JP7270607B2 - Solar cell manufacturing method, solar cell module manufacturing method, and solar cell module - Google Patents

Solar cell manufacturing method, solar cell module manufacturing method, and solar cell module Download PDF

Info

Publication number
JP7270607B2
JP7270607B2 JP2020510967A JP2020510967A JP7270607B2 JP 7270607 B2 JP7270607 B2 JP 7270607B2 JP 2020510967 A JP2020510967 A JP 2020510967A JP 2020510967 A JP2020510967 A JP 2020510967A JP 7270607 B2 JP7270607 B2 JP 7270607B2
Authority
JP
Japan
Prior art keywords
solar cell
electrode layer
transparent electrode
region
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020510967A
Other languages
Japanese (ja)
Other versions
JPWO2019189267A1 (en
Inventor
暢 入江
訓太 吉河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2019189267A1 publication Critical patent/JPWO2019189267A1/en
Application granted granted Critical
Publication of JP7270607B2 publication Critical patent/JP7270607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、太陽電池セルの製造方法、太陽電池モジュールの製造方法、太陽電池セル、および、太陽電池モジュールに関する。 The present invention relates to a method for manufacturing a solar cell, a method for manufacturing a solar cell module, a solar cell, and a solar cell module.

昨今、両面電極型の太陽電池セルをモジュール化する場合、導電性の接続線を用いることなく、太陽電池セルの一部同士を重ね合わせることで、直接、電気的かつ物理的に接続を行う方式が存在する(例えば特許文献1)。 In recent years, when modularizing double-sided electrode type solar cells, there is a method in which parts of the solar cells are overlapped to directly connect them electrically and physically without using conductive connection lines. exists (for example, Patent Document 1).

このような接続方式はシングリング方式と称される。この方式によると、太陽電池モジュールにおける限られた太陽電池セル実装面積に、より多くの太陽電池セルが実装可能になり、光電変換のための受光面積が増えることから、太陽電池モジュールの出力が向上すると考えられる。 Such a connection method is called a single ring method. According to this method, more solar cells can be mounted in the limited solar cell mounting area of the solar cell module, and the light-receiving area for photoelectric conversion increases, which improves the output of the solar cell module. It is thought that

特開平11-186577号公報JP-A-11-186577

両面電極型の太陽電池セルの製造方法では、半導体基板の両主面のそれぞれにp型半導体層、n型半導体層を形成した半導体積層体を得、この半導体積層体の両主面に透明電極層、金属電極層を形成する。
一般に、透明電極層の形成方法としては、例えばスパッタリング法等の物理気相成長法(PVD法)が用いられる。この場合、半導体積層体の両主面の透明電極層同士が短絡しないように、いずれか一方主面の透明電極層の製膜時にマスクを用いたパターニングが行われる。
In a method for manufacturing a double-sided electrode type solar cell, a semiconductor laminate is obtained in which a p-type semiconductor layer and an n-type semiconductor layer are formed on both main surfaces of a semiconductor substrate, respectively, and transparent electrodes are provided on both main surfaces of the semiconductor laminate. layer, forming a metal electrode layer.
Generally, a physical vapor deposition method (PVD method) such as a sputtering method is used as a method for forming the transparent electrode layer. In this case, patterning is performed using a mask when forming the transparent electrode layer on one of the principal surfaces so that the transparent electrode layers on both principal surfaces of the semiconductor laminate are not short-circuited.

しかし、本願発明者らは、製膜時にマスクを用いたパターニングでは、マスクにより製膜が阻害され、マスク近傍の太陽電池セルの端部の透明電極層の膜厚が、太陽電池セルの中央部の膜厚に比べて薄くなってしまうという知見を得ている。これにより、太陽電池セルの端部の透明電極層の抵抗が増大し、太陽電池セルの出力が低下することが予想される。 However, the inventors of the present application have found that in patterning using a mask during film formation, the film formation is hindered by the mask, and the film thickness of the transparent electrode layer at the edge of the solar cell near the mask is reduced to the central portion of the solar cell. We have obtained the knowledge that the film thickness becomes thinner than the film thickness of the As a result, it is expected that the resistance of the transparent electrode layer at the edge of the solar cell will increase and the output of the solar cell will decrease.

本発明は、シングリング方式を用いた太陽電池モジュール化の際に、出力低下を抑制できる太陽電池セルの製造方法、太陽電池モジュールの製造方法、太陽電池セル、および、太陽電池モジュールを提供することを目的とする。 The present invention provides a method for manufacturing a solar cell, a method for manufacturing a solar cell module, a solar cell, and a solar cell module that can suppress a decrease in output when a solar cell module is formed using the shingling method. With the goal.

本発明に係る太陽電池セルの製造方法は、少なくとも2個の長方形状の両面電極型の太陽電池セルをシングリング方式を用いて電気的に接続する太陽電池ストリングを、少なくとも1個含む太陽電池モジュールに用いられる、太陽電池セルの製造方法であって、半導体積層体の両主面に透明電極層を形成する透明電極層形成工程であって、両主面のうちの一方主面側に透明電極層を形成する際に、太陽電池セルの長辺部となる長辺領域および太陽電池セルの短辺部となる短辺領域の一方主面側にマスクを配置し、長辺領域に交差する方向を搬送方向として半導体積層体を搬送しながら、物理気相成長法により透明電極層を形成する透明電極層形成工程を含む。 A method for manufacturing a solar cell according to the present invention is a solar cell module including at least one solar cell string in which at least two rectangular double-sided electrode type solar cells are electrically connected using a shingling method. A method for manufacturing a solar cell used in the above, wherein a transparent electrode layer forming step for forming a transparent electrode layer on both main surfaces of a semiconductor laminate, wherein one of the main surfaces has a transparent electrode on the side of one main surface When forming the layers, a mask is placed on one main surface side of the long-side region that will be the long-side portion of the solar cell and the short-side region that will be the short-side portion of the solar cell, and the mask will be placed in the direction intersecting the long side region. and a transparent electrode layer forming step of forming a transparent electrode layer by a physical vapor deposition method while conveying the semiconductor laminate in the conveying direction.

本発明に係る太陽電池モジュールの製造方法は、少なくとも2個の長方形状の両面電極型の太陽電池セルをシングリング方式を用いて電気的に接続する太陽電池ストリングを、少なくとも1個含む太陽電池モジュールの製造方法であって、太陽電池セルは、上記の太陽電池セルの製造方法であって、半導体積層体の両主面のうちの一方主面側に透明電極層を形成する際に、太陽電池セルの長辺部となる長辺領域および太陽電池セルの短辺部となる短辺領域の一方主面側にマスクを配置し、長辺領域に交差する方向を搬送方向として半導体積層体を搬送しながら、物理気相成長法により透明電極層を形成する透明電極層形成工程を含む太陽電池セルの製造方法で製造され、隣接する太陽電池セルのうちの一方の太陽電池セルの搬送方向の前側の長辺部の一方主面側の一部を、隣接する太陽電池セルのうちの他方の太陽電池セルの搬送方向の後側の長辺部の一方主面側と反対の他方主面側の一部の下に重ねて、隣接する太陽電池セル同士を接続する、太陽電池ストリング形成工程を含む。 A method for manufacturing a solar cell module according to the present invention is a solar cell module including at least one solar cell string in which at least two rectangular double-sided electrode type solar cells are electrically connected using a shingling method. The method for manufacturing a solar cell is the method for manufacturing a solar cell described above, wherein the solar cell A mask is placed on one main surface side of the long-side region that will be the long-side portion of the cell and the short-side region that will be the short-side portion of the solar cell, and the semiconductor laminate will be transported with the direction intersecting the long-side region as the transport direction. while the front side in the transport direction of one of the adjacent solar cells manufactured by a solar cell manufacturing method including a transparent electrode layer forming step of forming a transparent electrode layer by physical vapor deposition. A portion of one main surface of the long side portion of the other main surface side opposite to the one main surface side of the long side portion on the rear side in the conveying direction of the other of the adjacent solar cells A solar cell string forming step is included in which adjacent solar cells are connected to each other by overlapping under a portion.

本発明に係る太陽電池セルは、少なくとも2個の長方形状の両面電極型の太陽電池セルをシングリング方式を用いて電気的に接続する太陽電池ストリングを、少なくとも1個含む太陽電池モジュールに用いられる、太陽電池セルであって、半導体積層体と、半導体積層体の両主面に形成された透明電極層とを備え、両主面のうちの一方主面側において、太陽電池セルの長辺部のうちの他方端側の長辺部における透明電極層の端部の減退領域の幅は、太陽電池セルの長辺部のうちの一方端側の長辺部における透明電極層の端部の減退領域の幅よりも小さく、減退領域とは、透明電極層の端部の膜厚が透明電極層の中央部の膜厚に比べて減退する領域である。 A solar cell according to the present invention is used in a solar cell module including at least one solar cell string in which at least two rectangular double-sided electrode type solar cells are electrically connected using a shingling method. , a solar cell comprising a semiconductor laminate and a transparent electrode layer formed on both main surfaces of the semiconductor laminate, wherein one of the main surfaces of the semiconductor laminate has a long side portion of the solar battery cell The width of the weakened region at the end of the transparent electrode layer on the long side of the other end of the solar battery cell The reduced region is a region in which the thickness of the transparent electrode layer at the end portion is smaller than the width of the region, and the thickness of the transparent electrode layer is reduced compared to the thickness at the central portion of the transparent electrode layer.

本発明に係る太陽電池モジュールは、少なくとも2個の長方形状の両面電極型の太陽電池セルをシングリング方式を用いて電気的に接続する太陽電池ストリングを、少なくとも1個含む太陽電池モジュールであって、太陽電池セルは、上記の太陽電池セルであって、半導体積層体と、半導体積層体の両主面に形成された透明電極層とを備え、両主面のうちの一方主面側において、太陽電池セルの長辺部のうちの他方端側の長辺部における透明電極層の端部の減退領域の幅は、太陽電池セルの長辺部のうちの一方端側の長辺部における透明電極層の端部の減退領域の幅よりも小さく、隣接する太陽電池セルのうちの一方の太陽電池セルの一方端側の長辺部の一方主面側の一部は、隣接する太陽電池セルのうちの他方の太陽電池セルの他方端側の長辺部の一方主面側と反対の他方主面側の一部の下に重なって接続される。 A solar cell module according to the present invention is a solar cell module including at least one solar cell string in which at least two rectangular double-sided electrode type solar cells are electrically connected using a shingling method. , the solar cell is the above solar cell, comprising a semiconductor laminate and a transparent electrode layer formed on both main surfaces of the semiconductor laminate; The width of the recessed region at the end of the transparent electrode layer on the long side of the other end of the solar cell is equal to the width of the recessed region on the long side of the long side of the solar cell. A portion of the long side portion on the one end side of one of the adjacent solar cells, which is smaller than the width of the recessed region at the end portion of the electrode layer and on the one main surface side of the adjacent solar cell It is connected under a portion of the other main surface side opposite to the one main surface side of the long side portion on the other end side of the other solar battery cell.

本発明によれば、シングリング方式を用いた太陽電池モジュール化の際に、太陽電池セルの出力低下を抑制できる。 ADVANTAGE OF THE INVENTION According to this invention, the output reduction of a solar cell can be suppressed at the time of solar cell module-ization using a shingling method.

従来の太陽電池セルの製造方法における透明電極層形成工程および切断工程を示す図である。It is a figure which shows the transparent electrode layer formation process and cutting process in the manufacturing method of the conventional solar cell. 従来の太陽電池セルの製造方法におけるPVD法を用いた透明電極層形成工程を示す図である。It is a figure which shows the transparent electrode layer formation process using the PVD method in the manufacturing method of the conventional solar cell. 従来の太陽電池セルの製造方法におけるPVD法を用いた透明電極層形成工程を示す図である。It is a figure which shows the transparent electrode layer formation process using the PVD method in the manufacturing method of the conventional solar cell. 本実施形態に係る太陽電池モジュールを示す側面図である。It is a side view which shows the solar cell module which concerns on this embodiment. 本実施形態に係る太陽電池セルを受光面側からみた図である。It is the figure which looked at the photovoltaic cell which concerns on this embodiment from the light-receiving surface side. 図5に示すVI-VI線断面図である。FIG. 6 is a sectional view taken along the line VI-VI shown in FIG. 5; 図6に示す半導体積層体10の領域Aの拡大図である。7 is an enlarged view of a region A of the semiconductor laminate 10 shown in FIG. 6; FIG. 本実施形態に係る太陽電池セルの製造方法における透明電極層形成工程を示す図である。It is a figure which shows the transparent electrode layer formation process in the manufacturing method of the photovoltaic cell which concerns on this embodiment. 本実施形態に係る太陽電池セルの製造方法における太陽電池セル切断形成工程を示す図である。It is a figure which shows the photovoltaic cell cutting formation process in the manufacturing method of the photovoltaic cell which concerns on this embodiment. 本実施形態に係る太陽電池セルの製造方法における太陽電池セル切断形成工程を示す図である。It is a figure which shows the photovoltaic cell cutting formation process in the manufacturing method of the photovoltaic cell which concerns on this embodiment. 本実施形態に係る太陽電池セルの製造方法における太陽電池セル切断形成工程を示す図である。It is a figure which shows the photovoltaic cell cutting formation process in the manufacturing method of the photovoltaic cell which concerns on this embodiment. 太陽電池セルの重ね合わせの一例を示す図である。FIG. 4 is a diagram showing an example of superimposition of solar cells; 太陽電池セルの重ね合わせの他の一例を示す図である。FIG. 4 is a diagram showing another example of superimposition of solar cells; 透明電極層形成工程における搬送方向を上方向(+Y方向)としたときの、図8における領域Bの拡大図である。9 is an enlarged view of region B in FIG. 8 when the transport direction in the transparent electrode layer forming step is the upward direction (+Y direction); FIG. 透明電極層形成工程における搬送方向を右方向(-X方向)としたときの、図8における領域Bの拡大図である。9 is an enlarged view of region B in FIG. 8 when the transport direction in the transparent electrode layer forming step is the right direction (−X direction); FIG. 透明電極層形成工程における搬送方向を左方向(+X方向)としたときの、図8における領域Bの拡大図である。9 is an enlarged view of region B in FIG. 8 when the transport direction in the transparent electrode layer forming step is the left direction (+X direction); FIG. 図13A~図13Bにおける透明電極層の端部の膜厚50%減退領域の幅および面積を示す表を図示する。FIG. 13B illustrates a table showing the width and area of the 50% thickness reduction region at the edge of the transparent electrode layer in FIGS. 13A-13B. 膜厚50%減退領域を説明するための図である。It is a figure for demonstrating the film-thickness 50% decline area|region.

本発明の一実施形態について説明すると以下の通りであるが、本発明はこれに限定されるものではない。なお、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、図面における種々部材の寸法は、便宜上、見やすいように調整されている。 An embodiment of the present invention is described below, but the present invention is not limited to this. For the sake of convenience, hatching, member numbers, etc. may be omitted, but in such cases, other drawings shall be referred to. Also, the dimensions of various members in the drawings are adjusted for convenience and ease of viewing.

上述したように、一般に、両面電極型の太陽電池セルにおける透明電極層の形成方法としてはPVD法が用いられる。この場合、半導体積層体の両主面の透明電極層同士が短絡しないように、いずれか一方主面の透明電極層の製膜時にマスクを用いたパターニングが行われる。 As described above, the PVD method is generally used as a method for forming a transparent electrode layer in a double-sided electrode type solar cell. In this case, patterning is performed using a mask when forming the transparent electrode layer on one of the principal surfaces so that the transparent electrode layers on both principal surfaces of the semiconductor laminate are not short-circuited.

ところで、シングリング方式の太陽電池モジュールに用いられる太陽電池セルの製造方法では、図1に示すように、1つの半導体基板から作製される半導体積層体10Xに透明電極層20Xを形成した後に、例えば透明電極層20Xの形成領域上の切断線CLに沿ってレーザ切断し、長方形状の複数の太陽電池セルを得ることがある。
この場合、透明電極層20Xの形成領域上の切断線CLに沿ってレーザ切断を行うと、透明電極層20Xが、半導体積層体10Xの切断面、特に半導体基板(光電変換基板)の切断面に付着し、太陽電池セルの性能が低下する。
この点に関し、切断線CL近傍に透明電極を形成しないことが考えられる(例えば、後述の図9参照)。このような透明電極層の形成方法としては、製膜時にマスクを用いたパターニング、または、製膜後にエッチングを用いたパターニング等が考えられる。製膜後にエッチングを用いたパターニングでは、製造工程の増大等により製造時間、製造コストが増大する。
このように、レーザ切断に起因する太陽電池セルの性能低下の抑制の観点からも、いずれか一方主面の透明電極層の製膜時にマスクを用いたパターニングが行われることが好ましい(例えば、後述の図8参照)。
By the way, in the method of manufacturing a solar cell used in a single-ring solar cell module, as shown in FIG. A plurality of rectangular solar cells may be obtained by laser cutting along cutting lines CL on the region where the transparent electrode layer 20X is formed.
In this case, when laser cutting is performed along the cutting line CL on the formation region of the transparent electrode layer 20X, the transparent electrode layer 20X is cut on the cut surface of the semiconductor stack 10X, particularly on the cut surface of the semiconductor substrate (photoelectric conversion substrate). It adheres and the performance of the solar battery cell deteriorates.
Regarding this point, it is conceivable not to form the transparent electrode in the vicinity of the cutting line CL (for example, see FIG. 9 described later). As a method for forming such a transparent electrode layer, patterning using a mask during film formation, patterning using etching after film formation, or the like can be considered. Patterning using etching after film formation increases manufacturing time and manufacturing costs due to an increase in the number of manufacturing processes.
Thus, from the viewpoint of suppressing performance degradation of the solar cell due to laser cutting, it is preferable to perform patterning using a mask when forming the transparent electrode layer on one of the main surfaces (for example, (see Fig. 8 of ).

しかし、上述したように、本願発明者らは、製膜時にマスクを用いたパターニングでは、マスクにより製膜が阻害され、マスク近傍の太陽電池セルの端部の透明電極層の膜厚が、太陽電池セルの中央部の膜厚に比べて薄くなってしまうという知見を得ている。これにより、太陽電池セルの端部の透明電極層の抵抗が増大し、太陽電池セルの出力が低下することが予想される。 However, as described above, the inventors of the present application found that in patterning using a mask during film formation, the film formation is hindered by the mask, and the film thickness of the transparent electrode layer at the end of the solar cell near the mask increases. We have obtained the knowledge that the film thickness becomes thinner than the film thickness at the central portion of the battery cell. As a result, it is expected that the resistance of the transparent electrode layer at the edge of the solar cell will increase and the output of the solar cell will decrease.

本願発明者らは、図2および図3に示すように、PVD法における半導体積層体10Xの搬送方向TDと、マスクMASK近傍の透明電極層20Xの端部の膜厚が透明電極層20Xの中央部の膜厚に比べて減退(減少)する減退領域R1,R2との関係を見出した。
図2に示すように、トレイTRAYに搭載され、端部の一方主面側にマスクMASKが配置された半導体積層体10Xが、搬送方向TDに搬送されると、マスクMASKの開口部において露出する半導体積層体10X上に透明電極層20Xが形成される。
この場合、図3に示すように、搬送方向TDの後側の透明電極層20Xの端部の減退領域R2の幅W2は、搬送方向TDの前側の透明電極層20Xの端部の減退領域R1の幅W1(および、搬送方向TDの右側および左側の減退領域の幅:詳細は後述)よりも小さい。なお、減退領域の幅W1,W2は、透明電極層20Xの端部(辺部)および半導体積層体10Xの端部(辺部)に交差する方向における減退領域の長さである。
換言すれば、搬送方向TDの後側の透明電極層20Xの端部の減退領域R2の減退角度θ2は、搬送方向TDの前側の透明電極層20Xの端部の減退領域R1の減退角度θ1よりも大きい。減退角度θ1,θ2は、半導体積層体10Xの主面に対する透明電極層20Xの減退領域の表面の傾斜角度、換言すれば、半導体積層体10Xの主面に平行な面(透明電極層20Xの平坦部分の表面から延びる線)に対する透明電極層20Xの減退の傾斜角度である。
As shown in FIGS. 2 and 3, the inventors of the present application have found that the transport direction TD of the semiconductor laminate 10X in the PVD method and the film thickness of the end portion of the transparent electrode layer 20X near the mask MASK are equal to the center of the transparent electrode layer 20X. The relationship between the reduced regions R1 and R2 that are reduced (reduced) relative to the film thickness of the portion was found.
As shown in FIG. 2, when the semiconductor stacked body 10X mounted on the tray TRAY and having the mask MASK arranged on one main surface side of the end is transported in the transport direction TD, the opening of the mask MASK is exposed. A transparent electrode layer 20X is formed on the semiconductor laminate 10X.
In this case, as shown in FIG. 3, the width W2 of the attenuation region R2 at the end of the transparent electrode layer 20X on the rear side in the transport direction TD is equal to the width W2 of the attenuation region R1 at the end of the transparent electrode layer 20X on the front side in the transport direction TD. (and the widths of the reduced regions on the right and left sides in the transport direction TD: details will be described later). The widths W1 and W2 of the attenuation regions are the lengths of the attenuation regions in the direction intersecting the end (side) of the transparent electrode layer 20X and the end (side) of the semiconductor stack 10X.
In other words, the attenuation angle θ2 of the attenuation region R2 at the end of the transparent electrode layer 20X on the rear side in the transport direction TD is greater than the attenuation angle θ1 of the attenuation region R1 at the end of the transparent electrode layer 20X on the front side in the transport direction TD. is also big. The attenuation angles θ1 and θ2 are the angles of inclination of the surface of the attenuation region of the transparent electrode layer 20X with respect to the main surface of the semiconductor laminate 10X, in other words, the surface parallel to the main surface of the semiconductor laminate 10X (flatness of the transparent electrode layer 20X). line extending from the surface of the part) is the inclination angle of the attenuation of the transparent electrode layer 20X.

そこで、本願発明者らは、太陽電池セルの製造方法において、太陽電池セルの長辺部が、透明電極層の端部の減退領域R2の幅W2が小さい搬送方向TDの後側となるようにすることを見出した。
これにより、太陽電池セルにおける透明電極層の端部(4辺部)の減退領域の総面積が低減し、太陽電池セルの端部の透明電極層の抵抗増大が抑制される。その結果、太陽電池セルの出力低下が抑制される。
Therefore, the inventors of the present application have proposed a method for manufacturing a solar cell such that the long side of the solar cell is positioned behind the transport direction TD where the width W2 of the recessed region R2 at the end of the transparent electrode layer is small. found to do.
As a result, the total area of the weakened regions at the ends (four sides) of the transparent electrode layer in the solar cell is reduced, and an increase in the resistance of the transparent electrode layer at the ends of the solar cell is suppressed. As a result, a decrease in the output of the solar cell is suppressed.

また、本願発明者らは、太陽電池モジュールの製造方法において、太陽電池セルをシングリング方式を用いて電気的に接続する太陽電池ストリングを形成する際に、隣接する太陽電池セルの一方の太陽電池セルにおける透明電極層の減退領域R1の幅W1が大きい搬送方向TDの前側の端部を、他方の太陽電池セルにおける透明電極層の減退領域R2の幅W2が小さい搬送方向TDの後側の端部の下になるように、隣接する太陽電池セルを重ね合わせることを見出した。
このように、一方の太陽電池セルにおける透明電極層の減退領域R1の幅W1が大きい搬送方向TDの前側の端部が、他方の太陽電池セルにおける透明電極層の減退領域R2の幅W2が小さい搬送方向TDの後側の端部による遮光領域に配置されることにより、太陽電池セルの出力低下が抑制される。
以下、本実施形態に係る太陽電池モジュール、太陽電池セル、太陽電池モジュールの製造方法、および、太陽電池セルの製造方法について詳細に説明する。
Further, the inventors of the present application have found that, in a method for manufacturing a solar cell module, when forming a solar cell string in which the solar cells are electrically connected using a shingling method, one of the adjacent solar cells The front end in the transport direction TD where the width W1 of the weakened region R1 of the transparent electrode layer in the cell is large is the rear end in the transport direction TD where the width W2 of the weakened region R2 of the transparent electrode layer in the other solar cell is small. We have found that adjacent solar cells are superimposed so that they are under the part.
In this way, the front end in the transport direction TD in which the width W1 of the weakened region R1 of the transparent electrode layer in one solar cell is large, and the width W2 of the weakened region R2 of the transparent electrode layer in the other solar cell is small. By arranging in the light-shielding region by the end portion on the rear side in the transport direction TD, a decrease in the output of the photovoltaic cell is suppressed.
Hereinafter, the solar battery module, the solar battery cell, the method for manufacturing the solar battery module, and the method for manufacturing the solar battery cell according to the present embodiment will be described in detail.

(太陽電池モジュール)
図4は、本実施形態に係る太陽電池モジュールを示す側面図である。図1に示すように、太陽電池モジュール100は、少なくとも2個の長方形状の両面電極型の太陽電池セル1をシングリング方式を用いて電気的に接続する太陽電池ストリング2を、少なくとも1個含む。
(solar cell module)
FIG. 4 is a side view showing the solar cell module according to this embodiment. As shown in FIG. 1, a solar cell module 100 includes at least one solar cell string 2 that electrically connects at least two rectangular double-sided electrode type solar cells 1 using a shingling method. .

太陽電池セル1は、直列に接続される。具体的には、隣接する太陽電池セル1,1のうちの一方の太陽電池セル1のX方向(+X方向)の一方端側の長辺部の一方面側(例えば受光面側)の一部は、他方の太陽電池セル1のX方向と逆方向(-X方向)の他方端側の長辺部の他方面側(例えば裏面側)の一部の下に重なる。太陽電池セル1の一方端側の受光面側の一部、および、他方端側の裏面側の一部には、Y方向に延在するバスバー電極(後述)が形成される。一方の太陽電池セル1の一方端側の受光面側のバスバー電極は、例えば導電性接着剤8(詳細は図6参照)を介して、他方の太陽電池セル1の他方端側の裏面側のバスバー電極と電気的に接続される。
このように、瓦を屋根に葺いたように、複数の太陽電池セル1が一様にある方向にそろって傾く堆積構造となることから、このようにして太陽電池セル1を電気的に接続する方式を、シングリング方式と称する。また、ひも状につながった複数の太陽電池セル1を、太陽電池ストリングと称する。
以下では、隣接する太陽電池セル1,1が重なる領域を、重ね合わせ領域Roという。
The solar cells 1 are connected in series. Specifically, part of one surface side (for example, light receiving surface side) of the long side portion on one end side in the X direction (+X direction) of one of the adjacent solar cells 1, 1 overlaps under part of the other surface side (for example, the back surface side) of the other end of the long side of the other solar cell 1 in the direction opposite to the X direction (−X direction). A busbar electrode (described later) extending in the Y direction is formed on a portion of the light receiving surface side on one end side of the solar cell 1 and a portion of the back surface side on the other end side of the solar cell 1 . The busbar electrode on the light-receiving surface side on one end side of one solar cell 1 is attached to the back surface side on the other end side of the other solar cell 1 via, for example, a conductive adhesive 8 (see FIG. 6 for details). It is electrically connected with the busbar electrode.
In this way, the plurality of solar cells 1 form a stacked structure in which the plurality of solar cells 1 are evenly aligned and tilted in a certain direction like a roof tiled, so the solar cells 1 are electrically connected in this way. The method is called the shingling method. A plurality of solar cells 1 connected in a string is called a solar cell string.
Hereinafter, a region where adjacent solar cells 1, 1 overlap is referred to as overlapping region Ro.

太陽電池セル1は、受光側保護部材3と裏側保護部材4とによって挟み込まれている。受光側保護部材3と裏側保護部材4との間には、液体状または固体状の封止材5が充填されており、これにより、太陽電池セル1は封止される。 Photovoltaic cell 1 is sandwiched between light-receiving side protective member 3 and back side protective member 4 . A liquid or solid sealing material 5 is filled between the light-receiving side protective member 3 and the back side protective member 4 to seal the solar cells 1 .

なお、導電性接着剤8としては、例えば、導電性接着ペーストが挙げられる。このような導電性接着剤ペーストは、例えば、エポキシ樹脂、アクリル樹脂、またはウレタン樹脂等の熱硬化型の接着性樹脂材料に、導電性粒子を分散させたペースト状の接着剤である。ただし、これに限定されるものではなく、例えば、熱硬化型の接着性樹脂材料に導電性粒子を分散させてフィルム状に形成した、導電性接着フィルムまたは異方性導電フィルムを用いても構わない。 In addition, as the conductive adhesive 8, for example, a conductive adhesive paste can be used. Such a conductive adhesive paste is, for example, a paste-like adhesive in which conductive particles are dispersed in a thermosetting adhesive resin material such as epoxy resin, acrylic resin, or urethane resin. However, it is not limited to this, and for example, a conductive adhesive film or an anisotropic conductive film formed in a film form by dispersing conductive particles in a thermosetting adhesive resin material may be used. do not have.

封止材5は、太陽電池セル1を封止して保護するもので、太陽電池セル1の受光側の面と受光側保護部材3との間、および、太陽電池セル1の裏側の面と裏側保護部材4との間に介在する。
封止材5の形状としては、特に限定されるものではなく、例えばシート状が挙げられる。シート状であれば、面状の太陽電池の表面および裏面を被覆しやすいためである。
封止材5の材料としては、特に限定されるものではないが、光を透過する特性(透光性)を有すると好ましい。また、封止材5の材料は、太陽電池セル1と受光側保護部材3と裏側保護部材4とを接着させる接着性を有すると好ましい。
このような材料としては、例えば、エチレン/酢酸ビニル共重合体(EVA)、エチレン/α-オレフィン共重合体、エチレン/酢酸ビニル/トリアリルイソシアヌレート(EVAT)、ポリビニルブチラート(PVB)、アクリル樹脂、ウレタン樹脂、または、シリコーン樹脂等の透光性樹脂が挙げられる。
The sealing material 5 seals and protects the solar cell 1 , and is between the light-receiving-side surface of the solar cell 1 and the light-receiving-side protective member 3 and between the back surface of the solar cell 1 . It is interposed between the back side protection member 4 and the back side protection member 4 .
The shape of the sealing material 5 is not particularly limited, and may be, for example, a sheet shape. This is because the sheet form facilitates covering the front and back surfaces of a planar solar cell.
The material of the encapsulant 5 is not particularly limited, but preferably has a property of transmitting light (translucency). Moreover, it is preferable that the material of the encapsulant 5 has adhesiveness to bond the photovoltaic cell 1 , the light-receiving side protective member 3 , and the back side protective member 4 .
Examples of such materials include ethylene/vinyl acetate copolymer (EVA), ethylene/α-olefin copolymer, ethylene/vinyl acetate/triallyl isocyanurate (EVAT), polyvinyl butyrate (PVB), acrylic Translucent resins such as resins, urethane resins, and silicone resins can be used.

受光側保護部材3は、封止材5を介して、太陽電池セル1の表面(受光面)を覆って、その太陽電池セル1を保護する。
受光側保護部材3の形状としては、特に限定されるものではないが、面状の受光面を間接的に覆う点から、板状またはシート状が好ましい。
受光側保護部材3の材料としては、特に限定されるものではないが、封止材5同様に、透光性を有しつつも紫外光に耐性の有る材料が好ましく、例えば、ガラス、または、アクリル樹脂若しくはポリカーボネート樹脂等の透明樹脂が挙げられる。また、受光側保護部材3の表面は、凹凸状に加工されていても構わないし、反射防止コーティング層で被覆されていても構わない。これらのようになっていると、受光側保護部材3は、受けた光を反射させ難くして、より多くの光を太陽電池セル1に導けるためである。
The light-receiving-side protective member 3 covers the surface (light-receiving surface) of the solar cell 1 via the encapsulant 5 to protect the solar cell 1 .
The shape of the light-receiving-side protective member 3 is not particularly limited, but a plate-like or sheet-like shape is preferable from the point of indirectly covering the planar light-receiving surface.
Although the material of the light-receiving side protective member 3 is not particularly limited, it is preferable to use a material that has translucency and is resistant to ultraviolet light, similar to the sealing material 5. For example, glass, or Transparent resins such as acrylic resins and polycarbonate resins can be used. Further, the surface of the light-receiving-side protective member 3 may be processed into an uneven shape, or may be coated with an antireflection coating layer. This is because the light-receiving-side protective member 3 having such a configuration makes it difficult to reflect the received light, and guides more light to the solar battery cell 1 .

裏側保護部材4は、封止材5を介して、太陽電池セル1の裏面を覆って、その太陽電池セル1を保護する。
裏側保護部材4の形状としては、特に限定されるものではないが、受光側保護部材3同様に、面状の裏面を間接的に覆う点から、板状またはシート状が好ましい。
裏側保護部材4の材料としては、特に限定されるものではないが、水等の浸入を防止する(遮水性の高い)材料が好ましい。例えば、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、オレフィン系樹脂、含フッ素樹脂、若しくは含シリコーン樹脂等の樹脂フィルムと、アルミニウム箔等の金属箔との積層体が挙げられる。
以下、太陽電池セル1について詳細に説明する。
The back side protection member 4 covers the back side of the solar cell 1 via the encapsulant 5 to protect the solar cell 1 .
The shape of the back side protection member 4 is not particularly limited, but like the light receiving side protection member 3, it is preferably plate-like or sheet-like in that it indirectly covers the planar back side.
Although the material for the back side protection member 4 is not particularly limited, a material that prevents the infiltration of water or the like (highly impervious to water) is preferable. Examples thereof include laminates of resin films such as polyethylene terephthalate (PET), polyethylene (PE), olefin resins, fluorine-containing resins, or silicone-containing resins, and metal foils such as aluminum foil.
The solar battery cell 1 will be described in detail below.

(太陽電池セル)
図5は、本実施形態に係る太陽電池セルを受光面側からみた図であり、図6は、図5に示すVI-VI線断面図である。図5および図6に示す太陽電池セル1は、長方形状の両面電極型の太陽電池セルである。太陽電池セル1は、2つの主面を有する半導体積層体10と、半導体積層体10の主面のうちの一方面側(例えば受光面側)の略全面に形成された透明電極層20と、透明電極層20上に形成された金属電極層21と、半導体積層体10の主面のうちの他方面側(例えば裏面側)の略全面に形成された透明電極層30と、透明電極層30上に形成された金属電極層31とを有する。
(solar battery cell)
5 is a view of the photovoltaic cell according to this embodiment as seen from the light receiving surface side, and FIG. 6 is a sectional view taken along the line VI-VI shown in FIG. The solar cell 1 shown in FIGS. 5 and 6 is a rectangular double-sided electrode type solar cell. The solar cell 1 includes a semiconductor laminate 10 having two main surfaces, a transparent electrode layer 20 formed on substantially the entire surface of one of the main surfaces of the semiconductor laminate 10 (for example, the light receiving surface side), A metal electrode layer 21 formed on the transparent electrode layer 20, a transparent electrode layer 30 formed on substantially the entire surface of the other surface side (for example, the back surface side) of the main surface of the semiconductor laminate 10, and the transparent electrode layer 30 and a metal electrode layer 31 formed thereon.

図7は、図6に示す半導体積層体10の領域Aの拡大図である。図7に示すように、半導体積層体10は、2つの主面を有する半導体基板(光電変換基板)110と、半導体基板110の主面のうちの一方面側(例えば受光面側)に順に積層されたパッシベーション層120と第1導電型半導体層121と、半導体基板110の主面のうちの他方面側(例えば裏面側)に順に積層されたパッシベーション層130と第2導電型半導体層131とを有する。 FIG. 7 is an enlarged view of region A of semiconductor laminate 10 shown in FIG. As shown in FIG. 7, the semiconductor laminate 10 includes a semiconductor substrate (photoelectric conversion substrate) 110 having two main surfaces, and one of the main surfaces of the semiconductor substrate 110 (for example, the light receiving surface side). passivation layer 120 and first conductivity type semiconductor layer 121, and passivation layer 130 and second conductivity type semiconductor layer 131 laminated in order on the other side (for example, the back side) of the main surface of semiconductor substrate 110. have.

<半導体基板>
半導体基板110としては、導電型単結晶シリコン基板、例えばn型単結晶シリコン基板またはp型単結晶シリコン基板が用いられる。これにより、高い光電変換効率が実現する。
半導体基板110は、n型単結晶シリコン基板であると好ましい。これにより、結晶シリコン基板内のキャリア寿命が長くなる。これは、p型単結晶シリコン基板では、光照射によってp型ドーパントであるB(ホウ素)が影響して再結合中心となるLID(Light Induced Degradation)が起こる場合があるが、n型単結晶シリコン基板ではLIDをより抑制するためである。
<Semiconductor substrate>
As the semiconductor substrate 110, a conductivity type single crystal silicon substrate such as an n-type single crystal silicon substrate or a p-type single crystal silicon substrate is used. This realizes high photoelectric conversion efficiency.
Semiconductor substrate 110 is preferably an n-type single crystal silicon substrate. This prolongs the lifetime of carriers in the crystalline silicon substrate. This is because, in a p-type single crystal silicon substrate, LID (Light Induced Degradation), which is a recombination center, may occur due to the influence of B (boron), which is a p-type dopant, due to light irradiation. This is to further suppress LID in the substrate.

半導体基板110は、裏面側に、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を有する。これにより、半導体基板110に吸収されず通過してしまった光の回収効率が高まる。
また、半導体基板110は、受光面側に、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を有していてもよい。これにより、受光面において入射光の反射が低減し、半導体基板11における光閉じ込め効果が向上する。
The semiconductor substrate 110 has a pyramid-shaped fine uneven structure called a texture structure on the back surface side. As a result, the recovery efficiency of the light that has passed through the semiconductor substrate 110 without being absorbed increases.
In addition, the semiconductor substrate 110 may have a pyramid-shaped fine uneven structure called a texture structure on the light receiving surface side. As a result, the reflection of incident light on the light receiving surface is reduced, and the light confinement effect in the semiconductor substrate 11 is improved.

半導体基板110の厚さは、50μm以上250μm以下であると好ましく、60μm以上230μm以下であるとより好ましく、70μm以上210μm以下であると更に好ましい。これにより、材料コストが低減する。
なお、半導体基板110として、導電型多結晶シリコン基板、例えばn型多結晶シリコン基板またはp型多結晶シリコン基板を用いてもよい。この場合、より安価に太陽電池が製造される。
The thickness of the semiconductor substrate 110 is preferably 50 μm or more and 250 μm or less, more preferably 60 μm or more and 230 μm or less, and even more preferably 70 μm or more and 210 μm or less. This reduces material costs.
As the semiconductor substrate 110, a conductive polycrystalline silicon substrate such as an n-type polycrystalline silicon substrate or a p-type polycrystalline silicon substrate may be used. In this case, solar cells are manufactured at a lower cost.

<第1導電型半導体層および第2導電型半導体層>
第1導電型半導体層121は、半導体基板110の受光面側の略全面にパッシベーション層120を介して形成されており、第2導電型半導体層131は、半導体基板110の裏面側の略全面にパッシベーション層130を介して形成されている。
<First conductivity type semiconductor layer and second conductivity type semiconductor layer>
The first-conductivity-type semiconductor layer 121 is formed over substantially the entire light-receiving surface side of the semiconductor substrate 110 with the passivation layer 120 interposed therebetween, and the second-conductivity-type semiconductor layer 131 is formed over substantially the entire back surface side of the semiconductor substrate 110 . It is formed through the passivation layer 130 .

第1導電型半導体層121は、第1導電型シリコン系層、例えばp型シリコン系層で形成される。第2導電型半導体層131は、第1導電型と異なる第2導電型のシリコン系層、例えばn型シリコン系層で形成される。なお、第1導電型半導体層121がn型シリコン系層であり、第2導電型半導体層131がp型シリコン系層であってもよい。
p型シリコン系層およびn型シリコン系層は、非晶質シリコン層、または、非晶質シリコンと結晶質シリコンとを含む微結晶シリコン層で形成される。p型シリコン系層のドーパント不純物としては、B(ホウ素)が好適に用いられ、n型シリコン系層のドーパント不純物としては、P(リン)が好適に用いられる。
The first-conductivity-type semiconductor layer 121 is formed of a first-conductivity-type silicon-based layer, for example, a p-type silicon-based layer. The second conductivity type semiconductor layer 131 is formed of a silicon-based layer of a second conductivity type different from the first conductivity type, such as an n-type silicon-based layer. The first conductivity type semiconductor layer 121 may be an n-type silicon-based layer, and the second conductivity-type semiconductor layer 131 may be a p-type silicon-based layer.
The p-type silicon-based layer and the n-type silicon-based layer are formed of an amorphous silicon layer or a microcrystalline silicon layer containing amorphous silicon and crystalline silicon. B (boron) is preferably used as the dopant impurity for the p-type silicon-based layer, and P (phosphorus) is preferably used as the dopant impurity for the n-type silicon-based layer.

<パッシベーション層>
パッシベーション層120,130は、真性シリコン系層で形成される。パッシベーション層120,130は、パッシベーション層として機能し、キャリアの再結合を抑制する。
<Passivation layer>
Passivation layers 120 and 130 are formed of intrinsic silicon-based layers. The passivation layers 120 and 130 function as passivation layers to suppress recombination of carriers.

<透明電極層>
再び図5および図6を参照して説明する。透明電極層20は、半導体積層体10の受光面側の略全面に形成されており、透明電極層30は、半導体積層体10の裏面側の略全面に形成されている。
透明電極層20,30は、透明導電性材料で形成される。透明導電性材料としては、透明導電性金属酸化物、例えば、酸化インジウム、酸化錫、酸化亜鉛、酸化チタンおよびそれらの複合酸化物等が用いられる。これらの中でも、酸化インジウムを主成分とするインジウム系複合酸化物が好ましい。高い導電率と透明性の観点からは、インジウム酸化物が特に好ましい。更に、信頼性またはより高い導電率を確保するため、インジウム酸化物にドーパントを添加すると好ましい。ドーパントとしては、例えば、Sn、W、Zn、Ti、Ce、Zr、Mo、Al、Ga、Ge、As、Si、またはS等が挙げられる。
<Transparent electrode layer>
Description will be made with reference to FIGS. 5 and 6 again. The transparent electrode layer 20 is formed on substantially the entire light-receiving surface side of the semiconductor laminated body 10 , and the transparent electrode layer 30 is formed substantially on the rear surface side of the semiconductor laminated body 10 .
The transparent electrode layers 20 and 30 are made of a transparent conductive material. As the transparent conductive material, transparent conductive metal oxides such as indium oxide, tin oxide, zinc oxide, titanium oxide and composite oxides thereof are used. Among these, an indium-based composite oxide containing indium oxide as a main component is preferable. Indium oxide is particularly preferred from the viewpoint of high electrical conductivity and transparency. Additionally, dopants are preferably added to the indium oxide to ensure reliability or higher conductivity. Dopants include Sn, W, Zn, Ti, Ce, Zr, Mo, Al, Ga, Ge, As, Si, or S, for example.

透明電極層30は、マスクを用いないインラインPVD法で形成され、透明電極層20は、マスクを用いたインラインPVD法で形成される。透明電極層20は、半導体積層体10の受光面側において、太陽電池セル1の長辺部となる長辺領域RLおよび太陽電池セルの短辺部となる短辺領域RSにマスクを配置し、長辺領域RLと交差するX方向を搬送方向として半導体積層体10を搬送しながら、PVD法により形成される(詳細は後述)。
これにより、マスク近傍の透明電極層20の端部(4辺部)の膜厚が透明電極層20の中央部の膜厚よりも減退する減退領域が形成される。X方向(搬送方向)の後側の透明電極層20の端部の減退領域R2の幅W2は、X方向(搬送方向)の前側の透明電極層20の端部の減退領域R1の幅W1{および、X方向の右側および左側(搬送方向に対する交差方向での両端側)の透明電極層20の端部の減退領域の幅:詳細は後述}よりも小さい。換言すれば、太陽電池セルの長辺部のうちの他方端側の長辺部における透明電極層20の端部の減退領域R2の幅W2は、一方端側の長辺部における透明電極層20の端部の減退領域R1の幅W1(および、短辺部の透明電極層20の端部の減退領域の幅)よりも小さい。
なお、減退領域とは、透明電極層20の端部の膜厚が透明電極層20の中央部の膜厚に比べて減退する領域であり、減退領域の幅W1,W2とは、透明電極層20の端部(辺部)および半導体積層体10の端部(辺部)に交差する方向における減退領域の長さである。
The transparent electrode layer 30 is formed by an in-line PVD method that does not use a mask, and the transparent electrode layer 20 is formed by an in-line PVD method that uses a mask. In the transparent electrode layer 20, on the light-receiving surface side of the semiconductor laminate 10, a mask is placed on the long-side region RL that becomes the long-side portion of the solar cell 1 and the short-side region RS that becomes the short-side portion of the solar cell, It is formed by the PVD method while transporting the semiconductor stacked body 10 with the X direction crossing the long side regions RL as the transport direction (details will be described later).
As a result, a reduced region is formed in which the film thickness of the end portions (four side portions) of the transparent electrode layer 20 near the mask is reduced from the film thickness of the central portion of the transparent electrode layer 20 . The width W2 of the attenuation region R2 at the end of the transparent electrode layer 20 on the rear side in the X direction (transportation direction) is the width W1 of the attenuation region R1 at the end of the transparent electrode layer 20 on the front side in the X direction (transportation direction) { and the width of the recessed regions at the ends of the transparent electrode layer 20 on the right and left sides in the X direction (both ends in the direction crossing the conveying direction); In other words, the width W2 of the recessed region R2 at the end of the transparent electrode layer 20 on the other long side of the long side of the solar cell is equal to the width W2 of the transparent electrode layer 20 on the long side on the one end. (and the width of the recessed region at the end of the transparent electrode layer 20 on the short side).
Note that the reduced region is a region where the thickness of the end portions of the transparent electrode layer 20 is reduced compared to the thickness of the central portion of the transparent electrode layer 20, and the widths W1 and W2 of the reduced regions 20 and the length of the recessed region in the direction intersecting the end (side) of the semiconductor stack 10 .

また、X方向(搬送方向)の後側の透明電極層20の端部の減退領域R2の減退角度θ2は、X方向(搬送方向)の前側の透明電極層20の端部の減退領域R1の減退角度θ1{および、X方向の右側および左側(搬送方向に対する交差方向での両端側)の透明電極層20の端部の減退領域の減退角度}よりも大きい。換言すれば、太陽電池セルの他方端側の長辺部における透明電極層20の端部の減退領域R2の減退角度θ2は、太陽電池セルの一方端側の長辺部における透明電極層20の端部の減退領域R1の減退角度θ1(および、短辺部の透明電極層20の端部の減退領域の減退角度)よりも大きい。
なお、減退角度θ1,θ2とは、半導体積層体10の主面に対する透明電極層20の減退領域の表面の傾斜角度、換言すれば、半導体積層体10の主面に平行な面(透明電極の平坦部分の表面から延びる線)に対する透明電極層20の減退の傾斜角度である。
In addition, the attenuation angle θ2 of the attenuation region R2 at the end of the transparent electrode layer 20 on the rear side in the X direction (transportation direction) is the same as that of the attenuation region R1 at the end of the transparent electrode layer 20 on the front side in the X direction (transportation direction). larger than the attenuation angle θ1 {and the attenuation angle of the attenuation regions at the ends of the transparent electrode layer 20 on the right and left sides in the X direction (both ends in the direction crossing the transport direction)}. In other words, the attenuation angle θ2 of the attenuation region R2 at the end of the transparent electrode layer 20 on the other end side of the solar cell is equal to that of the transparent electrode layer 20 on the other end side of the solar cell. It is larger than the attenuation angle θ1 of the edge attenuation region R1 (and the attenuation angle of the edge attenuation region of the transparent electrode layer 20 on the short side).
The attenuation angles θ1 and θ2 are the angles of inclination of the surface of the attenuation region of the transparent electrode layer 20 with respect to the main surface of the semiconductor laminate 10, in other words, the surface parallel to the main surface of the semiconductor laminate 10 (the surface of the transparent electrode). line extending from the surface of the flat portion)).

なお、マスクにより透明電極層20が形成されない長辺領域RL、および、透明電極層20の膜厚が減退する減退領域R1,R2は、上述した重ね合わせ領域Roに含まれると好ましい。 It is preferable that the long-side region RL where the transparent electrode layer 20 is not formed by the mask and the reduced regions R1 and R2 where the thickness of the transparent electrode layer 20 is reduced are included in the overlapping region Ro described above.

金属電極層21は、透明電極層20上に形成され、金属電極層31は、透明電極層30上に形成される。
金属電極層21,31は、金属材料で形成される。金属材料としては、例えば、Cu、Ag、Alおよびこれらの合金が用いられる。
A metal electrode layer 21 is formed on the transparent electrode layer 20 and a metal electrode layer 31 is formed on the transparent electrode layer 30 .
The metal electrode layers 21 and 31 are made of a metal material. For example, Cu, Ag, Al, and alloys thereof are used as the metal material.

金属電極層21は、いわゆる櫛型の形状をなし、櫛歯に相当する複数のフィンガー電極部21fと、櫛歯の支持部に相当するバスバー電極部21bとを有する。バスバー電極部21bは、X方向の一方端側(搬送方向の前側)の受光面側(一方主面側)の一部の重ね合わせ領域Ro、特に搬送方向の前側の長辺領域RLに沿った減退領域R1に沿って、Y方向に延在する。フィンガー電極部21fは、バスバー電極部21bから、Y方向に交差するX方向に延在する。 The metal electrode layer 21 has a so-called comb shape, and includes a plurality of finger electrode portions 21f corresponding to comb teeth and busbar electrode portions 21b corresponding to support portions of the comb teeth. The busbar electrode portion 21b extends along a partial overlap region Ro on the light receiving surface side (one main surface side) on one end side in the X direction (front side in the transport direction), particularly along the long side region RL on the front side in the transport direction. It extends in the Y direction along the decay region R1. The finger electrode portions 21f extend from the busbar electrode portions 21b in the X direction intersecting the Y direction.

金属電極層31は、例えば裏面側に形成される。そして、この金属電極層31は、金属電極層21と同様に、櫛型の形状である。すなわち、金属電極層31は、櫛歯に相当する複数のフィンガー電極部31fと、櫛歯の支持部に相当するバスバー電極部31bとを有する。バスバー電極部31bは、X方向の他方端側(搬送方向の後側)の裏面側(他方主面側)の一部の重ね合わせ領域Roに沿ってY方向に延在する。フィンガー電極部31fは、バスバー電極部31bから、Y方向に交差するX方向に延在する。なお、金属電極層31は、櫛型に限定されるものではなく、例えば、太陽電池セル1の裏面側の略全体に矩形状に形成されていても構わない。
また、金属電極層31の重ね合わせ領域Ro(例えば、金属電極層31のバスバー電極部31b)上には、上述した太陽電池ストリング作製のための導電性接着剤8が設けられる。なお、導電性接着剤8は、裏面側の金属電極層31の重ね合わせ領域Roに代えて、受光面側の金属電極層21の重ね合わせ領域Ro(例えば、金属電極層21のバスバー電極部21b)上に設けられてもよい。
The metal electrode layer 31 is formed, for example, on the back side. Like the metal electrode layer 21, the metal electrode layer 31 has a comb shape. That is, the metal electrode layer 31 has a plurality of finger electrode portions 31f corresponding to comb teeth and busbar electrode portions 31b corresponding to support portions of the comb teeth. The busbar electrode portion 31b extends in the Y direction along a partial overlap region Ro on the back side (the other main surface side) of the other end side (rear side in the transport direction) in the X direction. The finger electrode portions 31f extend from the busbar electrode portions 31b in the X direction intersecting the Y direction. The metal electrode layer 31 is not limited to a comb shape, and may be formed in a rectangular shape on substantially the entire rear surface side of the solar cell 1, for example.
In addition, on the overlapping region Ro of the metal electrode layer 31 (for example, the busbar electrode portion 31b of the metal electrode layer 31), the conductive adhesive 8 for fabricating the solar cell string described above is provided. The conductive adhesive 8 is applied to the overlapping region Ro of the metal electrode layer 21 on the light receiving surface side (for example, the busbar electrode portion 21b of the metal electrode layer 21) instead of the overlapping region Ro of the metal electrode layer 31 on the back surface side. ) may be provided on the

(太陽電池セルの製造方法)
次に、図5~7および図8~図11を参照して、本実施形態に係る太陽電池の製造方法について説明する。図8は、本実施形態に係る太陽電池セルの製造方法における透明電極層形成工程を示す図であり、図9~11は、本実施形態に係る太陽電池セルの製造方法における太陽電池セル切断形成工程を示す図である。
(Manufacturing method of solar cell)
Next, a method for manufacturing a solar cell according to this embodiment will be described with reference to FIGS. 5-7 and 8-11. FIG. 8 is a view showing a transparent electrode layer forming step in the method for manufacturing a solar cell according to this embodiment, and FIGS. It is a figure which shows a process.

まず、半導体基板(例えば、n型単結晶シリコン基板)110の受光面側の略全面にパッシベーション層(例えば、真性シリコン系層)120を積層する(図7参照)。また、半導体基板110の裏面側の略全面にパッシベーション層(例えば、真性シリコン系層)130を積層する(図7参照)。
その後、パッシベーション層120上に、すなわち半導体基板110の受光面側の略全面に、第1導電型半導体層(例えば、p型シリコン系層)121を積層する(図7参照)。また、パッシベーション層130上に、すなわち半導体基板110の裏面側の略全面に、第2導電型半導体層(例えば、n型シリコン系層)131を積層する(図7参照)。
First, a passivation layer (eg, intrinsic silicon-based layer) 120 is deposited over substantially the entire light-receiving surface side of a semiconductor substrate (eg, n-type single crystal silicon substrate) 110 (see FIG. 7). Also, a passivation layer (for example, an intrinsic silicon-based layer) 130 is laminated on substantially the entire back surface side of the semiconductor substrate 110 (see FIG. 7).
After that, a first conductivity type semiconductor layer (for example, a p-type silicon layer) 121 is laminated on the passivation layer 120, that is, on substantially the entire light receiving surface side of the semiconductor substrate 110 (see FIG. 7). Also, a second conductivity type semiconductor layer (for example, an n-type silicon-based layer) 131 is stacked on the passivation layer 130, that is, on substantially the entire rear surface side of the semiconductor substrate 110 (see FIG. 7).

パッシベーション層120,130、第1導電型半導体層121および第2導電型半導体層131の形成方法は特に限定されないが、プラズマCVD法を用いると好ましい。プラズマCVD法による製膜条件としては、例えば、基板温度100~300℃、圧力20~2600Pa、高周波パワー密度0.004~0.8W/cmが好適に用いられる。材料ガスとしては、例えばSiH、Si等のシリコン含有ガス、またはシリコン系ガスとHとの混合ガスが好適に用いられる。
第1導電型半導体層121のドーパント添加ガスとしては、例えば、水素希釈されたBが好適に用いられる。第2導電型半導体層131のドーパント添加ガスとしては、例えば、水素希釈されたPHが好適に用いられる。
また、光の透過性を向上させるために、例えば、酸素または炭素といった不純物を微量添加してもよい。その場合、例えば、COまたはCHといったガスをCVD製膜の際に導入する。
プラズマCVD法を用いた製膜によれば、製膜条件によって比較的容易に膜質を制御できることから、屈折率の調整が容易となる。
以上の工程により、半導体積層体10を得る。
Although the method for forming the passivation layers 120 and 130, the first conductivity type semiconductor layer 121 and the second conductivity type semiconductor layer 131 is not particularly limited, it is preferable to use the plasma CVD method. As conditions for film formation by the plasma CVD method, for example, a substrate temperature of 100 to 300° C., a pressure of 20 to 2600 Pa, and a high frequency power density of 0.004 to 0.8 W/cm 2 are suitably used. Silicon-containing gases such as SiH 4 and Si 2 H 6 , or mixed gases of silicon-based gases and H 2 are preferably used as material gases.
As the dopant addition gas for the first conductivity type semiconductor layer 121, for example, hydrogen-diluted B 2 H 6 is preferably used. As the dopant addition gas for the second conductivity type semiconductor layer 131, for example, hydrogen-diluted PH3 is preferably used.
Also, in order to improve the light transmittance, a small amount of impurity such as oxygen or carbon may be added. In that case, for example, a gas such as CO 2 or CH 4 is introduced during CVD film formation.
According to the film formation using the plasma CVD method, the film quality can be relatively easily controlled by changing the film formation conditions, and thus the refractive index can be easily adjusted.
Through the above steps, the semiconductor laminate 10 is obtained.

次に、図8に示すように、第1導電型半導体層121上に、すなわち半導体積層体10の受光面側の略全面に、透明電極層20を積層する。
透明電極層20の形成方法としては、スパッタリング法等の物理気相成長法(PVD)が用いられる。その際、太陽電池セル1の長辺部となる予定の長辺領域RLおよび太陽電池セル1の短辺部となる予定の短辺領域RSの受光面側を覆うようにマスクMASKを配置し、長辺領域RLと交差するX方向を搬送方向TDとして、半導体積層体10を搬送しながら、半導体積層体10の受光面側に透明電極層20を形成する(透明電極層形成工程)。
Next, as shown in FIG. 8 , the transparent electrode layer 20 is laminated on the first conductivity type semiconductor layer 121 , that is, substantially all over the light receiving surface side of the semiconductor laminate 10 .
As a method for forming the transparent electrode layer 20, a physical vapor deposition method (PVD) such as a sputtering method is used. At that time, a mask MASK is arranged so as to cover the light-receiving surface side of the long-side region RL to be the long-side portion of the solar cell 1 and the short-side region RS to be the short-side portion of the solar cell 1, The transparent electrode layer 20 is formed on the light-receiving surface side of the semiconductor laminated body 10 while the semiconductor laminated body 10 is being conveyed with the X direction intersecting with the long-side region RL as the conveying direction TD (transparent electrode layer forming step).

次に、第2導電型半導体層131上に、すなわち半導体積層体10の裏面側の略全面に、透明電極層30を積層する。
透明電極層30の形成方法としては、スパッタリング法等の物理気相成長法(PVD)が用いられる。その際、半導体積層体10を搬送しながら、半導体積層体10の裏面側に透明電極層30を形成する(透明電極層形成工程)。
Next, the transparent electrode layer 30 is laminated on the second conductivity type semiconductor layer 131 , that is, on substantially the entire rear surface side of the semiconductor laminate 10 .
As a method for forming the transparent electrode layer 30, a physical vapor deposition method (PVD) such as a sputtering method is used. At this time, the transparent electrode layer 30 is formed on the back side of the semiconductor laminate 10 while the semiconductor laminate 10 is being transported (transparent electrode layer forming step).

PVD法による製膜時の圧力は、0.3Pa以上0.6Pa以下であると好ましい。圧力が0.3Paよりも小さいと放電が安定しない。圧力が0.6Paよりも大きいと、減退領域は低減するが、透明電極層の抵抗が増大し、レートの低下を招く。
搬送速度は、500mm/分以上1500mm/分以下であると好ましい。搬送速度を1500mm/分よりも大きくすると、必要な膜厚を得るためにPVD法におけるパワーを上げる必要が生じるが、パワーを上げると太陽電池セルの性能が低下する。搬送速度を500mm/分よりも小さくすると、必要な膜厚を得るために製造ラインを長距離化する必要が生じるが、製造ラインを長距離化するとPVD装置の大型化、高価格化が生じる。
後述する切断工程で切断される長辺領域RLに配置されるマスクの搬送方向TDの幅は、1.0mm以上1.4mm以下であると好ましい。1.0mmは加工限界値である。マスクの幅が1.4mmよりも大きくなると、シングリング方式を用いた太陽電池モジュール化の際に、減退領域が重ね合わせ領域内に収まらず、減退領域に起因する太陽電池セルの出力低下の抑制の効果が低減する。
The pressure during film formation by the PVD method is preferably 0.3 Pa or more and 0.6 Pa or less. If the pressure is less than 0.3 Pa, the discharge will not be stable. If the pressure is higher than 0.6 Pa, the decay area is reduced, but the resistance of the transparent electrode layer is increased, resulting in a lower rate.
The conveying speed is preferably 500 mm/min or more and 1500 mm/min or less. When the conveying speed is higher than 1500 mm/min, it becomes necessary to increase the power in the PVD method in order to obtain the required film thickness, but increasing the power reduces the performance of the solar cell. If the conveying speed is less than 500 mm/min, it becomes necessary to lengthen the production line in order to obtain the necessary film thickness.
The width in the transport direction TD of the mask arranged in the long-side region RL cut in the cutting step to be described later is preferably 1.0 mm or more and 1.4 mm or less. 1.0 mm is the processing limit value. When the width of the mask is greater than 1.4 mm, the decay region does not fit within the overlapping region when the solar cell module is formed using the shingling method, and the decrease in the output of the solar cell due to the decay region is suppressed. effect is reduced.

次に、透明電極層20上に、すなわち半導体積層体10の受光面側に金属電極層21を形成する。この際、X方向の一方端側の一部の重ね合わせ領域Ro、特に透明電極層20の製膜時の搬送方向の前側の長辺領域RLに沿った減退領域R1に沿って、Y方向に延在するバスバー電極部21bを形成する。
また、透明電極層30上に、すなわち半導体積層体10の裏面側に金属電極層31を形成する。この際、X方向の他方端側(搬送方向の後側)の裏面側(他方主面側)の一部の重ね合わせ領域Ro、に沿ってY方向に延在するバスバー電極部31bを形成する。
Next, a metal electrode layer 21 is formed on the transparent electrode layer 20 , that is, on the light receiving surface side of the semiconductor laminate 10 . At this time, along a part of the overlap region Ro on one end side in the X direction, particularly along the weakened region R1 along the long side region RL on the front side in the transport direction during film formation of the transparent electrode layer 20, in the Y direction An extending busbar electrode portion 21b is formed.
Also, a metal electrode layer 31 is formed on the transparent electrode layer 30 , that is, on the back side of the semiconductor laminate 10 . At this time, the busbar electrode portion 31b extending in the Y direction is formed along the partial overlap region Ro on the other end side (rear side in the transport direction) in the X direction and on the back side (the other main surface side). .

その後、図9(金属電極層21は、便宜上、省略)に示すように、長辺領域RLにおいて切断線CLに沿って、すなわちマスクMASKによって透明電極層20が形成されない透明電極層20非形成領域において、レーザを用いて、半導体積層体10を切断する。すると、図10および図11に示すように、半導体積層体10が個分けされる(金属電極層21は、便宜上、省略)。
そして、以上の工程により、図5および図6に示す太陽電池セル1が完成する。
After that, as shown in FIG. 9 (the metal electrode layer 21 is omitted for convenience), along the cutting line CL in the long side region RL, that is, the transparent electrode layer 20 non-formation region where the transparent electrode layer 20 is not formed is masked by mask MASK. , the semiconductor laminate 10 is cut using a laser. Then, as shown in FIGS. 10 and 11, the semiconductor laminate 10 is separated (the metal electrode layer 21 is omitted for convenience).
Then, the solar battery cell 1 shown in FIGS. 5 and 6 is completed through the above steps.

(太陽電池モジュールの製造方法)
次に、本実施形態に係る太陽電池モジュールの製造方法について説明する。
まず、図4に示すように、少なくとも2個の長方形状の太陽電池セル1をシングリング方式を用いて電気的に接続して、太陽電池ストリング2を得る(太陽電池ストリング形成工程)。具体的には、隣接する太陽電池セル1,1のうちの一方の太陽電池セル1の搬送方向TDの前側の長辺部の受光面側の一部を、他方の太陽電池セル1の搬送方向TDの後側の長辺部の裏面側の一部の下に重ねて、隣接する太陽電池セル1,1同士を導電性接着剤8を介して接続する。所望の数の太陽電池セル1に対して、このような接続をすることで、複数の太陽電池セル1を含む太陽電池ストリング2が完成する。
(Manufacturing method of solar cell module)
Next, a method for manufacturing a solar cell module according to this embodiment will be described.
First, as shown in FIG. 4, at least two rectangular solar cells 1 are electrically connected using a shingling method to obtain a solar cell string 2 (solar cell string forming step). Specifically, a part of the light-receiving surface side of the long side on the front side in the transport direction TD of one of the adjacent solar cells 1, 1 is Adjacent solar cells 1, 1 are connected to each other via a conductive adhesive 8 under a portion of the back side of the long side of the rear side of the TD. By connecting a desired number of solar cells 1 in this manner, a solar cell string 2 including a plurality of solar cells 1 is completed.

次に、裏側保護部材4、封止材5、少なくとも1個の太陽電池ストリング2、封止材5、および、受光側保護部材3を、この順で重ね、真空排気を行うラミネータ等を用いて、所定の温度、圧力にて加熱、加圧することによって封止する。
以上の工程により、図4に示す太陽電池モジュール100が完成する。
なお、太陽電池モジュール100の製造方法は、特に限定されるものではない。
Next, the back side protective member 4, the encapsulant 5, at least one solar cell string 2, the encapsulant 5, and the light-receiving side protective member 3 are stacked in this order, and a vacuum evacuation laminator or the like is used. , to seal by heating and pressurizing at a predetermined temperature and pressure.
Through the above steps, the solar cell module 100 shown in FIG. 4 is completed.
Note that the method for manufacturing the solar cell module 100 is not particularly limited.

以上説明したように、本実施形態に係る太陽電池セルの製造方法によれば、透明電極層形成工程において、半導体積層体10の受光面側に透明電極層20を形成する際に、太陽電池セル1の長辺部となる長辺領域RLおよび太陽電池セル1の短辺部となる短辺領域RSの受光面側にマスクを配置し、長辺領域RLに交差するX方向を搬送方向TDとして半導体積層体10を搬送しながら、PVD法により透明電極層20を形成する。
この製造方法により製造された太陽電池セル1によれば、半導体積層体10の受光面側において、太陽電池セル1の長辺部のうちの他方端側の長辺部における透明電極層20の端部の減退領域R2の幅W2は、太陽電池セル1の長辺部のうちの一方端側の長辺部における透明電極層20の端部の減退領域R1の幅W1よりも小さい。
これにより、太陽電池セル1における透明電極層20の端部(4辺部)の減退領域の総面積が低減し、太陽電池セル1の端部の透明電極層20の抵抗増大が抑制される。その結果、太陽電池セル1の出力低下が抑制される。
更に、本実施形態に係る太陽電池セルの製造方法によれば、レーザ切断時に半導体積層体10の切断面、特に半導体基板(光電変換基板)の切断面に透明電極層20が付着することを抑制でき、太陽電池セル1の性能低下を抑制できる。
As described above, according to the method for manufacturing a solar cell according to the present embodiment, when forming the transparent electrode layer 20 on the light receiving surface side of the semiconductor laminate 10 in the transparent electrode layer forming step, the solar cell A mask is placed on the light-receiving surface side of the long-side region RL that becomes the long-side portion of the photovoltaic cell 1 and the short-side region RS that becomes the short-side portion of the solar cell 1, and the X direction that intersects the long-side region RL is defined as the transport direction TD. The transparent electrode layer 20 is formed by the PVD method while transporting the semiconductor laminate 10 .
According to the solar cell 1 manufactured by this manufacturing method, the end of the transparent electrode layer 20 on the other long side of the long side of the solar cell 1 on the light receiving surface side of the semiconductor laminate 10 Width W2 of recessed region R2 at the edge is smaller than width W1 of recessed region R1 at the end of transparent electrode layer 20 at one end of the long side of solar cell 1 .
As a result, the total area of the weakened regions at the ends (four sides) of the transparent electrode layer 20 in the solar cell 1 is reduced, and an increase in the resistance of the transparent electrode layer 20 at the ends of the solar cell 1 is suppressed. As a result, a decrease in the output of the photovoltaic cell 1 is suppressed.
Furthermore, according to the method for manufacturing a solar cell according to the present embodiment, adhesion of the transparent electrode layer 20 to the cut surface of the semiconductor laminate 10, particularly to the cut surface of the semiconductor substrate (photoelectric conversion substrate) during laser cutting is suppressed. It is possible to suppress deterioration in the performance of the solar battery cell 1 .

また、本実施形態に係る太陽電池モジュールの製造方法によれば、隣接する太陽電池セル1,1のうちの一方の太陽電池セル1の搬送方向TDの前側の長辺部の受光面側の一部を、他方の太陽電池セル1の搬送方向TDの後側の長辺部の裏面側の一部の下に重ねて、隣接する太陽電池セル1,1同士を接続する。
この製造方法により製造された太陽電池モジュール100によれば、隣接する太陽電池セル1,1のうちの一方の太陽電池セル1の一方端側の長辺部の受光面側の一部(透明電極層20の端部の減退領域R1の幅W1が大きい方)は、他方の太陽電池セル1の他方端側の長辺部の裏面側の一部(透明電極層20の端部の減退領域R2の幅W2が小さい方)の下に重なって接続される。
このように、一方の太陽電池セル1における透明電極層20の減退領域R1の幅W1が大きい搬送方向TDの前側の端部が、他方の太陽電池セル1における透明電極層20の減退領域R2の幅W2が小さい搬送方向TDの後側の端部による遮光領域に配置されることにより、太陽電池セル1の出力低下が抑制される。
In addition, according to the method for manufacturing a solar cell module according to the present embodiment, one of the adjacent solar cells 1, 1 on the light receiving surface side of the long side portion on the front side in the transport direction TD of one of the solar cells 1 adjacent solar cells 1, 1 are overlapped under part of the back surface side of the long side on the rear side in the transport direction TD of the other solar cell 1. As shown in FIG.
According to the solar cell module 100 manufactured by this manufacturing method, one of the adjacent solar cells 1, 1 has a long side portion on the one end side of one of the adjacent solar cells 1, which is part of the light-receiving surface side (transparent electrode). The width W1 of the weakened region R1 at the end of the layer 20 is larger) is a part of the back side of the long side of the other end of the other solar cell 1 (the weakened region R2 at the end of the transparent electrode layer 20). (the width W2 of which is smaller)).
In this way, the front end in the transport direction TD where the width W1 of the weakened region R1 of the transparent electrode layer 20 in one solar cell 1 is large corresponds to the weakened region R2 of the transparent electrode layer 20 in the other solar cell 1. By arranging in the light shielding region by the end portion on the rear side in the transport direction TD where the width W2 is small, a decrease in the output of the photovoltaic cell 1 is suppressed.

ここで、図13A~図13Eを参照して、透明電極層形成工程における搬送方向TDと、透明電極層20の端部の減退領域の幅Wとの関係について検証する。
図13Aは、透明電極層形成工程における搬送方向TDを上方向(+Y方向)としたときの、図8における領域Bの拡大図であり、図13Bは、透明電極層形成工程における搬送方向TDを右方向(-X方向)としたときの、図8における領域Bの拡大図であり、図13C(上述した実施形態に相当)は、透明電極層形成工程における搬送方向TDを左方向(+X方向)としたときの、図8における領域Bの拡大図である。
図13Dは、マスクMASKの右側の(太陽電池セルの左側の長辺部となる長辺領域RLに沿う)透明電極層20の端部の膜厚50%減退領域R1(50%)の幅W1(50%)および面積、マスクMASKの左側の(太陽電池セルの右側の長辺部となる長辺領域RLに沿う)透明電極層20の端部の膜厚50%減退領域R2(50%)の幅W2(50%)および面積、マスクMASKの上側の(太陽電池セルの上側の短辺部となる短辺領域RSに沿う)透明電極層20の端部の膜厚50%減退領域R3(50%)の幅W3(50%)および面積、および、マスクMASKの下側の(太陽電池セルの下側の短辺部となる短辺領域RSに沿う)透明電極層20の端部の膜厚50%減退領域R4(50%)の幅W4(50%)および面積を示す表を図示している。
ここで、上述した実施形態では、透明電極層20の端部の膜厚が透明電極層20の中央部の膜厚に比べて減退(減少)する減退領域R1,R2を示したが、本検証では、図13E(断面図)に示すように、減退領域として、透明電極層20の端部の膜厚が透明電極層20の中央部の膜厚(100%)の50%以下に減退(減少)する膜厚50%減退領域を考える。これにより、膜厚50%減退領域R1(50%)の幅W1(50%),および膜厚50%減退領域R2(50%)の幅W2(50%)とは、透明電極層20の端部の膜厚が透明電極層20の中央部の膜厚(100%)の50%以下に減退する領域のX方向の幅であり、膜厚50%減退領域R3(50%)の幅W3(50%),および膜厚50%減退領域R4(50%)の幅W4(50%)とは、透明電極層20の端部の膜厚が透明電極層20の中央部の膜厚(100%)の50%以下に減退する領域のY方向の幅である。なお、減退領域およびその幅としてはこれに限定されず、例えば透明電極層20の端部の膜厚が透明電極層20の中央部の膜厚(100%)の100%未満または所定の割合以下に減退(減少)する領域およびその幅であっても構わない。
また、図13Dの表には、膜厚50%減退領域R1(50%),R2(50%),R3(50%),R4(50%)における面積が示されている(なお、シングリング方式に起因してシャドウロスとなる場合には面積を「0」とする)。また、減退による面積ロスとは、減退による透明電極層20の面積の減少割合である。減退による面積ロスは、透明電極層20の面積における膜厚50%減退領域R1(50%),R2(50%),R3(50%),R4(50%)の面積割合、すなわち下記式で表される。
面積ロス
=膜厚50%減退領域R1(50%),R2(50%),R3(50%),R4(50%)の総面積/透明電極層20の面積
ここで、本検証に用いた透明電極層20の面積について記載する。本検証は、一辺の長さが156.75mmのスクエア型の半導体基板110を用い、前記半導体基板110に半導体層120,121,130,131を形成した半導体積層体10に、透明電極層20、30、および金属電極層21、31を形成後、レーザで5分割して行なった。透明電極層20の形成では、太陽電池の長辺部となる長辺領域RLであって半導体基板110の端部にあたる長辺領域RL、および太陽電池の短辺部となる短辺領域RSであって半導体基板110の端部にあたる短辺領域RSのマスク幅は1.0mmとしたため、長方形状の太陽電池セルにおける透明電極層20の短辺側の長さは、((156.75-2)/5)-1.4=29.55(mm)となり(なお、1.4mmはマスク幅)、透明電極層20の面積は(156.75-2)×29.55=4752.86mmとなる。なお、搬送速度は図13Dの表に示す通りである。
Here, with reference to FIGS. 13A to 13E, the relationship between the transport direction TD in the transparent electrode layer forming process and the width W of the recessed region at the end of the transparent electrode layer 20 will be verified.
13A is an enlarged view of region B in FIG. 8 when the transport direction TD in the transparent electrode layer forming step is the upward direction (+Y direction), and FIG. 13B is an enlarged view of region B in the transparent electrode layer forming step. FIG. 13C (corresponding to the embodiment described above) is an enlarged view of the area B in FIG. 8 when the right direction (−X direction) is set, and FIG. ) is an enlarged view of region B in FIG. 8 .
FIG. 13D shows the width W1 of the 50% film thickness reduction region R1 (50%) at the end of the transparent electrode layer 20 on the right side of the mask MASK (along the long side region RL serving as the left long side portion of the solar cell). (50%) and area, thickness 50% reduction region R2 (50%) at the end of the transparent electrode layer 20 (along the long side region RL which is the long side portion on the right side of the solar cell) on the left side of the mask MASK Width W2 (50%) and area of , and thickness 50% reduction region R3 ( 50%) width W3 (50%) and area, and the film of the edge of the transparent electrode layer 20 (along the short side region RS that will be the short side of the lower side of the solar cell) under the mask MASK FIG. 10 illustrates a table showing the width W4 (50%) and area of the 50% thickness recession region R4 (50%).
Here, in the above-described embodiment, the thickness of the end portions of the transparent electrode layer 20 shows the decreased regions R1 and R2 in which the thickness of the transparent electrode layer 20 decreases (decreases) compared to the thickness of the central portion of the transparent electrode layer 20, but this verification Then, as shown in FIG. 13E (cross-sectional view), the film thickness of the end portion of the transparent electrode layer 20 is reduced to 50% or less of the film thickness (100%) of the central portion of the transparent electrode layer 20 as the reduction region. ), the film thickness 50% reduction region is considered. As a result, the width W1 (50%) of the 50% thickness reduction region R1 (50%) and the width W2 (50%) of the 50% thickness reduction region R2 (50%) correspond to the edge of the transparent electrode layer 20. is the width in the X direction of the region where the film thickness of the portion is reduced to 50% or less of the film thickness (100%) of the central portion of the transparent electrode layer 20, and the width W3 (50%) of the 50% film thickness reduction region R3 (50%) 50%), and the width W4 (50%) of the 50% thickness reduction region R4 (50%) means that the thickness of the edge portion of the transparent electrode layer 20 is less than the thickness of the central portion of the transparent electrode layer 20 (100% ) is the width in the Y direction of the region that decreases to 50% or less of . Note that the decay region and its width are not limited to this, and for example, the thickness of the end portion of the transparent electrode layer 20 is less than 100% of the thickness (100%) of the central portion of the transparent electrode layer 20, or a predetermined ratio or less. It may be a region and its width that decays (decreases) to .
The table in FIG. 13D also shows the areas in the 50% film thickness reduction regions R1 (50%), R2 (50%), R3 (50%), and R4 (50%). If shadow loss occurs due to the method, the area is set to "0"). Also, the area loss due to attenuation is the rate of decrease in the area of the transparent electrode layer 20 due to attenuation. The area loss due to attenuation is the area ratio of the 50% thickness attenuation regions R1 (50%), R2 (50%), R3 (50%), and R4 (50%) in the area of the transparent electrode layer 20, that is, the following formula expressed.
Area loss=total area of regions R1 (50%), R2 (50%), R3 (50%), and R4 (50%) with thickness reduced by 50%/area of transparent electrode layer 20 The area of the transparent electrode layer 20 is described. In this verification, a square-shaped semiconductor substrate 110 having a side length of 156.75 mm was used, and semiconductor layers 120, 121, 130, and 131 were formed on the semiconductor substrate 110, and the transparent electrode layer 20, After forming 30 and metal electrode layers 21, 31, the substrate was divided into five parts by a laser. In the formation of the transparent electrode layer 20, the long-side region RL corresponding to the long-side portion of the solar cell and corresponding to the end portion of the semiconductor substrate 110 and the short-side region RS forming the short-side portion of the solar cell. Since the mask width of the short side region RS corresponding to the edge of the semiconductor substrate 110 is set to 1.0 mm, the length of the short side of the transparent electrode layer 20 in the rectangular solar cell is ((156.75−2) /5)-1.4=29.55 (mm) (where 1.4 mm is the mask width), and the area of the transparent electrode layer 20 is (156.75-2)×29.55=4752.86 mm 2 Become. The transport speed is as shown in the table of FIG. 13D.

図13Aおよび図13Dの表に示すように、透明電極層形成工程における搬送方向TDを上方向(+Y方向)とすると、マスクMASKの左側の(太陽電池セルの右側の長辺部となる長辺領域RLに沿う)透明電極層20の端部の膜厚50%減退領域R2(50%)の幅W2(50%)、マスクMASKの右側の(太陽電池セルの左側の長辺部となる長辺領域RLに沿う)透明電極層20の端部の膜厚50%減退領域R1(50%)の幅W1(50%)、および、マスクMASKの上側の(太陽電池セルの上側の短辺部となる短辺領域RSに沿う)透明電極層20の端部の膜厚50%減退領域R3(50%)の幅W3(50%)が大きく、マスクMASKの下側の(太陽電池セルの下側の短辺部となる短辺領域RSに沿う)透明電極層20の端部の膜厚50%減退領域R4(50%)の幅W4(50%)が小さい。
このとき、切断線CLの右側、すなわち太陽電池セルの左側の長辺部となる長辺領域RLおよび減退領域R1(50%)の重ね合わせ領域Roを、切断線CLの左側、すなわち太陽電池セルの右側の長辺部となる長辺領域RLおよび減退領域R2(50%)の下に重ねると、太陽電池セルの左側の長辺部となる長辺領域RLに沿う減退領域R1(50%)は覆われる。一方、太陽電池セルの右側の長辺部となる長辺領域RLに沿う減退領域R2(50%)の面積は77.4mmと大きい。その結果、太陽電池セルの1個における透明電極層20の総面積に対する、減退領域R1(50%),R2(50%),R3(50%),R4(50%)の総面積による面積ロスが2.0%と大きい。
これは、図12Bに示すように、太陽電池セルの減退領域R1(50%)の幅W1(50%)(面積)が大きい左側(長辺部)の重ね合わせ領域Roを覆う、太陽電池セルの右側(長辺部)の減退領域R2(50%)の幅W2(50%)(面積)も大きいことによる。
As shown in the tables of FIGS. 13A and 13D, when the transport direction TD in the transparent electrode layer forming step is the upward direction (+Y direction), the long side on the left side of the mask MASK (the long side portion on the right side of the photovoltaic cell) Width W2 (50%) of 50% film thickness reduction region R2 (50%) at the end of transparent electrode layer 20 (along region RL), right side of mask MASK (long side portion on left side of solar cell) The width W1 (50%) of the 50% film thickness reduction region R1 (50%) at the end of the transparent electrode layer 20 (along the side region RL), and the upper side of the mask MASK (the upper short side of the solar cell The width W3 (50%) of the 50% thickness reduction region R3 (50%) at the end of the transparent electrode layer 20 is large, and the width W3 (50%) of the lower side of the mask MASK (under the solar cell The width W4 (50%) of the 50% thickness reduction region R4 (50%) at the end of the transparent electrode layer 20 (along the short side region RS serving as the short side portion on the side) is small.
At this time, the overlap region Ro of the long side region RL and the decay region R1 (50%), which is the long side portion on the right side of the cutting line CL, that is, the left side of the solar cell, is the left side of the cutting line CL, that is, the solar cell When superimposed under the long side region RL and the decay region R2 (50%) that become the long side on the right side of the solar cell, the decay region R1 (50%) along the long side region RL that becomes the long side on the left side of the solar cell is covered. On the other hand, the area of the reduced region R2 (50%) along the long side region RL, which is the long side portion on the right side of the solar cell, is as large as 77.4 mm 2 . As a result, the area loss due to the total area of the decay regions R1 (50%), R2 (50%), R3 (50%), and R4 (50%) with respect to the total area of the transparent electrode layer 20 in one solar cell is as large as 2.0%.
This is because, as shown in FIG. 12B, the solar cell covering the overlapping region Ro on the left side (long side) where the width W1 (50%) (area) of the weakened region R1 (50%) of the solar cell is large. This is because the width W2 (50%) (area) of the reduced region R2 (50%) on the right side (long side portion) of is also large.

次に、図13Bおよび図13Dの表に示すように、透明電極層形成工程における搬送方向TDを右方向(-X方向)とすると、マスクMASKの左側の(太陽電池セルの右側の長辺部となる長辺領域RLに沿う)透明電極層20の端部の膜厚50%減退領域R2(50%)の幅W2(50%)、マスクMASKの下側の(太陽電池セルの下側の短辺部となる短辺領域RSに沿う)透明電極層20の端部の膜厚50%減退領域R4(50%)の幅W4(50%)、および、マスクMASKの上側の(太陽電池セルの上側の短辺部となる短辺領域RSに沿う)透明電極層20の端部の膜厚50%減退領域R3(50%)の幅W3(50%)が大きく、マスクMASKの右側の(太陽電池セルの左側の長辺部となる長辺領域RLに沿う)透明電極層20の端部の膜厚50%減退領域R1(50%)の幅W1(50%)が小さい。
このとき、切断線CLの右側、すなわち太陽電池セルの左側の長辺部となる長辺領域RLおよび減退領域R1(50%)の重ね合わせ領域Roを、切断線CLの左側、すなわち太陽電池セルの右側の長辺部となる長辺領域RLおよび減退領域R2(50%)の下に重ねると、太陽電池セルの左側の長辺部となる長辺領域RLに沿う減退領域R1(50%)は覆われる。一方、太陽電池セルの右側の長辺部となる長辺領域RLに沿う減退領域R2(50%)の面積は61.9mmと大きい。その結果、太陽電池セルの1個における透明電極層20の総面積に対する、減退領域R1(50%),R2(50%),R3(50%),R4(50%)の総面積による面積ロスが2.0%と大きい。
Next, as shown in the tables of FIGS. 13B and 13D, assuming that the transport direction TD in the transparent electrode layer forming step is the right direction (−X direction), the long side portion on the left side of the mask MASK (the long side portion on the right side of the solar cell) width W2 (50%) of the 50% film thickness reduction region R2 (50%) at the end of the transparent electrode layer 20 (along the long side region RL that becomes The width W4 (50%) of the 50% film thickness reduction region R4 (50%) at the end of the transparent electrode layer 20 (along the short side region RS serving as the short side portion) and the width W4 (50%) of the mask MASK (solar cell The width W3 (50%) of the 50% film thickness reduction region R3 (50%) at the end of the transparent electrode layer 20 is large, and the width W3 (50%) on the right side of the mask MASK ( The width W1 (50%) of the 50% thickness reduction region R1 (50%) at the end of the transparent electrode layer 20 (along the long side region RL, which is the left long side portion of the solar cell) is small.
At this time, the overlap region Ro of the long side region RL and the decay region R1 (50%), which is the long side portion on the right side of the cutting line CL, that is, the left side of the solar cell, is the left side of the cutting line CL, that is, the solar cell When superimposed under the long side region RL and the decay region R2 (50%) that become the long side on the right side of the solar cell, the decay region R1 (50%) along the long side region RL that becomes the long side on the left side of the solar cell is covered. On the other hand, the area of the reduced region R2 (50%) along the long side region RL, which is the long side portion on the right side of the solar cell, is as large as 61.9 mm 2 . As a result, the area loss due to the total area of the decay regions R1 (50%), R2 (50%), R3 (50%), and R4 (50%) with respect to the total area of the transparent electrode layer 20 in one solar cell is as large as 2.0%.

次に、図13Cおよび図13Dの表に示すように、透明電極層形成工程における搬送方向TDを左方向(+X方向)とすると(上述した実施形態に相当)、マスクMASKの左側の(太陽電池セルの右側の長辺部となる長辺領域RLに沿う)透明電極層20の端部の膜厚50%減退領域R2(50%)の幅W2(50%)が小さく、マスクMASKの右側の(太陽電池セルの左側の長辺部となる長辺領域RLに沿う)透明電極層20の端部の膜厚50%減退領域R1(50%)の幅W1(50%)、マスクMASKの下側の(太陽電池セルの下側の短辺部となる短辺領域RSに沿う)透明電極層20の端部の膜厚50%減退領域R4(50%)の幅W4(50%)、および、マスクMASKの上側の(太陽電池セルの上側の短辺部となる短辺領域RSに沿う)透明電極層20の端部の膜厚50%減退領域R3(50%)の幅W3(50%)が大きい。
このとき、切断線CLの右側、すなわち太陽電池セルの左側の長辺部となる長辺領域RLおよび減退領域R1(50%)の重ね合わせ領域Roを、切断線CLの左側、すなわち太陽電池セルの右側の長辺部となる長辺領域RLおよび減退領域R2(50%)の下に重ねると、太陽電池セルの左側の長辺部となる長辺領域RLに沿う減退領域R1(50%)は覆われるまた、太陽電池セルの右側の長辺部となる長辺領域RLに沿う減退領域R2(50%)の面積も15.5mmと比較的に小さい。その結果、太陽電池セルの1個における透明電極層20の総面積に対する、減退領域R1(50%),R2(50%),R3(50%),R4(50%)の総面積による面積ロスが1.0%と小さい。この場合、図13Aおよび図13Bの場合と比較して、太陽電池セルおよび太陽電池モジュールの性能が1.1%向上すると予想される。
これは、図12Aに示すように、太陽電池セルの減退領域R1(50%)の幅W1(50%)(面積)が大きい左側(長辺部)の重ね合わせ領域Roを覆う、太陽電池セルの右側(長辺部)の減退領域R2(50%)の幅W2(50%)(面積)が小さいことによる。
Next, as shown in the tables of FIGS. 13C and 13D, when the transport direction TD in the transparent electrode layer forming step is the left direction (+X direction) (corresponding to the embodiment described above), the left side of the mask MASK (solar cell The width W2 (50%) of the 50% film thickness reduction region R2 (50%) at the end of the transparent electrode layer 20 (along the long side region RL which is the long side portion on the right side of the cell) is small, and the width W2 (50%) of the right side of the mask MASK Width W1 (50%) of the 50% thickness reduction region R1 (50%) at the end of the transparent electrode layer 20 (along the long side region RL serving as the left long side of the solar cell), under the mask MASK Width W4 (50%) of a 50% film thickness reduction region R4 (50%) at the end of the transparent electrode layer 20 (along the short side region RS serving as the short side portion on the lower side of the solar cell), and , the width W3 (50% ) is large.
At this time, the overlap region Ro of the long side region RL and the decay region R1 (50%), which is the long side portion on the right side of the cutting line CL, that is, the left side of the solar cell, is the left side of the cutting line CL, that is, the solar cell When superimposed under the long side region RL and the decay region R2 (50%) that become the long side on the right side of the solar cell, the decay region R1 (50%) along the long side region RL that becomes the long side on the left side of the solar cell Also, the area of the recession region R2 (50%) along the long side region RL, which is the long side portion on the right side of the solar cell, is relatively small at 15.5 mm 2 . As a result, the area loss due to the total area of the decay regions R1 (50%), R2 (50%), R3 (50%), and R4 (50%) with respect to the total area of the transparent electrode layer 20 in one solar cell is as small as 1.0%. In this case, the performance of the solar cell and solar module is expected to improve by 1.1% compared to the case of FIGS. 13A and 13B.
This is because, as shown in FIG. 12A, the width W1 (50%) (area) of the weakened region R1 (50%) of the solar cell covers the overlapping region Ro on the left side (long side). This is because the width W2 (50%) (area) of the reduced region R2 (50%) on the right side (long side portion) of is small.

なお、図13Cと同様の搬送方向TDにて、搬送速度を60mm/minの10倍の600mm/minとしたところ、図13Dの表に示すように、同様の結果が得られた。
これにより、本検証では搬送速度を60mm/minと低速で行ったが、速度を上げても同様の傾向が得られると予想される。
When the transport speed was set to 600 mm/min, which is 10 times the speed of 60 mm/min, in the transport direction TD as in FIG. 13C, similar results were obtained as shown in the table of FIG. 13D.
As a result, although this verification was performed at a low transport speed of 60 mm/min, it is expected that the same tendency will be obtained even if the transport speed is increased.

次に、透明電極層形成工程におけるマスクのサイズについて考える。
太陽電池セル同士の接触抵抗と密着性、重ね合わせによる面積ロスとを考慮すると、重ね合わせ領域Roの幅は1.5mmとすると好ましい。これにより、図13Cおよび図13Dの表に示すように、幅W1=0.4mmの減退領域R1を全て重ね合わせるためには、切断線CLより右側のマスクの幅は1.1mm以下とすると好ましい。
一方、レーザ切断の物理的ダメージにより、切断線CLから±0.15~0.3mm未満の範囲では、パッシベーション膜が機能しなくなることから、切断線CLより左側のマスクの幅は、例えば0.3mmとすると好ましい。これは、仮に上記の範囲内に透明電極層が積層していると、機能しているパッシベーション膜と機能しないパッシベーション膜との近傍を通じて、透明電極層に移動したキャリア(正孔/電子)が、金属電極層に移動せずに、機能していないパッシベーション膜に移動し、ひいては半導体基板110にて再結合してしまうためである。
以上を勘案すると、マスクの幅を1.4mm以下とすると、減退領域R1を全て重ね合わせることができ、減退領域R1による太陽電池セルの出力の低下の抑制効果が大きい。
なお、マスクの加工限界は1.0mmである。これにより、マスクの幅は1.0mm以上1.4mm以下であると好ましい。
Next, consider the size of the mask in the step of forming the transparent electrode layer.
Considering the contact resistance and adhesion between the solar cells and the area loss due to overlapping, the width of the overlapping region Ro is preferably 1.5 mm. Accordingly, as shown in the tables of FIGS. 13C and 13D, in order to overlap all of the reduced regions R1 with a width W1=0.4 mm, the width of the mask on the right side of the cutting line CL is preferably 1.1 mm or less. .
On the other hand, due to physical damage caused by laser cutting, the passivation film does not function within a range of ±0.15 to less than 0.3 mm from the cutting line CL. 3 mm is preferable. This is because, if the transparent electrode layer is laminated within the above range, carriers (holes/electrons) that move to the transparent electrode layer through the vicinity of the passivation film that is functioning and the passivation film that is not functioning are This is because they do not migrate to the metal electrode layer, but migrate to the non-functioning passivation film, and eventually recombine in the semiconductor substrate 110 .
Considering the above, if the width of the mask is set to 1.4 mm or less, all of the attenuation regions R1 can be superimposed, and the attenuation regions R1 are highly effective in suppressing the decrease in the output of the solar cell.
Note that the processing limit of the mask is 1.0 mm. Accordingly, the width of the mask is preferably 1.0 mm or more and 1.4 mm or less.

以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更および変形が可能である。例えば、本実施形態では、図7に示すようにヘテロ接合型の太陽電池およびその製造方法を例示したが、本発明の特徴の電極形成方法は、ヘテロ接合型の太陽電池に限らず、ホモ接合型の太陽電池等の種々の太陽電池およびその製造方法に適用される。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various changes and modifications are possible. For example, in the present embodiment, a heterojunction solar cell and a method for manufacturing the same are illustrated as shown in FIG. It is applied to various solar cells such as solar cells of the type and manufacturing methods thereof.

1 太陽電池セル
2 太陽電池ストリング
3 受光側保護部材
4 裏側保護部材
5 封止材
8 導電性接着剤
10,10X 半導体積層体
20,20X,30 透明電極層
21,31 金属電極層
21f、31f フィンガー電極部
21b,31b バスバー電極部
100 太陽電池モジュール
110 半導体基板
120,130 パッシベーション層
121 第1導電型半導体層
131 第2導電型半導体層
R1,R2,R3,R4 減退領域
Ro 重ね合わせ領域
RL 長辺領域
RS 短辺領域
TD 搬送方向
REFERENCE SIGNS LIST 1 solar battery cell 2 solar battery string 3 light receiving side protective member 4 back side protective member 5 sealing material 8 conductive adhesive 10, 10X semiconductor laminate 20, 20X, 30 transparent electrode layer 21, 31 metal electrode layer 21f, 31f finger Electrode portions 21b, 31b Busbar electrode portion 100 Solar cell module 110 Semiconductor substrate 120, 130 Passivation layer 121 First conductivity type semiconductor layer 131 Second conductivity type semiconductor layer R1, R2, R3, R4 Decay region Ro Overlap region RL Long side Area RS Short side area TD Conveying direction

Claims (10)

少なくとも2個の長方形状の両面電極型の太陽電池セルをシングリング方式を用いて電気的に接続する太陽電池ストリングを、少なくとも1個含む太陽電池モジュールに用いられる、太陽電池セルの製造方法であって、
半導体積層体の両主面に透明電極層を形成する透明電極層形成工程であって、
前記両主面のうちの一方主面側に透明電極層を形成する際に、前記太陽電池セルの長辺部となる長辺領域および前記太陽電池セルの短辺部となる短辺領域の前記一方主面側にマスクを配置し、前記長辺領域に交差する方向を搬送方向として前記半導体積層体を搬送しながら、物理気相成長法により透明電極層を形成する透明電極層形成工程を含み、
前記透明電極層形成工程における搬送速度は、500mm/分以上1500mm/分以下である、
太陽電池セルの製造方法。
A method for manufacturing a solar cell used in a solar cell module including at least one solar cell string in which at least two rectangular double-sided electrode type solar cells are electrically connected using a shingling method. hand,
A transparent electrode layer forming step for forming transparent electrode layers on both main surfaces of a semiconductor laminate,
When forming the transparent electrode layer on one of the two main surfaces, the long-side region that becomes the long-side portion of the solar cell and the short-side region that becomes the short-side portion of the solar cell A transparent electrode layer forming step of forming a transparent electrode layer by a physical vapor deposition method while placing a mask on one main surface side and transporting the semiconductor laminate with the direction intersecting the long side region as the transport direction. fruit,
The conveying speed in the transparent electrode layer forming step is 500 mm/min or more and 1500 mm/min or less.
A method for manufacturing a solar cell.
少なくとも2個の長方形状の両面電極型の太陽電池セルをシングリング方式を用いて電気的に接続する太陽電池ストリングを、少なくとも1個含む太陽電池モジュールに用いられる、太陽電池セルの製造方法であって、
半導体積層体の両主面に透明電極層を形成する透明電極層形成工程であって、前記両主面のうちの一方主面側に透明電極層を形成する際に、前記太陽電池セルの長辺部となる長辺領域および前記太陽電池セルの短辺部となる短辺領域の前記一方主面側にマスクを配置し、前記長辺領域に交差する方向を搬送方向として前記半導体積層体を搬送しながら、物理気相成長法により透明電極層を形成する透明電極層形成工程を含み、
前記透明電極層形成工程における前記物理気相成長法による製膜時の圧力は、0.3Pa以上0.6Pa以下である、
太陽電池セルの製造方法。
A method for manufacturing a solar cell used in a solar cell module including at least one solar cell string in which at least two rectangular double-sided electrode type solar cells are electrically connected using a shingling method. hand,
A transparent electrode layer forming step for forming transparent electrode layers on both main surfaces of the semiconductor laminate, wherein the transparent electrode layer is formed on one main surface side of the two main surfaces, wherein the length of the solar cell is A mask is placed on the one main surface side of the long-side region that will be the side portion and the short-side region that will be the short-side portion of the solar cell, and the semiconductor laminate will be transported with the direction intersecting the long-side region as the transport direction. Including a transparent electrode layer forming step of forming a transparent electrode layer by a physical vapor deposition method while conveying,
The pressure during film formation by the physical vapor deposition method in the transparent electrode layer forming step is 0.3 Pa or more and 0.6 Pa or less.
A method for manufacturing a solar cell.
前記半導体積層体から少なくとも2個の前記太陽電池セルを得るように、前記半導体積層体を前記長辺領域において切断する切断工程を更に備える、
請求項1または2に記載の太陽電池セルの製造方法。
further comprising cutting the semiconductor laminate in the long side region so as to obtain at least two solar cells from the semiconductor laminate;
The method for manufacturing the solar battery cell according to claim 1 or 2 .
前記半導体積層体の前記一方主面側において、前記搬送方向の前側の長辺領域に沿ってバスバー電極を形成し、
前記半導体積層体の前記両主面のうちの他方主面側において、前記搬送方向の後側の長辺領域に沿ってバスバー電極を形成するバスバー電極層形成工程を更に備える、請求項1~3のいずれか1項に記載の太陽電池セルの製造方法。
forming a bus bar electrode along the long side region on the front side in the conveying direction on the one main surface side of the semiconductor laminate;
4. The step of forming a busbar electrode layer along the long side region on the rear side in the transport direction on the other main surface side of the two main surfaces of the semiconductor laminate, according to any one of claims 1 to 3 . The method for manufacturing the solar battery cell according to any one of 1 .
前記切断工程で切断される長辺領域に配置される前記マスクの前記搬送方向の幅は、1.0mm以上1.4mm以下である、請求項に記載の太陽電池セルの製造方法。 4. The method of manufacturing a solar cell according to claim 3 , wherein the width in the conveying direction of the mask arranged in the long side regions cut in the cutting step is 1.0 mm or more and 1.4 mm or less. 前記透明電極層形成工程における前記物理気相成長法による製膜時の圧力は、0.3Pa以上0.6Pa以下である、請求項に記載の太陽電池セルの製造方法。 2. The method for manufacturing a solar cell according to claim 1 , wherein the pressure during film formation by said physical vapor deposition method in said transparent electrode layer forming step is 0.3 Pa or more and 0.6 Pa or less. 少なくとも2個の長方形状の両面電極型の太陽電池セルをシングリング方式を用いて電気的に接続する太陽電池ストリングを、少なくとも1個含む太陽電池モジュールの製造方法であって、
前記太陽電池セルは半導体積層体の両主面のうちの一方主面側に透明電極層を形成する際に、前記太陽電池セルの長辺部となる長辺領域および前記太陽電池セルの短辺部となる短辺領域の前記一方主面側にマスクを配置し、前記長辺領域に交差する方向を搬送方向として前記半導体積層体を搬送しながら、物理気相成長法により透明電極層を形成する透明電極層形成工程を含む太陽電池セルの製造方法で製造され、
隣接する太陽電池セルのうちの一方の太陽電池セルの前記搬送方向の前側の長辺部の前記一方主面側の一部を、隣接する太陽電池セルのうちの他方の太陽電池セルの前記搬送方向の後側の長辺部の前記一方主面側と反対の他方主面側の一部の下に重ねて、隣接する太陽電池セル同士を接続する、太陽電池ストリング形成工程を含む、
太陽電池モジュールの製造方法。
A method for manufacturing a solar cell module including at least one solar cell string in which at least two rectangular double-sided electrode type solar cells are electrically connected using a shingling method, the method comprising:
When the transparent electrode layer is formed on one of the two main surfaces of the semiconductor laminate , the solar battery cell has a long-side region serving as a long-side portion of the solar battery cell and a short-side region of the solar battery cell. A mask is placed on the one main surface side of the short-side regions to be the side portions, and the transparent electrode layer is formed by physical vapor deposition while transporting the semiconductor laminate with the direction intersecting the long-side regions as the transport direction. Manufactured by a solar cell manufacturing method including a transparent electrode layer forming step to form,
A portion of the one main surface side of the front long side portion in the conveying direction of one of the adjacent solar cells is attached to the conveying direction of the other of the adjacent solar cells. A solar cell string forming step of connecting adjacent solar cells by overlapping under a part of the other main surface side opposite to the one main surface side of the long side portion on the rear side of the direction,
A method for manufacturing a solar cell module.
少なくとも2個の長方形状の両面電極型の太陽電池セルをシングリング方式を用いて電気的に接続する太陽電池ストリングを、少なくとも1個含む太陽電池モジュールであって、
前記太陽電池セルは半導体積層体と、前記半導体積層体の両主面に形成された透明電極層とを備え、前記両主面のうちの一方主面側において、前記太陽電池セルの長辺部のうちの他方端側の長辺部における前記透明電極層の端部の減退領域の幅は、前記太陽電池セルの長辺部のうちの一方端側の長辺部における前記透明電極層の端部の減退領域の幅よりも小さく、前記減退領域とは、前記透明電極層の端部の膜厚が透明電極層の中央部の膜厚に比べて減退する領域であり、
隣接する太陽電池セルのうちの一方の太陽電池セルの前記一方端側の長辺部の前記一方主面側の一部は、隣接する太陽電池セルのうちの他方の太陽電池セルの前記他方端側の長辺部の前記一方主面側と反対の他方主面側の一部の下に重なって接続される、
太陽電池モジュール。
A solar cell module comprising at least one solar cell string in which at least two rectangular double-sided electrode type solar cells are electrically connected using a shingling method,
The photovoltaic cell includes a semiconductor laminate and transparent electrode layers formed on both main surfaces of the semiconductor laminate. The width of the recessed region at the end of the transparent electrode layer on the long side of the other end of the portion is the width of the transparent electrode layer on the long side of the long side of the solar battery cell on the one end. is smaller than the width of the reduced region at the end, the reduced region is a region where the thickness of the end of the transparent electrode layer is reduced compared to the thickness of the central portion of the transparent electrode layer,
The part of the one main surface side of the one end side long side of one of the adjacent solar cells is the other end of the other of the adjacent solar cells. is connected under a portion of the other main surface side opposite to the one main surface side of the long side of the side,
solar module.
前記太陽電池セルは、
前記半導体積層体の前記一方端側の前記一方主面側の一部に形成されたバスバー電極と、
前記半導体積層体の前記他方端側の前記両主面のうちの他方主面側の一部に形成されたバスバー電極と、
を備える、請求項8に記載の太陽電池モジュール
The solar cell is
a busbar electrode formed on a portion of the one main surface side of the one end side of the semiconductor laminate;
a bus bar electrode formed on a portion of the other main surface of the two main surfaces on the other end side of the semiconductor laminate;
The solar cell module of claim 8, comprising:
前記太陽電池セルの前記他方端側の長辺部における前記透明電極層の端部の減退領域の減退角度は、前記太陽電池セルの前記一方端側の長辺部における前記透明電極層の端部の減退領域の減退角度よりも大きく、
前記減退角度とは、前記半導体積層体の主面に対する前記透明電極層の減退領域の表面の角度である、
請求項8または9に記載の太陽電池モジュール
The receding angle of the receding region of the end of the transparent electrode layer on the long side of the other end of the solar cell is the end of the transparent electrode layer on the long side of the one end of the solar cell. is greater than the decay angle of the decay region of
The attenuation angle is the angle of the surface of the attenuation region of the transparent electrode layer with respect to the main surface of the semiconductor laminate.
The solar cell module according to claim 8 or 9.
JP2020510967A 2018-03-30 2019-03-26 Solar cell manufacturing method, solar cell module manufacturing method, and solar cell module Active JP7270607B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018070408 2018-03-30
JP2018070408 2018-03-30
PCT/JP2019/013022 WO2019189267A1 (en) 2018-03-30 2019-03-26 Method for manufacturing solar battery cell, method for manufacturing solar battery module, and solar battery module

Publications (2)

Publication Number Publication Date
JPWO2019189267A1 JPWO2019189267A1 (en) 2021-04-22
JP7270607B2 true JP7270607B2 (en) 2023-05-10

Family

ID=68060085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510967A Active JP7270607B2 (en) 2018-03-30 2019-03-26 Solar cell manufacturing method, solar cell module manufacturing method, and solar cell module

Country Status (3)

Country Link
JP (1) JP7270607B2 (en)
TW (1) TW201943095A (en)
WO (1) WO2019189267A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022210886A1 (en) * 2021-03-31 2022-10-06

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047101A1 (en) 2008-10-21 2010-04-29 株式会社アルバック Mask and method for forming film using mask
JP2012195461A (en) 2011-03-16 2012-10-11 Nitto Denko Corp Method and device for manufacturing solar battery cell and method of manufacturing solar battery module
JP2014175441A (en) 2013-03-08 2014-09-22 Kaneka Corp Crystal silicon-based solar battery, and method for manufacturing the same
JP2015198142A (en) 2014-03-31 2015-11-09 株式会社カネカ Crystal silicon solar battery, manufacturing method for the same and solar battery module
US20160158890A1 (en) 2014-12-05 2016-06-09 Solarcity Corporation Systems and methods for scribing photovoltaic structures
JP2017017047A (en) 2015-06-26 2017-01-19 住友金属鉱山株式会社 Oxide transparent conductive film laminate, photoelectric conversion element, and method for manufacturing photoelectric conversion element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047101A1 (en) 2008-10-21 2010-04-29 株式会社アルバック Mask and method for forming film using mask
JP2012195461A (en) 2011-03-16 2012-10-11 Nitto Denko Corp Method and device for manufacturing solar battery cell and method of manufacturing solar battery module
JP2014175441A (en) 2013-03-08 2014-09-22 Kaneka Corp Crystal silicon-based solar battery, and method for manufacturing the same
JP2015198142A (en) 2014-03-31 2015-11-09 株式会社カネカ Crystal silicon solar battery, manufacturing method for the same and solar battery module
US20160158890A1 (en) 2014-12-05 2016-06-09 Solarcity Corporation Systems and methods for scribing photovoltaic structures
JP2017017047A (en) 2015-06-26 2017-01-19 住友金属鉱山株式会社 Oxide transparent conductive film laminate, photoelectric conversion element, and method for manufacturing photoelectric conversion element

Also Published As

Publication number Publication date
JPWO2019189267A1 (en) 2021-04-22
WO2019189267A1 (en) 2019-10-03
TW201943095A (en) 2019-11-01

Similar Documents

Publication Publication Date Title
JP6586080B2 (en) Solar cell module and manufacturing method thereof
WO2019146366A1 (en) Solar battery module
WO2017154384A1 (en) Solar cell module
JP6592447B2 (en) SOLAR CELL AND SOLAR CELL MODULE, AND SOLAR CELL AND SOLAR CELL MODULE MANUFACTURING METHOD
WO2020054129A1 (en) Solar cell device and solar cell module
WO2012105146A1 (en) Photoelectric converter and photoelectric conversion module
WO2020184301A1 (en) Solar battery device, solar battery module, and production method for solar battery device
JP7270607B2 (en) Solar cell manufacturing method, solar cell module manufacturing method, and solar cell module
US11404593B2 (en) Double-sided electrode type solar cell and solar cell module
JP7270631B2 (en) solar module
WO2020121694A1 (en) Solar cell device and solar cell module
JP7353272B2 (en) Solar cell device and method for manufacturing solar cell device
WO2020059204A1 (en) Solar battery cell, solar battery device, and solar battery module
JP2015119008A (en) Solar battery module and method for manufacturing the same
US20200350450A1 (en) Connection member set for solar battery cell, and solar cell string and solar cell module using same
WO2022186274A1 (en) Crystalline silicon solar battery cell, solar battery device, and solar battery module
WO2023127382A1 (en) Solar cell device and solar cell module
WO2023037885A1 (en) Solar battery device and solar battery module
JPH11298020A (en) Thin-film solar cell module
WO2023181733A1 (en) Stack-type solar cell string, solar cell module, and method for manufacturing solar cell module
JP2022134495A (en) Crystalline silicon solar battery cell, solar battery device, and solar battery module
WO2022030471A1 (en) Solar cell and solar cell manufacturing method
JP2013030629A (en) Solar cell module
WO2013046338A1 (en) Solar cell and solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230425

R150 Certificate of patent or registration of utility model

Ref document number: 7270607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150