及び装置、並びにマイクロ流体構造体

Country Status (8)

Country Link
US (1) US11931735B2 (ja)
EP (1) EP3755462B1 (ja)
JP (1) JP2021514469A (ja)
CN (1) CN111902211B (ja)
AU (1) AU2019223302A1 (ja)
CA (1) CA3091477A1 (ja)
GB (2) GB201802819D0 (ja)
WO (1) WO2019162644A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201908926D0 (en) * 2019-06-21 2019-08-07 Univ Oxford Innovation Ltd Method of manufacturing a microfluidic arrangement method of operating a microfluidic arrangement apparatus for maufacturing a microfluidic arrangment
LU101421B1 (de) * 2019-10-01 2021-04-01 Cytena Gmbh Verfahren zum Erzeugen wenigstens eines Musters auf einer Trägeroberfläche eines Trägers

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8053249B2 (en) 2001-10-19 2011-11-08 Wisconsin Alumni Research Foundation Method of pumping fluid through a microfluidic device
US7189580B2 (en) 2001-10-19 2007-03-13 Wisconsin Alumni Research Foundation Method of pumping fluid through a microfluidic device
US20050095664A1 (en) 2003-10-30 2005-05-05 Carpenter Steven E. Printing growth medium for culture and analysis of biological material
CN101137440A (zh) * 2005-01-12 2008-03-05 因弗因斯医药瑞士股份有限公司 制备微流体器件的方法和微流体器件
BRPI0607213B1 (pt) * 2005-01-28 2017-04-04 Univ Duke aparelho para manipulação de gotículas em uma placa de circuito impresso
WO2006083833A2 (en) 2005-01-31 2006-08-10 President And Fellows Of Harvard College Valves and reservoirs for microfluidic systems
US8168133B2 (en) 2005-05-09 2012-05-01 Wisconsin Alumni Research Foundation Device for performing a high throughput assay
WO2008097559A2 (en) * 2007-02-06 2008-08-14 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US9152150B1 (en) * 2007-02-22 2015-10-06 Applied Biosystems, Llc Compositions, systems, and methods for immiscible fluid discrete volume manipulation
WO2008137212A1 (en) 2007-05-02 2008-11-13 Siemens Healthcare Diagnostics Inc. Piezo dispensing of a diagnostic liquid into microfluidic devices
JP2015513451A (ja) * 2012-02-08 2015-05-14 プレジデント アンド フェローズ オブ ハーバード カレッジ 流体分割を用いる液滴形成
AT514210B1 (de) 2013-04-25 2016-08-15 Greiner Bio-One Gmbh Dispenser-befülltes mikrofluidisches Testsystem und Verfahren dazu
WO2016133783A1 (en) * 2015-02-17 2016-08-25 Zalous, Inc. Microdroplet digital pcr system
CA3053745C (en) 2015-08-26 2023-01-24 EMULATE, Inc. Perfusion manifold assembly
GB201518392D0 (en) 2015-10-16 2015-12-02 Isis Innovation Microfluidic arrangements
GB201614150D0 (en) * 2016-08-18 2016-10-05 Univ Oxford Innovation Ltd Microfluidic arrangements
WO2017064514A1 (en) * 2015-10-16 2017-04-20 Oxford University Innovation Limited Microfluidic arrangements
GB2569328A (en) * 2017-12-13 2019-06-19 Univ Oxford Innovation Ltd Methods and apparatus for manufacturing a microfluidic arrangement , and a microfluidic arrangement

Also Published As

Publication number Publication date
AU2019223302A1 (en) 2020-09-03
WO2019162644A1 (en) 2019-08-29
GB2571380B (en) 2022-03-30
US20200376486A1 (en) 2020-12-03
CN111902211A (zh) 2020-11-06
US11931735B2 (en) 2024-03-19
EP3755462B1 (en) 2024-04-03
CN111902211B (zh) 2022-04-19
GB2571380A (en) 2019-08-28
GB201802819D0 (en) 2018-04-04
CA3091477A1 (en) 2019-08-29
EP3755462A1 (en) 2020-12-30
GB201811977D0 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
CN109661272B (zh) 用于制造微流体布置的方法和装置及微流体布置
Le Gac et al. Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement
JP6367717B2 (ja) 誘発されたキャビテーションによって駆動される高速オンデマンド型液滴生成および単一細胞封入
AU2002219959B2 (en) Spatially directed ejection of cells from a carrier fluid
US7439048B2 (en) Apparatus for acoustic ejection of circumscribed volumes from a fluid
JP2021514469A (ja) マイクロ流体構造体を製造するための方法及び装置、並びにマイクロ流体構造体
Cui et al. A fishbone-inspired liquid splitter enables directional droplet transportation and spontaneous separation
US20040022691A1 (en) Method of manufacturing and design of microreactors, including microanalytical and separation devices
DE112004002254T5 (de) Mikrofluidikvorrichtung
AU2002219959A1 (en) Spatially directed ejection of cells from a carrier fluid
CN107828653B (zh) 开放式单细胞研究用芯片及其制备方法
CN113993688B (zh) 三维增材打印方法
JPWO2006126487A1 (ja) マイクロチップ及びマイクロチップの製造方法
Sima et al. Mimicking intravasation–extravasation with a 3D glass nanofluidic model for the chemotaxis‐free migration of cancer cells in confined spaces
WO2019116033A1 (en) Methods and apparatus for manufacturing a microfluidic arrangement, and a microfluidic arrangement
Guillotin et al. Rapid prototyping of complex tissues with laser-assisted bioprinting (LAB)
US20220219165A1 (en) Method of manufacturing a microfluidic arrangement, method of operating a microfluidic arrangement, apparatus for manufacturing a microfluidic arrangement
EP3941633B1 (en) Method and system for manufacturing a microfluidic arrangement, method of manufacturing a liquid, method of performing a biological assay
Arizpe Microfluidic Platforms for Multiplexed Functional Testing of Intact Tumor Tissues
Serra et al. Laser Microprinting of Transparent and Weakly Absorbing Solutions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201102

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20201102

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20201102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220202

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20221012