JP2021177511A - Solar cell, solar cell module, and solar cell manufacturing method - Google Patents

Solar cell, solar cell module, and solar cell manufacturing method Download PDF

Info

Publication number
JP2021177511A
JP2021177511A JP2020082066A JP2020082066A JP2021177511A JP 2021177511 A JP2021177511 A JP 2021177511A JP 2020082066 A JP2020082066 A JP 2020082066A JP 2020082066 A JP2020082066 A JP 2020082066A JP 2021177511 A JP2021177511 A JP 2021177511A
Authority
JP
Japan
Prior art keywords
solar cell
main surface
semiconductor
groove
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020082066A
Other languages
Japanese (ja)
Inventor
崇 口山
Takashi Kuchiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2020082066A priority Critical patent/JP2021177511A/en
Publication of JP2021177511A publication Critical patent/JP2021177511A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a solar cell that can reduce a gap and a step between solar cells.SOLUTION: A solar cell 10 according to an embodiment of the present invention includes a semiconductor substrate 11, and a pair of opposite end faces A3 and A4 of the semiconductor substrate 11 is inclined such that the edge of a first main surface A1 of the semiconductor substrate 11 is offset with respect to the edge of a second main surface A2 of the semiconductor substrate 11 in a certain direction and by a certain distance in a plan view.SELECTED DRAWING: Figure 1

Description

本発明は、太陽電池セル、太陽電池モジュール及び太陽電池セル製造方法に関する。 The present invention relates to a solar cell, a solar cell module, and a method for manufacturing a solar cell.

複数の太陽電池セルを一列に並べて配置し、電気的に直列に接続した太陽電池ストリングを用いて太陽電池モジュールが製造されている。このような太陽電池ストリングにおいて、隣接する太陽電池セル間は、導電性の部材(インターコネクタ)によって接続されることが多い。表裏(受光面及び反対側の面)に極性が異なる電極が設けられた両面電極型の太陽電池セルの場合、1つの太陽電池セルの表面側の電極と隣接する太陽電池セルの裏面側の電極とを接続する必要がある。この場合、太陽電池セルの間にインターコネクタを通すための隙間を設ける必要があり、光電変換に寄与する実効面積が制限されるとともに、太陽電池セルの隙間が目立つことで美観が損なわれる。 Solar cell modules are manufactured using solar cell strings in which a plurality of solar cell cells are arranged side by side and electrically connected in series. In such a solar cell string, adjacent solar cells are often connected by a conductive member (interconnector). In the case of a double-sided electrode type solar cell in which electrodes having different polarities are provided on the front and back surfaces (light receiving surface and opposite surface), the electrode on the front surface side of one solar cell and the electrode on the back surface side of the adjacent solar cell. And need to be connected. In this case, it is necessary to provide a gap for passing the interconnector between the solar cells, the effective area contributing to photoelectric conversion is limited, and the gap between the solar cells is conspicuous, which spoils the aesthetic appearance.

太陽電池ストリングの実効面積を大きくする構成として、例えば特許文献1に記載されるように、太陽電池セルの端部を重ねて表側に重ねられる太陽電池セルの裏面側の電極と裏側に重ねられる太陽電池セルの表面側の電極とを直接接続する、シングリング構造と呼ばれる構成が知られている。 As a configuration for increasing the effective area of the solar cell string, for example, as described in Patent Document 1, the electrodes on the back side of the solar cell and the sun on the back side are stacked on the front side by overlapping the ends of the solar cell. A configuration called a single ring structure is known in which the electrodes on the surface side of the battery cell are directly connected.

国際公開第2015/152020号International Publication No. 2015/152020

シングリング構造では、太陽電池セルの間に隙間は形成されないが、太陽電池セル間に段差が生じるため、依然として個々の太陽電池セルが認識されやすい。また、シングリング構造では、太陽電池セルが重なり合う部分に応力が集中しやすいため、太陽電池セルの破損や太陽電池セル間の分離が生じるリスクが大きくなる。このため、本発明は、太陽電池セル間の隙間や段差を小さくできる太陽電池セル、太陽電池モジュール及びそれらを構成できる太陽電池セル製造方法を提供することを課題とする。 In the single ring structure, no gap is formed between the solar cells, but a step is generated between the solar cells, so that individual solar cells are still easily recognized. Further, in the single ring structure, stress tends to be concentrated on the portion where the solar cells overlap, so that the risk of damage to the solar cells or separation between the solar cells increases. Therefore, it is an object of the present invention to provide a solar cell, a solar cell module capable of reducing gaps and steps between solar cells, and a method for manufacturing a solar cell capable of constituting them.

本発明の一態様に係る太陽電池セルは、半導体基板を備え、前記半導体基板の対向する一対の端面は、平面視で前記半導体基板の第1主面の端縁を前記半導体基板の第2主面の端縁に対して一定方向且つ一定距離だけオフセットするよう傾斜する。 The solar cell according to one aspect of the present invention includes a semiconductor substrate, and the pair of facing end faces of the semiconductor substrate have the edge of the first main surface of the semiconductor substrate as the second main surface of the semiconductor substrate in a plan view. It is tilted so as to be offset in a certain direction and by a certain distance with respect to the edge of the surface.

本発明の一態様に係る太陽電池セルにおいて、前記一対の端面は、前記第1主面及び前記第2主面に略垂直な内側隣接面と、前記内側隣接面よりも外側に位置し、前記第1主面及び前記第2主面に略垂直な外側隣接面と、前記内側隣接面と前記外側隣接面とを接続し、前記第1主面及び前記第2主面に略平行な中間面と、を有する2段の階段状であってもよい。 In the solar cell according to one aspect of the present invention, the pair of end faces are located on the inner adjacent surface substantially perpendicular to the first main surface and the second main surface, and on the outer side of the inner adjacent surface. An intermediate surface that connects the first main surface and the outer adjacent surface substantially perpendicular to the second main surface, the inner adjacent surface and the outer adjacent surface, and is substantially parallel to the first main surface and the second main surface. It may be a two-step stepped shape having and.

本発明の一態様に係る太陽電池セルは、前記第1主面に積層される第1半導体層と、前記第2主面に積層され、前記第1半導体層と導電型が異なる第2半導体層と、をさらに備え、前記内側隣接面及び前記中間面は、前記第1半導体層又は前記第2半導体層に覆われ、前記外側隣接面は、前記半導体基板を露出してもよい。 The solar cell according to one aspect of the present invention has a first semiconductor layer laminated on the first main surface and a second semiconductor layer laminated on the second main surface and having a different conductive type from the first semiconductor layer. The inner adjacent surface and the intermediate surface may be covered with the first semiconductor layer or the second semiconductor layer, and the outer adjacent surface may expose the semiconductor substrate.

本発明の一態様に係る太陽電池セルは、前記第1半導体層を覆う第1透明電極層及び前記第2半導体層を覆う第2透明電極をさらに備えてもよい。 The solar cell according to one aspect of the present invention may further include a first transparent electrode layer covering the first semiconductor layer and a second transparent electrode covering the second semiconductor layer.

本発明の一態様に係る太陽電池モジュールは、上述の太陽電池セルを複数備え、前記太陽電池セルの前記内側隣接面は、隣接する前記太陽電池セルの前記外側隣接面に対向する。 The solar cell module according to one aspect of the present invention includes a plurality of the above-mentioned solar cells, and the inner adjacent surface of the solar cell faces the outer adjacent surface of the adjacent solar cell.

本発明の一態様に係る太陽電池モジュールは、隣接し合う2つの太陽電池セルの対向し合う前記端面の間に配置される導電性接着剤をさらに備えてもよい。 The solar cell module according to one aspect of the present invention may further include a conductive adhesive arranged between the opposing end faces of two adjacent solar cells.

本発明の一態様に係る太陽電池セル製造方法は、半導体ウエハの第1主面に第1溝を形成する工程と、前記半導体ウエハの第2主面に前記第1溝と平面位置をずらして前記第1溝と平行な第2溝を形成する工程と、前記半導体ウエハの前記第1主面及び前記第1溝の内面を覆うよう第1半導体材料を積層する工程と、前記半導体ウエハの前記第2主面及び前記第2溝の内面を覆うよう、前記第1半導体材料と導電型が異なる第2半導体材料を積層する工程と、前記半導体ウエハの前記第1溝と前記第2溝とに跨る領域を除去する工程と、を備える。 The method for manufacturing a solar cell according to one aspect of the present invention includes a step of forming a first groove on a first main surface of a semiconductor wafer and a plane position shifted from the first groove on the second main surface of the semiconductor wafer. A step of forming a second groove parallel to the first groove, a step of laminating a first semiconductor material so as to cover the first main surface of the semiconductor wafer and the inner surface of the first groove, and the step of laminating the semiconductor wafer. A step of laminating a second semiconductor material having a different conductive type from the first semiconductor material so as to cover the second main surface and the inner surface of the second groove, and the first groove and the second groove of the semiconductor wafer. A step of removing a straddling region is provided.

本発明によれば、太陽電池セル間の隙間や段差を小さくできる。 According to the present invention, the gaps and steps between solar cells can be reduced.

本発明の一実施形態に係る太陽電池セルを示す模式断面図である。It is a schematic cross-sectional view which shows the solar cell which concerns on one Embodiment of this invention. 本発明の一実施形態に係る太陽電池セル製造方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the solar cell manufacturing method which concerns on one Embodiment of this invention. 図2の太陽電池セル製造方法の一工程を示す模式断面図である。It is a schematic cross-sectional view which shows one process of the solar cell manufacturing method of FIG. 図2の太陽電池セル製造方法の図3の次の工程を示す模式断面図である。It is a schematic cross-sectional view which shows the next process of FIG. 3 of the solar cell manufacturing method of FIG. 図2の太陽電池セル製造方法の図4の次の工程を示す模式断面図である。It is a schematic cross-sectional view which shows the next process of FIG. 4 of the solar cell manufacturing method of FIG. 図2の太陽電池セル製造方法の図5の次の工程を示す模式断面図である。It is a schematic cross-sectional view which shows the next process of FIG. 5 of the solar cell manufacturing method of FIG. 図2の太陽電池セル製造方法の図6の次の工程を示す模式断面図である。It is a schematic cross-sectional view which shows the next process of FIG. 6 of the solar cell manufacturing method of FIG. 図2の太陽電池セル製造方法の図7の次の工程を示す模式断面図である。It is a schematic cross-sectional view which shows the next process of FIG. 7 of the solar cell manufacturing method of FIG. 図1の太陽電池セルを有する太陽電池モジュールの模式断面図である。It is a schematic cross-sectional view of the solar cell module which has the solar cell of FIG. 本発明の図1とは異なる実施形態に係る太陽電池セルを示す模式断面図である。It is a schematic cross-sectional view which shows the solar cell which concerns on embodiment different from FIG. 1 of this invention. 図10の太陽電池セルを有する太陽電池モジュールの模式断面図である。It is a schematic cross-sectional view of the solar cell module which has the solar cell of FIG.

以下、添付の図面を参照して本発明の各実施形態について説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。また、簡略化のために、部材の図示、符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, the same reference numerals are given to the same or corresponding parts in each drawing. Further, for the sake of simplification, illustrations, symbols, etc. of the members may be omitted, but in such cases, other drawings shall be referred to.

図1に、本発明の一実施形態に係る太陽電池セル10を示す。太陽電池セル10は、半導体基板11と、半導体基板11の表側の第1主面(受光面)S1に積層される第1半導体層12と、半導体基板11の裏側の第2主面(裏面)S2に積層され、第1半導体層と導電型が異なる第2半導体層13と、第1半導体層12を覆う第1透明電極14と、第2半導体層13の第2主面に積層される第2透明電極15と、を備える。 FIG. 1 shows a solar cell 10 according to an embodiment of the present invention. The solar cell 10 has a semiconductor substrate 11, a first semiconductor layer 12 laminated on a first main surface (light receiving surface) S1 on the front side of the semiconductor substrate 11, and a second main surface (back surface) on the back side of the semiconductor substrate 11. A second semiconductor layer 13 laminated on S2 and having a different conductive type from the first semiconductor layer, a first transparent electrode 14 covering the first semiconductor layer 12, and a second main surface of the second semiconductor layer 13 are laminated. 2 The transparent electrode 15 and the like are provided.

半導体基板11の対向する一対の端面(第1端面A3及び第2端面A4)は、平面視で第1主面A1の端縁を第2主面A2の端縁に対して一定方向且つ一定距離だけオフセットするよう、全体として傾斜する。本実施形態において、この一対の端面A3,S4は、2段の階段状に形成されている。具体的には、半導体基板11の第1端面A3は、第1主面A1及び第2主面A2に略垂直な第1内側隣接面A31と、第1内側隣接面A31よりも外側に位置し、第1主面A1及び第2主面A2に略垂直な第1外側隣接面A32と、第1内側隣接面A31と第1外側隣接面A32とを接続し、第1主面A1及び第2主面A2に略平行な第1中間面A33と、を有する。第2端面A4は、第1主面A1及び第2主面A2に略垂直な第2内側隣接面A41と、第2内側隣接面A41よりも外側に位置し、第1主面A1及び第2主面A2に略垂直な第2外側隣接面A42と、第2内側隣接面A41と第2外側隣接面A42とを接続し、第1主面A1及び第2主面A2に略平行な第2中間面A43と、を有する。なお、「オフセット」とは、実質的に形状及び向きを変えずに位置のみを異ならせることを意味する。「略垂直」及び「略平行」とは、正確な「垂直」及び「平行」に対して±15°の範囲内であることを意味する。 The pair of opposite end faces (first end face A3 and second end face A4) of the semiconductor substrate 11 have the edge of the first main face A1 in a certain direction and a certain distance with respect to the edge of the second main face A2 in a plan view. Tilt as a whole to offset only. In the present embodiment, the pair of end faces A3 and S4 are formed in a two-step step shape. Specifically, the first end surface A3 of the semiconductor substrate 11 is located outside the first inner adjacent surface A31 and the first inner adjacent surface A31 which are substantially perpendicular to the first main surface A1 and the second main surface A2. , The first outer adjacent surface A32 substantially perpendicular to the first main surface A1 and the second main surface A2, the first inner adjacent surface A31 and the first outer adjacent surface A32 are connected, and the first main surface A1 and the second It has a first intermediate surface A33 that is substantially parallel to the main surface A2. The second end surface A4 is located outside the second inner adjacent surface A41 and the second inner adjacent surface A41 which are substantially perpendicular to the first main surface A1 and the second main surface A2, and the first main surface A1 and the second surface A4. A second surface that connects the second outer adjacent surface A42 that is substantially perpendicular to the main surface A2, the second inner adjacent surface A41, and the second outer adjacent surface A42, and is substantially parallel to the first main surface A1 and the second main surface A2. It has an intermediate surface A43 and. The term "offset" means that only the position is different without substantially changing the shape and orientation. "Approximately vertical" and "approximately parallel" mean within ± 15 ° with respect to the exact "vertical" and "parallel".

第1内側隣接面A31及び第1中間面A33は、第1半導体層12及び第1透明電極14に覆われ、第2内側隣接面A31及び第1中間面A33は、第2半導体層13及び第2透明電極15に覆われる。一方、第1外側隣接面A32及び第2外側隣接面A42は、他の構成要素には被覆されておらず、半導体基板11を露出する。 The first inner adjacent surface A31 and the first intermediate surface A33 are covered with the first semiconductor layer 12 and the first transparent electrode 14, and the second inner adjacent surface A31 and the first intermediate surface A33 are the second semiconductor layer 13 and the first transparent electrode 14. 2 Covered by a transparent electrode 15. On the other hand, the first outer adjacent surface A32 and the second outer adjacent surface A42 are not covered with other components and expose the semiconductor substrate 11.

半導体基板11は、受光面側からの入射光を吸収して光キャリア(電子及び正孔)を生成する光電変換基板として機能する。半導体基板11は、単結晶シリコン又は多結晶シリコン等の結晶シリコン材料で形成される。半導体基板11は、例えば結晶シリコン材料にn型ドーパントがドープされたn型の半導体基板である。n型ドーパントとしては、例えばリン(P)が挙げられる。半導体基板11の材料として結晶シリコンが用いられることにより、暗電流が比較的に小さく、入射光の強度が低い場合であっても比較的高出力(照度によらず安定した出力)が得られる。 The semiconductor substrate 11 functions as a photoelectric conversion substrate that absorbs incident light from the light receiving surface side to generate optical carriers (electrons and holes). The semiconductor substrate 11 is formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon. The semiconductor substrate 11 is, for example, an n-type semiconductor substrate in which a crystalline silicon material is doped with an n-type dopant. Examples of the n-type dopant include phosphorus (P). By using crystalline silicon as the material of the semiconductor substrate 11, a relatively high output (stable output regardless of the illuminance) can be obtained even when the dark current is relatively small and the intensity of the incident light is low.

第1半導体層12及び第2半導体層13は、半導体基板11の内部で発生したキャリアを誘引して互いに異なる極性の電荷を収集する。第1半導体層12及び第2半導体層13は、所望の導電型を付与するドーパントをドープしたアモルファスシリコンによって形成することができる。p型のドーパントとしては、例えばホウ素(B)が挙げられ、n型ドーパントとしては、例えばリン(P)が挙げられる。 The first semiconductor layer 12 and the second semiconductor layer 13 attract carriers generated inside the semiconductor substrate 11 to collect charges having different polarities from each other. The first semiconductor layer 12 and the second semiconductor layer 13 can be formed of amorphous silicon doped with a dopant that imparts a desired conductive type. Examples of the p-type dopant include boron (B), and examples of the n-type dopant include phosphorus (P).

第1透明電極14及び第2透明電極15は、第1半導体層12及び第2半導体層13が収集した電荷を取り出して外部に出力する導体である。第1透明電極14及び第2透明電極15は、同じ材料から形成することができる。第1透明電極14及び第2透明電極15を形成する材料としては、例えば、ITO(Indium Tin Oxide)、酸化亜鉛(ZnO)等を挙げることができる。 The first transparent electrode 14 and the second transparent electrode 15 are conductors that take out the electric charges collected by the first semiconductor layer 12 and the second semiconductor layer 13 and output them to the outside. The first transparent electrode 14 and the second transparent electrode 15 can be formed of the same material. Examples of the material forming the first transparent electrode 14 and the second transparent electrode 15 include ITO (Indium Tin Oxide) and zinc oxide (ZnO).

本実施形態の太陽電池セル10は、本発明に係る太陽電池セル製造方法の一実施形態により製造することができる。本実施形態の太陽電池セル製造方法は、図2に示すように、ステップの第1溝形成工程と、ステップの第2溝形成工程と、ステップS3の第1半導体材料積層工程と、ステップS4の第2半導体材料積層工程と、ステップS5の透明電極材料積層工程と、ステップS6の半導体ウエハ部分除去工程と、を備える。 The solar cell 10 of the present embodiment can be manufactured by one embodiment of the solar cell manufacturing method according to the present invention. As shown in FIG. 2, the solar cell manufacturing method of the present embodiment includes a first groove forming step of the step, a second groove forming step of the step, a first semiconductor material laminating step of step S3, and a step S4. The second semiconductor material laminating step, the transparent electrode material laminating step of step S5, and the semiconductor wafer partial removal step of step S6 are provided.

ステップの第1溝形成工程では、図3に示すように、半導体基板11を切り出すことができる大判の半導体ウエハWの第1主面に、第1溝G1を形成する。第1溝G1は、方形断面を有し、一方の側壁が第1内側隣接面A31を構成し、底壁が第1中間面A33を構成する。第1溝G1は、例えばレーザの照射、切削、エッチング等によって形成することができる。 In the first groove forming step of the step, as shown in FIG. 3, the first groove G1 is formed on the first main surface of the large-sized semiconductor wafer W from which the semiconductor substrate 11 can be cut out. The first groove G1 has a square cross section, one side wall constitutes the first inner adjacent surface A31, and the bottom wall constitutes the first intermediate surface A33. The first groove G1 can be formed by, for example, laser irradiation, cutting, etching, or the like.

第1溝G1の深さとしては、半導体ウエハWの厚みの略1/2が好ましく、第1半導体層12及び第1透明電極14を積層しても半導体ウエハWの厚みの1/2以下となるよう、半導体ウエハWの厚みの1/2よりも僅かに大きいことがより好ましい。 The depth of the first groove G1 is preferably approximately 1/2 the thickness of the semiconductor wafer W, and even if the first semiconductor layer 12 and the first transparent electrode 14 are laminated, the depth is 1/2 or less of the thickness of the semiconductor wafer W. It is more preferable that the thickness is slightly larger than 1/2 of the thickness of the semiconductor wafer W.

ステップの第2溝形成工程では、図4に示すように、半導体ウエハWの第2主面に、第1溝G1と平面位置をずらして第1溝G1と平行な第2溝G2を形成する。第2溝G2は、方形断面を有し、一方の側壁が第2内側隣接面A41を構成し、底壁が第2中間面A43を構成する。第2溝G2は、第1溝G1と同様の方法で形成することができる。第2溝G2の深さとしては、第1溝G1の深さと同様とすることができる。 In the second groove forming step of the step, as shown in FIG. 4, a second groove G2 parallel to the first groove G1 is formed on the second main surface of the semiconductor wafer W by shifting the plane position from the first groove G1. .. The second groove G2 has a square cross section, one side wall constitutes the second inner adjacent surface A41, and the bottom wall constitutes the second intermediate surface A43. The second groove G2 can be formed in the same manner as the first groove G1. The depth of the second groove G2 can be the same as the depth of the first groove G1.

ステップS3の第1半導体材料積層工程では、図5に示すように、半導体ウエハWの第1主面及び第1溝G1の内面を覆うよう、第1半導体層12を形成する第1半導体材料M1を積層する。第1半導体材料M1の積層は、例えばCVD等の成膜技術によって行うことができる。 In the first semiconductor material laminating step of step S3, as shown in FIG. 5, the first semiconductor material M1 forming the first semiconductor layer 12 so as to cover the first main surface of the semiconductor wafer W and the inner surface of the first groove G1. Are laminated. The first semiconductor material M1 can be laminated by, for example, a film forming technique such as CVD.

ステップS4の第2半導体材料積層工程では、図6に示すように、半導体ウエハWの第2主面及び第2溝G2の内面を覆うよう、第2半導体層13を形成する材料、つまり第1半導体材料M1と導電型が異なる第2半導体材料M2を積層する。第2半導体材料M2の積層は、第1半導体材料M1の積層と同様の成膜技術によって行うことができる。 In the second semiconductor material laminating step of step S4, as shown in FIG. 6, the material that forms the second semiconductor layer 13 so as to cover the second main surface of the semiconductor wafer W and the inner surface of the second groove G2, that is, the first A second semiconductor material M2 having a different conductive type from the semiconductor material M1 is laminated. The lamination of the second semiconductor material M2 can be performed by the same film forming technique as the lamination of the first semiconductor material M1.

ステップS5の透明電極材料積層工程では、図7に示すように、第1半導体材料M1の層及び第2半導体材料M2の層にそれぞれ第1透明電極14及び第2透明電極15を形成する透明電極材料M3を積層する。透明電極材料M3の積層は、例えばCVDやPVD等の成膜技術によって行うことができる。 In the transparent electrode material laminating step of step S5, as shown in FIG. 7, the transparent electrode forming the first transparent electrode 14 and the second transparent electrode 15 in the layer of the first semiconductor material M1 and the layer of the second semiconductor material M2, respectively. The material M3 is laminated. The transparent electrode material M3 can be laminated by, for example, a film forming technique such as CVD or PVD.

ステップS6の半導体ウエハ部分除去工程では、図8に示すように、半導体ウエハWの第1溝G1と第2溝G2とに跨る領域を除去する。これによって、複数の太陽電池セル10が得られる。半導体ウエハWの部分的な除去は、例えばレーザの照射、ミリング、エッチング等によって行うことができる。 In the semiconductor wafer partial removal step of step S6, as shown in FIG. 8, the region of the semiconductor wafer W straddling the first groove G1 and the second groove G2 is removed. As a result, a plurality of solar cell 10s can be obtained. Partial removal of the semiconductor wafer W can be performed by, for example, laser irradiation, milling, etching, or the like.

図9は、本発明の一実施形態に係る太陽電池モジュール100を示す。太陽電池モジュール100は、複数の太陽電池セル10を有する太陽電池ストリング110と、太陽電池ストリング110の表面側(受光面側)を覆う表面保護材120と、太陽電池ストリング110の裏面側を覆う裏面保護材130と、表面保護材120と裏面保護材130との間に充填され、太陽電池ストリング110を覆う封止材140と、を備える。 FIG. 9 shows a solar cell module 100 according to an embodiment of the present invention. The solar cell module 100 includes a solar cell string 110 having a plurality of solar cell cells 10, a surface protective material 120 that covers the front surface side (light receiving surface side) of the solar cell string 110, and a back surface that covers the back surface side of the solar cell string 110. A protective material 130 and a sealing material 140 that is filled between the front surface protective material 120 and the back surface protective material 130 and covers the solar cell string 110 are provided.

太陽電池ストリング110は、複数の太陽電池セル10を一列に並べ、電気的に直列に接続することによって形成される。隣接し合う2つの太陽電池セル10は、対向し合う第1端面と第2端面との間に配置される例えば銀ペースト等の導電性接着剤20によって、それぞれ接着されている。本実施形態では、導電性接着剤20は、対向し合う第1内側隣接面AA31と第2外側隣接面A42との間に主に配置され、第2外側隣接面A42側の太陽電池セル10の第1半導体層12及び第1透明電極14とは接触しないように配置される。これにより、第1内側隣接面A31側の太陽電池セル10の第1半導体層12及び第1透明電極14と、第2外側隣接面A42側の太陽電池セル10の第2半導体層13及び第2透明電極15とが接続される。 The solar cell string 110 is formed by arranging a plurality of solar cells 10 in a row and electrically connecting them in series. The two adjacent solar cells 10 are adhered to each other by a conductive adhesive 20 such as silver paste, which is arranged between the first end face and the second end face facing each other. In the present embodiment, the conductive adhesive 20 is mainly arranged between the first inner adjacent surface AA31 and the second outer adjacent surface A42 facing each other, and the solar cell 10 on the second outer adjacent surface A42 side. It is arranged so as not to come into contact with the first semiconductor layer 12 and the first transparent electrode 14. As a result, the first semiconductor layer 12 and the first transparent electrode 14 of the solar cell 10 on the first inner adjacent surface A31 side and the second semiconductor layer 13 and the second semiconductor layer 13 and the second transparent electrode 14 of the solar cell 10 on the second outer adjacent surface A42 side. The transparent electrode 15 is connected.

表面保護材120は、封止材140を介して、太陽電池ストリング110、すなわち太陽電池セル10の表面を覆うことにより、太陽電池セル10を保護する。表面保護材120は、板状又はシート状の材料から形成することができ、透光性及び対候性に優れることが好ましい。具体的には、表面保護材120の材質としては、例えばアクリル樹脂若しくはポリカーボネート樹脂等の透明樹脂、ガラスなどを挙げることができる。また、表面保護材120の表面は、光の反射を抑制するために、凹凸状に加工されたり、反射防止コーティング層で被覆されてもよい。 The surface protective material 120 protects the solar cell 10 by covering the surface of the solar cell string 110, that is, the solar cell 10 via the sealing material 140. The surface protective material 120 can be formed from a plate-shaped or sheet-shaped material, and is preferably excellent in translucency and weather resistance. Specifically, as the material of the surface protective material 120, for example, a transparent resin such as an acrylic resin or a polycarbonate resin, glass, or the like can be mentioned. Further, the surface of the surface protective material 120 may be processed into an uneven shape or coated with an antireflection coating layer in order to suppress the reflection of light.

裏面保護材130は、封止材140を介して、太陽電池ストリング110の裏面を覆うことにより、太陽電池セル10を保護する。裏面保護材130は、表面保護材120同様に、板状又はシート状の材料から形成することができ、遮水性に優れることが好ましい。具体的には、裏面保護材130としては、例えばポリエチレンテレフタレート(PET)、ポリエチレン(PE)、オレフィン系樹脂、含フッ素樹脂、シリコーン樹脂等の樹脂フィルム、このような樹脂フィルムとアルミニウム箔等の金属箔との積層体などが好適に用いられる。 The back surface protective material 130 protects the solar cell 10 by covering the back surface of the solar cell string 110 with the sealing material 140. Like the front surface protective material 120, the back surface protective material 130 can be formed from a plate-like or sheet-like material, and is preferably excellent in water impermeability. Specifically, the back surface protective material 130 includes, for example, a resin film such as polyethylene terephthalate (PET), polyethylene (PE), an olefin resin, a fluorine-containing resin, and a silicone resin, and a metal such as such a resin film and an aluminum foil. A laminate with a foil or the like is preferably used.

封止材140は、太陽電池ストリング110、すなわち太陽電池セル10を封止して保護するもので、特に太陽電池セル10に水分が接触することを防止する。このため、封止材140は、太陽電池セル10の受光側の面と表面保護材120との間、太陽電池セル10の裏側の面と裏面保護材130との間に介在する。 The sealing material 140 seals and protects the solar cell string 110, that is, the solar cell 10, and particularly prevents moisture from coming into contact with the solar cell 10. Therefore, the sealing material 140 is interposed between the light receiving side surface of the solar cell 10 and the surface protective material 120, and between the back surface of the solar cell 10 and the back surface protective material 130.

封止材140は、太陽電池ストリング110と表面保護材120及び裏面保護材130とを接着すると共に、太陽電池ストリング110の周囲の隙間をなくすことで、太陽電池セル10を保護する。このため、封止材140としては、例えば、エチレン/酢酸ビニル共重合体(EVA)、エチレン/α−オレフィン共重合体、エチレン/酢酸ビニル/トリアリルイソシアヌレート(EVAT)、ポリビニルブチラート(PVB)、アクリル樹脂、ウレタン樹脂、又は、シリコーン樹脂等の透光性を有する熱可塑性樹脂が好適に用いられる。 The sealing material 140 protects the solar cell 10 by adhering the solar cell string 110, the front surface protective material 120, and the back surface protective material 130, and eliminating the gap around the solar cell string 110. Therefore, examples of the sealing material 140 include ethylene / vinyl acetate copolymer (EVA), ethylene / α-olefin copolymer, ethylene / vinyl acetate / triallyl isocyanurate (EVAT), and polyvinyl butyral (PVB). ), Acrylic resin, urethane resin, or a translucent thermoplastic resin such as silicone resin is preferably used.

太陽電池モジュールは、表面保護材120、封止材140を形成する熱可塑性樹脂製の第1のシート、太陽電池ストリング110、封止材140を形成する熱可塑性樹脂製の第2のシート及び裏面保護材130をこの順番に積層し、この積層体を熱プレスすることによって第1のシートと第2のシートとを溶融一体化させることで製造することができる。 The solar cell module includes a surface protective material 120, a first sheet made of a thermoplastic resin forming a sealing material 140, a solar cell string 110, a second sheet made of a thermoplastic resin forming a sealing material 140, and a back surface. The protective material 130 is laminated in this order, and the laminated body is hot-pressed to melt and integrate the first sheet and the second sheet.

以上のように、第1主面A1の端縁を第2主面A2の端縁に対してオフセットした太陽電池セル10は、隙間を空けずに配列して接続できるため、太陽電池ストリング110ひいては太陽電池モジュール100において光電変換に寄与する実効面積を大きくすることができる。また、太陽電池セル10は、段差を設けずに接続することができるので、太陽電池モジュール100における応力集中による破損のリスクが小さい。また、太陽電池セル10を段差を設けずに接続した太陽電池ストリング110は、太陽電池セル10間の継ぎ目が目立ちにくく、美観に優れる。 As described above, the solar cells 10 in which the edge of the first main surface A1 is offset with respect to the edge of the second main surface A2 can be arranged and connected without leaving a gap, so that the solar cell string 110 and thus the solar cell string 110 can be connected. The effective area that contributes to photoelectric conversion in the solar cell module 100 can be increased. Further, since the solar cell 10 can be connected without providing a step, the risk of damage due to stress concentration in the solar cell module 100 is small. Further, the solar cell string 110 in which the solar cells 10 are connected without providing a step is excellent in aesthetics because the seams between the solar cells 10 are inconspicuous.

以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更及び変形が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and modifications can be made.

本発明に係る太陽電池セルにおいて、半導体基板の第1主面と第2主面の端縁をオフセットする一対の端面は、全体として傾斜していればよく、上述の実施形態のような階段状のものに限られず、傾斜した平面状又は曲面状であってもよい。 In the solar cell according to the present invention, the pair of end faces that offset the edge edges of the first main surface and the second main surface of the semiconductor substrate may be inclined as a whole, and have a stepped shape as in the above-described embodiment. It is not limited to the one, and may be an inclined flat surface or a curved surface.

本発明に係る太陽電池セルは、上述の実施形態のような両面電極型の太陽電池セルに限定されず、例えば裏面電極型太陽電池セル、PERC(Passivated Emitter and Rear Cell)等であってもよい。 The solar cell according to the present invention is not limited to the double-sided electrode type solar cell as in the above embodiment, and may be, for example, a back electrode type solar cell, a PERC (Passivated Emitter and Rear Cell), or the like. ..

上述の実施形態に係る太陽電池セルにおいて、透明電極は省略することができる。特に、n型の半導体層は比較的導電性に優れるため、その上に積層される透明電極を省略しても内部抵抗が増大しにくく、太陽電池セルの面積が小さい場合にはp型の透明電極を省略しても抵抗増加は小さい。 In the solar cell according to the above-described embodiment, the transparent electrode can be omitted. In particular, since the n-type semiconductor layer has relatively excellent conductivity, the internal resistance does not easily increase even if the transparent electrode laminated on the n-type semiconductor layer is omitted, and the p-type transparent layer is transparent when the area of the solar cell is small. Even if the electrodes are omitted, the increase in resistance is small.

また、本発明に係る太陽電池セルは、例えば図10に示す太陽電池セル10Rのように、中間面A33,A44を除いて積層される透明電極14R,15Rを備えてもよい。この場合、フォトリソグラフィ技術等を用いて透明電極14R,15Rをパターニングすることができる。具体的には、透明電極材料積層工程で第1溝及び第2溝の底面部分にマスクを配置して透明電極材料を選択的に積層してもよく、第1半導体材料及び第2半導体材料の全面に透明電極材料を積層した後、マスクを配置して第1溝1及び第2溝の底面部分の透明電極材料を選択的に除去してもよい。半導体ウエハ部分除去工程をレーザを用いて行う場合、透明電極材料が積層されていない側からレーザを照射することでレーザの影響による性能低下を抑制することができる。 Further, the solar cell according to the present invention may include transparent electrodes 14R and 15R laminated except for the intermediate surfaces A33 and A44, for example, as in the solar cell 10R shown in FIG. In this case, the transparent electrodes 14R and 15R can be patterned by using a photolithography technique or the like. Specifically, in the transparent electrode material laminating step, masks may be arranged on the bottom surfaces of the first groove and the second groove to selectively laminate the transparent electrode materials, and the first semiconductor material and the second semiconductor material may be laminated. After laminating the transparent electrode material on the entire surface, a mask may be arranged to selectively remove the transparent electrode material on the bottom surface portion of the first groove 1 and the second groove. When the semiconductor wafer partial removal step is performed using a laser, it is possible to suppress performance deterioration due to the influence of the laser by irradiating the laser from the side where the transparent electrode materials are not laminated.

上述の実施形態に係る太陽電池モジュールでは、太陽電池セルを電気的に直列に接続しているが、太陽電池セルを電気的に並列に接続してもよい。本発明に係る太陽電池セルを並列に接続する場合、第1半導体層及び第2半導体層のうち半導体基板と導電型が等しい方を互いに接続するとよい。具体的には、例えば図11に示す太陽電池モジュール100Rのように、図10の太陽電池セル10Rを用い、半導体基板と導電型が等しい半導体層が積層されている内側隣接面とこれに対向する外側隣接面との間に導電性接着剤20Rを配置することで、半導体基板と導電型が等しい半導体層同士を電気的に接続し、これにより本発明に係る太陽電池セルを並列に接続した太陽電池ストリング110Rを形成することができる。 In the solar cell module according to the above-described embodiment, the solar cell cells are electrically connected in series, but the solar cell cells may be electrically connected in parallel. When the solar cells according to the present invention are connected in parallel, it is preferable to connect the first semiconductor layer and the second semiconductor layer having the same conductive type as the semiconductor substrate to each other. Specifically, for example, as in the solar cell module 100R shown in FIG. 11, the solar cell 10R of FIG. 10 is used to face the inner adjacent surface on which the semiconductor substrate and the semiconductor layer having the same conductive type are laminated. By arranging the conductive adhesive 20R between the outer adjacent surfaces, the semiconductor substrate and the semiconductor layers having the same conductive type are electrically connected to each other, whereby the solar cells according to the present invention are connected in parallel. The battery string 110R can be formed.

また、本発明に係る太陽電池モジュールにおいて、隣接し合う2つの太陽電池セルを接続する導電性接着剤は、主に対向し合う中間面の間に配置されてもよい。 Further, in the solar cell module according to the present invention, the conductive adhesive connecting two adjacent solar cell cells may be arranged mainly between the intermediate surfaces facing each other.

10 太陽電池セル
11 半導体基板
12 第1半導体層
13 第2半導体層
14 第1透明電極
15 第2透明電極
20 導電性接着剤
100 太陽電池モジュール
110 太陽電池ストリング
120 表面保護材
130 裏面保護材
140 封止材
A1 第1主面
A2 第2主面
A3 第1端面
A4 第2端面
A31 第1内側隣接面
A32 第1外側隣接面
A33 第1中間面
A41 第2内側隣接面
A42 第2外側隣接面
A43 第2中間面
10 Solar cell 11 Semiconductor substrate 12 1st semiconductor layer 13 2nd semiconductor layer 14 1st transparent electrode 15 2nd transparent electrode 20 Conductive adhesive 100 Solar cell module 110 Solar cell string 120 Front surface protection material 130 Back surface protection material 140 Seal Stopper A1 1st main surface A2 2nd main surface A3 1st end surface A4 2nd end surface A31 1st inner adjacent surface A32 1st outer adjacent surface A33 1st intermediate surface A41 2nd inner adjacent surface A42 2nd outer adjacent surface A43 Second intermediate surface

Claims (7)

半導体基板を備え、
前記半導体基板の対向する一対の端面は、平面視で前記半導体基板の第1主面の端縁を前記半導体基板の第2主面の端縁に対して一定方向且つ一定距離だけオフセットするよう傾斜する太陽電池セル。
Equipped with a semiconductor substrate,
The pair of facing end faces of the semiconductor substrate are inclined so that the edge of the first main surface of the semiconductor substrate is offset from the edge of the second main surface of the semiconductor substrate in a certain direction and by a certain distance in a plan view. Solar cell to do.
前記一対の端面は、前記第1主面及び前記第2主面に略垂直な内側隣接面と、前記内側隣接面よりも外側に位置し、前記第1主面及び前記第2主面に略垂直な外側隣接面と、前記内側隣接面と前記外側隣接面とを接続し、前記第1主面及び前記第2主面に略平行な中間面と、を有する2段の階段状である、請求項1に記載の太陽電池セル。 The pair of end faces are located on the inner adjacent surface substantially perpendicular to the first main surface and the second main surface, and on the outer side of the inner adjacent surface, and are substantially on the first main surface and the second main surface. It is a two-step stepped shape having a vertical outer adjacent surface, connecting the inner adjacent surface and the outer adjacent surface, and having an intermediate surface substantially parallel to the first main surface and the second main surface. The solar cell according to claim 1. 前記第1主面に積層される第1半導体層と、
前記第2主面に積層され、前記第1半導体層と導電型が異なる第2半導体層と、
をさらに備え、
前記内側隣接面及び前記中間面は、前記第1半導体層又は前記第2半導体層に覆われ、
前記外側隣接面は、前記半導体基板を露出する、請求項2に記載の太陽電池セル。
The first semiconductor layer laminated on the first main surface and
A second semiconductor layer laminated on the second main surface and having a different conductive type from the first semiconductor layer,
With more
The inner adjacent surface and the intermediate surface are covered with the first semiconductor layer or the second semiconductor layer.
The solar cell according to claim 2, wherein the outer adjacent surface exposes the semiconductor substrate.
前記第1半導体層を覆う第1透明電極層及び前記第2半導体層を覆う第2透明電極をさらに備える、請求項3に記載の太陽電池セル。 The solar cell according to claim 3, further comprising a first transparent electrode layer covering the first semiconductor layer and a second transparent electrode covering the second semiconductor layer. 請求項2から4のいずれかに記載の太陽電池セルを複数備え、
前記太陽電池セルの前記内側隣接面は、隣接する前記太陽電池セルの前記外側隣接面に対向する、太陽電池モジュール。
A plurality of solar cells according to any one of claims 2 to 4 are provided.
A solar cell module in which the inner adjacent surface of the solar cell faces the outer adjacent surface of the adjacent solar cell.
隣接し合う2つの前記太陽電池セルの対向し合う前記端面の間に配置される導電性接着剤をさらに備える、請求項5に記載の太陽電池モジュール。 The solar cell module according to claim 5, further comprising a conductive adhesive arranged between the opposing end faces of the two adjacent solar cells. 半導体ウエハの第1主面に第1溝を形成する工程と、
前記半導体ウエハの第2主面に前記第1溝と平面位置をずらして前記第1溝と平行な第2溝を形成する工程と、
前記半導体ウエハの前記第1主面及び前記第1溝の内面を覆うよう第1半導体材料を積層する工程と、
前記半導体ウエハの前記第2主面及び前記第2溝の内面を覆うよう、前記第1半導体材料と導電型が異なる第2半導体材料を積層する工程と、
前記半導体ウエハの前記第1溝と前記第2溝とに跨る領域を除去する工程と、
を備える、太陽電池セル製造方法。
The process of forming the first groove on the first main surface of the semiconductor wafer and
A step of forming a second groove parallel to the first groove on the second main surface of the semiconductor wafer by shifting the plane position from the first groove.
A step of laminating a first semiconductor material so as to cover the first main surface of the semiconductor wafer and the inner surface of the first groove, and a step of laminating the first semiconductor material.
A step of laminating a second semiconductor material having a different conductive type from the first semiconductor material so as to cover the second main surface of the semiconductor wafer and the inner surface of the second groove.
A step of removing a region straddling the first groove and the second groove of the semiconductor wafer, and
A method for manufacturing a solar cell.
JP2020082066A 2020-05-07 2020-05-07 Solar cell, solar cell module, and solar cell manufacturing method Pending JP2021177511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020082066A JP2021177511A (en) 2020-05-07 2020-05-07 Solar cell, solar cell module, and solar cell manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020082066A JP2021177511A (en) 2020-05-07 2020-05-07 Solar cell, solar cell module, and solar cell manufacturing method

Publications (1)

Publication Number Publication Date
JP2021177511A true JP2021177511A (en) 2021-11-11

Family

ID=78409578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020082066A Pending JP2021177511A (en) 2020-05-07 2020-05-07 Solar cell, solar cell module, and solar cell manufacturing method

Country Status (1)

Country Link
JP (1) JP2021177511A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242469A (en) * 1985-08-19 1987-02-24 Sharp Corp Solar array
JPH0745850A (en) * 1993-07-27 1995-02-14 Sharp Corp Solar battery module
JPH10242491A (en) * 1997-03-03 1998-09-11 Sanyo Electric Co Ltd Solar cell and solar cell panel using the same
JPH11112008A (en) * 1997-10-03 1999-04-23 Sharp Corp Solar cell module
CN103840024A (en) * 2012-11-23 2014-06-04 北京汉能创昱科技有限公司 Interconnected flexible solar cell and fabrication method thereof
JP2015070255A (en) * 2013-10-01 2015-04-13 長州産業株式会社 Photovoltaic element and manufacturing method therefor
WO2015152020A1 (en) * 2014-03-31 2015-10-08 株式会社カネカ Solar cell module and method for manufacturing same
US20180151766A1 (en) * 2016-11-29 2018-05-31 Solarcity Corporation Anti-corrosion protection in photovoltaic structures

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242469A (en) * 1985-08-19 1987-02-24 Sharp Corp Solar array
JPH0745850A (en) * 1993-07-27 1995-02-14 Sharp Corp Solar battery module
JPH10242491A (en) * 1997-03-03 1998-09-11 Sanyo Electric Co Ltd Solar cell and solar cell panel using the same
JPH11112008A (en) * 1997-10-03 1999-04-23 Sharp Corp Solar cell module
CN103840024A (en) * 2012-11-23 2014-06-04 北京汉能创昱科技有限公司 Interconnected flexible solar cell and fabrication method thereof
JP2015070255A (en) * 2013-10-01 2015-04-13 長州産業株式会社 Photovoltaic element and manufacturing method therefor
WO2015152020A1 (en) * 2014-03-31 2015-10-08 株式会社カネカ Solar cell module and method for manufacturing same
US20180151766A1 (en) * 2016-11-29 2018-05-31 Solarcity Corporation Anti-corrosion protection in photovoltaic structures

Similar Documents

Publication Publication Date Title
EP1973171B1 (en) Solar cell module
US10593820B2 (en) Solar cell module and method for manufacturing same
KR20150093291A (en) Photovoltaic with improved visibility and method for manufacturing thereof
JP7291715B2 (en) Solar cell device and solar cell module
JP6656225B2 (en) Solar cell, method of manufacturing the same, and solar cell module
US20200035848A1 (en) Solar cell module
US20120048346A1 (en) Solar cell module and manufacturing method thereof
JP2002299666A (en) See-through-type thin-film solar cell module
JP2021177511A (en) Solar cell, solar cell module, and solar cell manufacturing method
US20120024339A1 (en) Photovoltaic Module Including Transparent Sheet With Channel
JP7270607B2 (en) Solar cell manufacturing method, solar cell module manufacturing method, and solar cell module
WO2022030471A1 (en) Solar cell and solar cell manufacturing method
JP7179779B2 (en) Connecting member set for solar cells, and solar cell string and solar cell module using the same
CN114503286A (en) Solar cell module
JP4508668B2 (en) Solar cell module
WO2022019237A1 (en) Solar battery module
WO2023037885A1 (en) Solar battery device and solar battery module
WO2021106417A1 (en) Photovoltaic cell, photovoltaic cell module, and method for manufacturing photovoltaic cell
JPH11298020A (en) Thin-film solar cell module
WO2023127382A1 (en) Solar cell device and solar cell module
KR102531133B1 (en) Solar cell module
WO2023228950A1 (en) Solar cell module
WO2023181733A1 (en) Stack-type solar cell string, solar cell module, and method for manufacturing solar cell module
KR20120100110A (en) Solar cell module
JP2022149039A (en) Solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402