WO2023228950A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2023228950A1
WO2023228950A1 PCT/JP2023/019200 JP2023019200W WO2023228950A1 WO 2023228950 A1 WO2023228950 A1 WO 2023228950A1 JP 2023019200 W JP2023019200 W JP 2023019200W WO 2023228950 A1 WO2023228950 A1 WO 2023228950A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
protective layer
filler
support member
edge
Prior art date
Application number
PCT/JP2023/019200
Other languages
French (fr)
Japanese (ja)
Inventor
良太 手島
佑太 西尾
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023228950A1 publication Critical patent/WO2023228950A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion

Definitions

  • the present disclosure relates to a solar cell module.
  • a solar cell module in which a plurality of solar cell elements arranged in a plane and electrically connected are located between a front protective layer and a back protective layer (see, for example, the description in Patent Document 1). ).
  • a plurality of solar cell elements are covered with a filler whose main component is ethylene vinyl acetate copolymer (EVA).
  • EVA ethylene vinyl acetate copolymer
  • a solar cell module is disclosed.
  • the solar cell module includes a first protective layer, a solar cell section, one or more support members, and a filler.
  • the first protective layer has a first surface and a second surface opposite to the first surface.
  • the solar cell section is located facing the second surface of the first protective layer.
  • the one or more support members are positioned adjacent to the solar cell section.
  • the support member includes an inner portion and an outer portion.
  • the inner portion is located opposite the second surface of the first protective layer.
  • the outer portion extends from the inner portion to the outside of the first protective layer.
  • the filler material is located in contact with the second surface of the first protective layer.
  • the filler is positioned to cover the solar cell section.
  • the filler is located between the second surface of the first protective layer and the support member so as to protrude to the outside of the first protective layer in plan view.
  • FIG. 1 is a plan view showing an example of the external appearance of the solar cell module according to the first embodiment when viewed from above.
  • FIG. 2 is a diagram illustrating an example of a virtual cross section of the solar cell module in FIG. 1 taken along line II-II.
  • FIG. 3A is a diagram illustrating an example of the structure of the solar cell element when viewed from above on the first element surface.
  • FIG. 3(b) is a diagram illustrating an example of the structure when the second element surface of the solar cell element is viewed from above.
  • FIGS. 4A to 4C are diagrams each illustrating a state of a cross section during manufacture in the method for manufacturing a solar cell module according to the first embodiment.
  • FIG. 1 is a plan view showing an example of the external appearance of the solar cell module according to the first embodiment when viewed from above.
  • FIG. 2 is a diagram illustrating an example of a virtual cross section of the solar cell module in FIG. 1 taken along line II-II.
  • FIG. 3A is
  • FIG. 5 is a diagram illustrating a bent state of the solar cell module according to the first embodiment.
  • FIG. 6 is a diagram showing an example of a virtual cut surface of the solar cell module according to the second embodiment.
  • FIGS. 7A and 7B are diagrams each illustrating a cross-sectional state during manufacturing in the method for manufacturing a solar cell module according to the second embodiment.
  • FIG. 8 is a diagram illustrating an example of the external appearance of the solar cell module according to the third embodiment when viewed from above.
  • FIG. 9 is a diagram illustrating an example of the external appearance of the solar cell module according to the fourth embodiment when viewed from above.
  • FIG. 10A is a plan view showing an example of the external appearance of the solar cell module according to the fifth embodiment when viewed from above.
  • FIG. 10(b) is a diagram showing an example of a virtual cut surface of the solar cell module of FIG. 10(a) along the line Xb-Xb.
  • FIG. 11A is a plan view showing an example of the external appearance of the solar cell module according to the sixth embodiment when viewed from above.
  • FIG. 11(b) is a diagram showing an example of a virtual cut surface of the solar cell module of FIG. 11(a) along the line XIb-XIb.
  • FIG. 12A is a diagram illustrating an example of the structure of the solar cell section according to the sixth embodiment when viewed from above.
  • FIG. 12(b) is a diagram showing an example of a hypothetical cut plane along the line XIIb-XIIb of the solar cell portion of FIG. 12(a).
  • the inventor has created a technology that reduces the possibility that a protective layer will peel off from a filler in a solar cell module. Regarding this, the first to sixth embodiments will be described below based on the drawings.
  • FIGS. 1 to 12(b) A right-handed XYZ coordinate system is attached to FIGS. 1 to 12(b).
  • the short direction of the front surface 10f of the solar panel 10 is the +X direction
  • the longitudinal direction of the front surface 10f is the +Y direction
  • the normal to the front surface 10f is orthogonal to both the +X direction and the +Y direction.
  • the direction is the +Z direction.
  • the solar cell module 100 includes, for example, a solar cell panel 10.
  • the solar cell panel 10 has, for example, a light-receiving surface (also referred to as a front surface) 10f through which light mainly enters, and a back surface 10b located on the opposite side of the front surface 10f.
  • the front surface 10f is in a state facing the +Z direction.
  • the back surface 10b is in a state facing the -Z direction.
  • the +Z direction is set, for example, in a direction facing the sun, which is in the south.
  • the front surface 10f has a rectangular shape, which is an example of a rectangular shape.
  • the solar cell module 100 may further include a terminal box (not shown) for extracting the power generated by the solar cell panel 10 to the outside.
  • the solar cell panel 10 includes, for example, a first protective layer 1, a second protective layer 2, a solar cell part 3, a filler 4, and a support member 5.
  • a first protective layer 1 As shown in FIGS. 1 and 2, the solar cell panel 10 includes, for example, a first protective layer 1, a second protective layer 2, a solar cell part 3, a filler 4, and a support member 5.
  • a second protective layer 2 As shown in FIGS. 1 and 2, the solar cell panel 10 includes, for example, a first protective layer 1, a second protective layer 2, a solar cell part 3, a filler 4, and a support member 5.
  • a support member 5 we are prepared.
  • the first protective layer 1 has, for example, a first surface 1f and a second surface 1s (see FIG. 2).
  • the first surface 1f constitutes, for example, the front surface 10f of the solar cell panel 10. That is, the first protective layer 1 has a rectangular shape, which is an example of a rectangular shape.
  • the first protective layer 1 has edges 1a to 1d.
  • the edge 1a to edge 1d correspond to each side of the rectangular shape of the first protective layer 1, respectively.
  • the edge 1a and the edge 1b are located on both sides of the first protective layer 1 in the X direction, respectively.
  • the edge 1a and the edge 1b extend, for example, along the +Y direction and are substantially parallel to each other.
  • the edge 1c and the edge 1d are located on both sides of the first protective layer 1 in the Y direction, respectively.
  • the end edge 1c extends, for example, along the +X direction, and connects the end of the end edge 1a in the +Y direction and the end of the end edge 1b in the +Y direction.
  • the end edge 1d extends, for example, along the +X direction, and connects the end of the end edge 1a in the ⁇ Y direction and the end of the end edge 1b in the ⁇ Y direction.
  • the edge 1c and the edge 1d are, for example, substantially parallel to each other.
  • the first surface 1f is exposed to a space (also referred to as external space) 200 outside the solar cell module 100.
  • the second surface 1s is a surface opposite to the first surface 1f.
  • the first protective layer 1 has, for example, light-transmitting properties. Specifically, the first protective layer 1 has, for example, transparency to light having a wavelength in a specific range.
  • the specific range of wavelengths includes, for example, the wavelength of light that can be photoelectrically converted by the solar cell unit 3. If the wavelengths in the specific range include wavelengths of sunlight with high irradiation intensity, the photoelectric conversion efficiency of the solar cell module 100 can be improved.
  • the first protective layer 1 As the material of the first protective layer 1, for example, a resin having weather resistance is applied.
  • the first protective layer 1 is made of, for example, a weather-resistant resin.
  • weather resistance refers to a property that does not easily cause alterations such as deformation, discoloration, and deterioration when used outdoors, for example.
  • the first protective layer 1 has, for example, moisture-permeable and waterproof properties. Therefore, the first protective layer 1 can reduce the intrusion of water such as water droplets from the external space 200 of the solar cell module 100 toward the solar cell section 3, and can reduce the amount of moisture that enters the external space 200 from the filler 4. can be passed.
  • the weather-resistant resin includes, for example, a fluorine-based resin.
  • Fluorine-based resins include, for example, fluorinated ethylene propylene copolymer (FEP), ethylene tetrafluoroethylene copolymer (ETFE), and ethylene chlorotrifluoroethylene copolymer (Ethylene Chlorotrifluoroethylene). :ECTFE) etc.
  • the first protective layer 1 may be composed of two or more layers of resin having weather resistance.
  • the fluorine-based resin applied to the first protective layer 1 may be, for example, two or more types of resin. For this reason, for example, a mode is conceivable in which the fluororesin applied to the first protective layer 1 includes at least one resin among FEP, ETFE, and ECTFE.
  • the thickness of the first protective layer 1 is, for example, about 0.05 millimeter (mm) to 0.5 mm.
  • the first protective layer 1 is made of a moisture-permeable and waterproof resin with a relatively low density, and is thin, so the first protective layer 1 is light. Therefore, the weight of the solar cell module 100 can be reduced compared to, for example, a structure in which high-density glass having a thickness of about 1 mm or more is used instead of the first protective layer 1. 100 can be made into a thin film.
  • the material for the first protective layer 1 resins such as acrylic resin and polycarbonate can be used instead of or together with the fluorine resin.
  • the thickness of the resin is, for example, about 0.03 mm to 0.6 mm.
  • the first protective layer 1 may be formed by laminating multiple types of resins.
  • the solar cell section 3 is located, for example, between the first protective layer 1 and the second protective layer 2. In other words, the solar cell section 3 is in a state facing the first protective layer 1 in the Z direction, and is also in a state facing the second protective layer 2 in the Z direction.
  • the solar cell section 3 includes, for example, a plurality of solar cell elements 31.
  • the plurality of solar cell elements 31 are located between the second surface 1s of the first protective layer 1 and the second protective layer 2.
  • the plurality of solar cell elements 31 are two-dimensionally arranged.
  • the plurality of solar cell elements 31 are arranged in a plane along the second surface 1s of the first protective layer 1. Note that the plurality of solar cell elements 31 may be arranged one-dimensionally.
  • the solar cell section 3 further includes, for example, a plurality of first wiring members 32, a second wiring member 33, and a third wiring member 34.
  • the solar cell section 3 includes, for example, a plurality of (here, two) solar cell strings 30.
  • the plurality of solar cell strings 30 are arranged in the X direction.
  • Each of the plurality of solar cell strings 30 includes, for example, a plurality of (here, six) solar cell elements 31 and a plurality of first wiring members 32.
  • the plurality of solar cell elements 31 are arranged in the Y direction, for example.
  • the plurality of first wiring members 32 are in a state of electrically connecting two mutually adjacent solar cell elements 31 among the plurality of solar cell elements 31.
  • the second wiring member 33 is in a state of electrically connecting two mutually adjacent solar cell strings 30.
  • the two third wiring members 34 are connected to two solar cell strings 30, respectively, and are drawn out to the outside of the solar cell panel 10.
  • Each of the plurality of solar cell elements 31 can convert light energy into electrical energy.
  • Each of the plurality of solar cell elements 31 has a first element surface 31f and a second element surface 31s.
  • the first element surface 31f is a surface of the solar cell element 31 located on the front surface side.
  • the second element surface 31s is a surface of the solar cell element 31 opposite to the first element surface 31f.
  • the first element surface 31f is in a state facing the +Z direction
  • the second element surface 31s is in a state facing the -Z direction.
  • the first element surface 31f primarily serves as a surface onto which light is incident (also referred to as a light-receiving surface), and the second element surface 31s primarily serves as a surface onto which light does not enter (also referred to as a non-light-receiving surface). ).
  • each of the plurality of solar cell elements 31 includes a semiconductor substrate 310, a first extraction electrode 311, and a first current collecting electrode. 312, a second extraction electrode 313, and a second current collection electrode 314.
  • a crystalline semiconductor, an amorphous semiconductor, or a compound semiconductor is applied to the semiconductor substrate 310.
  • the crystalline semiconductor includes, for example, crystalline silicon.
  • Amorphous semiconductors include, for example, amorphous silicon.
  • the compound semiconductor for example, a semiconductor using four types of elements, copper, indium, gallium, and selenium, or a semiconductor using two types of elements, cadmium and tellurium, is applied.
  • the semiconductor substrate 310 mainly includes a region having a first conductivity type (also referred to as a first conductivity type region) and a region having a second conductivity type opposite to the first conductivity type (a second conductivity type region).
  • the first conductivity type region is located, for example, on the second element surface 31s side of the semiconductor substrate 310 in the ⁇ Z direction.
  • the second conductivity type region is located, for example, in the surface layer portion of the semiconductor substrate 310 on the first element surface 31f side in the +Z direction.
  • the semiconductor substrate 310 has a pn junction located at the interface between the first conductivity type region and the second conductivity type region.
  • the thickness of the semiconductor substrate 310 is, for example, approximately 0.15 mm to 0.5 mm.
  • the first extraction electrode 311 and the first current collecting electrode 312 are located, for example, on the surface of the semiconductor substrate 310 on the first element surface 31f side.
  • a bus bar electrode is applied to the first extraction electrode 311.
  • a finger electrode is applied to the first current collecting electrode 312.
  • five substantially parallel first extraction electrodes 311 are located on the first element surface 31f side of the semiconductor substrate 310, and a large number of substantially parallel first current collecting electrodes 312 are located on the first element surface 31f side of the semiconductor substrate 310. It is located substantially perpendicular to the five first extraction electrodes 311 .
  • FIG. 3A five substantially parallel first extraction electrodes 311 are located on the first element surface 31f side of the semiconductor substrate 310, and a large number of substantially parallel first current collecting electrodes 312 are located on the first element surface 31f side of the semiconductor substrate 310. It is located substantially perpendicular to the five first extraction electrodes 311 .
  • FIG. 3A five substantially parallel first extraction electrodes 311 are located on the first element surface
  • each of the first extraction electrodes 311 has a long shape in the Y direction, and each of the first current collecting electrodes 312 has a long linear shape in the X direction. have.
  • an antireflection film 315 may be located on a region of the second conductivity type region of the semiconductor substrate 310 where the first extraction electrode 311 and the first current collection electrode 312 are not formed.
  • the antireflection film 315 includes an insulating film made of silicon nitride or the like.
  • the main component of the first extraction electrode 311 is, for example, silver.
  • the term "main component" refers to a component that has the largest (highest) ratio (also referred to as content) among the contained components.
  • the first extraction electrode 311 can be formed by applying silver paste into a desired shape by screen printing or the like and then firing it.
  • a metal paste containing a metal powder containing silver as a main component, an organic vehicle, and a glass frit is applied to the silver paste.
  • the main component of the first current collecting electrode 312 is also silver, for example.
  • the first current collecting electrode 312 can be formed by applying silver paste into a desired shape by screen printing or the like and then firing it.
  • the first extraction electrode 311 and the first current collecting electrode 312 may be formed in separate steps or in the same step, for example.
  • the second extraction electrode 313 and the second current collection electrode 314 are located, for example, on the surface of the semiconductor substrate 310 on the second element surface 31s side.
  • a busbar electrode is applied to the second extraction electrode 313.
  • the second extraction electrodes 313 are arranged in a matrix of 4 rows and 5 columns on the second element surface 31s side of the semiconductor substrate 310.
  • Each of the second extraction electrodes 313 has an elongated shape that is long in the Y direction.
  • the second current collecting electrode 314 is located on the second element surface 31s side of the semiconductor substrate 310 over substantially the entire area where the second extraction electrode 313 is not formed. In plan view, the peripheral edge of each second extraction electrode 313 may overlap with the second current collecting electrode 314.
  • a passivation film may be present in a desired pattern between the first conductivity type region of the semiconductor substrate 310 and the pair of the second extraction electrode 313 and the second current collection electrode 314.
  • the passivation film is, for example, a thin film of oxide or nitride such as aluminum oxide.
  • the main component of the second extraction electrode 313 is, for example, silver.
  • the second extraction electrode 313 can be formed by applying silver paste into a desired shape by screen printing or the like and then firing it.
  • the main component of the second current collecting electrode 314 is, for example, aluminum.
  • the second current collecting electrode 314 can be formed by applying aluminum paste into a desired shape by screen printing or the like and then firing it.
  • a metal paste containing a metal powder containing aluminum as a main component, an organic vehicle, and a glass frit is applied to the aluminum paste.
  • the first wiring material 32 connects, for example, the first lead-out electrode 311 of one solar cell element 31 and the second lead-out electrode 313 of another solar cell element 31 adjacent to this one solar cell element 31 with electricity. is in a state where it is connected.
  • the outer edges of the plurality of first wiring members 32 are virtually drawn with two-dot chain lines.
  • each first wiring member 32 has an elongated shape that is long in the Y direction.
  • the first wiring material 32 is in a state of being joined to the first extraction electrode 311 and the second extraction electrode 313, for example.
  • a first joint portion 321 exists between the first wiring material 32 and the first extraction electrode 311.
  • the first joint portion 321 is a portion where the first wiring material 32 and the first extraction electrode 311 are joined. Each first wiring member 32 is in a state of being joined to the first lead-out electrode 311 of one solar cell element 31 via a first joint portion 321. Further, for example, a second joint portion 322 exists between the first wiring material 32 and the second extraction electrode 313. The second joint portion 322 is a portion where the first wiring material 32 and the second extraction electrode 313 are joined. Each first wiring member 32 is in a state of being joined to the second extraction electrode 313 of another solar cell element 31 adjacent to one solar cell element 31 via a second joint portion 322 . As the first wiring material 32, for example, a linear or band-shaped electrically conductive metal body is applied.
  • a low melting point alloy such as solder or a low melting point single metal is applied. More specifically, for example, a copper foil having a thickness of about 0.1 mm to 0.2 mm and a width of about 1 mm to 2 mm is applied to the first wiring material 32, and solder is applied to the entire surface of the first wiring material 32. is covered.
  • the first wiring material 32 is in a state of being electrically connected to the first extraction electrode 311 and the second extraction electrode 313, for example, by soldering.
  • the solder located between the first wiring material 32 and the first extraction electrode 311 constitutes the first joint portion 321.
  • the solder located between the first wiring material 32 and the second extraction electrode 313 constitutes the second joint portion 322 .
  • the filler 4 is in a state covering the solar cell part 3 between the first protective layer 1 and the second protective layer 2. In other words, the filler 4 is in a state covering the plurality of solar cell elements 31 between the first protective layer 1 and the second protective layer 2. From another point of view, the filler 4 is filled in, for example, a region (also referred to as a gap region) 10g between the first protective layer 1 and the second protective layer 2 while covering the solar cell part 3. in a state.
  • a region also referred to as a gap region
  • the filler 4 has a first surface 4f located on the front surface, and a second surface 4s located on the opposite side to the first surface 4f.
  • the first surface 4f of the filler 4 is in contact with the second surface 1s of the first protective layer 1, and the second surface 4s of the filler 4 is in contact with the second protective layer 2.
  • the filler 4 includes a first filler 41 and a second filler 42.
  • the first filler 41 is located on the front surface 10f side with respect to the second filler 42, for example.
  • the second filler 42 is located on the back surface 10b side with respect to the first filler 41.
  • the first filler 41 is in a state of forming, for example, the first surface 4f, and is in a state of covering the entire surface of the solar cell section 3 on the first protective layer 1 side. In other words, the first filler 41 is in a state covering the plurality of solar cell elements 31, for example, between the first protective layer 1 and the plurality of solar cell elements 31.
  • the second filler 42 is in a state of forming, for example, the second surface 4s, and is in a state of covering the entire surface of the solar cell section 3 on the second protective layer 2 side.
  • the second filler 42 is in a state of covering the plurality of solar cell elements 31, for example, between the second protective layer 2 and the plurality of solar cell elements 31. Therefore, in the first embodiment, the solar cell section 3 is in a state of being sandwiched and surrounded by the first filler 41 and the second filler 42, for example. Thereby, for example, the attitude of the solar cell section 3 can be maintained by the filler 4.
  • the filler 4 has, for example, translucency.
  • the filler 4 has, for example, translucency to light having a wavelength in the above-mentioned specific range.
  • the incident light from the front surface 10f side can reach up to the solar cell section 3.
  • the material for the first filler 41 for example, ethylene vinyl acetate copolymer (EVA), polyvinyl acetal such as polyvinyl butyral (PVB), acid-modified resin, etc. are used.
  • EVA ethylene vinyl acetate copolymer
  • PVB polyvinyl acetal
  • acid-modified resin etc.
  • the acid-modified resin includes, for example, a modified polyolefin resin that can be formed by graft modification of a resin such as polyolefin with an acid.
  • acids that can be used for graft modification of acid-modified resins include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, maleic anhydride, hymic anhydride, itaconic anhydride, and citraconic anhydride.
  • Ru As the material for the second filler 42, for example, like the first filler 41, polyvinyl acetal such as EVA and PVB, acid-modified resin, etc. are used.
  • the first filler 41 and the second filler 42 may be made of two or more types of materials, for example.
  • the second filler 42 may contain, for example, a pigment.
  • a white pigment included, the light transmitted through the solar cell section 3 can be reflected by the second filler 42 and made to enter the solar cell section 3 again. Thereby, the power generation efficiency of the solar cell module 100 can be improved.
  • the filler 4 may not include the second filler 42 and may include only the first filler 41.
  • the first filler 41 covers the solar cell section 3 between the first protective layer 1 and the second protective layer 2.
  • the second protective layer 2 is in a state of forming the back surface 10b of the solar cell panel 10, for example.
  • the second protective layer 2 is, for example, in a state facing the second surface 1s of the first protective layer 1.
  • the second protective layer 2 is in contact with the filler 4 on the side opposite to the first protective layer 1 with respect to the filler 4 .
  • the second protective layer 2 is located, for example, facing the solar cell section 3 and the inner portion 51 of the support member 5 in the Z direction.
  • the inner portion 51 is a portion of the support member 5 on the solar cell section 3 side with respect to the outer portion 52 in the X direction.
  • the second protective layer 2 can, for example, protect the solar cell section 3 from the back surface 10b side.
  • a back sheet forming the back surface 10b is applied to the second protective layer 2.
  • the thickness of the back sheet is, for example, about 0.15 mm to 0.5 mm.
  • resin is used as the material for the back sheet.
  • the same material as the first protective layer 1 can be applied to the resin.
  • the second protective layer 2 has the same or similar shape to the first protective layer 1 when viewed in plan from the back surface 10b side. For example, a configuration is assumed in which both the first protective layer 1 and the second protective layer 2 have a rectangular outer shape when viewed from the rear surface 10b side. As shown in FIGS. 1 and 2, the second protective layer 2 has edges 2a to 2d.
  • the edge 2a to edge 2d correspond to each side of the rectangular shape of the second protective layer 2, respectively.
  • the edge 2a and the edge 2b are located on both sides of the second protective layer 2 in the X direction, respectively.
  • the edge 2a and the edge 2b extend, for example, along the +Y direction and are substantially parallel to each other.
  • the edge 2c and the edge 2d are located on both sides of the second protective layer 2 in the Y direction, respectively.
  • the edge 2c extends, for example, along the +X direction, and connects the edge 2a in the +Y direction and the edge 2b in the +Y direction.
  • the end edge 2d extends, for example, along the +X direction, and connects the end of the end edge 2a in the ⁇ Y direction and the end of the end edge 2b in the ⁇ Y direction.
  • the edge 2c and the edge 2d are, for example, substantially parallel to each other.
  • the support member 5 is a member for improving the rigidity of the solar cell panel 10, and has higher rigidity than all of the first protective layer 1, second protective layer 2, and filler 4, for example.
  • metal can be used as the material of the support member 5, and as a more specific example, aluminum or stainless steel can be used.
  • the support member 5 When viewed from above toward the main surface of the surface protection layer 1, the support member 5 is located adjacent to the solar cell section 3 with an interval therebetween. In other words, the support member 5 is located adjacent to the solar cell section 3 with an interval when viewed with the line of sight along the Z direction.
  • viewing with the line of sight along the Z direction will also simply be referred to as planar viewing.
  • the support member 5 includes an inner portion 51 and an outer portion 52.
  • the inner portion 51 faces the first protective layer 1 in the Z direction, and also faces the second protective layer 2 in the Z direction.
  • the outer portion 52 extends from the inner portion 51 to the side opposite to the solar cell section 3 (that is, to the outside). In the example of FIGS. 1 and 2, the outer portion 52 extends from the inner portion 51 to the outside of the first protective layer 1 and the second protective layer 2 in plan view. That is, the outer portion 52 is not facing the first protective layer 1 in the Z direction, nor is it facing the second protective layer 2 in the Z direction.
  • the inner portion 51 of the support member 5 is located on the solar cell section 3 side (that is, inside) with respect to the outer portion 52 of the support member 5 in plan view.
  • the support member 5 has a plate-like shape, and has a rectangular shape in plan view.
  • the ZX cross section of the support member 5 also has a rectangular shape.
  • the corners of the support member 5 may be chamfered as appropriate.
  • the longitudinal direction (here, the Y direction) of the support member 5 is, for example, along the edge 1a, which is one side of the first protective layer 1. Further, the longitudinal direction of the support member 5 is, for example, along the arrangement direction (here, the Y direction) of the plurality of solar cell elements 31 included in one solar cell string 30. That is, the longitudinal direction of the support member 5 is along, for example, the longitudinal direction of the first wiring member 32 (here, the Y direction).
  • the solar panel 10 includes two support members 5.
  • the two support members 5 are located along the edge 1a and the edge 1b of the first protective layer 1, respectively. That is, one support member 5 is located at the edge 1a of the first protective layer 1, and the other support member 5 is located at the edge 1b of the first protective layer 1.
  • Each support member 5 has a rectangular shape whose longitudinal direction is the Y direction.
  • one support member 5 is also called support member 5A
  • the other support member 5 is also called support member 5B.
  • the edge 1a is the edge of the first protective layer 1 on the support member 5A side
  • the edge 1b is the edge of the first protective layer 1 on the support member 5B side. I can say that.
  • the edge 2a is the edge of the second protective layer 2 on the support member 5A side
  • the edge 2b is the edge of the second protective layer 2 on the support member 5B side.
  • the filler 4 is also located between the first protective layer 1 and the support member 5A. That is, the filler 4 is in a state filled between the first protective layer 1 and the support member 5A. Further, the filler 4 is also located between the first protective layer 1 and the support member 5B. That is, the filler 4 is in a state filled between the first protective layer 1 and the support member 5B. Therefore, the support member 5A and the support member 5B are adhesively fixed to the first protective layer 1 via the filler 4.
  • the length of each support member 5 in the longitudinal direction is, for example, approximately equal to the length of the first protective layer 1.
  • each support member 5 in the transverse direction is set to, for example, several tens of mm or more.
  • the width of the inner portion 51 of each support member 5 is set, for example, to approximately 20% or more and 80% or less of the width of each support member 5.
  • each support member 5 can be integrated with the filler 4 with relatively high adhesive strength.
  • the thickness of each support member 5 is larger than the thickness of the solar cell section 3, and is set to about 1 mm to 5 mm, for example.
  • the filler 4 protrudes from between the first protective layer 1 and the inner portion 51 of the support member 5A to the outside of the first protective layer 1 in plan view.
  • the filler 4 extends from the edge 1a of the first protective layer 1 to the side opposite to the inner portion 51 of the support member 5A in plan view.
  • at least a part of the edge 41a of the filler 4 on the first protective layer 1 side and on the outer portion 52 side of the support member 5A is located on the outside with respect to the edge 1a of the first protective layer 1 in plan view. It is located in As shown in FIG. 1, the filler 4 may protrude outward from the edge 1a over the entire area of the edge 1a of the first protective layer 1.
  • the entire area of the edge 41a of the filler 4 may be located on the outside with respect to the edge 1a of the first protective layer 1.
  • a portion of the filler 4 located outside the edge 1a of the first protective layer 1 is in contact with the outside portion 52 of the support member 5A. That is, this portion is in a state of being adhered to the outer portion 52 of the support member 5A.
  • the width in the X direction of the portion of the filler 4 located outside the edge 1a of the first protective layer 1 may be, for example, 0.1 mm or more, or 0.2 mm or more, It may be 0.5 mm or more, 1 mm or more, or 2 mm or more.
  • the filler 4 protrudes from between the first protective layer 1 and the inner portion 51 of the support member 5B to the outside of the first protective layer 1 in plan view. You can. In other words, the filler 4 may extend from the edge 1b of the first protective layer 1 to the side opposite to the inner portion 51 of the support member 5B in plan view. In other words, at least a part of the edge 41b of the filler 4 on the first protective layer 1 side and on the outer portion 52 side of the support member 5B is located on the outside with respect to the edge 1b of the first protective layer 1 in plan view. It may be located in As shown in FIG. 1, the filler 4 may protrude outward from the edge 1b over the entire area of the edge 1b of the first protective layer 1.
  • the entire area of the edge 41b of the filler 4 in the Y direction may be located outside of the edge 1b of the first protective layer 1.
  • a portion of the filler 4 located outside the edge 1b of the first protective layer 1 is in contact with the outside portion 52 of the support member 5B. That is, this portion is in a state of being adhered to the outer portion 52 of the support member 5B.
  • the width in the X direction of the portion of the filler 4 located outside the edge 1b of the first protective layer 1 may be, for example, 0.1 mm or more, or 0.2 mm or more, It may be 0.5 mm or more, 1 mm or more, or 2 mm or more.
  • the filler 4 is also located between the second protective layer 2 and the support member 5A. That is, the filler 4 is in a state filled between the second protective layer 2 and the support member 5A. Further, the filler 4 is also located between the second protective layer 2 and the support member 5B, and is in a state filled between the second protective layer 2 and the support member 5. Therefore, the support member 5A and the support member 5B are also adhesively fixed to the second protective layer 2 via the filler 4.
  • the filler 4 is in a state of protruding from between the second protective layer 2 and the inner portion 51 of the support member 5A to the outside of the second protective layer 2 in plan view, and
  • the second protective layer 2 protrudes from between the inner portion 51 of the support member 5B and the inner portion 51 of the support member 5B in a plan view.
  • the filler 4 extends from the edge 2a of the second protective layer 2 to the side opposite to the inner portion 51 of the support member 5A, and from the edge 2b of the second protective layer 2 in a plan view. It extends in the opposite direction from the inner portion 51 of the support member 5B.
  • edge 42a of the filler 4 on the second protective layer 2 side and on the outer portion 52 side of the support member 5A is located on the outside with respect to the edge 2a of the second protective layer 2 in plan view.
  • At least a part of the edge 42b of the filler 4 on the second protective layer 2 side and on the outer portion 52 side of the support member 5B is located at a distance from the edge 2b of the second protective layer 2 in plan view. It is located on the outside.
  • the filler 4 may protrude outward in the entire area of each of the edge 2a and the edge 2b of the second protective layer 2.
  • the entire area of the edge 42a of the filler 4 in the Y direction may be located outside of the edge 2a of the second protective layer 2, and the entire area of the edge 42b of the filler 4 in the Y direction may be located outside of the edge 2a of the second protective layer 2.
  • the region may be located outside with respect to the edge 2b of the second protective layer 2.
  • a portion of the filler 4 located outside the second protective layer 2 is in contact with an outside portion 52 of the support member 5 . That is, this part is in a state of being adhered to the outer part 52 of the support member 5.
  • the width in the X direction of the portion of the filler 4 located outside the second protective layer 2 may be, for example, 0.1 mm or more, 0.2 mm or more, or 0.5 mm or more. It may be 1 mm or more, or it may be 2 mm or more.
  • each support member 5 is attached to an attachment target member such as an external building material.
  • outer portion 52 may be formed with mounting holes (not shown).
  • the attachment hole penetrates the outer portion 52 in the Z direction in a region outside the filler 4.
  • the solar cell panel 10 can be attached to the attachment target member by passing the mounting bolts through the attachment holes and attaching the solar cell panel 10 to the attachment target member.
  • the two support members 5 are located on both sides of the solar panel 10, so it is possible to fix the two support members 5 on both sides of the solar panel 10 to the attachment target member. can. Therefore, the solar cell panel 10 can be more firmly attached to the attachment target member.
  • the support member 5 is a mounting member.
  • the support members 5, which are rigid bodies, are not mainly located on both sides of the solar cell panel 10 in the Y direction. That is, the supporting member 5 is an end of the solar cell panel 10 in the +Y direction and extending along the +X direction, and an end in the -Y direction and extending along the +X direction. There is no substantial location in the area. Therefore, as shown in FIG. 5, by applying the external force F1 to the support member 5, the solar cell panel 10 can be bent in an arc shape when viewed in the direction along the Y direction. For example, the solar cell panel 10 can be bent to a state along an arc with a radius of about several hundred mm (for example, 500 mm). In other words, the solar cell panel 10 can be bent in an arc shape when viewed with the line of sight along the Y direction. According to this, it is easy to attach the solar cell panel 10 to the curved attachment target member.
  • the thickness of the filler 4 may be small in the solar cell part 3, or may be large in the space between the solar cell part 3 and the support member 5. According to this, the strength of the solar cell panel 10 can be improved between the support member 5 and the solar cell section 3. Therefore, the solar cell panel 10 can appropriately cope with stress due to bending. Furthermore, since the filler 4 is thin in the solar cell section 3, the flexibility of the solar cell panel 10 can be improved. In other words, it is possible to achieve both flexibility and strength of the solar cell panel 10.
  • the inner portion 51 of the rigid support member 5 is covered with the filler 4 between the first protective layer 1 and the second protective layer 2. Therefore, the rigidity of the solar cell panel 10 can be improved.
  • the support member 5A is located at the edge 1a of the solar cell panel 10 between both ends of the solar cell panel 10 in the Y direction, so that the rigidity in the Y direction is particularly improved. I can do it.
  • the support member 5B can also improve the rigidity of the solar cell panel 10, especially in the Y direction.
  • the filler 4 is in a state of protruding outward from the edge 1a of the first protective layer 1. Therefore, compared to a structure in which the filler 4 does not protrude, the edge 1a of the first protective layer 1 is more reliably adhered to the filler 4.
  • the filler 4 since the filler 4 protrudes outward from the entire area of the edge 1a of the first protective layer 1, the entire area of the edge 1a of the first protective layer 1 is covered with the filler 4 more reliably. Glued. Therefore, the possibility that the edge 1a of the first protective layer 1 will peel off from the filler 4 can be reduced.
  • the filler 4 covered part or all of the edge 1a of the first protective layer 1 (that is, the side surface on the edge 1a side that connects the first surface 1f and the second surface 1s of the first protective layer 1). May be located in the state. In this case, the filler 4 continuously covers the side surfaces of the first protective layer 1 from the second surface 1s. According to this, the edge 1a of the first protective layer 1 is more firmly adhered to the filler 4, so that the possibility that the edge 1a of the first protective layer 1 peels off from the filler 4 is further reduced. I can do it.
  • the filler 4 is in a state of protruding outward from the edge 1b of the first protective layer 1 and the edges 2a and 2b of the second protective layer 2, respectively. Therefore, the possibility that the edge 1b of the first protective layer 1 will peel off from the filler 4 can be reduced, and each of the edges 2a and 2b of the second protective layer 2 will peel off from the filler 4. The possibility can be reduced.
  • the filler 4 covers part or all of the edge 1b of the first protective layer 1 (that is, the side surface on the edge 1b side that connects the first surface 1f and the second surface 1s of the first protective layer 1).
  • the edge 2b of the second protective layer 2 may cover part or all of the edge 2a of the second protective layer 2 (that is, the side surface on the edge 1b side of the second protective layer 2). (that is, the side surface of the second protective layer 2 on the edge 2b side) may be partially or completely covered. According to this, the possibility that the first protective layer 1 or the second protective layer 2 will peel off can be further reduced.
  • the filler 4 protrudes outward from the entire area of the edge 1a of the first protective layer 1, the possibility that the edge 1a of the first protective layer 1 will peel off from the filler 4 is effectively reduced. be able to.
  • the filler 4 does not necessarily need to protrude outward from the entire area of the edge 1a.
  • the filler 4 may protrude outward from 80% or more of the area of the edge 1a in the Y direction, or may protrude outward from 90% or more of the area. Even in this case, it is possible to reduce the possibility that the first protective layer 1 will peel off.
  • the filler 4 may protrude outward from 80% or more of the area in the Y direction of each of the edge 1b, the edge 2a, and the edge 2b, or may protrude outward from 90% or more of the area.
  • the first protective layer 1 is prepared.
  • a resin film having rectangular front and back surfaces and weather resistance is prepared.
  • a fluorine-based resin is used as the weather-resistant resin.
  • the fluorine-based resin for example, FEP, ETFE, or ECTFE is used.
  • the second surface 1s which is one surface of the first protective layer 1, is subjected to a treatment for activating the surface, such as corona treatment or plasma treatment. Thereby, the adhesion between the first protective layer 1 and the filler 4 can be improved in the lamination process described below.
  • the first protective layer 1 the sheet 41s, the sheet 41t, the solar cell part 3, the support member 5, the sheet 42s, the sheet 42t, and the By laminating the two protective layers 2, a laminate 10s is formed.
  • the solar cell section 3 is located between two support members 5, and these are arranged in a spaced-apart manner in the X direction. Further, at this time, wiring is appropriately positioned to be drawn out from the solar cell section 3 to the outside of the solar cell panel 10 and connected to a terminal box or the like.
  • the plurality of solar cell elements 31 of the solar cell section 3 are connected to each other by a first wiring material 32 and a second wiring material 33. Further, the third wiring member 34 is connected to the solar cell section 3 .
  • the sheet 41s and the sheet 41t are sheets made of resin (such as EVA) that is the base material of the first filler 41.
  • the sheet 41s is located between the first protective layer 1 and the solar cell section 3 and between the first protective layer 1 and the support member 5. That is, the sheet 41s is located on the first protective layer 1, and the solar cell section 3 and the support member 5 are located on the sheet 41s.
  • the sheet 41s has a rectangular shape as an example of a rectangular shape in plan view.
  • the width of the sheet 41s in the X direction may be larger than the width of the first protective layer 1 in the X direction.
  • the edge of the sheet 41s in the -X direction protrudes outward from the edge 1a of the first protective layer 1, and the edge of the sheet 41s in the +X direction
  • the end portion is in a state of protruding outward from the edge 1b of the first protective layer 1.
  • the end portion of the sheet 41s in the ⁇ X direction faces the supporting member 5A in the ⁇ X direction in the Z direction, but does not face the first protective layer 1 in the Z direction.
  • the +X-direction end of the sheet 41s also faces the +X-direction support member 5B in the Z direction, but does not face the first protective layer 1 in the Z direction.
  • the sheet 41t is located between the support member 5 and the solar cell section 3 and above the sheet 41s.
  • two support members 5 are located, so two sheets 41t are located.
  • each sheet 41t has, for example, an elongated shape that is long in the Y direction.
  • the width of each sheet 41t is narrower than the distance between the support member 5 and the solar cell section 3. That is, in the examples of FIGS. 4(b) and 4(c), the sheet 41t is located in a state where it does not face both the support member 5 and the solar cell section 3 in the Z direction.
  • the sheet 42s and the sheet 42t are sheets made of resin (such as EVA) that is the base material of the second filler 42.
  • the sheet 42s and the sheet 42t may contain pigment.
  • the sheet 42s is located between the second protective layer 2 and the solar cell section 3 and between the second protective layer 2 and the support member 5. In other words, the sheet 42s is positioned with both ends facing the support member 5, respectively.
  • the sheet 42s has a rectangular shape as an example of a rectangular shape in plan view.
  • the sheet 42t is located between the support member 5 and the solar cell section 3 and above the sheet 42s.
  • two support members 5 are located, so two sheets 42t are located.
  • each sheet 42t has, for example, an elongated shape that is long in the Y direction.
  • the width of each sheet 42t is narrower than the distance between the support member 5 and the solar cell section 3. That is, in the examples shown in FIGS. 4(b) and 4(c), the sheet 42t is positioned so as not to face both the support member 5 and the solar cell section 3 in the Z direction.
  • the second protective layer 2 is located on the sheet 42s and the sheet 42t.
  • the width of the sheet 42s in the X direction may be larger than the width of the second protective layer 2 in the X direction.
  • the edge of the sheet 42s in the -X direction protrudes outward from the edge 2a of the second protective layer 2, and the edge of the sheet 42s in the +X direction
  • the end portion protrudes outward from the edge 2b of the second protective layer 2. That is, in the examples of FIGS. 4(b) and 4(c), although the end of the sheet 42s in the -X direction faces the supporting member 5A in the -X direction in the Z direction, the second protective layer 2 They are not facing each other in direction.
  • the +X-direction end of the sheet 42s also faces the +X-direction support member 5B in the Z direction, but does not face the second protective layer 2 in the Z direction.
  • the sheet 42s and the second protective layer 2 are shown as having a flat plate shape, if they have flexibility or softness, the central part of the sheet 42s and the second protective layer 2 may be It can bend toward the protective layer 1 side.
  • a lamination process is performed on the laminate 10s.
  • a laminate device (laminator) is used to integrate the laminate 10s.
  • the laminate 10s is placed on a heater board in a chamber, and while the pressure inside the chamber is reduced from 50 Pascals (Pa) to about 150 Pa, the laminate 10s is heated from 100 degrees Celsius (100 degrees Celsius) to 200 degrees Celsius. Heat to about 200°C.
  • the sheets 41s, 41t, 42s, and 42t become fluidized to some extent by heating.
  • the laminate 10s is pressed in the Z direction with a pressing member such as a diaphragm sheet, thereby integrating the laminate 10s.
  • the sheet 41s protrudes outward from each of the edge 1a and edge 1b of the first protective layer 1 in the X direction. Therefore, it is easy to form the filler 4 in a state in which it protrudes outward from the first protective layer 1.
  • the sheet 42s protrudes outward from each of the edge 2a and edge 2b of the second protective layer 2 in the X direction. Therefore, it is easy to form the filler 4 in a state in which it protrudes outward from the second protective layer 2.
  • the width of the sheet 41s in the X direction does not necessarily have to be greater than the width of the first protective layer 1 in the X direction.
  • the width of the sheet 41s in the X direction is preferably set to such an extent that the molten sheet can protrude beyond the edges 1a and 1b of the first protective layer 1.
  • the width of the sheet 42s in the X direction may also be set to a value that allows the melted sheet to protrude beyond the edges 2a and 2b of the second protective layer 2.
  • the sheet 41t and the sheet 42t are located in the stacked body 10s.
  • the total thickness of the sheet increases between the support member 5 and the solar cell section 3. Therefore, the thickness of the filler 4 between the support member 5 and the solar cell section 3 can be increased more easily.
  • a terminal box or the like may be attached to the solar cell panel 10 as appropriate.
  • wiring drawn out from the solar cell section 3 to the outside of the solar cell panel 10 is appropriately connected to a terminal in the terminal box. Thereby, the solar cell module 100 is assembled.
  • the solar cell panel 10 including the support member 5 is integrated by lamination processing. Therefore, the solar cell panel 10 is easier to assemble than a structure in which an external frame (not shown) is attached to the solar cell panel 10 with screws or the like instead of the support member 5.
  • the number of solar cell elements 31 arranged in the X direction is 2, which is an even number.
  • the number of solar cell elements 31 arranged in the direction orthogonal to the longitudinal direction of the support member 5 is an even number.
  • the widths of each solar cell element 31 in the X direction are substantially equal to each other. Therefore, the solar cell element 31 does not exist at the center of the solar cell panel 10 in the X direction. That is, the center of the solar cell panel 10 corresponds to the portion between the solar cell elements 31.
  • the solar cell panel 10 when the solar cell panel 10 is bent by the external force F1 (see also FIG. 5), a relatively large stress is also applied to the center of the solar cell panel 10 in the X direction. Further, even when a load such as snow is applied to the solar cell panel 10 while the support member 5 is attached to the attachment target member, the solar cell panel 10 can bend in an arc shape when viewed in the Y direction. Even in such a case, a relatively large stress is applied to the center of the solar cell panel 10 in the X direction.
  • no solar cell element 31 is present at the center of the solar cell panel 10. Therefore, even when the solar cell panel 10 is bent due to the external force F1 or a load such as snow accumulation being applied to the solar cell panel 10, the stress applied to each solar cell element 31 is relatively small. Therefore, it is possible to reduce the possibility that problems such as performance deterioration of the solar cell element 31 due to stress will occur.
  • the edge 2a of the second protective layer 2 may be located on the solar cell part 3 side with respect to the edge 1a of the first protective layer 1. . Further, the edge 2b of the second protective layer 2 may be located on the solar cell section 3 side with respect to the edge 1b of the first protective layer 1. In other words, the width of the second protective layer 2 in the X direction may be smaller than the width of the first protective layer 1 in the X direction. Moreover, the edge 42a of the filler 4 may be located on the solar cell part 3 side with respect to the edge 41a, and the edge 42b of the filler 4 may be located on the solar cell part 3 side with respect to the edge 41b. You may do so.
  • the second protective layer 2 may be located avoiding the area facing each support member 5 in the Z direction, and the filler 4 may be located on each support member 5. 5 in the ⁇ Z direction (that is, on the opposite side to the first protective layer 1), and may be located away from a region facing each support member 5 in the Z direction.
  • the filler 4 and the second protective layer 2 do not need to be located in a region that is in the ⁇ Z direction with respect to the support member 5 and that faces the support member 5 in the Z direction.
  • the entire surface of the support member 5 in the -Z direction is exposed to the outside of the solar cell module 100.
  • the attachment target member 300 to which the support member 5B in the +X direction is fixed and the fastening member 301 that fixes them are shown by imaginary lines.
  • the attachment target member 300 faces the support member 5 in the Z direction and is in contact with the support member 5.
  • the fastening member 301 is, for example, a bolt that penetrates the support member 5 in the Z direction.
  • the support member 5 can be pressed and fixed to the attachment target member 300 by the fastening member 301 .
  • the support member 5A can also be attached to the attachment target member, for example, like the support member 5B.
  • the filler 4 and the second protective layer 2 are not interposed between the attachment target member 300 and the support member 5B. Therefore, even if the thickness of the filler 4 and the second protective layer 2 changes due to various factors such as thermal expansion, thermal contraction, and aging deterioration of the filler 4 and the second protective layer 2, the support member 5B and the attachment The distance from the target member 300 does not change. Therefore, loosening of the fastening member 301 due to variations in the thickness of the filler 4 and the second protective layer 2 can be suppressed, and the solar cell module 100 can be more firmly attached to the mounting target member 300 with higher reliability. Can be fixed.
  • the support member 5B can be more firmly fixed to the attachment target member 300.
  • the opposing area between the support member 5B and the attachment target member 300 can be secured, so the solar cell module 100 can be downsized.
  • a part of the filler 4 is located between the first protective layer 1 and each support member 5. Therefore, even if water such as rainwater adheres to the front surface 10f of the solar cell panel 10 from the external space 200, it is difficult for the water to enter between the first protective layer 1 and each support member 5. On the other hand, since rainwater does not easily reach the back surface 10b of the solar cell panel 10, the amount of water that enters between the second protective layer 2 and each support member 5 is small in the first place. Therefore, the solar cell section 3 can also be appropriately protected from water.
  • the first protective layer 1, the sheet 41s, the sheet 41t, the solar cell part 3, the support member 5, the sheet 42s, the sheet 42t, and the second protective layer 2 is stacked to form a stacked body 10s.
  • the laminate 10s according to the second embodiment between the support member 5 and the second protective layer 2, The seat 42s is not located. That is, the width of the sheet 42s in the X direction is smaller than the width of the sheet 41s in the X direction, and more specifically, smaller than the interval between the two support members 5. Further, the width of the sheet 42s is wider than the width of the solar cell section 3 in the X direction. This sheet 42s is positioned so as to face the solar cell section 3 in the Z direction, but not to face the support member 5 in the Z direction.
  • the width of the second protective layer 2 in the X direction is narrower than the width of the first protective layer 1 in the X direction.
  • the width of the second protective layer 2 in the X direction may be, for example, the same as the interval between the two supporting members 5, or may be narrower than the interval. In another example described later, the width of the second protective layer 2 in the X direction may be wider than the interval between the supporting members 5 and narrower than the width of the first protective layer 1 in the X direction.
  • a lamination process is performed on the laminate 10s.
  • a laminate device laminated to integrate the laminate 10s.
  • the solar cell panel 10 shown in FIG. 6 can be manufactured.
  • the filler 4 and the second protective layer 2 are not located in the entire region facing each support member 5 in the ⁇ Z direction with respect to each support member 5. However, this is not necessarily the case. A portion of the second protective layer 2 and the filler 4 may be located in this area.
  • a state in which a part of the filler 4 and a part of the second protective layer 2 are located in the region on the support member 5A side in the -X direction is shown by a two-dot chain line.
  • the edge 2a of the second protective layer 2 in the -X direction is located on the solar cell part 3 side with respect to the edge 1a of the first protective layer 1 in the -X direction.
  • the edge 42a of the material 4 on the second protective layer 2 side and the outer portion 52 side is on the solar cell part 3 side with respect to the edge 41a of the filler 4 on the first protective layer 1 side and the outer portion 52 side.
  • Located in The edge 42a of the filler 4 may be located outside the edge 2a of the second protective layer 2.
  • a part of the filler 4 and a part of the second protective layer 2 are located in this area, as on the support member 5A side. You may do so. Further, part of the filler 4 may be located in this area, and part of the second protective layer 2 may not be located in this area.
  • the area of the portion of each support member 5 exposed on the second protective layer 2 side can be increased. Therefore, the opposing area between the support member 5 and the attachment target member can be improved, and the solar cell module 100 can be more firmly fixed to the attachment target member. Alternatively, even if the width of the support member 5 in the X direction is narrowed in the solar cell module 100, the opposing area between the support member 5 and the attachment target member can be secured, so the solar cell module 100 can be made smaller. can.
  • a plurality of support members 5 may be arranged in a line at intervals in the Y direction.
  • four support members 5 are arranged in the Y direction on each of both sides of the solar cell panel 10 in the X direction. That is, the four supporting members 5A are arranged at intervals in the Y direction at the ends of the solar cell panel 10 in the ⁇ X direction and extending along the Y direction, and the four supporting members 5A are arranged at intervals in the Y direction.
  • the two support members 5B are arranged at intervals in the Y direction at an end of the solar cell panel 10 in the +X direction and extending along the Y direction.
  • the four support members 5A are located facing the four support members 5B in the X direction. That is, the eight support members 5 are arranged in a matrix with four rows and two columns.
  • the filler 4 protrudes from between the first protective layer 1 and each of the support members 5A to the outside of the edge 1a of the first protective layer 1 in plan view. A portion of the filler 4 located outside the edge 1a of the first protective layer 1 is in a state of being adhered to the outside portion 52 of the support member 5. Further, the filler 4 protrudes from between the first protective layer 1 and each of the supporting members 5B to the outside of the edge 1b of the first protective layer 1 in plan view. A portion of the filler 4 located outside the edge 1b of the first protective layer 1 is in a state of being adhered to the outside portion 52 of the support member 5.
  • the filler 4 may protrude from between the second protective layer 2 and each of the support members 5A to the outside of the edge 2a of the second protective layer 2 in plan view. A portion of the filler 4 located outside the edge 2 a of the second protective layer 2 can be bonded to the outside portion 52 of the support member 5 . Further, the filler 4 may protrude outward from the edge 2b of the second protective layer 2 from between the second protective layer 2 and each of the supporting members 5B. A portion of the filler 4 located outside the edge 2b of the second protective layer 2 can be bonded to the outer portion 52 of the support member 5.
  • the filler 4 is in a state of protruding outward from each of the edge 1a and the edge 1b of the first protective layer 1. Therefore, the possibility that the first protective layer 1 will peel off from each of the edge 1a and the edge 1b can be reduced.
  • the filler 4 when the filler 4 is in a state where it protrudes outward from each of the edge 2a and the edge 2b of the second protective layer 2, the second protective layer 2 extends beyond the edge 2a and the edge 2b, respectively. The possibility of peeling can also be reduced.
  • the solar cell panel 10 since the plurality of support members 5 are arranged at intervals in the Y direction, the solar cell panel 10 has an arc shape when viewed with the line of sight along the X direction. It can also bend.
  • the filler 4 is applied from each of the edge 1a and the edge 1b of the first protective layer 1 at a position where the support members 5 on both sides of the solar cell panel 10 in the X direction are not present. Although it does not protrude outward, it may also protrude.
  • the support member 5 may be located on only one side of the solar cell panel 10 having a rectangular shape. In other words, the support member 5 may be located only on one side of the first protective layer 1 and the second protective layer 2 having a rectangular shape. In the example of FIG. 9, the support member 5 is located only on one side of the solar cell panel 10 in the ⁇ X direction. That is, the support member 5 is located between the edge 1a of the first protective layer 1 and the edge 2a of the second protective layer 2. Even with this structure, the rigidity of the solar cell panel 10 can be improved compared to a structure without the support member 5. Moreover, this solar cell panel 10 is integrated by lamination processing. Therefore, assembly of the solar cell panel 10 is easy.
  • the solar cell panel 10 can easily bend in more directions. In other words, the flexibility of the solar cell panel 10 can be improved.
  • the solar cell module 100 may further include a reinforcing fiber member 60, for example, as shown in FIGS. 10(a) and 10(b).
  • the reinforcing fiber member 60 includes, for example, aramid fibers such as Kevlar (registered trademark) fibers and fiber members such as carbon fibers, and is covered with a filler 4 between the first protective layer 1 and the second protective layer 2. Located in the state. For example, the entire reinforcing fiber member 60 is covered with the filler 4.
  • the reinforcing fiber member 60 is located along the side of the solar cell panel 10 where the support member 5 is not located. In the example of FIG.
  • the two reinforcing fiber members 60 are located on both sides (corresponding to the second side) of the panel 10 in the Y direction.
  • the sides on both sides in the X direction herein refer to one side located at the end of the solar panel 10 in the -X direction and extending along the Y direction, and the end of the solar panel 10 in the +X direction. and one side extending along the Y direction.
  • the sides on both sides in the Y direction refer to one side located at the end of the solar cell panel 10 in the -Y direction and extending along the X direction, and one side located at the end of the solar cell panel 10 in the +Y direction.
  • the reinforcing fiber member 60 has an elongated shape that is long in the X direction, and is positioned so as not to overlap the solar cell section 3 in plan view. In other words, the reinforcing fiber member 60 is located so as not to face the solar cell section 3 in the Z direction.
  • the length of the reinforcing fiber member 60 in the longitudinal direction (that is, the length in the X direction) may be, for example, one-half or more, or two-thirds or more of the width of the solar cell panel 10 in the X direction. It may be three quarters or more. Both ends of the reinforcing fiber member 60 in the X direction may be in contact with the support member 5, respectively.
  • the reinforcing fiber member 60 is easily deformable and has high strength. Therefore, the reinforcing fiber member 60 can improve the strength of the solar cell panel 10 without reducing its flexibility.
  • the reinforcing fiber member 60 is located on the side of the solar cell panel 10 where the support member 5 is not located, so the reinforcing fiber member 60 can improve the portion with low strength. Therefore, the support member 5 and the reinforcing fiber member 60 can increase the overall strength in the peripheral area of the solar cell panel 10.
  • the solar cell section 3 includes a plurality of cells each including a thin film semiconductor and a transparent electrode.
  • the solar cell section 3B may be changed to include a thin film solar cell element 31B.
  • Thin film based semiconductors include, for example, silicon based, compound based or other types of semiconductors.
  • the silicon-based thin film semiconductor for example, a semiconductor using amorphous silicon or thin film polycrystalline silicon is applied.
  • Compound thin film semiconductors include, for example, compound semiconductors having a chalcopyrite structure such as CIS semiconductors or CIGS semiconductors, compound semiconductors such as compounds having a perovskite structure, compound semiconductors having a kesterite structure, or cadmium telluride (CdTe) semiconductors. applies.
  • a CIS semiconductor is a compound semiconductor containing copper (Cu), indium (In), and selenium (Se).
  • a CIGS semiconductor is a compound semiconductor containing Cu, In, gallium (Ga), and Se.
  • a plurality of thin film solar cell elements 31B are located on the substrate 6.
  • the solar cell section 3B includes a substrate 6 and a plurality of solar cell elements 31B arranged in a plane on the substrate 6.
  • being lined up in a plane means that each of the plurality of solar cell elements 31B is located along a virtual or actual plane, and that the plurality of solar cell elements 31B are lined up.
  • the plurality of solar cell elements 31B are arranged on the substrate 6 along the surface of the substrate 6.
  • the substrate 6 for example, a transparent glass substrate having a thickness of about 0.5 mm to 2 mm is applied.
  • the solar cell section 3B includes N solar cell elements 31B (N is a natural number of 2 or more).
  • N is a natural number of 2 or more.
  • FIGS. 12(a) and 12(b) show an example in which a plurality of solar cell elements 31B (seven in this case) are lined up along the +Y direction.
  • each of the solar cell elements 31B has an elongated shape with a longitudinal direction along the +X direction.
  • the solar cell section 3B may include several tens to hundreds of solar cell elements 31B. can be lined up.
  • Each of the plurality of solar cell elements 31B includes, for example, a first electrode layer 8a, a semiconductor layer 8b, and a second electrode layer 8c, as shown in FIG. 12(b). Further, in the solar cell section 3B, for example, as shown in FIG. 12(b), a connecting section 9 and a transparent section 7 are present between adjacent solar cell elements 31B.
  • the second electrode layer 8c is a layer (also referred to as a translucent electrode layer) that has higher transmissivity for light in a specific range of wavelengths than the semiconductor layer 8b, in each solar cell element 31B, Incident light can pass through the second electrode layer 8c.
  • incident light that has passed through the first protective layer 1 can pass through the second electrode layer 8c and be irradiated onto the semiconductor layer 8b.
  • the incident light may be absorbed by the semiconductor layer 8b.
  • the second protective layer 2 is made of a light-transmitting material like the first protective layer 1, the first electrode layer 8a is more sensitive to wavelengths in a specific range than the semiconductor layer 8b. If the layer is highly transparent to light (transparent electrode layer), the incident light that has passed through the second protective layer 2 can pass through the first electrode layer 8a and be irradiated onto the semiconductor layer 8b.
  • the first electrode layer 8a is located, for example, on the surface of the substrate 6 facing the +Z direction.
  • the first electrode layer 8a is, for example, an electrode (also referred to as a first electrode) that can collect charges generated by photoelectric conversion in response to light irradiation in the semiconductor layer 8b.
  • the material of the first electrode layer 8a is, for example, a transparent conductive oxide (TCO) that is transparent to light in a specific range of wavelengths, can be transmitted through the second protective layer 2 and the first electrode layer 8a and incident on the semiconductor layer 8b.
  • TCO transparent conductive oxide
  • Examples of TCO include indium tin oxide (ITO), fluorine-doped tin oxide (FTO), and zinc oxide (ZnO).
  • the TCO may contain aluminum (Al), boron (B), or gallium (Ga) as necessary.
  • Al aluminum
  • B boron
  • Ga gallium
  • seven first electrode layers 8a are arranged on the substrate 6 in a plane along the +Y direction.
  • the first electrode layer 8a of the m-th solar cell element 31Bm (m is a natural number from 1 to 6) and the first electrode layer 8a of the (m+1)-th solar cell element 31B (m+1)
  • the portions extending toward the battery element 31Bm are lined up with a gap (also referred to as a first gap) G1 in between.
  • first electrode layer 8a of the first solar cell element 31B1 and the portion of the second solar cell element 31B2 where the first electrode layer 8a extends toward the first solar cell element 31B1 are connected to the first electrode layer 8a of the first solar cell element 31B1. They are lined up with a gap G1 in between.
  • Each first gap G1 has a longitudinal direction along the +X direction.
  • the semiconductor layer 8b is located between the first electrode layer 8a and the second electrode layer 8c.
  • the first electrode layer 8a of the adjacent (m+1)-th solar cell element 31B (m+1) in the +Y direction extends in the -Y direction. It extends over the end of the section.
  • the semiconductor layer 8b of the first solar cell element 31B1 extends until it reaches the end of the portion where the first electrode layer 8a of the adjacent second solar cell element 31B2 extends in the -Y direction. It is located in The semiconductor layer 8b is made of, for example, the above-mentioned thin film semiconductor.
  • the second electrode layer 8c is located on the semiconductor layer 8b.
  • the second electrode layer 8c is an electrode (also referred to as a second electrode) that can collect charges generated by photoelectric conversion in response to light irradiation in the semiconductor layer 8b.
  • a transparent conductive oxide TCO
  • seven second electrode layers 8c are arranged in a plane along the +Y direction.
  • the second electrode layer 8c of the m-th solar cell element 31Bm extends toward the (m+1)th solar cell element 31B(m+1) and a portion of the (m+1)-th solar cell element 31B(m+1) are shown.
  • the second electrode layers 8c are lined up with a gap (also referred to as a second gap) G2 in between.
  • a gap also referred to as a second gap
  • Each second gap G2 has a longitudinal direction along the +X direction.
  • each second gap G2 there is a third groove portion P3 having the first electrode layer 8a as the bottom surface.
  • the second gap G2 is +Y larger than the first gap G1. It is located at a position shifted in the direction. Therefore, for example, the inter-cell region 31ga between the m-th solar cell element 31Bm and the (m+1)-th solar cell element 31B (m+1) adjacent in the +Y direction is the edge of the first gap G1 in the -Y direction. from the edge of the second gap G2 in the +Y direction.
  • the connecting portion 9 is in a state where two adjacent solar cell elements 31B among the plurality of solar cell elements 31B are electrically connected in series.
  • the m-th connection portion 9m is located penetrating between the semiconductor layer 8b and the transparent portion 7.
  • This m-th connection portion 9m is in a state of electrically connecting the m-th solar cell element 31Bm and the (m+1)th solar cell element 31B (m+1).
  • the first connection portion 91 is in a state of electrically connecting the first solar cell element 31B1 and the second solar cell element 31B2.
  • the m-th connection portion 9m electrically connects the second electrode layer 8c of the m-th solar cell element 31Bm and the first electrode layer 8a of the (m+1)-th solar cell element 31B (m+1). is connected to.
  • the first connecting portion 91 is in a state of electrically connecting the second electrode layer 8c of the first solar cell element 31B1 and the first electrode layer 8a of the second solar cell element 31B2.
  • the plurality of solar cell elements 31B are in a state where they are electrically connected in series.
  • the connecting portion 9 has the end surface of the semiconductor layer 8b facing the +Y direction and the end surface of the transparent portion 7 facing the ⁇ Y direction as both side surfaces, and the surface facing the ⁇ Z direction of the first electrode layer 8a as the bottom surface. It exists in a second groove portion (not shown). Each second groove has a longitudinal direction along the +X direction. The second groove is filled with the connecting portion 9.
  • the transparent portion 7 has higher translucency than the semiconductor layer 8b for light having wavelengths in a specific range.
  • the transparent portion 7 can be formed, for example, by locally heating a part of the semiconductor layer having a perovskite structure.
  • the m-th transparent portion 7m is located between the m-th connection portion 9m of the m-th solar cell element 31Bm and the (m+1)th solar cell element 31B (m+1).
  • the first transparent part 71 is located between the first connection part 91 of the first solar cell element 31B1 and the second solar cell element 31B2. In the example of FIG.
  • the m-th transparent portion 7m connects the m-th connecting portion 9m of the m-th solar cell element 31Bm, and the m-th solar cell element 31Bm and the (m+1)th solar cell element 31B. (m+1), and the third groove portion P3 exists between the groove portion P3 and the third groove portion P3.
  • the first transparent part 71 includes a first connection part 91 of the first solar cell element 31B1, a third groove part P3 existing between the first solar cell element 31B1 and the second solar cell element 31B2, It is located between.
  • the transparent portion 7 may be made of a non-transparent semiconductor layer, or may be the same as the semiconductor layer 8b, for example.
  • the first electrode layer 8a has a portion (also referred to as a first portion) 8ae that extends in the ⁇ Y direction further than the semiconductor layer 8b and the second electrode layer 8c.
  • the semiconductor layer 8b and the second electrode layer 8c extend further in the +Y direction than the first electrode layer 8a, and the second electrode layer 8c extends further in the +Y direction than the semiconductor layer 8b. It has an extended portion (also referred to as a second portion) 8ce.
  • a first wiring material 32a for output of the first polarity is electrically connected to the first portion 8ae.
  • the first wiring material 32a is in a state of being joined to the first portion 8ae, which is a part of the electrode of the first solar cell element 31B1, for example. Specifically, for example, a portion located between the first wiring material 32a and the first portion 8ae and in a state of joining the first wiring material 32a and the first portion 8ae (a third joint (also referred to as part) 321B exists.
  • the first wiring material 32a is located along the edge of the first solar cell element 31B1 located in the -Y direction.
  • a second wiring material 32b for outputting the second polarity is electrically connected to the second portion 8ce.
  • the second wiring material 32b is in a state of being joined to the second portion 8ce, which is a part of the electrode of the seventh solar cell element 31B7, for example. Specifically, for example, a portion located between the second wiring material 32b and the second portion 8ce and in a state of joining the second wiring material 32b and the second portion 8ce (a fourth joint (also referred to as part) 322B exists. In the example of FIG. 12A, the second wiring material 32b is located along the edge of the seventh solar cell element 31B7 located in the +Y direction.
  • a linear or strip-shaped conductive metal body is applied to the first wiring material 32a and the second wiring material 32b, respectively.
  • the material for the third joint portion 321B and the fourth joint portion 322B may be, for example, a low melting point alloy such as solder or a low melting point single metal. More specifically, for example, copper foil having a thickness of about 0.1 mm to 0.2 mm and a width of about 1 mm to 2 mm is applied to the first wiring material 32a and the second wiring material 32b, respectively. The entire surfaces of the first wiring material 32a and the second wiring material 32b are coated with solder.
  • the first wiring material 32a is in a state of being electrically connected to the first portion 8ae, for example, by soldering.
  • the second wiring material 32b is in a state of being electrically connected to the second portion 8ce by, for example, soldering.
  • the solder located between the first wiring material 32a and the first portion 8ae constitutes the third joint portion 321B.
  • the solder located between the second wiring material 32b and the second portion 8ce constitutes the fourth joint portion 322B.
  • the third joint portion 321B and the fourth joint portion 322B will also be abbreviated as “joint portions” as appropriate.
  • the first polarity is a negative polarity
  • the second polarity is a positive polarity.
  • the second polarity is negative.
  • Each of the first wiring material 32a and the second wiring material 32b is in a state of being drawn out to the outside through, for example, a through hole penetrating the second protective layer 2.
  • the substrate 6 of the solar cell section 3B may be used as the second protective layer 2.
  • the plurality of solar cell elements 31B are lined up along the Y direction, the arrangement is not necessarily limited to this.
  • the arrangement direction of the plurality of solar cell elements 31B may be the X direction, and can be changed as appropriate.
  • the second protective layer 2 may be omitted.
  • the free acid for example, acetic acid
  • the filler 4 is desorbed from the filler 4 in the -Z direction in a gaseous state, so it is possible to reduce defects in the solar cell section 3 due to the free acid.
  • the two support members 5 may be located on both sides of the solar cell panel 10 in the Y direction instead of on both sides in the X direction.
  • the solar cell panel 10 can be bent when viewed with the line of sight along the X direction.
  • the number of solar cell elements 31 arranged in the Y direction may be an even number.
  • the central portion of the solar cell panel 10 in the Y direction corresponds to the portion between the solar cell elements 31. Therefore, stress generated in the solar cell elements 31 can be reduced compared to a structure in which the number of arrays is an odd number.
  • a covering member may be located to cover the filler 4 located in a state protruding from the first protective layer 1 and/or the second protective layer 2.
  • the covering member covers at least a portion of the filler 4 that protrudes from the first protective layer 1 and/or the second protective layer 2 (hereinafter referred to as a protruding portion).
  • the covering member may be, for example, an aluminum vapor-deposited adhesive tape.
  • the aluminum vapor-deposited adhesive tape includes, for example, a PET (polyethylene terephthalate) film on which aluminum is vapor-deposited, and an acrylic adhesive located on one side of the film. This aluminum-deposited PET tape can be attached to the protruding portion of the filler 4.
  • the covering member can protect the protruding portion of the filler 4 from environmental loads such as ultraviolet rays, outside air, and rainwater. If the covering member peels off due to deterioration over time, etc., the protruding portion of the filler 4 may be exposed to ultraviolet rays, outside air, rainwater, etc., but the protruding portion can be protected until the covering member peels off. In other words, the covering member can delay the timing at which the environmental load is applied to the protruding portion of the filler 4. Therefore, the possibility that the first protective layer 1 and/or the second protective layer 2 will peel off from the filler 4 can be further reduced. In other words, the weather resistance of the solar cell module 100 can be improved.
  • the covering member peels off from the filler 4 due to deterioration over time, as long as the filler 4 protrudes from the first protective layer 1, the possibility of peeling of the first protective layer 1 can be reduced. If the filler 4 protrudes from the second protective layer 2, the possibility of peeling of the second protective layer 2 can be reduced.
  • the covering member is not limited to aluminum-deposited PET tape.
  • the covering member may be, for example, a PET tape without aluminum vapor deposition, or a metal foil tape using at least one of stainless steel and aluminum alloy.
  • the covering member may include a weather-resistant base material and an adhesive located on one side of the base material.
  • This disclosure includes the following content:
  • the solar cell module includes a first protective layer having a first surface and a second surface opposite to the first surface, and a first protective layer facing the second surface of the first protective layer.
  • a solar cell part located in a state where the solar cell part is located in a state where the solar cell part is located in a state where one or more support members including an outer portion extending to the outside of the first protective layer; and one or more supporting members that are in contact with the second surface of the first protective layer, cover the solar cell section, and and a filler located between the second surface of the protective layer and the support member to protrude outside the first protective layer in plan view.
  • the second protective layer is located on the side opposite to the first protective layer with respect to the filler, in contact with the filler and facing the solar cell part.
  • a protective layer can further be provided.
  • the second protective layer is located opposite to the inner portion of the support member, and the filler is located between the second protective layer and the support member.
  • the second protective layer can be located in such a way that it protrudes from between the second protective layer and the second protective layer in a plan view.
  • the edge of the filler on the second protective layer side and the outer portion side is on the first protective layer side and the outer portion side. It can be located on the solar cell part side with respect to the edge.
  • the edge of the second protective layer on the supporting member side is the same as the edge of the first protective layer on the supporting member side. On the other hand, it can be located on the solar cell section side.
  • the second protective layer may be positioned avoiding a region facing the support member.
  • the solar cell section includes a plurality of solar cell elements located facing the second surface of the first protective layer.
  • the number of arrays of the plurality of solar cell elements may be an even number.
  • the support member is a plurality of support members
  • the first protective layer has a rectangular shape
  • the plurality of support members are The first protective layer may be spaced apart along one side of the first protective layer.
  • the first protective layer has a rectangular shape, and the support member is located on only one side of the first protective layer. be able to.
  • the solar cell module according to any one of (1) to (9) above further includes a reinforcing fiber member, the first protective layer has a rectangular shape, and the supporting member The reinforcing fiber member may be located on a second side of the first protective layer where the supporting member is not located, covered with the filler.

Abstract

A solar cell module (100) is equipped with a first protective layer (1), a solar cell unit (3), one or more support members (5) and a filling material (4). The first protective layer (1) has a first surface (1f) and a second surface (1s), which is on the reverse side of the first surface (1f). The solar cell unit (3) is positioned so as to face the second surface (1s) of the first protective layer (1). The one or more support members (5) are positioned so as to be adjacent to the solar cell unit (3). The support members (5) include an inside section (51) and an outside section (52). The inside section (51) is positioned so as to face the second surface (1s) of the first protective layer (1). The outside section (52) is positioned so as to extend from the inside section (51) to the outside of the first protective layer (1). The filling material (4) is positioned so as to contact the second surface (1s) of the first protective layer (1). The filling material (4) is positioned so as to cover the solar cell unit (3). The filling material (4) is positioned so as to protrude to the outside of the first protective layer (1) when seen in a planar view from between the second surface (1s) of the first protective layer (1) and the support member (5).

Description

太陽電池モジュールsolar module 関連出願の相互参照Cross-reference of related applications
 本出願は、日本国出願2022-086773号(2022年5月27日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。 This application claims priority to Japanese Application No. 2022-086773 (filed on May 27, 2022), and the entire disclosure of the application is incorporated herein by reference.
 本開示は、太陽電池モジュールに関する。 The present disclosure relates to a solar cell module.
 平面的に配列されて電気的に接続された複数の太陽電池素子が、表面保護層と裏面保護層との間に位置する太陽電池モジュールが知られている(例えば、特許文献1の記載を参照)。この太陽電池モジュールにおいて、複数の太陽電池素子は、エチレン酢酸ビニル共重合体(EVA)を主成分とした充填材によって覆われた状態にある。 A solar cell module is known in which a plurality of solar cell elements arranged in a plane and electrically connected are located between a front protective layer and a back protective layer (see, for example, the description in Patent Document 1). ). In this solar cell module, a plurality of solar cell elements are covered with a filler whose main component is ethylene vinyl acetate copolymer (EVA).
国際公開第2021/070743号International Publication No. 2021/070743
 太陽電池モジュールが開示される。 A solar cell module is disclosed.
 一実施の形態において、太陽電池モジュールは、第1保護層と、太陽電池部と、1以上の支持部材と、充填材とを備える。第1保護層は、第1面、および、第1面と逆側の第2面を有する。太陽電池部は、第1保護層の第2面に対向した状態で位置する。1以上の支持部材は、太陽電池部と隣り合う状態で位置している。支持部材は内側部分および外側部分を含む。内側部分は、第1保護層の第2面と対向した状態で位置する。外側部分は、内側部分から第1保護層の外側に延びた状態で位置する。充填材は、第1保護層の第2面に接した状態で位置する。充填材は、太陽電池部を覆った状態で位置する。充填材は、第1保護層の第2面と支持部材との間から、平面視において第1保護層の外側にはみ出した状態で位置する。 In one embodiment, the solar cell module includes a first protective layer, a solar cell section, one or more support members, and a filler. The first protective layer has a first surface and a second surface opposite to the first surface. The solar cell section is located facing the second surface of the first protective layer. The one or more support members are positioned adjacent to the solar cell section. The support member includes an inner portion and an outer portion. The inner portion is located opposite the second surface of the first protective layer. The outer portion extends from the inner portion to the outside of the first protective layer. The filler material is located in contact with the second surface of the first protective layer. The filler is positioned to cover the solar cell section. The filler is located between the second surface of the first protective layer and the support member so as to protrude to the outside of the first protective layer in plan view.
図1は、第1実施形態に係る太陽電池モジュールを平面視した場合の外観の一例を示す平面図である。FIG. 1 is a plan view showing an example of the external appearance of the solar cell module according to the first embodiment when viewed from above. 図2は、図1の太陽電池モジュールのII-II線に沿った仮想的な切断面の一例を示す図である。FIG. 2 is a diagram illustrating an example of a virtual cross section of the solar cell module in FIG. 1 taken along line II-II. 図3(a)は、太陽電池素子の第1素子面を平面視した場合の構造の一例を示す図である。図3(b)は、太陽電池素子の第2素子面を平面視した場合の構造の一例を示す図である。FIG. 3A is a diagram illustrating an example of the structure of the solar cell element when viewed from above on the first element surface. FIG. 3(b) is a diagram illustrating an example of the structure when the second element surface of the solar cell element is viewed from above. 図4(a)から図4(c)は、それぞれ第1実施形態に係る太陽電池モジュールの製造方法における製造途中の断面の状態を例示する図である。FIGS. 4A to 4C are diagrams each illustrating a state of a cross section during manufacture in the method for manufacturing a solar cell module according to the first embodiment. 図5は、第1実施形態に係る太陽電池モジュールが撓んだ状態を例示する図である。FIG. 5 is a diagram illustrating a bent state of the solar cell module according to the first embodiment. 図6は、第2実施形態に係る太陽電池モジュールの仮想的な切断面の一例を示す図である。FIG. 6 is a diagram showing an example of a virtual cut surface of the solar cell module according to the second embodiment. 図7(a)および図7(b)は、それぞれ第2実施形態に係る太陽電池モジュールの製造方法における製造途中の断面の状態を例示する図である。FIGS. 7A and 7B are diagrams each illustrating a cross-sectional state during manufacturing in the method for manufacturing a solar cell module according to the second embodiment. 図8は、第3実施形態に係る太陽電池モジュールを平面視した場合の外観の一例を示す図である。FIG. 8 is a diagram illustrating an example of the external appearance of the solar cell module according to the third embodiment when viewed from above. 図9は、第4実施形態に係る太陽電池モジュールを平面視した場合の外観の一例を示す図である。FIG. 9 is a diagram illustrating an example of the external appearance of the solar cell module according to the fourth embodiment when viewed from above. 図10(a)は、第5実施形態に係る太陽電池モジュールを平面視した場合の外観の一例を示す平面図である。図10(b)は、図10(a)の太陽電池モジュールのXb-Xb線に沿った仮想的な切断面の一例を示す図である。FIG. 10A is a plan view showing an example of the external appearance of the solar cell module according to the fifth embodiment when viewed from above. FIG. 10(b) is a diagram showing an example of a virtual cut surface of the solar cell module of FIG. 10(a) along the line Xb-Xb. 図11(a)は、第6実施形態に係る太陽電池モジュールを平面視した場合の外観の一例を示す平面図である。図11(b)は、図11(a)の太陽電池モジュールのXIb-XIb線に沿った仮想的な切断面の一例を示す図である。FIG. 11A is a plan view showing an example of the external appearance of the solar cell module according to the sixth embodiment when viewed from above. FIG. 11(b) is a diagram showing an example of a virtual cut surface of the solar cell module of FIG. 11(a) along the line XIb-XIb. 図12(a)は、第6実施形態に係る太陽電池部を平面視した場合の構造の一例を示す図である。図12(b)は、図12(a)の太陽電池部のXIIb-XIIb線に沿った仮想的な切断面の一例を示す図である。FIG. 12A is a diagram illustrating an example of the structure of the solar cell section according to the sixth embodiment when viewed from above. FIG. 12(b) is a diagram showing an example of a hypothetical cut plane along the line XIIb-XIIb of the solar cell portion of FIG. 12(a).
 発明者は、太陽電池モジュールにおいて、保護層が充填材から剥離する可能性を低減させる技術を創出した。これについて、以下、第1実施形態から第6実施形態を図面に基づいて説明する。 The inventor has created a technology that reduces the possibility that a protective layer will peel off from a filler in a solar cell module. Regarding this, the first to sixth embodiments will be described below based on the drawings.
 図面においては同一または類似の構成および機能を有する部分に同じ符号が付されており、下記説明では重複説明が省略される。図面は模式的に示されたものである。図1から図12(b)には、右手系のXYZ座標系が付されている。このXYZ座標系では、太陽電池パネル10の前面10fの短手方向が+X方向とされ、前面10fの長手方向が+Y方向とされ、+X方向と+Y方向との両方に直交する前面10fの法線方向が+Z方向とされている。 In the drawings, parts having the same or similar configurations and functions are designated by the same reference numerals, and redundant description will be omitted in the following description. The drawings are shown schematically. A right-handed XYZ coordinate system is attached to FIGS. 1 to 12(b). In this XYZ coordinate system, the short direction of the front surface 10f of the solar panel 10 is the +X direction, the longitudinal direction of the front surface 10f is the +Y direction, and the normal to the front surface 10f is orthogonal to both the +X direction and the +Y direction. The direction is the +Z direction.
 <1.第1実施形態>
 <1-1.太陽電池モジュール>
 第1実施形態に係る太陽電池モジュール100を、図1から図3(b)に基づいて説明する。
<1. First embodiment>
<1-1. Solar cell module>
A solar cell module 100 according to a first embodiment will be described based on FIGS. 1 to 3(b).
 図1および図2で示されるように、太陽電池モジュール100は、例えば、太陽電池パネル10を備えている。太陽電池パネル10は、例えば、主に光が入射する受光面(前面ともいう)10fと、この前面10fの逆側に位置している裏面10bと、を有する。第1実施形態では、前面10fが、+Z方向を向いている状態にある。裏面10bが、-Z方向を向いている状態にある。+Z方向は、例えば、南中している太陽に向く方向に設定される。図1の例では、前面10fが、矩形形状の一例としての長方形状の形状を有する。 As shown in FIGS. 1 and 2, the solar cell module 100 includes, for example, a solar cell panel 10. The solar cell panel 10 has, for example, a light-receiving surface (also referred to as a front surface) 10f through which light mainly enters, and a back surface 10b located on the opposite side of the front surface 10f. In the first embodiment, the front surface 10f is in a state facing the +Z direction. The back surface 10b is in a state facing the -Z direction. The +Z direction is set, for example, in a direction facing the sun, which is in the south. In the example of FIG. 1, the front surface 10f has a rectangular shape, which is an example of a rectangular shape.
 太陽電池モジュール100は、太陽電池パネル10において発電された電力を外部に取り出すための端子ボックス(不図示)をさらに備えていてもよい。 The solar cell module 100 may further include a terminal box (not shown) for extracting the power generated by the solar cell panel 10 to the outside.
 図1および図2で示されるように、太陽電池パネル10は、例えば、第1保護層1と、第2保護層2と、太陽電池部3と、充填材4と、支持部材5と、を備えている。 As shown in FIGS. 1 and 2, the solar cell panel 10 includes, for example, a first protective layer 1, a second protective layer 2, a solar cell part 3, a filler 4, and a support member 5. We are prepared.
 <1-1-1.第1保護層>
 第1保護層1は、例えば、第1面1fと、第2面1sと、を有する(図2参照)。第1実施形態では、第1面1fは、例えば、太陽電池パネル10の前面10fを構成している状態にある。つまり、第1保護層1は、矩形形状の一例としての長方形状の形状を有している。図1の例では、第1保護層1は端縁1aから端縁1dを有する。端縁1aから端縁1dは、それぞれ、第1保護層1の矩形形状の各辺に相当する。端縁1aおよび端縁1bは第1保護層1のX方向の両側にそれぞれ位置している。端縁1aおよび端縁1bは、例えば、+Y方向に沿って延びており、互いに略平行である。端縁1cおよび端縁1dは第1保護層1のY方向の両側にそれぞれ位置している。端縁1cは、例えば、+X方向に沿って延びており、端縁1aの+Y方向の端および端縁1bの+Y方向の端を連結している。端縁1dは、例えば、+X方向に沿って延びており、端縁1aの-Y方向の端および端縁1bの-Y方向の端を連結している。端縁1cおよび端縁1dは、例えば、互いに略平行である。図1および図2の例では、第1面1fが、太陽電池モジュール100の外部の空間(外部空間ともいう)200に対して露出している状態にある。また、第2面1sは、第1面1fの逆側の面である。
<1-1-1. First protective layer>
The first protective layer 1 has, for example, a first surface 1f and a second surface 1s (see FIG. 2). In the first embodiment, the first surface 1f constitutes, for example, the front surface 10f of the solar cell panel 10. That is, the first protective layer 1 has a rectangular shape, which is an example of a rectangular shape. In the example of FIG. 1, the first protective layer 1 has edges 1a to 1d. The edge 1a to edge 1d correspond to each side of the rectangular shape of the first protective layer 1, respectively. The edge 1a and the edge 1b are located on both sides of the first protective layer 1 in the X direction, respectively. The edge 1a and the edge 1b extend, for example, along the +Y direction and are substantially parallel to each other. The edge 1c and the edge 1d are located on both sides of the first protective layer 1 in the Y direction, respectively. The end edge 1c extends, for example, along the +X direction, and connects the end of the end edge 1a in the +Y direction and the end of the end edge 1b in the +Y direction. The end edge 1d extends, for example, along the +X direction, and connects the end of the end edge 1a in the −Y direction and the end of the end edge 1b in the −Y direction. The edge 1c and the edge 1d are, for example, substantially parallel to each other. In the examples shown in FIGS. 1 and 2, the first surface 1f is exposed to a space (also referred to as external space) 200 outside the solar cell module 100. Further, the second surface 1s is a surface opposite to the first surface 1f.
 第1保護層1は、例えば、透光性を有する。具体的には、第1保護層1は、例えば、特定範囲の波長の光に対する透光性を有する。特定範囲の波長は、例えば、太陽電池部3が光電変換し得る光の波長を含む。特定範囲の波長に、太陽光のうちの照射強度の高い光の波長が含まれていれば、太陽電池モジュール100の光電変換効率が向上し得る。 The first protective layer 1 has, for example, light-transmitting properties. Specifically, the first protective layer 1 has, for example, transparency to light having a wavelength in a specific range. The specific range of wavelengths includes, for example, the wavelength of light that can be photoelectrically converted by the solar cell unit 3. If the wavelengths in the specific range include wavelengths of sunlight with high irradiation intensity, the photoelectric conversion efficiency of the solar cell module 100 can be improved.
 第1保護層1の素材には、例えば、耐候性を有する樹脂が適用される。換言すれば、第1保護層1には、例えば、耐候性を有する樹脂で構成された層が適用される。ここで、耐候性は、例えば、屋外で使用された場合に、変形、変色および劣化などの変質を起こしにくい性質を意味する。第1保護層1の素材に樹脂が適用されることで、第1保護層1は、例えば、透湿防水性を有する。このため、第1保護層1は、太陽電池モジュール100の外部空間200から太陽電池部3へ向けた水滴などの水の浸入を低減させることができ、充填材4から外部空間200へ向けて湿気を通過させることができる。ここで、耐候性を有する樹脂は、例えば、フッ素系の樹脂を含む。フッ素系の樹脂は、例えば、フッ化エチレンプロピレン共重合体(Fluorinated Ethylene Propylene:FEP)、エチレン・テトラフルオロエチレン共重合体(Ethylene Tetrafluoroethylene:ETFE)およびエチレン・クロロトリフルオロエチレン共重合体(Ethylene Chlorotrifluoroethylene:ECTFE)などを含む。ここで、例えば、第1保護層1が、2層以上の耐候性を有する樹脂で構成されてもよい。この場合には、第1保護層1に適用されるフッ素系の樹脂は、例えば、2種類以上の樹脂であってもよい。このため、例えば、第1保護層1に適用されるフッ素系の樹脂が、FEP、ETFEおよびECTFEのうちの少なくとも1つの樹脂を含む態様が考えられる。 As the material of the first protective layer 1, for example, a resin having weather resistance is applied. In other words, the first protective layer 1 is made of, for example, a weather-resistant resin. Here, the term "weather resistance" refers to a property that does not easily cause alterations such as deformation, discoloration, and deterioration when used outdoors, for example. By applying resin to the material of the first protective layer 1, the first protective layer 1 has, for example, moisture-permeable and waterproof properties. Therefore, the first protective layer 1 can reduce the intrusion of water such as water droplets from the external space 200 of the solar cell module 100 toward the solar cell section 3, and can reduce the amount of moisture that enters the external space 200 from the filler 4. can be passed. Here, the weather-resistant resin includes, for example, a fluorine-based resin. Fluorine-based resins include, for example, fluorinated ethylene propylene copolymer (FEP), ethylene tetrafluoroethylene copolymer (ETFE), and ethylene chlorotrifluoroethylene copolymer (Ethylene Chlorotrifluoroethylene). :ECTFE) etc. Here, for example, the first protective layer 1 may be composed of two or more layers of resin having weather resistance. In this case, the fluorine-based resin applied to the first protective layer 1 may be, for example, two or more types of resin. For this reason, for example, a mode is conceivable in which the fluororesin applied to the first protective layer 1 includes at least one resin among FEP, ETFE, and ECTFE.
 第1保護層1の厚さは、例えば、0.05ミリメートル(mm)から0.5mm程度とされる。このように、第1保護層1は、透湿防水性を有する比較的密度の小さい樹脂で構成される上、その厚みは薄いので、第1保護層1は軽い。このため、例えば、1mm程度以上の厚みを有する密度の大きなガラスを第1保護層1の代わりに採用した構造に比して、太陽電池モジュール100を軽量化させることができ、また、太陽電池モジュール100を薄膜化させることができる。 The thickness of the first protective layer 1 is, for example, about 0.05 millimeter (mm) to 0.5 mm. In this way, the first protective layer 1 is made of a moisture-permeable and waterproof resin with a relatively low density, and is thin, so the first protective layer 1 is light. Therefore, the weight of the solar cell module 100 can be reduced compared to, for example, a structure in which high-density glass having a thickness of about 1 mm or more is used instead of the first protective layer 1. 100 can be made into a thin film.
 なお、第1保護層1の素材には、フッ素系の樹脂に代えて、あるいは、フッ素系樹脂と共に、アクリル樹脂およびポリカーボネート等の樹脂を適用することができる。アクリル樹脂およびポリカーボネートが適用される場合、該樹脂の厚みは、例えば、0.03mmから0.6mm程度とされる。第1保護層1は複数種類の樹脂が積層されて構成されてもよい。 Note that as the material for the first protective layer 1, resins such as acrylic resin and polycarbonate can be used instead of or together with the fluorine resin. When acrylic resin and polycarbonate are used, the thickness of the resin is, for example, about 0.03 mm to 0.6 mm. The first protective layer 1 may be formed by laminating multiple types of resins.
 <1-1-2.太陽電池部>
 太陽電池部3は、例えば、第1保護層1と第2保護層2との間に位置している。言い換えれば、太陽電池部3は、Z方向において第1保護層1と対向した状態にあり、第2保護層2ともZ方向において対向した状態にある。図1および図2で示されるように、太陽電池部3は、例えば、複数の太陽電池素子31を有する。複数の太陽電池素子31は第1保護層1の第2面1sと第2保護層2との間に位置している。第1実施形態では、複数の太陽電池素子31は、2次元的に並んだ状態にある。図1および図2の例では、複数の太陽電池素子31は、第1保護層1の第2面1sに沿って平面的に配列された状態にある。なお、複数の太陽電池素子31は1次元的に並んでいてもよい。
<1-1-2. Solar cell department>
The solar cell section 3 is located, for example, between the first protective layer 1 and the second protective layer 2. In other words, the solar cell section 3 is in a state facing the first protective layer 1 in the Z direction, and is also in a state facing the second protective layer 2 in the Z direction. As shown in FIGS. 1 and 2, the solar cell section 3 includes, for example, a plurality of solar cell elements 31. The plurality of solar cell elements 31 are located between the second surface 1s of the first protective layer 1 and the second protective layer 2. In the first embodiment, the plurality of solar cell elements 31 are two-dimensionally arranged. In the examples of FIGS. 1 and 2, the plurality of solar cell elements 31 are arranged in a plane along the second surface 1s of the first protective layer 1. Note that the plurality of solar cell elements 31 may be arranged one-dimensionally.
 太陽電池部3は、例えば、複数の第1配線材32と、第2配線材33と、第3配線材34と、をさらに有する。太陽電池部3は、例えば、複数(ここでは、2個)の太陽電池ストリング30を含む。複数の太陽電池ストリング30は、例えば、X方向において配列された状態にある。複数の太陽電池ストリング30のそれぞれは、例えば、複数(ここでは、6個)の太陽電池素子31と、複数の第1配線材32と、を含む。各太陽電池ストリング30において、複数の太陽電池素子31は、例えば、Y方向において配列された状態にある。複数の第1配線材32は、例えば、複数の太陽電池素子31のうちの相互に隣り合う2つの太陽電池素子31を電気的に接続している状態にある。第2配線材33は、相互に隣り合う2つの太陽電池ストリング30を電気的に接続している状態にある。図1および図2の例では、2つの第3配線材34は、それぞれ2つの太陽電池ストリング30に接続された状態にあり、太陽電池パネル10の外部に引き出された状態にある。 The solar cell section 3 further includes, for example, a plurality of first wiring members 32, a second wiring member 33, and a third wiring member 34. The solar cell section 3 includes, for example, a plurality of (here, two) solar cell strings 30. For example, the plurality of solar cell strings 30 are arranged in the X direction. Each of the plurality of solar cell strings 30 includes, for example, a plurality of (here, six) solar cell elements 31 and a plurality of first wiring members 32. In each solar cell string 30, the plurality of solar cell elements 31 are arranged in the Y direction, for example. For example, the plurality of first wiring members 32 are in a state of electrically connecting two mutually adjacent solar cell elements 31 among the plurality of solar cell elements 31. The second wiring member 33 is in a state of electrically connecting two mutually adjacent solar cell strings 30. In the example of FIGS. 1 and 2, the two third wiring members 34 are connected to two solar cell strings 30, respectively, and are drawn out to the outside of the solar cell panel 10.
 複数の太陽電池素子31のそれぞれは、光エネルギーを電気エネルギーに変換することができる。複数の太陽電池素子31のそれぞれは、第1素子面31fと、第2素子面31sとを有する。第1素子面31fは、表(おもて)面側に位置している太陽電池素子31の面である。第2素子面31sは、太陽電池素子31の第1素子面31fとは逆側の面である。図2の例では、第1素子面31fが、+Z方向を向いている状態にあり、第2素子面31sが、-Z方向を向いている状態にある。この場合には、例えば、第1素子面31fが主として光が入射される面(受光面ともいう)としての役割を果たし、第2素子面31sが主として光が入射されない面(非受光面ともいう)としての役割を果たす。 Each of the plurality of solar cell elements 31 can convert light energy into electrical energy. Each of the plurality of solar cell elements 31 has a first element surface 31f and a second element surface 31s. The first element surface 31f is a surface of the solar cell element 31 located on the front surface side. The second element surface 31s is a surface of the solar cell element 31 opposite to the first element surface 31f. In the example of FIG. 2, the first element surface 31f is in a state facing the +Z direction, and the second element surface 31s is in a state facing the -Z direction. In this case, for example, the first element surface 31f primarily serves as a surface onto which light is incident (also referred to as a light-receiving surface), and the second element surface 31s primarily serves as a surface onto which light does not enter (also referred to as a non-light-receiving surface). ).
 第1実施形態では、図3(a)および図3(b)で示されるように、複数の太陽電池素子31のそれぞれは、半導体基板310と、第1取出電極311と、第1集電電極312と、第2取出電極313と、第2集電電極314と、を有する。 In the first embodiment, as shown in FIGS. 3(a) and 3(b), each of the plurality of solar cell elements 31 includes a semiconductor substrate 310, a first extraction electrode 311, and a first current collecting electrode. 312, a second extraction electrode 313, and a second current collection electrode 314.
 半導体基板310には、例えば、結晶系半導体、非晶質系の半導体または化合物半導体が適用される。結晶系半導体は、例えば、結晶シリコンを含む。非晶質系の半導体は、例えば、アモルファスシリコンを含む。化合物半導体は、例えば、銅とインジウムとガリウムとセレンの4種類の元素を用いた半導体、または、カドミウムとテルルの2種類の元素用いた半導体が適用される。ここで、半導体基板310に結晶シリコンが適用される場合を想定する。この場合には、半導体基板310は、主として第1導電型を有する領域(第1導電型領域ともいう)と、第1導電型とは逆の第2導電型を有する領域(第2導電型領域ともいう)と、を有する。第1導電型領域は、例えば、半導体基板310の-Z方向の第2素子面31s側に位置している。第2導電型領域は、例えば、半導体基板310の+Z方向の第1素子面31f側の表層部に位置している。ここで、例えば、第1導電型がp型である場合には、第2導電型がn型となる。また、例えば、第1導電型がn型である場合には、第2導電型がp型となる。これにより、半導体基板310は、第1導電型領域と第2導電型領域との界面に位置しているpn接合部を有する。半導体基板310の厚みは、例えば、0.15mmから0.5mm程度である。 For example, a crystalline semiconductor, an amorphous semiconductor, or a compound semiconductor is applied to the semiconductor substrate 310. The crystalline semiconductor includes, for example, crystalline silicon. Amorphous semiconductors include, for example, amorphous silicon. As the compound semiconductor, for example, a semiconductor using four types of elements, copper, indium, gallium, and selenium, or a semiconductor using two types of elements, cadmium and tellurium, is applied. Here, it is assumed that crystalline silicon is applied to the semiconductor substrate 310. In this case, the semiconductor substrate 310 mainly includes a region having a first conductivity type (also referred to as a first conductivity type region) and a region having a second conductivity type opposite to the first conductivity type (a second conductivity type region). ). The first conductivity type region is located, for example, on the second element surface 31s side of the semiconductor substrate 310 in the −Z direction. The second conductivity type region is located, for example, in the surface layer portion of the semiconductor substrate 310 on the first element surface 31f side in the +Z direction. Here, for example, when the first conductivity type is p-type, the second conductivity type is n-type. Furthermore, for example, when the first conductivity type is n-type, the second conductivity type is p-type. Accordingly, the semiconductor substrate 310 has a pn junction located at the interface between the first conductivity type region and the second conductivity type region. The thickness of the semiconductor substrate 310 is, for example, approximately 0.15 mm to 0.5 mm.
 第1取出電極311および第1集電電極312は、例えば、半導体基板310のうちの第1素子面31f側の面上に位置している。第1取出電極311には、例えば、バスバー電極が適用される。第1集電電極312には、例えば、フィンガー電極が適用される。図3(a)の例では、半導体基板310の第1素子面31f側に、略平行な5本の第1取出電極311が位置し、略平行な多数本の第1集電電極312が、5本の第1取出電極311に略直交した状態で位置している。図3(a)の例では、第1取出電極311のそれぞれは、Y方向に長い長尺形状を有しており、第1集電電極312のそれぞれは、X方向に長い線状の形状を有している。また、半導体基板310の第2導電型領域の上のうち、第1取出電極311および第1集電電極312が形成されていない領域には、例えば、反射防止膜315が位置していてもよい。反射防止膜315は、窒化シリコンなどによって構成された絶縁膜を含む。ここで、第1取出電極311の主成分は、例えば、銀である。主成分とは、含有成分のうち含有される比率(含有率ともいう)が最も大きい(高い)成分のことを意味する。この場合、第1取出電極311は、銀ペーストがスクリーン印刷などで所望の形状に塗布された後に焼成されることで、形成され得る。銀ペーストには、例えば、主成分として銀を含む金属粉末、有機ビヒクルおよびガラスフリットを含有する金属ペーストが適用される。第1集電電極312の主成分も、例えば、銀である。この場合には、第1集電電極312は、第1取出電極311と同じく、銀ペーストがスクリーン印刷などで所望の形状に塗布された後に焼成されることで、形成され得る。第1取出電極311と第1集電電極312とは、例えば、互いに別工程で形成されてもよいし、同一の工程で形成されてもよい。 The first extraction electrode 311 and the first current collecting electrode 312 are located, for example, on the surface of the semiconductor substrate 310 on the first element surface 31f side. For example, a bus bar electrode is applied to the first extraction electrode 311. For example, a finger electrode is applied to the first current collecting electrode 312. In the example of FIG. 3A, five substantially parallel first extraction electrodes 311 are located on the first element surface 31f side of the semiconductor substrate 310, and a large number of substantially parallel first current collecting electrodes 312 are located on the first element surface 31f side of the semiconductor substrate 310. It is located substantially perpendicular to the five first extraction electrodes 311 . In the example of FIG. 3A, each of the first extraction electrodes 311 has a long shape in the Y direction, and each of the first current collecting electrodes 312 has a long linear shape in the X direction. have. Furthermore, for example, an antireflection film 315 may be located on a region of the second conductivity type region of the semiconductor substrate 310 where the first extraction electrode 311 and the first current collection electrode 312 are not formed. . The antireflection film 315 includes an insulating film made of silicon nitride or the like. Here, the main component of the first extraction electrode 311 is, for example, silver. The term "main component" refers to a component that has the largest (highest) ratio (also referred to as content) among the contained components. In this case, the first extraction electrode 311 can be formed by applying silver paste into a desired shape by screen printing or the like and then firing it. For example, a metal paste containing a metal powder containing silver as a main component, an organic vehicle, and a glass frit is applied to the silver paste. The main component of the first current collecting electrode 312 is also silver, for example. In this case, like the first extraction electrode 311, the first current collecting electrode 312 can be formed by applying silver paste into a desired shape by screen printing or the like and then firing it. The first extraction electrode 311 and the first current collecting electrode 312 may be formed in separate steps or in the same step, for example.
 第2取出電極313および第2集電電極314は、例えば、半導体基板310のうちの第2素子面31s側の面上に位置している。第2取出電極313には、例えば、バスバー電極が適用される。図3(b)の例では、第2取出電極313は、半導体基板310の第2素子面31s側において、4行5列のマトリクス状に配列されている。第2取出電極313のそれぞれは、Y方向に長い長尺状の形状を有している。第2集電電極314は、半導体基板310の第2素子面31s側において、第2取出電極313が形成されていない領域の略全面に位置している。平面視において、各第2取出電極313の周縁部が第2集電電極314と重なり合っていてもよい。これにより、各第2取出電極313と第2集電電極314との接続を良好にすることができる。半導体基板310の第1導電型領域と、第2取出電極313および第2集電電極314の一組との間には、所望のパターンでパッシベーション膜が存在していてもよい。パッシベーション膜は、例えば、酸化アルミニウムなどの酸化物または窒化物の薄膜である。ここで、第2取出電極313の主成分は、例えば、銀である。この場合には、第1取出電極311と同じく、第2取出電極313は、銀ペーストがスクリーン印刷などで所望の形状に塗布された後に焼成されることで、形成され得る。第2集電電極314の主成分は、例えば、アルミニウムである。この場合には、第2集電電極314は、アルミニウムペーストがスクリーン印刷などで所望の形状に塗布された後に焼成されることで、形成され得る。アルミニウムペーストには、例えば、主成分としてアルミニウムを含む金属粉末、有機ビヒクルおよびガラスフリットを含有する金属ペーストが適用される。 The second extraction electrode 313 and the second current collection electrode 314 are located, for example, on the surface of the semiconductor substrate 310 on the second element surface 31s side. For example, a busbar electrode is applied to the second extraction electrode 313. In the example of FIG. 3B, the second extraction electrodes 313 are arranged in a matrix of 4 rows and 5 columns on the second element surface 31s side of the semiconductor substrate 310. Each of the second extraction electrodes 313 has an elongated shape that is long in the Y direction. The second current collecting electrode 314 is located on the second element surface 31s side of the semiconductor substrate 310 over substantially the entire area where the second extraction electrode 313 is not formed. In plan view, the peripheral edge of each second extraction electrode 313 may overlap with the second current collecting electrode 314. Thereby, the connection between each second extraction electrode 313 and the second current collecting electrode 314 can be improved. A passivation film may be present in a desired pattern between the first conductivity type region of the semiconductor substrate 310 and the pair of the second extraction electrode 313 and the second current collection electrode 314. The passivation film is, for example, a thin film of oxide or nitride such as aluminum oxide. Here, the main component of the second extraction electrode 313 is, for example, silver. In this case, like the first extraction electrode 311, the second extraction electrode 313 can be formed by applying silver paste into a desired shape by screen printing or the like and then firing it. The main component of the second current collecting electrode 314 is, for example, aluminum. In this case, the second current collecting electrode 314 can be formed by applying aluminum paste into a desired shape by screen printing or the like and then firing it. For example, a metal paste containing a metal powder containing aluminum as a main component, an organic vehicle, and a glass frit is applied to the aluminum paste.
 第1配線材32は、例えば、1つの太陽電池素子31の第1取出電極311と、この1つの太陽電池素子31の隣の他の1つの太陽電池素子31の第2取出電極313とを電気的に接続している状態にある。図3(a)および図3(b)の例では、複数の第1配線材32の外縁が仮想的に2点鎖線で描かれている。図1から図3(b)の例では、各第1配線材32は、Y方向に長い長尺状の形状を有している。ここでは、第1配線材32は、例えば、第1取出電極311および第2取出電極313に接合された状態にある。例えば、第1配線材32と第1取出電極311との間には、第1接合部分321が存在している。第1接合部分321は、第1配線材32と第1取出電極311とを接合している部分である。各第1配線材32は、1つの太陽電池素子31の第1取出電極311に第1接合部分321を介して接合している状態にある。また、例えば、第1配線材32と第2取出電極313との間には、第2接合部分322が存在している。第2接合部分322は、第1配線材32と第2取出電極313とを接合している部分である。各第1配線材32は、1つの太陽電池素子31の隣の他の1つの太陽電池素子31の第2取出電極313に第2接合部分322を介して接合している状態にある。第1配線材32には、例えば、線状あるいは帯状の導電性を有する金属体が適用される。第1接合部分321および第2接合部分322の素材には、例えば、半田(はんだ)などの低融点の合金または低融点の単体の金属などが適用される。より具体的には、例えば、0.1mmから0.2mm程度の厚さと1mmから2mm程度の幅とを有する銅箔が第1配線材32に適用され、この第1配線材32の全面に半田が被覆された状態にある。第1配線材32は、例えば、半田付けによって、第1取出電極311および第2取出電極313に電気的に接続されている状態にある。この場合には、例えば、第1配線材32と第1取出電極311との間に位置している半田が第1接合部分321を構成している状態にある。また、例えば、第1配線材32と第2取出電極313との間に位置している半田が第2接合部分322を構成している状態にある。 The first wiring material 32 connects, for example, the first lead-out electrode 311 of one solar cell element 31 and the second lead-out electrode 313 of another solar cell element 31 adjacent to this one solar cell element 31 with electricity. is in a state where it is connected. In the examples of FIGS. 3A and 3B, the outer edges of the plurality of first wiring members 32 are virtually drawn with two-dot chain lines. In the examples shown in FIGS. 1 to 3(b), each first wiring member 32 has an elongated shape that is long in the Y direction. Here, the first wiring material 32 is in a state of being joined to the first extraction electrode 311 and the second extraction electrode 313, for example. For example, a first joint portion 321 exists between the first wiring material 32 and the first extraction electrode 311. The first joint portion 321 is a portion where the first wiring material 32 and the first extraction electrode 311 are joined. Each first wiring member 32 is in a state of being joined to the first lead-out electrode 311 of one solar cell element 31 via a first joint portion 321. Further, for example, a second joint portion 322 exists between the first wiring material 32 and the second extraction electrode 313. The second joint portion 322 is a portion where the first wiring material 32 and the second extraction electrode 313 are joined. Each first wiring member 32 is in a state of being joined to the second extraction electrode 313 of another solar cell element 31 adjacent to one solar cell element 31 via a second joint portion 322 . As the first wiring material 32, for example, a linear or band-shaped electrically conductive metal body is applied. As the material for the first joint portion 321 and the second joint portion 322, for example, a low melting point alloy such as solder or a low melting point single metal is applied. More specifically, for example, a copper foil having a thickness of about 0.1 mm to 0.2 mm and a width of about 1 mm to 2 mm is applied to the first wiring material 32, and solder is applied to the entire surface of the first wiring material 32. is covered. The first wiring material 32 is in a state of being electrically connected to the first extraction electrode 311 and the second extraction electrode 313, for example, by soldering. In this case, for example, the solder located between the first wiring material 32 and the first extraction electrode 311 constitutes the first joint portion 321. Further, for example, the solder located between the first wiring material 32 and the second extraction electrode 313 constitutes the second joint portion 322 .
 <1-1-3.充填材>
 充填材4は、第1保護層1と第2保護層2との間において太陽電池部3を覆っている状態にある。換言すれば、充填材4は第1保護層1と第2保護層2との間において複数の太陽電池素子31を覆っている状態にある。別の観点から言えば、充填材4は、例えば、第1保護層1と第2保護層2との間の領域(間隙領域ともいう)10gに、太陽電池部3を覆いつつ充填されている状態にある。
<1-1-3. Filling material>
The filler 4 is in a state covering the solar cell part 3 between the first protective layer 1 and the second protective layer 2. In other words, the filler 4 is in a state covering the plurality of solar cell elements 31 between the first protective layer 1 and the second protective layer 2. From another point of view, the filler 4 is filled in, for example, a region (also referred to as a gap region) 10g between the first protective layer 1 and the second protective layer 2 while covering the solar cell part 3. in a state.
 充填材4は、表(おもて)面に位置する第1面4fと、第1面4fとは逆側に位置する第2面4sと、を有している。充填材4の第1面4fは、第1保護層1の第2面1sに接した状態にあり、充填材4の第2面4sは第2保護層2に接した状態にある。 The filler 4 has a first surface 4f located on the front surface, and a second surface 4s located on the opposite side to the first surface 4f. The first surface 4f of the filler 4 is in contact with the second surface 1s of the first protective layer 1, and the second surface 4s of the filler 4 is in contact with the second protective layer 2.
 第1実施形態では、充填材4は、第1充填材41と、第2充填材42と、を含む。第1充填材41は、例えば、第2充填材42に対して前面10f側に位置している。逆に言えば、第2充填材42は、第1充填材41に対して裏面10b側に位置している。第1充填材41は、例えば、第1面4fを構成している状態にあり、太陽電池部3の第1保護層1側の全面を覆っている状態にある。換言すれば、第1充填材41は、例えば、第1保護層1と複数の太陽電池素子31との間において、複数の太陽電池素子31を覆っている状態にある。第2充填材42は、例えば、第2面4sを構成している状態にあり、太陽電池部3の第2保護層2側の全面を覆っている状態にある。換言すれば、第2充填材42は、例えば、第2保護層2と複数の太陽電池素子31との間において、複数の太陽電池素子31を覆っている状態にある。このため、第1実施形態では、太陽電池部3は、例えば、第1充填材41と第2充填材42とによって挟み込まれつつ囲まれている状態にある。これにより、例えば、充填材4によって太陽電池部3の姿勢が保たれ得る。 In the first embodiment, the filler 4 includes a first filler 41 and a second filler 42. The first filler 41 is located on the front surface 10f side with respect to the second filler 42, for example. Conversely, the second filler 42 is located on the back surface 10b side with respect to the first filler 41. The first filler 41 is in a state of forming, for example, the first surface 4f, and is in a state of covering the entire surface of the solar cell section 3 on the first protective layer 1 side. In other words, the first filler 41 is in a state covering the plurality of solar cell elements 31, for example, between the first protective layer 1 and the plurality of solar cell elements 31. The second filler 42 is in a state of forming, for example, the second surface 4s, and is in a state of covering the entire surface of the solar cell section 3 on the second protective layer 2 side. In other words, the second filler 42 is in a state of covering the plurality of solar cell elements 31, for example, between the second protective layer 2 and the plurality of solar cell elements 31. Therefore, in the first embodiment, the solar cell section 3 is in a state of being sandwiched and surrounded by the first filler 41 and the second filler 42, for example. Thereby, for example, the attitude of the solar cell section 3 can be maintained by the filler 4.
 また、充填材4は、例えば、透光性を有する。ここでは、充填材4は、例えば、上述した特定範囲の波長の光に対する透光性を有する。ここで、例えば、充填材4を構成する第1充填材41および第2充填材42のうち、少なくとも第1充填材41が透光性を有していれば、前面10f側からの入射光が、太陽電池部3まで到達し得る。 Furthermore, the filler 4 has, for example, translucency. Here, the filler 4 has, for example, translucency to light having a wavelength in the above-mentioned specific range. Here, for example, if at least the first filler 41 of the first filler 41 and the second filler 42 constituting the filler 4 has translucency, the incident light from the front surface 10f side , can reach up to the solar cell section 3.
 第1充填材41の素材には、例えば、エチレン酢酸ビニル共重合体(EVA)、ポリビニルブチラール(PVB)などのポリビニルアセタールおよび酸変性樹脂などが適用される。ここで、例えば、第1充填材41の素材に比較的安価なEVAが適用されれば、複数の太陽電池素子31を保護する性能を容易に実現することができる。酸変性樹脂には、例えば、ポリオレフィンなどの樹脂に対する酸によるグラフト変性などで形成することができる変性ポリオレフィン樹脂などが適用される。酸変性樹脂のグラフト変性に使用可能な酸には、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、無水マレイン酸、無水ハイミック酸、無水イタコン酸および無水シトラコン酸などが適用される。第2充填材42の素材には、例えば、第1充填材41と同じく、EVA、PVBなどのポリビニルアセタールおよび酸変性樹脂などが適用される。第1充填材41および第2充填材42は、例えば、2種類以上の素材によって構成されていてもよい。 As the material for the first filler 41, for example, ethylene vinyl acetate copolymer (EVA), polyvinyl acetal such as polyvinyl butyral (PVB), acid-modified resin, etc. are used. Here, for example, if relatively inexpensive EVA is used as the material of the first filler 41, the performance of protecting the plurality of solar cell elements 31 can be easily achieved. The acid-modified resin includes, for example, a modified polyolefin resin that can be formed by graft modification of a resin such as polyolefin with an acid. Examples of acids that can be used for graft modification of acid-modified resins include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, maleic anhydride, hymic anhydride, itaconic anhydride, and citraconic anhydride. Ru. As the material for the second filler 42, for example, like the first filler 41, polyvinyl acetal such as EVA and PVB, acid-modified resin, etc. are used. The first filler 41 and the second filler 42 may be made of two or more types of materials, for example.
 第2充填材42には、例えば、顔料が含まれていてもよい。例えば白色の顔料が含まれている場合には、太陽電池部3を透過した光を第2充填材42で反射させて、再び、太陽電池部3に入射させることができる。これにより、太陽電池モジュール100の発電効率を向上させることができる。 The second filler 42 may contain, for example, a pigment. For example, when a white pigment is included, the light transmitted through the solar cell section 3 can be reflected by the second filler 42 and made to enter the solar cell section 3 again. Thereby, the power generation efficiency of the solar cell module 100 can be improved.
 なお、充填材4は第2充填材42を有さず、第1充填材41のみを有していても構わない。この場合、第1充填材41が第1保護層1と第2保護層2との間において、太陽電池部3を覆う。 Note that the filler 4 may not include the second filler 42 and may include only the first filler 41. In this case, the first filler 41 covers the solar cell section 3 between the first protective layer 1 and the second protective layer 2.
 <1-1-4.裏面保護層>
 第2保護層2は、例えば、太陽電池パネル10の裏面10bを構成している状態にある。第2保護層2は、例えば、第1保護層1の第2面1sに対向している状態にある。第2保護層2は充填材4に対して第1保護層1とは逆側において、充填材4と接している。第2保護層2は、例えば、太陽電池部3および支持部材5の内側部分51とZ方向において対向した状態で位置する。内側部分51は、後に述べるように、X方向において、支持部材5のうち外側部分52に対して太陽電池部3側の部分である。
<1-1-4. Back protective layer>
The second protective layer 2 is in a state of forming the back surface 10b of the solar cell panel 10, for example. The second protective layer 2 is, for example, in a state facing the second surface 1s of the first protective layer 1. The second protective layer 2 is in contact with the filler 4 on the side opposite to the first protective layer 1 with respect to the filler 4 . The second protective layer 2 is located, for example, facing the solar cell section 3 and the inner portion 51 of the support member 5 in the Z direction. As will be described later, the inner portion 51 is a portion of the support member 5 on the solar cell section 3 side with respect to the outer portion 52 in the X direction.
 第2保護層2は、例えば、太陽電池部3を裏面10b側から保護することができる。第2保護層2には、例えば、裏面10bを構成するバックシートが適用される。バックシートの厚さは、例えば、0.15mmから0.5mm程度とされる。バックシートの素材には、例えば、樹脂が適用される。該樹脂には、例えば、第1保護層1と同じ素材を適用することができる。第2保護層2は、裏面10b側から平面透視した場合に、第1保護層1と同一または類似の形状を有する。例えば、裏面10b側から平面透視した場合に、第1保護層1および第2保護層2の双方が長方形状の外形を有する構成が想定される。図1および図2で示されるように、第2保護層2は端縁2aから端縁2dを有する。端縁2aから端縁2dは、それぞれ、第2保護層2の矩形形状の各辺に相当する。端縁2aおよび端縁2bは第2保護層2のX方向の両側にそれぞれ位置している。端縁2aおよび端縁2bは、例えば、+Y方向に沿って延びており、互いに略平行である。端縁2cおよび端縁2dは第2保護層2のY方向の両側にそれぞれ位置している。端縁2cは、例えば、+X方向に沿って延びており、端縁2aの+Y方向の端および端縁2bの+Y方向の端を連結している。端縁2dは、例えば、+X方向に沿って延びており、端縁2aの-Y方向の端および端縁2bの-Y方向の端を連結している。端縁2cおよび端縁2dは、例えば、互いに略平行である。 The second protective layer 2 can, for example, protect the solar cell section 3 from the back surface 10b side. For example, a back sheet forming the back surface 10b is applied to the second protective layer 2. The thickness of the back sheet is, for example, about 0.15 mm to 0.5 mm. For example, resin is used as the material for the back sheet. For example, the same material as the first protective layer 1 can be applied to the resin. The second protective layer 2 has the same or similar shape to the first protective layer 1 when viewed in plan from the back surface 10b side. For example, a configuration is assumed in which both the first protective layer 1 and the second protective layer 2 have a rectangular outer shape when viewed from the rear surface 10b side. As shown in FIGS. 1 and 2, the second protective layer 2 has edges 2a to 2d. The edge 2a to edge 2d correspond to each side of the rectangular shape of the second protective layer 2, respectively. The edge 2a and the edge 2b are located on both sides of the second protective layer 2 in the X direction, respectively. The edge 2a and the edge 2b extend, for example, along the +Y direction and are substantially parallel to each other. The edge 2c and the edge 2d are located on both sides of the second protective layer 2 in the Y direction, respectively. The edge 2c extends, for example, along the +X direction, and connects the edge 2a in the +Y direction and the edge 2b in the +Y direction. The end edge 2d extends, for example, along the +X direction, and connects the end of the end edge 2a in the −Y direction and the end of the end edge 2b in the −Y direction. The edge 2c and the edge 2d are, for example, substantially parallel to each other.
 <1-1-5.支持部材>
 支持部材5は、太陽電池パネル10の剛性を向上させるための部材であり、例えば、第1保護層1、第2保護層2および充填材4の全ての剛性よりも高い剛性を有している。支持部材5の素材には、例えば、金属を適用することができ、より具体的な一例として、アルミニウムもしくはステンレス鋼を適用することができる。
<1-1-5. Support member>
The support member 5 is a member for improving the rigidity of the solar cell panel 10, and has higher rigidity than all of the first protective layer 1, second protective layer 2, and filler 4, for example. . For example, metal can be used as the material of the support member 5, and as a more specific example, aluminum or stainless steel can be used.
 支持部材5は、表面保護層1の主面に向かって平面視した場合、太陽電池部3と間隔を空けて隣り合う状態で位置している。言い換えれば、支持部材5は、視線がZ方向に沿う状態で見た場合において、太陽電池部3と間隔を空けて隣り合う状態で位置している。以下では、視線がZ方向に沿う状態で見ることを、単に平面視とも呼ぶ。支持部材5は、内側部分51と、外側部分52と、を含んでいる。内側部分51は第1保護層1とZ方向において対向した状態にあり、第2保護層2ともZ方向において対向した状態にある。 When viewed from above toward the main surface of the surface protection layer 1, the support member 5 is located adjacent to the solar cell section 3 with an interval therebetween. In other words, the support member 5 is located adjacent to the solar cell section 3 with an interval when viewed with the line of sight along the Z direction. Hereinafter, viewing with the line of sight along the Z direction will also simply be referred to as planar viewing. The support member 5 includes an inner portion 51 and an outer portion 52. The inner portion 51 faces the first protective layer 1 in the Z direction, and also faces the second protective layer 2 in the Z direction.
 外側部分52は内側部分51から、太陽電池部3とは反対側(つまり外側)に延びている状態にある。図1および図2の例では、外側部分52は、平面視において、内側部分51から、第1保護層1および第2保護層2の外側に延びている状態にある。つまり、外側部分52は、第1保護層1とZ方向において対向していない状態にあり、第2保護層2ともZ方向において対向していない状態にある。支持部材5の内側部分51は、平面視において、該支持部材5の外側部分52に対して太陽電池部3側(つまり内側)に位置している。 The outer portion 52 extends from the inner portion 51 to the side opposite to the solar cell section 3 (that is, to the outside). In the example of FIGS. 1 and 2, the outer portion 52 extends from the inner portion 51 to the outside of the first protective layer 1 and the second protective layer 2 in plan view. That is, the outer portion 52 is not facing the first protective layer 1 in the Z direction, nor is it facing the second protective layer 2 in the Z direction. The inner portion 51 of the support member 5 is located on the solar cell section 3 side (that is, inside) with respect to the outer portion 52 of the support member 5 in plan view.
 図1および図2の例では、支持部材5は板状形状を有しており、平面視において長方形状の形状を有している。図2の例では、支持部材5のZX断面も長方形状の形状を有している。支持部材5の角部は適宜に面取りされていてもよい。支持部材5の長手方向(ここではY方向)は、例えば、第1保護層1の1辺である端縁1aに沿っている。また、支持部材5の長手方向は、例えば、1つの太陽電池ストリング30に含まれる複数の太陽電池素子31の配列方向(ここではY方向)に沿っている。つまり、支持部材5の長手方向は、例えば、第1配線材32の長手方向(ここではY方向)に沿っている。 In the examples shown in FIGS. 1 and 2, the support member 5 has a plate-like shape, and has a rectangular shape in plan view. In the example of FIG. 2, the ZX cross section of the support member 5 also has a rectangular shape. The corners of the support member 5 may be chamfered as appropriate. The longitudinal direction (here, the Y direction) of the support member 5 is, for example, along the edge 1a, which is one side of the first protective layer 1. Further, the longitudinal direction of the support member 5 is, for example, along the arrangement direction (here, the Y direction) of the plurality of solar cell elements 31 included in one solar cell string 30. That is, the longitudinal direction of the support member 5 is along, for example, the longitudinal direction of the first wiring member 32 (here, the Y direction).
 図1および図2の例では、太陽電池パネル10は2つの支持部材5を含んでいる。2つの支持部材5は、それぞれ、第1保護層1の端縁1aおよび端縁1bに沿う状態で位置している。つまり、一方の支持部材5は第1保護層1の端縁1aに位置しており、他方の支持部材5は第1保護層1の端縁1bに位置している。各支持部材5は、長手方向がY方向となる長方形の形状を有している。以下では、一方の支持部材5を支持部材5Aとも呼び、他方の支持部材5を支持部材5Bとも呼ぶ。この称呼に則れば、端縁1aは、第1保護層1の支持部材5A側の端縁であり、端縁1bは、第1保護層1の支持部材5B側の端縁である、といえる。また、端縁2aは、第2保護層2の支持部材5A側の端縁であり、端縁2bは、第2保護層2の支持部材5B側の端縁である、といえる。 In the example of FIGS. 1 and 2, the solar panel 10 includes two support members 5. The two support members 5 are located along the edge 1a and the edge 1b of the first protective layer 1, respectively. That is, one support member 5 is located at the edge 1a of the first protective layer 1, and the other support member 5 is located at the edge 1b of the first protective layer 1. Each support member 5 has a rectangular shape whose longitudinal direction is the Y direction. Below, one support member 5 is also called support member 5A, and the other support member 5 is also called support member 5B. According to this name, the edge 1a is the edge of the first protective layer 1 on the support member 5A side, and the edge 1b is the edge of the first protective layer 1 on the support member 5B side. I can say that. Furthermore, it can be said that the edge 2a is the edge of the second protective layer 2 on the support member 5A side, and the edge 2b is the edge of the second protective layer 2 on the support member 5B side.
 充填材4は第1保護層1と支持部材5Aとの間にも位置している。つまり、充填材4は第1保護層1と支持部材5Aとの間に充填されている状態にある。また、充填材4は第1保護層1と支持部材5Bとの間にも位置している。つまり、充填材4は第1保護層1と支持部材5Bとの間に充填されている状態にある。このため、支持部材5Aおよび支持部材5Bは充填材4を介して第1保護層1に接着固定される。各支持部材5の長手方向(ここではY方向)の長さは、例えば、第1保護層1の長さと略等しい。各支持部材5の短手方向(ここではX方向)の幅は、例えば、数十mm以上に設定される。各支持部材5の内側部分51の幅は、例えば、各支持部材5の幅の20%以上かつ80%以下程度に設定される。これにより、各支持部材5を比較的に高い接着強度で充填材4に一体化させることができる。各支持部材5の厚みは太陽電池部3の厚みよりも大きく、例えば、1mmから5mm程度に設定される。 The filler 4 is also located between the first protective layer 1 and the support member 5A. That is, the filler 4 is in a state filled between the first protective layer 1 and the support member 5A. Further, the filler 4 is also located between the first protective layer 1 and the support member 5B. That is, the filler 4 is in a state filled between the first protective layer 1 and the support member 5B. Therefore, the support member 5A and the support member 5B are adhesively fixed to the first protective layer 1 via the filler 4. The length of each support member 5 in the longitudinal direction (in the Y direction here) is, for example, approximately equal to the length of the first protective layer 1. The width of each support member 5 in the transverse direction (here, the X direction) is set to, for example, several tens of mm or more. The width of the inner portion 51 of each support member 5 is set, for example, to approximately 20% or more and 80% or less of the width of each support member 5. Thereby, each support member 5 can be integrated with the filler 4 with relatively high adhesive strength. The thickness of each support member 5 is larger than the thickness of the solar cell section 3, and is set to about 1 mm to 5 mm, for example.
 図1および図2で示されるように、充填材4は第1保護層1と支持部材5Aの内側部分51との間から、平面視において第1保護層1の外側にはみ出た状態にある。言い換えれば、充填材4は、平面視において、第1保護層1の端縁1aから支持部材5Aの内側部分51とは反対側に延びた状態にある。さらに言い換えれば、充填材4の第1保護層1側かつ支持部材5Aの外側部分52側の端縁41aの少なくとも一部は、平面視において、第1保護層1の端縁1aに対して外側に位置している。図1で示されるように、充填材4は、第1保護層1の端縁1aの全領域において、端縁1aから外側にはみ出た状態にあってもよい。つまり、充填材4の端縁41aの全領域は、第1保護層1の端縁1aに対して外側に位置していてもよい。充填材4のうち第1保護層1の端縁1aよりも外側に位置する部分は、支持部材5Aの外側部分52に接した状態にある。つまり、該部分は支持部材5Aの外側部分52に接着された状態にある。 As shown in FIGS. 1 and 2, the filler 4 protrudes from between the first protective layer 1 and the inner portion 51 of the support member 5A to the outside of the first protective layer 1 in plan view. In other words, the filler 4 extends from the edge 1a of the first protective layer 1 to the side opposite to the inner portion 51 of the support member 5A in plan view. In other words, at least a part of the edge 41a of the filler 4 on the first protective layer 1 side and on the outer portion 52 side of the support member 5A is located on the outside with respect to the edge 1a of the first protective layer 1 in plan view. It is located in As shown in FIG. 1, the filler 4 may protrude outward from the edge 1a over the entire area of the edge 1a of the first protective layer 1. In other words, the entire area of the edge 41a of the filler 4 may be located on the outside with respect to the edge 1a of the first protective layer 1. A portion of the filler 4 located outside the edge 1a of the first protective layer 1 is in contact with the outside portion 52 of the support member 5A. That is, this portion is in a state of being adhered to the outer portion 52 of the support member 5A.
 充填材4のうち第1保護層1の端縁1aよりも外側に位置する部分のX方向の幅は、例えば、0.1mm以上であってもよく、0.2mm以上であってもよく、0.5mm以上であってもよく、1mm以上であってもよく、2mm以上であってもよい。 The width in the X direction of the portion of the filler 4 located outside the edge 1a of the first protective layer 1 may be, for example, 0.1 mm or more, or 0.2 mm or more, It may be 0.5 mm or more, 1 mm or more, or 2 mm or more.
 図1および図2で示されるように、充填材4は、第1保護層1と支持部材5Bの内側部分51との間から、平面視において第1保護層1の外側にはみ出た状態にあってもよい。言い換えれば、充填材4は、平面視において、第1保護層1の端縁1bから支持部材5Bの内側部分51とは反対側に延びた状態にあってもよい。さらに言い換えれば、充填材4の第1保護層1側かつ支持部材5Bの外側部分52側の端縁41bの少なくとも一部は、平面視において、第1保護層1の端縁1bに対して外側に位置していてもよい。図1で示されるように、充填材4は、第1保護層1の端縁1bの全領域において、端縁1bから外側にはみ出た状態にあってもよい。つまり、充填材4の端縁41bのY方向の全領域は、第1保護層1の端縁1bに対して外側に位置していてもよい。充填材4のうち第1保護層1の端縁1bよりも外側に位置する部分は、支持部材5Bの外側部分52に接した状態にある。つまり、該部分は支持部材5Bの外側部分52に接着された状態にある。 As shown in FIGS. 1 and 2, the filler 4 protrudes from between the first protective layer 1 and the inner portion 51 of the support member 5B to the outside of the first protective layer 1 in plan view. You can. In other words, the filler 4 may extend from the edge 1b of the first protective layer 1 to the side opposite to the inner portion 51 of the support member 5B in plan view. In other words, at least a part of the edge 41b of the filler 4 on the first protective layer 1 side and on the outer portion 52 side of the support member 5B is located on the outside with respect to the edge 1b of the first protective layer 1 in plan view. It may be located in As shown in FIG. 1, the filler 4 may protrude outward from the edge 1b over the entire area of the edge 1b of the first protective layer 1. That is, the entire area of the edge 41b of the filler 4 in the Y direction may be located outside of the edge 1b of the first protective layer 1. A portion of the filler 4 located outside the edge 1b of the first protective layer 1 is in contact with the outside portion 52 of the support member 5B. That is, this portion is in a state of being adhered to the outer portion 52 of the support member 5B.
 充填材4のうち第1保護層1の端縁1bよりも外側に位置する部分のX方向の幅は、例えば、0.1mm以上であってもよく、0.2mm以上であってもよく、0.5mm以上であってもよく、1mm以上であってもよく、2mm以上であってもよい。 The width in the X direction of the portion of the filler 4 located outside the edge 1b of the first protective layer 1 may be, for example, 0.1 mm or more, or 0.2 mm or more, It may be 0.5 mm or more, 1 mm or more, or 2 mm or more.
 図2の例では、充填材4は第2保護層2と支持部材5Aとの間にも位置している。つまり、充填材4は第2保護層2と支持部材5Aとの間に充填されている状態にある。また、充填材4は第2保護層2と支持部材5Bとの間にも位置しており、第2保護層2と支持部材5との間に充填された状態にある。このため、支持部材5Aおよび支持部材5Bは充填材4を介して第2保護層2にも接着固定される。 In the example of FIG. 2, the filler 4 is also located between the second protective layer 2 and the support member 5A. That is, the filler 4 is in a state filled between the second protective layer 2 and the support member 5A. Further, the filler 4 is also located between the second protective layer 2 and the support member 5B, and is in a state filled between the second protective layer 2 and the support member 5. Therefore, the support member 5A and the support member 5B are also adhesively fixed to the second protective layer 2 via the filler 4.
 図2の例では、充填材4は第2保護層2と支持部材5Aの内側部分51との間から、平面視において第2保護層2の外側にはみ出た状態にあり、第2保護層2と支持部材5Bの内側部分51との間から、平面視において第2保護層2の外側にはみ出た状態にある。言い換えれば、充填材4は、平面視において、第2保護層2の端縁2aから支持部材5Aの内側部分51とは反対側に延びた状態にあり、第2保護層2の端縁2bから支持部材5Bの内側部分51とは反対側に延びた状態にある。さらに言い換えれば、充填材4の第2保護層2側かつ支持部材5Aの外側部分52側の端縁42aの少なくとも一部は、平面視において、第2保護層2の端縁2aに対して外側に位置しており、充填材4の第2保護層2側かつ支持部材5Bの外側部分52側の端縁42bの少なくとも一部は、平面視において、第2保護層2の端縁2bに対して外側に位置している。充填材4は、第2保護層2の端縁2aおよび端縁2bの各々の全領域において、外側にはみ出た状態にあってもよい。つまり、充填材4の端縁42aのY方向の全領域は、第2保護層2の端縁2aに対して外側に位置していてもよく、充填材4の端縁42bのY方向の全領域は、第2保護層2の端縁2bに対して外側に位置していてもよい。充填材4のうち第2保護層2よりも外側に位置する部分は、支持部材5の外側部分52に接した状態にある。つまり、該部分は支持部材5の外側部分52に接着した状態にある。 In the example of FIG. 2, the filler 4 is in a state of protruding from between the second protective layer 2 and the inner portion 51 of the support member 5A to the outside of the second protective layer 2 in plan view, and The second protective layer 2 protrudes from between the inner portion 51 of the support member 5B and the inner portion 51 of the support member 5B in a plan view. In other words, the filler 4 extends from the edge 2a of the second protective layer 2 to the side opposite to the inner portion 51 of the support member 5A, and from the edge 2b of the second protective layer 2 in a plan view. It extends in the opposite direction from the inner portion 51 of the support member 5B. In other words, at least a portion of the edge 42a of the filler 4 on the second protective layer 2 side and on the outer portion 52 side of the support member 5A is located on the outside with respect to the edge 2a of the second protective layer 2 in plan view. At least a part of the edge 42b of the filler 4 on the second protective layer 2 side and on the outer portion 52 side of the support member 5B is located at a distance from the edge 2b of the second protective layer 2 in plan view. It is located on the outside. The filler 4 may protrude outward in the entire area of each of the edge 2a and the edge 2b of the second protective layer 2. That is, the entire area of the edge 42a of the filler 4 in the Y direction may be located outside of the edge 2a of the second protective layer 2, and the entire area of the edge 42b of the filler 4 in the Y direction may be located outside of the edge 2a of the second protective layer 2. The region may be located outside with respect to the edge 2b of the second protective layer 2. A portion of the filler 4 located outside the second protective layer 2 is in contact with an outside portion 52 of the support member 5 . That is, this part is in a state of being adhered to the outer part 52 of the support member 5.
 充填材4のうち第2保護層2よりも外側に位置する部分のX方向の幅は、例えば、0.1mm以上であってもよく、0.2mm以上であってもよく、0.5mm以上であってもよく、1mm以上であってもよく、2mm以上であってもよい。 The width in the X direction of the portion of the filler 4 located outside the second protective layer 2 may be, for example, 0.1 mm or more, 0.2 mm or more, or 0.5 mm or more. It may be 1 mm or more, or it may be 2 mm or more.
 各支持部材5の外側部分52は外部の建材などの取付対象部材に取り付けられる。例えば、外側部分52には取付穴(不図示)が形成されてもよい。取付穴は、充填材4よりも外側の領域において、外側部分52をZ方向に貫通する。取付用のボルトが取付穴を貫通して取付対象部材に取り付けられることにより、太陽電池パネル10を取付対象部材に取り付けることができる。図1および図2の例では、2つの支持部材5がそれぞれ太陽電池パネル10の両側に位置しているので、太陽電池パネル10の両側の2つの支持部材5を取付対象部材に固定することができる。このため、太陽電池パネル10をより強固に取付対象部材に取り付けることができる。支持部材5は取付部材である、ともいえる。 The outer portion 52 of each support member 5 is attached to an attachment target member such as an external building material. For example, outer portion 52 may be formed with mounting holes (not shown). The attachment hole penetrates the outer portion 52 in the Z direction in a region outside the filler 4. The solar cell panel 10 can be attached to the attachment target member by passing the mounting bolts through the attachment holes and attaching the solar cell panel 10 to the attachment target member. In the examples of FIGS. 1 and 2, the two support members 5 are located on both sides of the solar panel 10, so it is possible to fix the two support members 5 on both sides of the solar panel 10 to the attachment target member. can. Therefore, the solar cell panel 10 can be more firmly attached to the attachment target member. It can also be said that the support member 5 is a mounting member.
 また、図1の例では、剛体である支持部材5は、太陽電池パネル10のY方向の両側には主として位置していない。つまり、支持部材5は、太陽電池パネル10のうち+Y方向の端部であって+X方向に沿って延びた端部、および、-Y方向の端部であって+X方向に沿って延びた端部には、実質的に位置していない。このため、図5で示されるように、外力F1が支持部材5に印加されることにより、太陽電池パネル10は、Y方向に沿う方向に向かって見て、円弧状に撓むことができる。例えば、太陽電池パネル10は、半径が数百mm(例えば500mm)程度の円弧に沿う状態まで、撓むことができる。言い換えれば、太陽電池パネル10は、視線がY方向に沿う状態で見た場合において、円弧状に撓むことができる。これによれば、太陽電池パネル10を湾曲状の取付対象部材に取り付けやすい。 Further, in the example of FIG. 1, the support members 5, which are rigid bodies, are not mainly located on both sides of the solar cell panel 10 in the Y direction. That is, the supporting member 5 is an end of the solar cell panel 10 in the +Y direction and extending along the +X direction, and an end in the -Y direction and extending along the +X direction. There is no substantial location in the area. Therefore, as shown in FIG. 5, by applying the external force F1 to the support member 5, the solar cell panel 10 can be bent in an arc shape when viewed in the direction along the Y direction. For example, the solar cell panel 10 can be bent to a state along an arc with a radius of about several hundred mm (for example, 500 mm). In other words, the solar cell panel 10 can be bent in an arc shape when viewed with the line of sight along the Y direction. According to this, it is easy to attach the solar cell panel 10 to the curved attachment target member.
 <1-1-6.充填材の厚み>
 図2で示されるように、充填材4の厚みは太陽電池部3において小さくてもよく、太陽電池部3と支持部材5との間において大きくてもよい。これによれば、支持部材5と太陽電池部3との間において、太陽電池パネル10の強度を向上させることができる。したがって、太陽電池パネル10は撓みによる応力に適切に対応することができる。また、充填材4は太陽電池部3において薄いので、太陽電池パネル10の可撓性を向上させることができる。つまり、太陽電池パネル10の可撓性および強度を両立させることができる。
<1-1-6. Filler thickness>
As shown in FIG. 2, the thickness of the filler 4 may be small in the solar cell part 3, or may be large in the space between the solar cell part 3 and the support member 5. According to this, the strength of the solar cell panel 10 can be improved between the support member 5 and the solar cell section 3. Therefore, the solar cell panel 10 can appropriately cope with stress due to bending. Furthermore, since the filler 4 is thin in the solar cell section 3, the flexibility of the solar cell panel 10 can be improved. In other words, it is possible to achieve both flexibility and strength of the solar cell panel 10.
 <1-2.太陽電池モジュールの特性>
 本実施形態によれば、剛体である支持部材5の内側部分51が、第1保護層1と第2保護層2との間において充填材4によって覆われている。このため、太陽電池パネル10の剛性を向上させることができる。図1の例では、支持部材5Aが、太陽電池パネル10の端縁1aにおいて、太陽電池パネル10のY方向の両端間に亘って位置しているので、特にY方向での剛性を向上させることができる。支持部材5Bも、太陽電池パネル10の特にY方向での剛性を向上させることができる。
<1-2. Characteristics of solar cell module>
According to this embodiment, the inner portion 51 of the rigid support member 5 is covered with the filler 4 between the first protective layer 1 and the second protective layer 2. Therefore, the rigidity of the solar cell panel 10 can be improved. In the example of FIG. 1, the support member 5A is located at the edge 1a of the solar cell panel 10 between both ends of the solar cell panel 10 in the Y direction, so that the rigidity in the Y direction is particularly improved. I can do it. The support member 5B can also improve the rigidity of the solar cell panel 10, especially in the Y direction.
 しかも、本実施形態では、充填材4が第1保護層1の端縁1aに対して外側にはみ出した状態にある。このため、充填材4がはみ出していない構造に比べて、第1保護層1の端縁1aはより確実に充填材4に接着される。図1の例では、充填材4は第1保護層1の端縁1aの全領域から外側にはみ出しているので、第1保護層1の端縁1aの全領域がより確実に充填材4に接着される。したがって、第1保護層1の端縁1aが充填材4から剥離する可能性を低減させることができる。 Moreover, in this embodiment, the filler 4 is in a state of protruding outward from the edge 1a of the first protective layer 1. Therefore, compared to a structure in which the filler 4 does not protrude, the edge 1a of the first protective layer 1 is more reliably adhered to the filler 4. In the example of FIG. 1, since the filler 4 protrudes outward from the entire area of the edge 1a of the first protective layer 1, the entire area of the edge 1a of the first protective layer 1 is covered with the filler 4 more reliably. Glued. Therefore, the possibility that the edge 1a of the first protective layer 1 will peel off from the filler 4 can be reduced.
 充填材4は第1保護層1の端縁1a(つまり、第1保護層1の第1面1fと第2面1sとを連結する端縁1a側の側面)の一部もしくは全部を覆った状態で位置してもよい。この場合、充填材4は、第1保護層1の第2面1sから側面を連続して覆っている。これによれば、第1保護層1の端縁1aがより強固に充填材4に接着されるので、第1保護層1の端縁1aが充填材4から剥離する可能性をさらに低減させることができる。 The filler 4 covered part or all of the edge 1a of the first protective layer 1 (that is, the side surface on the edge 1a side that connects the first surface 1f and the second surface 1s of the first protective layer 1). May be located in the state. In this case, the filler 4 continuously covers the side surfaces of the first protective layer 1 from the second surface 1s. According to this, the edge 1a of the first protective layer 1 is more firmly adhered to the filler 4, so that the possibility that the edge 1a of the first protective layer 1 peels off from the filler 4 is further reduced. I can do it.
 また、上述の具体例では、充填材4は第1保護層1の端縁1bならびに第2保護層2の端縁2aおよび端縁2bからも、それぞれ、外側にはみ出した状態にある。このため、第1保護層1の端縁1bが充填材4から剥離する可能性を低減させることができ、第2保護層2の端縁2aおよび端縁2bの各々が充填材4から剥離する可能性を低減させることができる。 Furthermore, in the specific example described above, the filler 4 is in a state of protruding outward from the edge 1b of the first protective layer 1 and the edges 2a and 2b of the second protective layer 2, respectively. Therefore, the possibility that the edge 1b of the first protective layer 1 will peel off from the filler 4 can be reduced, and each of the edges 2a and 2b of the second protective layer 2 will peel off from the filler 4. The possibility can be reduced.
 充填材4は第1保護層1の端縁1b(つまり、第1保護層1の第1面1fと第2面1sとを連結する端縁1b側の側面)の一部もしくは全部を覆っていてもよく、第2保護層2の端縁2aの一部(つまり、第2保護層2の端縁1b側の側面)もしくは全部を覆っていてもよく、第2保護層2の端縁2b(つまり、第2保護層2の端縁2b側の側面)の一部もしくは全部を覆っていてもよい。これによれば、第1保護層1もしくは第2保護層2が剥離する可能性をさらに低減させることができる。 The filler 4 covers part or all of the edge 1b of the first protective layer 1 (that is, the side surface on the edge 1b side that connects the first surface 1f and the second surface 1s of the first protective layer 1). The edge 2b of the second protective layer 2 may cover part or all of the edge 2a of the second protective layer 2 (that is, the side surface on the edge 1b side of the second protective layer 2). (that is, the side surface of the second protective layer 2 on the edge 2b side) may be partially or completely covered. According to this, the possibility that the first protective layer 1 or the second protective layer 2 will peel off can be further reduced.
 なお、充填材4が第1保護層1の端縁1aの全領域から外側にはみ出していれば、第1保護層1の端縁1aが充填材4から剥離する可能性を効率的に低減させることができる。しかしながら、充填材4は必ずしも端縁1aの全領域から外側にはみ出している必要はない。例えば、充填材4は端縁1aのY方向の8割以上の領域から外側にはみ出していてもよく、9割以上の領域から外側にはみ出していてもよい。この場合でも、第1保護層1が剥離する可能性を低減させることは可能である。充填材4は端縁1b、端縁2aおよび端縁2bの各々のY方向の8割以上の領域から外側にはみ出していてもよく、9割以上の領域から外側にはみ出していてもよい。 Note that if the filler 4 protrudes outward from the entire area of the edge 1a of the first protective layer 1, the possibility that the edge 1a of the first protective layer 1 will peel off from the filler 4 is effectively reduced. be able to. However, the filler 4 does not necessarily need to protrude outward from the entire area of the edge 1a. For example, the filler 4 may protrude outward from 80% or more of the area of the edge 1a in the Y direction, or may protrude outward from 90% or more of the area. Even in this case, it is possible to reduce the possibility that the first protective layer 1 will peel off. The filler 4 may protrude outward from 80% or more of the area in the Y direction of each of the edge 1b, the edge 2a, and the edge 2b, or may protrude outward from 90% or more of the area.
 <1-3.第1実施形態に係る太陽電池モジュールの製造方法>
 次に、太陽電池モジュール100の製造方法の一例について、図4(a)から図4(c)に基づいて説明する。
<1-3. Manufacturing method of solar cell module according to first embodiment>
Next, an example of a method for manufacturing the solar cell module 100 will be described based on FIGS. 4(a) to 4(c).
 まず、第1保護層1を準備する。ここでは、例えば、第1保護層1として、長方形状の表裏面と耐候性とを有する樹脂製のフィルムを準備する。耐候性を有する樹脂として、例えば、フッ素系の樹脂が採用される。フッ素系の樹脂としては、例えば、FEP、ETFEまたはECTFEなどが採用される。ここで、例えば、第1保護層1の片面である第2面1sにコロナ処理またはプラズマ処理などの表面を活性化させるための処理を施す。これにより、後述するラミネート処理において第1保護層1と充填材4との間における密着性が向上し得る。 First, the first protective layer 1 is prepared. Here, for example, as the first protective layer 1, a resin film having rectangular front and back surfaces and weather resistance is prepared. For example, a fluorine-based resin is used as the weather-resistant resin. As the fluorine-based resin, for example, FEP, ETFE, or ECTFE is used. Here, for example, the second surface 1s, which is one surface of the first protective layer 1, is subjected to a treatment for activating the surface, such as corona treatment or plasma treatment. Thereby, the adhesion between the first protective layer 1 and the filler 4 can be improved in the lamination process described below.
 次に、例えば、図4(b)および図4(c)で示されるように、第1保護層1、シート41s、シート41t、太陽電池部3、支持部材5、シート42s、シート42tおよび第2保護層2を積層することで、積層体10sを形成する。 Next, as shown in FIGS. 4(b) and 4(c), for example, the first protective layer 1, the sheet 41s, the sheet 41t, the solar cell part 3, the support member 5, the sheet 42s, the sheet 42t, and the By laminating the two protective layers 2, a laminate 10s is formed.
 積層体10sにおいて、太陽電池部3は2つの支持部材5の間に位置しており、これらはX方向において間隔を空けて並んだ状態で位置する。また、このとき、太陽電池部3から太陽電池パネル10の外部に引き出されて端子ボックスなどに接続させるための配線が適宜位置する。例えば、太陽電池部3の複数の太陽電池素子31は第1配線材32および第2配線材33によって相互に接続される。また、第3配線材34が太陽電池部3に接続される。 In the stacked body 10s, the solar cell section 3 is located between two support members 5, and these are arranged in a spaced-apart manner in the X direction. Further, at this time, wiring is appropriately positioned to be drawn out from the solar cell section 3 to the outside of the solar cell panel 10 and connected to a terminal box or the like. For example, the plurality of solar cell elements 31 of the solar cell section 3 are connected to each other by a first wiring material 32 and a second wiring material 33. Further, the third wiring member 34 is connected to the solar cell section 3 .
 シート41sおよびシート41tは、第1充填材41の素になる樹脂(EVAなど)製のシートである。シート41sは、第1保護層1と太陽電池部3との間および第1保護層1と支持部材5との間に位置している。つまり、シート41sは第1保護層1の上に位置し、太陽電池部3および支持部材5はシート41sの上に位置する。シート41sは、平面視において、矩形形状の一例としての長方形状の形状を有する。 The sheet 41s and the sheet 41t are sheets made of resin (such as EVA) that is the base material of the first filler 41. The sheet 41s is located between the first protective layer 1 and the solar cell section 3 and between the first protective layer 1 and the support member 5. That is, the sheet 41s is located on the first protective layer 1, and the solar cell section 3 and the support member 5 are located on the sheet 41s. The sheet 41s has a rectangular shape as an example of a rectangular shape in plan view.
 シート41sのX方向の幅は、第1保護層1のX方向の幅よりも大きくてもよい。図4(b)および図4(c)の例では、シート41sの-X方向の端部は第1保護層1の端縁1aよりも外側にはみ出した状態にあり、シート41sの+X方向の端部は第1保護層1の端縁1bよりも外側にはみ出した状態にある。つまり、シート41sの-X方向の端部は-X方向の支持部材5AとZ方向において対向するものの、第1保護層1とはZ方向において対向していない。シート41sの+X方向の端部も+X方向の支持部材5BとZ方向において対向するものの、第1保護層1とはZ方向において対向していない。 The width of the sheet 41s in the X direction may be larger than the width of the first protective layer 1 in the X direction. In the examples shown in FIGS. 4(b) and 4(c), the edge of the sheet 41s in the -X direction protrudes outward from the edge 1a of the first protective layer 1, and the edge of the sheet 41s in the +X direction The end portion is in a state of protruding outward from the edge 1b of the first protective layer 1. In other words, the end portion of the sheet 41s in the −X direction faces the supporting member 5A in the −X direction in the Z direction, but does not face the first protective layer 1 in the Z direction. The +X-direction end of the sheet 41s also faces the +X-direction support member 5B in the Z direction, but does not face the first protective layer 1 in the Z direction.
 平面視において、シート41tは、支持部材5と太陽電池部3との間で、シート41sの上に位置している。図4(b)および図4(c)の例では、2つの支持部材5が位置しているので、2つのシート41tが位置している。各シート41tは平面視において、例えば、Y方向に長い長尺状の形状を有する。図4(b)および図4(c)の例では、各シート41tの幅は支持部材5と太陽電池部3との間隔よりも狭い。つまり、図4(b)および図4(c)の例では、シート41tは支持部材5および太陽電池部3の両方とZ方向において対向しない状態で位置している。 In plan view, the sheet 41t is located between the support member 5 and the solar cell section 3 and above the sheet 41s. In the example of FIG. 4(b) and FIG. 4(c), two support members 5 are located, so two sheets 41t are located. In plan view, each sheet 41t has, for example, an elongated shape that is long in the Y direction. In the examples of FIGS. 4(b) and 4(c), the width of each sheet 41t is narrower than the distance between the support member 5 and the solar cell section 3. That is, in the examples of FIGS. 4(b) and 4(c), the sheet 41t is located in a state where it does not face both the support member 5 and the solar cell section 3 in the Z direction.
 シート42sおよびシート42tは、第2充填材42の素になる樹脂(EVAなど)製のシートである。シート42sおよびシート42tには顔料が含まれていてもよい。シート42sは、第2保護層2と太陽電池部3との間および第2保護層2と支持部材5との間に位置している。つまり、シート42sは、その両端がそれぞれ支持部材5に対向する状態で位置している。シート42sは、平面視において、矩形形状の一例としての長方形状の形状を有する。 The sheet 42s and the sheet 42t are sheets made of resin (such as EVA) that is the base material of the second filler 42. The sheet 42s and the sheet 42t may contain pigment. The sheet 42s is located between the second protective layer 2 and the solar cell section 3 and between the second protective layer 2 and the support member 5. In other words, the sheet 42s is positioned with both ends facing the support member 5, respectively. The sheet 42s has a rectangular shape as an example of a rectangular shape in plan view.
 平面視において、シート42tは、支持部材5と太陽電池部3との間で、シート42sの上に位置している。図4(b)および図4(c)の例では、2つの支持部材5が位置しているので、2つのシート42tが位置している。各シート42tは平面視において、例えば、Y方向に長い長尺状の形状を有する。図4(b)および図4(c)の例では、各シート42tの幅は支持部材5と太陽電池部3との間隔よりも狭い。つまり、図4(b)および図4(c)の例では、シート42tは支持部材5および太陽電池部3の両方とZ方向において対向しない状態で位置している。 In plan view, the sheet 42t is located between the support member 5 and the solar cell section 3 and above the sheet 42s. In the example of FIG. 4(b) and FIG. 4(c), two support members 5 are located, so two sheets 42t are located. In plan view, each sheet 42t has, for example, an elongated shape that is long in the Y direction. In the examples of FIGS. 4(b) and 4(c), the width of each sheet 42t is narrower than the distance between the support member 5 and the solar cell section 3. That is, in the examples shown in FIGS. 4(b) and 4(c), the sheet 42t is positioned so as not to face both the support member 5 and the solar cell section 3 in the Z direction.
 第2保護層2はシート42sおよびシート42tの上に位置している。シート42sのX方向の幅は、第2保護層2のX方向の幅よりも大きくてもよい。図4(b)および図4(c)の例では、シート42sの-X方向の端部は第2保護層2の端縁2aよりも外側にはみ出した状態にあり、シート42sの+X方向の端部は第2保護層2の端縁2bよりも外側にはみ出した状態にある。つまり、図4(b)および図4(c)の例では、シート42sの-X方向の端部は-X方向の支持部材5AとZ方向において対向するものの、第2保護層2とはZ方向において対向していない。シート42sの+X方向の端部も+X方向の支持部材5BとZ方向において対向するものの、第2保護層2とはZ方向において対向していない。 The second protective layer 2 is located on the sheet 42s and the sheet 42t. The width of the sheet 42s in the X direction may be larger than the width of the second protective layer 2 in the X direction. In the examples shown in FIGS. 4(b) and 4(c), the edge of the sheet 42s in the -X direction protrudes outward from the edge 2a of the second protective layer 2, and the edge of the sheet 42s in the +X direction The end portion protrudes outward from the edge 2b of the second protective layer 2. That is, in the examples of FIGS. 4(b) and 4(c), although the end of the sheet 42s in the -X direction faces the supporting member 5A in the -X direction in the Z direction, the second protective layer 2 They are not facing each other in direction. The +X-direction end of the sheet 42s also faces the +X-direction support member 5B in the Z direction, but does not face the second protective layer 2 in the Z direction.
 なお、図4(c)の例では、シート42sおよび第2保護層2は平板形状で示されているものの、可撓性もしくは柔軟性を有している場合には、その中央部が第1保護層1側に撓み得る。 In the example of FIG. 4(c), although the sheet 42s and the second protective layer 2 are shown as having a flat plate shape, if they have flexibility or softness, the central part of the sheet 42s and the second protective layer 2 may be It can bend toward the protective layer 1 side.
 次に、例えば、積層体10sを対象としたラミネート処理を行う。ここでは、例えば、ラミネート装置(ラミネータ)を用いて、積層体10sを一体化させる。例えば、ラミネータでは、チャンバー内のヒーター盤上に積層体10sを載置し、チャンバー内を50パスカル(Pa)から150Pa程度まで減圧させつつ、積層体10sを摂氏100度(100℃)から摂氏200度(200℃)程度まで加熱する。このとき、シート41s、シート41t、シート42sおよびシート42tが加熱によってある程度流動可能な状態となる。この状態で、チャンバー内において、積層体10sを、ダイヤフラムシートなどの押圧体でZ方向に押圧することで、積層体10sを一体化させる。 Next, for example, a lamination process is performed on the laminate 10s. Here, for example, a laminate device (laminator) is used to integrate the laminate 10s. For example, in a laminator, the laminate 10s is placed on a heater board in a chamber, and while the pressure inside the chamber is reduced from 50 Pascals (Pa) to about 150 Pa, the laminate 10s is heated from 100 degrees Celsius (100 degrees Celsius) to 200 degrees Celsius. Heat to about 200°C. At this time, the sheets 41s, 41t, 42s, and 42t become fluidized to some extent by heating. In this state, in the chamber, the laminate 10s is pressed in the Z direction with a pressing member such as a diaphragm sheet, thereby integrating the laminate 10s.
 このラミネート処理において、上述のように、シート41sはX方向において第1保護層1の端縁1aおよび端縁1bの各々よりも外側にはみ出している。このため、充填材4を第1保護層1よりも外側にはみ出した状態で形成しやすい。ラミネート処理において、シート42sはX方向において第2保護層2の端縁2aおよび端縁2bの各々よりも外側にはみ出している。このため、充填材4を第2保護層2よりも外側にはみ出した状態で形成しやすい。 In this lamination process, as described above, the sheet 41s protrudes outward from each of the edge 1a and edge 1b of the first protective layer 1 in the X direction. Therefore, it is easy to form the filler 4 in a state in which it protrudes outward from the first protective layer 1. In the lamination process, the sheet 42s protrudes outward from each of the edge 2a and edge 2b of the second protective layer 2 in the X direction. Therefore, it is easy to form the filler 4 in a state in which it protrudes outward from the second protective layer 2.
 なお、上述のように、ラミネート処理において溶融したシートは流動可能なので、押圧体による押圧によって外側に流動し得る。このため、シート41sのX方向の幅は必ずしも第1保護層1のX方向の幅以上でなくてもよい。要するに、ラミネート処理において、溶融したシートが第1保護層1の端縁1aおよび端縁1bよりも外側にはみ出すことができる程度に、シート41sのX方向の幅が設定されるとよい。シート42sのX方向の幅も、溶融したシートが第2保護層2の端縁2aおよび端縁2bよりも外側にはみ出すことができる程度の値に設定され得る。 Note that, as described above, since the sheet melted during the lamination process is fluid, it can flow outward by being pressed by the pressing body. Therefore, the width of the sheet 41s in the X direction does not necessarily have to be greater than the width of the first protective layer 1 in the X direction. In short, in the lamination process, the width of the sheet 41s in the X direction is preferably set to such an extent that the molten sheet can protrude beyond the edges 1a and 1b of the first protective layer 1. The width of the sheet 42s in the X direction may also be set to a value that allows the melted sheet to protrude beyond the edges 2a and 2b of the second protective layer 2.
 また、上述の例では、積層体10sにはシート41tおよびシート42tが位置している。つまり、支持部材5と太陽電池部3との間において、シートの総厚みは大きくなる。このため、支持部材5と太陽電池部3との間において、充填材4の厚みをより容易に増加させることができる。 Furthermore, in the above example, the sheet 41t and the sheet 42t are located in the stacked body 10s. In other words, the total thickness of the sheet increases between the support member 5 and the solar cell section 3. Therefore, the thickness of the filler 4 between the support member 5 and the solar cell section 3 can be increased more easily.
 ラミネート処理の後には、太陽電池パネル10に、端子ボックスなどが適宜取り付けられてもよい。このとき、例えば、太陽電池部3から太陽電池パネル10の外部に引き出された配線が、端子ボックス内の端子に適宜接続される。これにより、太陽電池モジュール100が組み立てられる。 After the lamination process, a terminal box or the like may be attached to the solar cell panel 10 as appropriate. At this time, for example, wiring drawn out from the solar cell section 3 to the outside of the solar cell panel 10 is appropriately connected to a terminal in the terminal box. Thereby, the solar cell module 100 is assembled.
 上述の例では、支持部材5を含む太陽電池パネル10がラミネート処理によって一体化される。このため、支持部材5の代わりに外部フレーム(不図示)を太陽電池パネル10にネジ等で取り付ける構造に比べて、太陽電池パネル10の組み立てが容易である。 In the above example, the solar cell panel 10 including the support member 5 is integrated by lamination processing. Therefore, the solar cell panel 10 is easier to assemble than a structure in which an external frame (not shown) is attached to the solar cell panel 10 with screws or the like instead of the support member 5.
 <1-4.太陽電池素子の配列数>
 図1の例では、X方向における太陽電池素子31の配列数は2であり、偶数である。換言すると、支持部材5の長手方向と直交する方向における太陽電池素子31の配列数は偶数である。また、各太陽電池素子31のX方向の幅は互いに略等しい。このため、太陽電池パネル10のX方向の中央には太陽電池素子31は存在しない。つまり、太陽電池パネル10の中央は太陽電池素子31の間の部分に相当する。
<1-4. Number of arrays of solar cell elements>
In the example of FIG. 1, the number of solar cell elements 31 arranged in the X direction is 2, which is an even number. In other words, the number of solar cell elements 31 arranged in the direction orthogonal to the longitudinal direction of the support member 5 is an even number. Furthermore, the widths of each solar cell element 31 in the X direction are substantially equal to each other. Therefore, the solar cell element 31 does not exist at the center of the solar cell panel 10 in the X direction. That is, the center of the solar cell panel 10 corresponds to the portion between the solar cell elements 31.
 ところで、外力F1により太陽電池パネル10を撓ませた場合(図5も参照)、太陽電池パネル10のX方向の中央にも比較的に大きな応力が印加される。また、支持部材5が取付対象部材に取り付けられた状態で積雪などの荷重物が太陽電池パネル10に印加された場合でも、太陽電池パネル10は、Y方向に見て、円弧状に撓み得る。このような場合でも、太陽電池パネル10のX方向の中央に比較的に大きな応力が印加される。 By the way, when the solar cell panel 10 is bent by the external force F1 (see also FIG. 5), a relatively large stress is also applied to the center of the solar cell panel 10 in the X direction. Further, even when a load such as snow is applied to the solar cell panel 10 while the support member 5 is attached to the attachment target member, the solar cell panel 10 can bend in an arc shape when viewed in the Y direction. Even in such a case, a relatively large stress is applied to the center of the solar cell panel 10 in the X direction.
 図1の例では、太陽電池パネル10の該中央には太陽電池素子31が存在しない。このため、外力F1もしくは積雪などの荷重物が太陽電池パネル10に印加されて太陽電池パネル10が撓んだ場合においても、各太陽電池素子31に印加される応力は比較的に小さい。したがって、応力による太陽電池素子31の性能低下などの不具合が発生する可能性を低減させることができる。 In the example of FIG. 1, no solar cell element 31 is present at the center of the solar cell panel 10. Therefore, even when the solar cell panel 10 is bent due to the external force F1 or a load such as snow accumulation being applied to the solar cell panel 10, the stress applied to each solar cell element 31 is relatively small. Therefore, it is possible to reduce the possibility that problems such as performance deterioration of the solar cell element 31 due to stress will occur.
 <2.他の実施形態>
 本開示は上述の第1実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更および改良などが可能である。
<2. Other embodiments>
The present disclosure is not limited to the first embodiment described above, and various changes and improvements can be made without departing from the gist of the present disclosure.
 <2-1.第2実施形態>
 <2-1-1.太陽電池モジュール>
 上記第1実施形態において、図6で示されるように、第2保護層2の端縁2aは、第1保護層1の端縁1aに対して太陽電池部3側に位置していてもよい。また、第2保護層2の端縁2bは、第1保護層1の端縁1bに対して太陽電池部3側に位置していてもよい。言い換えれば、第2保護層2のX方向の幅が第1保護層1のX方向の幅よりも小さくてもよい。また、充填材4の端縁42aは端縁41aに対して太陽電池部3側に位置していてもよく、充填材4の端縁42bは端縁41bに対して太陽電池部3側に位置していてもよい。
<2-1. Second embodiment>
<2-1-1. Solar cell module>
In the first embodiment, as shown in FIG. 6, the edge 2a of the second protective layer 2 may be located on the solar cell part 3 side with respect to the edge 1a of the first protective layer 1. . Further, the edge 2b of the second protective layer 2 may be located on the solar cell section 3 side with respect to the edge 1b of the first protective layer 1. In other words, the width of the second protective layer 2 in the X direction may be smaller than the width of the first protective layer 1 in the X direction. Moreover, the edge 42a of the filler 4 may be located on the solar cell part 3 side with respect to the edge 41a, and the edge 42b of the filler 4 may be located on the solar cell part 3 side with respect to the edge 41b. You may do so.
 より具体的な一例として、図6で示されるように、第2保護層2は、各支持部材5とZ方向において対向する領域を避けて位置してもよく、充填材4は、各支持部材5よりも-Z方向(つまり、第1保護層1とは反対側)であり、かつ、各支持部材5とZ方向において対向する領域を避けて位置していてもよい。つまり、支持部材5に対して-Z方向であり、かつ、支持部材5とZ方向において対向する領域では、充填材4および第2保護層2が位置していなくてもよい。 As a more specific example, as shown in FIG. 6, the second protective layer 2 may be located avoiding the area facing each support member 5 in the Z direction, and the filler 4 may be located on each support member 5. 5 in the −Z direction (that is, on the opposite side to the first protective layer 1), and may be located away from a region facing each support member 5 in the Z direction. In other words, the filler 4 and the second protective layer 2 do not need to be located in a region that is in the −Z direction with respect to the support member 5 and that faces the support member 5 in the Z direction.
 このような構造では、支持部材5の-Z方向の表面の全面が太陽電池モジュール100の外部に露出する。図6の例では、+X方向の支持部材5Bが固定される取付対象部材300と、これらを固定する締結部材301とが仮想線で示されている。図6の例では、取付対象部材300は支持部材5とZ方向において対向しており、支持部材5と接触している。締結部材301は、例えば、支持部材5をZ方向に貫通するボルトである。締結部材301によって支持部材5を取付対象部材300に押圧して固定することができる。なお、図6では図示を省略しているものの、支持部材5Aも、例えば支持部材5Bと同じく、取付対象部材に取り付けられ得る。 In such a structure, the entire surface of the support member 5 in the -Z direction is exposed to the outside of the solar cell module 100. In the example of FIG. 6, the attachment target member 300 to which the support member 5B in the +X direction is fixed and the fastening member 301 that fixes them are shown by imaginary lines. In the example of FIG. 6, the attachment target member 300 faces the support member 5 in the Z direction and is in contact with the support member 5. The fastening member 301 is, for example, a bolt that penetrates the support member 5 in the Z direction. The support member 5 can be pressed and fixed to the attachment target member 300 by the fastening member 301 . Although not shown in FIG. 6, the support member 5A can also be attached to the attachment target member, for example, like the support member 5B.
 図6の例では、取付対象部材300と支持部材5Bとの間に充填材4および第2保護層2が介在していない。このため、たとえ充填材4および第2保護層2の熱膨張、熱収縮および経年劣化等の諸要因により、充填材4および第2保護層2の厚みが変動しても、支持部材5Bと取付対象部材300との間隔は変動しない。したがって、充填材4および第2保護層2の厚みの変動に起因した締結部材301の緩みを抑制することができ、太陽電池モジュール100を取付対象部材300に対してより高い信頼性でより強固に固定することができる。 In the example of FIG. 6, the filler 4 and the second protective layer 2 are not interposed between the attachment target member 300 and the support member 5B. Therefore, even if the thickness of the filler 4 and the second protective layer 2 changes due to various factors such as thermal expansion, thermal contraction, and aging deterioration of the filler 4 and the second protective layer 2, the support member 5B and the attachment The distance from the target member 300 does not change. Therefore, loosening of the fastening member 301 due to variations in the thickness of the filler 4 and the second protective layer 2 can be suppressed, and the solar cell module 100 can be more firmly attached to the mounting target member 300 with higher reliability. Can be fixed.
 また、支持部材5Bと取付対象部材300との対向面積を向上させることができるので、支持部材5Bを取付対象部材300により強固に固定することができる。逆に言えば、支持部材5BのX方向の幅を狭くしても、支持部材5Bと取付対象部材300の対向面積を確保することができるので、太陽電池モジュール100を小型化することができる。 Furthermore, since the opposing area between the support member 5B and the attachment target member 300 can be improved, the support member 5B can be more firmly fixed to the attachment target member 300. Conversely, even if the width of the support member 5B in the X direction is narrowed, the opposing area between the support member 5B and the attachment target member 300 can be secured, so the solar cell module 100 can be downsized.
 また、図6の例では、第1保護層1と各支持部材5との間には充填材4の一部が位置している。このため、外部空間200から雨水などの水が太陽電池パネル10の前面10fに付着しても、第1保護層1と各支持部材5との間に水が進入しにくい。一方で、太陽電池パネル10の裏面10bには雨水が届きにくいので、第2保護層2と各支持部材5との間に進入する水はそもそも少ない。このため、太陽電池部3を適切に水から保護することもできる。 Further, in the example of FIG. 6, a part of the filler 4 is located between the first protective layer 1 and each support member 5. Therefore, even if water such as rainwater adheres to the front surface 10f of the solar cell panel 10 from the external space 200, it is difficult for the water to enter between the first protective layer 1 and each support member 5. On the other hand, since rainwater does not easily reach the back surface 10b of the solar cell panel 10, the amount of water that enters between the second protective layer 2 and each support member 5 is small in the first place. Therefore, the solar cell section 3 can also be appropriately protected from water.
 <2-1-2.第2実施形態に係る太陽電池モジュールの製造方法>
 次に、第2実施形態に係る太陽電池モジュール100の製造方法におけるラミネート処理の一例について、図7(a)および図7(b)に基づいて説明する。
<2-1-2. Manufacturing method of solar cell module according to second embodiment>
Next, an example of the lamination process in the method for manufacturing the solar cell module 100 according to the second embodiment will be described based on FIGS. 7(a) and 7(b).
 例えば、図7(a)および図7(b)で示されるように、第1保護層1、シート41s、シート41t、太陽電池部3、支持部材5、シート42s、シート42tおよび第2保護層2を積層することで、積層体10sを形成する。図7(a)および図7(b)で示されるように、第2実施形態に係る積層体10sにおいては、支持部材5と第2保護層2との間に、充填材4の素となるシート42sが位置していない。つまり、シート42sのX方向の幅はシート41sのX方向の幅よりも小さく、より具体的には、2つの支持部材5の間隔よりも小さい。また、シート42sの幅は太陽電池部3のX方向の幅よりも広い。このシート42sは、太陽電池部3とZ方向において対向し、かつ、支持部材5とはZ方向において対向しない状態で位置している。 For example, as shown in FIGS. 7(a) and 7(b), the first protective layer 1, the sheet 41s, the sheet 41t, the solar cell part 3, the support member 5, the sheet 42s, the sheet 42t, and the second protective layer 2 is stacked to form a stacked body 10s. As shown in FIGS. 7(a) and 7(b), in the laminate 10s according to the second embodiment, between the support member 5 and the second protective layer 2, The seat 42s is not located. That is, the width of the sheet 42s in the X direction is smaller than the width of the sheet 41s in the X direction, and more specifically, smaller than the interval between the two support members 5. Further, the width of the sheet 42s is wider than the width of the solar cell section 3 in the X direction. This sheet 42s is positioned so as to face the solar cell section 3 in the Z direction, but not to face the support member 5 in the Z direction.
 また、図7(a)および図7(b)で示されるように、第2保護層2のX方向の幅は第1保護層1のX方向の幅よりも狭い。第2保護層2のX方向の幅は、例えば、2つの支持部材5の間隔と同じであってよく、あるいは、該間隔よりも狭くてもよい。また、後に述べる別の例においては、第2保護層2のX方向の幅は、支持部材5の間隔よりも広くし、第1保護層1のX方向の幅よりも狭くしてもよい。 Furthermore, as shown in FIGS. 7(a) and 7(b), the width of the second protective layer 2 in the X direction is narrower than the width of the first protective layer 1 in the X direction. The width of the second protective layer 2 in the X direction may be, for example, the same as the interval between the two supporting members 5, or may be narrower than the interval. In another example described later, the width of the second protective layer 2 in the X direction may be wider than the interval between the supporting members 5 and narrower than the width of the first protective layer 1 in the X direction.
 次に、例えば、積層体10sを対象としたラミネート処理を行う。ここでは、例えば、ラミネート装置(ラミネータ)を用いて、積層体10sを一体化させる。これにより、図6に示される太陽電池パネル10を製造することができる。 Next, for example, a lamination process is performed on the laminate 10s. Here, for example, a laminate device (laminator) is used to integrate the laminate 10s. Thereby, the solar cell panel 10 shown in FIG. 6 can be manufactured.
 <2-1-3.第2実施形態の別の例>
 図6の例では、充填材4および第2保護層2は、各支持部材5に対して-Z方向において各支持部材5と対向する領域の全体に位置していない。しかしながら、必ずしもこれに限らない。第2保護層2および充填材4の一部が該領域に位置していてもよい。図6の例では、-X方向の支持部材5A側において、充填材4の一部および第2保護層2の一部が該領域に位置した状態を二点鎖線で示している。この場合でも、平面視において、第2保護層2の-X方向の端縁2aは第1保護層1の-X方向の端縁1aに対して太陽電池部3側に位置しており、充填材4のうちの第2保護層2側かつ外側部分52側の端縁42aが、充填材4のうち第1保護層1側かつ外側部分52側の端縁41aに対して太陽電池部3側に位置する。充填材4の端縁42aは第2保護層2の端縁2aよりも外側に位置してもよい。なお、図6では図示を省略しているものの、+X方向の支持部材5B側においても、支持部材5A側と同じく、充填材4の一部および第2保護層2の一部が該領域に位置していてもよい。また、充填材4の一部が該領域に位置し、第2保護層2の一部が該領域に位置しなくてもよい。
<2-1-3. Another example of the second embodiment>
In the example of FIG. 6, the filler 4 and the second protective layer 2 are not located in the entire region facing each support member 5 in the −Z direction with respect to each support member 5. However, this is not necessarily the case. A portion of the second protective layer 2 and the filler 4 may be located in this area. In the example of FIG. 6, a state in which a part of the filler 4 and a part of the second protective layer 2 are located in the region on the support member 5A side in the -X direction is shown by a two-dot chain line. Even in this case, in plan view, the edge 2a of the second protective layer 2 in the -X direction is located on the solar cell part 3 side with respect to the edge 1a of the first protective layer 1 in the -X direction. The edge 42a of the material 4 on the second protective layer 2 side and the outer portion 52 side is on the solar cell part 3 side with respect to the edge 41a of the filler 4 on the first protective layer 1 side and the outer portion 52 side. Located in The edge 42a of the filler 4 may be located outside the edge 2a of the second protective layer 2. Although not shown in FIG. 6, on the support member 5B side in the +X direction, a part of the filler 4 and a part of the second protective layer 2 are located in this area, as on the support member 5A side. You may do so. Further, part of the filler 4 may be located in this area, and part of the second protective layer 2 may not be located in this area.
 このような構造であっても、各支持部材5のうち第2保護層2側において露出する部分の面積を向上させることができる。このため、支持部材5と取付対象部材との対向面積を向上させることができ、太陽電池モジュール100をより強固に取付対象部材に固定することができる。あるいは、太陽電池モジュール100において支持部材5のX方向の幅を狭くしても、支持部材5と取付対象部材との対向面積を確保することができるので、太陽電池モジュール100を小型化することができる。 Even with such a structure, the area of the portion of each support member 5 exposed on the second protective layer 2 side can be increased. Therefore, the opposing area between the support member 5 and the attachment target member can be improved, and the solar cell module 100 can be more firmly fixed to the attachment target member. Alternatively, even if the width of the support member 5 in the X direction is narrowed in the solar cell module 100, the opposing area between the support member 5 and the attachment target member can be secured, so the solar cell module 100 can be made smaller. can.
 <2-2.第3実施形態>
 上記第1実施形態および上記第2実施形態において、図8で示されるように、複数の支持部材5がY方向において間隔を空けて並んだ状態で位置していてもよい。図8の例では、太陽電池パネル10のX方向の両側のそれぞれにおいて、4つの支持部材5がY方向において配列された状態で位置している。つまり、4つの支持部材5Aは、太陽電池パネル10の-X方向の端部であり、かつ、Y方向に沿って延びた端部において、Y方向において間隔を空けて並んでおり、別の4つの支持部材5Bは、太陽電池パネル10の+X方向の端部であり、かつ、Y方向に沿って延びた端部において、Y方向において間隔を空けて並んでいる。図8の例では、4つの支持部材5Aは4つの支持部材5BとそれぞれX方向において対向した状態で位置している。つまり、8つの支持部材5が4行2列でマトリクス状に配列されている。
<2-2. Third embodiment>
In the first embodiment and the second embodiment, as shown in FIG. 8, a plurality of support members 5 may be arranged in a line at intervals in the Y direction. In the example of FIG. 8, four support members 5 are arranged in the Y direction on each of both sides of the solar cell panel 10 in the X direction. That is, the four supporting members 5A are arranged at intervals in the Y direction at the ends of the solar cell panel 10 in the −X direction and extending along the Y direction, and the four supporting members 5A are arranged at intervals in the Y direction. The two support members 5B are arranged at intervals in the Y direction at an end of the solar cell panel 10 in the +X direction and extending along the Y direction. In the example of FIG. 8, the four support members 5A are located facing the four support members 5B in the X direction. That is, the eight support members 5 are arranged in a matrix with four rows and two columns.
 充填材4は、第1保護層1と支持部材5Aの各々との間から、平面視において第1保護層1の端縁1aよりも外側にはみ出した状態にある。充填材4のうち第1保護層1の端縁1aよりも外側に位置する部分は、支持部材5の外側部分52と接着した状態にある。また、充填材4は、第1保護層1と支持部材5Bの各々との間から、平面視において第1保護層1の端縁1bよりも外側にはみ出した状態にある。充填材4のうち第1保護層1の端縁1bよりも外側に位置する部分は、支持部材5の外側部分52と接着した状態にある。 The filler 4 protrudes from between the first protective layer 1 and each of the support members 5A to the outside of the edge 1a of the first protective layer 1 in plan view. A portion of the filler 4 located outside the edge 1a of the first protective layer 1 is in a state of being adhered to the outside portion 52 of the support member 5. Further, the filler 4 protrudes from between the first protective layer 1 and each of the supporting members 5B to the outside of the edge 1b of the first protective layer 1 in plan view. A portion of the filler 4 located outside the edge 1b of the first protective layer 1 is in a state of being adhered to the outside portion 52 of the support member 5.
 充填材4は、第2保護層2と支持部材5Aの各々との間から、平面視において第2保護層2の端縁2aよりも外側にはみ出した状態にあってもよい。充填材4のうち第2保護層2の端縁2aよりも外側に位置する部分は、支持部材5の外側部分52と接着し得る。また、充填材4は、第2保護層2と支持部材5Bの各々との間から、第2保護層2の端縁2bよりも外側にはみ出した状態にあってもよい。充填材4のうち第2保護層2の端縁2bよりも外側に位置する部分は、支持部材5の外側部分52と接着し得る。 The filler 4 may protrude from between the second protective layer 2 and each of the support members 5A to the outside of the edge 2a of the second protective layer 2 in plan view. A portion of the filler 4 located outside the edge 2 a of the second protective layer 2 can be bonded to the outside portion 52 of the support member 5 . Further, the filler 4 may protrude outward from the edge 2b of the second protective layer 2 from between the second protective layer 2 and each of the supporting members 5B. A portion of the filler 4 located outside the edge 2b of the second protective layer 2 can be bonded to the outer portion 52 of the support member 5.
 以上のように、第3実施形態においても、充填材4は、第1保護層1の端縁1aおよび端縁1bの各々よりも外側にはみ出した状態にある。このため、第1保護層1が端縁1aおよび端縁1bの各々から剥離する可能性を低減させることができる。また、充填材4が第2保護層2の端縁2aおよび端縁2bの各々よりも外側にはみ出した状態にある場合には、第2保護層2が端縁2aおよび端縁2bの各々から剥離する可能性も低減させることもできる。 As described above, also in the third embodiment, the filler 4 is in a state of protruding outward from each of the edge 1a and the edge 1b of the first protective layer 1. Therefore, the possibility that the first protective layer 1 will peel off from each of the edge 1a and the edge 1b can be reduced. In addition, when the filler 4 is in a state where it protrudes outward from each of the edge 2a and the edge 2b of the second protective layer 2, the second protective layer 2 extends beyond the edge 2a and the edge 2b, respectively. The possibility of peeling can also be reduced.
 また、第3実施形態によれば、複数の支持部材5がY方向において間隔を空けて並んでいるので、太陽電池パネル10は、視線がX方向に沿う状態で見た場合において、円弧状に撓むこともできる。また、図8の例では、太陽電池パネル10のX方向の両側のそれぞれの支持部材5が存在しない位置において、充填材4は、第1保護層1の端縁1aおよび端縁1bの各々よりも外側にはみ出した状態にないが、はみ出した状態にあってもよい。 Further, according to the third embodiment, since the plurality of support members 5 are arranged at intervals in the Y direction, the solar cell panel 10 has an arc shape when viewed with the line of sight along the X direction. It can also bend. In addition, in the example of FIG. 8, the filler 4 is applied from each of the edge 1a and the edge 1b of the first protective layer 1 at a position where the support members 5 on both sides of the solar cell panel 10 in the X direction are not present. Although it does not protrude outward, it may also protrude.
 <2-3.第4実施形態>
 上記第1実施形態から上記第3実施形態において、図9で示されるように、支持部材5は、矩形形状を有する太陽電池パネル10の一辺のみに位置していてもよい。言い換えれば、支持部材5は、矩形形状を有する第1保護層1および第2保護層2の一辺のみに位置していてもよい。図9の例では、太陽電池パネル10の-X方向の1辺のみに、支持部材5が位置している。つまり、支持部材5は第1保護層1の端縁1aと第2保護層2の端縁2aとの間に位置している。この構造であっても、支持部材5を備えていない構造に比べて、太陽電池パネル10の剛性を向上させることができる。また、この太陽電池パネル10はラミネート処理によって一体化される。このため、太陽電池パネル10の組み立てが容易である。
<2-3. Fourth embodiment>
In the first to third embodiments, as shown in FIG. 9, the support member 5 may be located on only one side of the solar cell panel 10 having a rectangular shape. In other words, the support member 5 may be located only on one side of the first protective layer 1 and the second protective layer 2 having a rectangular shape. In the example of FIG. 9, the support member 5 is located only on one side of the solar cell panel 10 in the −X direction. That is, the support member 5 is located between the edge 1a of the first protective layer 1 and the edge 2a of the second protective layer 2. Even with this structure, the rigidity of the solar cell panel 10 can be improved compared to a structure without the support member 5. Moreover, this solar cell panel 10 is integrated by lamination processing. Therefore, assembly of the solar cell panel 10 is easy.
 また、支持部材5が太陽電池パネル10の3辺には位置していないので、太陽電池パネル10はより多くの方向で撓みやすい。つまり、太陽電池パネル10の可撓性を向上させることができる。 Furthermore, since the support members 5 are not located on the three sides of the solar cell panel 10, the solar cell panel 10 can easily bend in more directions. In other words, the flexibility of the solar cell panel 10 can be improved.
 <2-4.第5実施形態>
 上記第1実施形態から上記第4実施形態において、例えば、図10(a)および図10(b)で示されるように、太陽電池モジュール100は強化繊維部材60をさらに含んでいてもよい。強化繊維部材60は、例えば、ケブラー(登録商標)繊維等のアラミド繊維および炭素繊維等の繊維部材を含み、第1保護層1と第2保護層2との間において充填材4によって覆われた状態で位置している。例えば、強化繊維部材60の全体が充填材4によって覆われている。図10(a)の例では、強化繊維部材60は、支持部材5が位置していない太陽電池パネル10の辺に沿った状態で位置している。図10(a)の例では、2つの支持部材5が太陽電池パネル10のX方向の両側の辺(第1辺に相当)にそれぞれ位置しているので、2つの強化繊維部材60が太陽電池パネル10のY方向の両側の辺(第2辺に相当)にそれぞれ位置している。ここでいうX方向の両側の辺とは、太陽電池パネル10の-X方向の端部に位置し、かつ、Y方向に沿って延びた1辺と、太陽電池パネル10の+X方向の端部に位置し、かつ、Y方向に沿って延びた1辺とを含む。また、Y方向の両側の辺とは、太陽電池パネル10の-Y方向の端部に位置し、かつ、X方向に沿って延びた1辺と、太陽電池パネル10の+Y方向の端部に位置し、かつ、X方向に沿って延びた1辺とを含む。強化繊維部材60は、X方向に長い長尺状の形状を有しており、平面視において太陽電池部3と重ならない状態で位置している。つまり、強化繊維部材60は、太陽電池部3とZ方向において対向しない状態で位置している。
<2-4. Fifth embodiment>
In the first embodiment to the fourth embodiment, the solar cell module 100 may further include a reinforcing fiber member 60, for example, as shown in FIGS. 10(a) and 10(b). The reinforcing fiber member 60 includes, for example, aramid fibers such as Kevlar (registered trademark) fibers and fiber members such as carbon fibers, and is covered with a filler 4 between the first protective layer 1 and the second protective layer 2. Located in the state. For example, the entire reinforcing fiber member 60 is covered with the filler 4. In the example of FIG. 10(a), the reinforcing fiber member 60 is located along the side of the solar cell panel 10 where the support member 5 is not located. In the example of FIG. 10(a), since the two support members 5 are located on both sides (corresponding to the first side) of the solar cell panel 10 in the X direction, the two reinforcing fiber members 60 They are located on both sides (corresponding to the second side) of the panel 10 in the Y direction. The sides on both sides in the X direction herein refer to one side located at the end of the solar panel 10 in the -X direction and extending along the Y direction, and the end of the solar panel 10 in the +X direction. and one side extending along the Y direction. In addition, the sides on both sides in the Y direction refer to one side located at the end of the solar cell panel 10 in the -Y direction and extending along the X direction, and one side located at the end of the solar cell panel 10 in the +Y direction. and one side extending along the X direction. The reinforcing fiber member 60 has an elongated shape that is long in the X direction, and is positioned so as not to overlap the solar cell section 3 in plan view. In other words, the reinforcing fiber member 60 is located so as not to face the solar cell section 3 in the Z direction.
 強化繊維部材60の長手方向の長さ(つまり、X方向の長さ)は、例えば、太陽電池パネル10のX方向の幅の2分の1以上であってもよく、3分の2以上であってもよく、4分の3以上であってもよい。強化繊維部材60のX方向の両端はそれぞれ支持部材5に当接していてもよい。 The length of the reinforcing fiber member 60 in the longitudinal direction (that is, the length in the X direction) may be, for example, one-half or more, or two-thirds or more of the width of the solar cell panel 10 in the X direction. It may be three quarters or more. Both ends of the reinforcing fiber member 60 in the X direction may be in contact with the support member 5, respectively.
 強化繊維部材60は変形容易である一方で、高い強度を有する。このため、強化繊維部材60によって、太陽電池パネル10の可撓性を低減させることなく、その強度を向上させることができる。図10(a)の例では、強化繊維部材60は、支持部材5が位置しない太陽電池パネル10の辺に位置しているので、強度の低い部分を強化繊維部材60で向上させることができる。このため、支持部材5および強化繊維部材60によって、太陽電池パネル10の周縁領域における強度を全体的に高くすることができる。 The reinforcing fiber member 60 is easily deformable and has high strength. Therefore, the reinforcing fiber member 60 can improve the strength of the solar cell panel 10 without reducing its flexibility. In the example of FIG. 10A, the reinforcing fiber member 60 is located on the side of the solar cell panel 10 where the support member 5 is not located, so the reinforcing fiber member 60 can improve the portion with low strength. Therefore, the support member 5 and the reinforcing fiber member 60 can increase the overall strength in the peripheral area of the solar cell panel 10.
 <2-5.第6実施形態>
 上記第1実施形態から上記第5実施形態において、例えば、図11(a)から図12(b)で示されるように、太陽電池部3が、薄膜系半導体と透明電極とをそれぞれ含む複数の薄膜系の太陽電池素子31Bを有する太陽電池部3Bに変更されてもよい。薄膜系半導体は、例えば、シリコン系、化合物系またはその他のタイプの半導体を含む。シリコン系の薄膜系半導体には、例えば、アモルファスシリコンまたは薄膜多結晶シリコンなどを用いた半導体が適用される。化合物系の薄膜系半導体には、例えば、CIS半導体またはCIGS半導体などのカルコパイライト構造を有する化合物半導体、ペロブスカイト構造を有する化合物などの化合物半導体、ケステライト構造を有する化合物半導体、あるいはカドミウムテルル(CdTe)半導体が適用される。CIS半導体は、銅(Cu)、インジウム(In)およびセレン(Se)を含む化合物半導体である。CIGS半導体は、Cu、In、ガリウム(Ga)およびSeを含む化合物半導体である。ここでは、基板6上に複数の薄膜系の太陽電池素子31Bが位置している例を挙げて説明する。
<2-5. Sixth embodiment>
In the first to fifth embodiments, for example, as shown in FIGS. 11(a) to 12(b), the solar cell section 3 includes a plurality of cells each including a thin film semiconductor and a transparent electrode. The solar cell section 3B may be changed to include a thin film solar cell element 31B. Thin film based semiconductors include, for example, silicon based, compound based or other types of semiconductors. As the silicon-based thin film semiconductor, for example, a semiconductor using amorphous silicon or thin film polycrystalline silicon is applied. Compound thin film semiconductors include, for example, compound semiconductors having a chalcopyrite structure such as CIS semiconductors or CIGS semiconductors, compound semiconductors such as compounds having a perovskite structure, compound semiconductors having a kesterite structure, or cadmium telluride (CdTe) semiconductors. applies. A CIS semiconductor is a compound semiconductor containing copper (Cu), indium (In), and selenium (Se). A CIGS semiconductor is a compound semiconductor containing Cu, In, gallium (Ga), and Se. Here, an example will be described in which a plurality of thin film solar cell elements 31B are located on the substrate 6.
 図11(a)から図12(b)で示されるように、太陽電池部3Bは、基板6と、この基板6上に平面的に並んでいる状態にある複数の太陽電池素子31Bと、を有する。ここで、平面的に並ぶとは、仮想あるいは実際の平面に沿って、複数の太陽電池素子31Bのそれぞれが位置しているとともに、複数の太陽電池素子31Bが並んでいることを意味する。図12(a)および図12(b)の例では、複数の太陽電池素子31Bは、基板6上において基板6の表面に沿って並んでいる状態にある。基板6には、例えば、0.5mmから2mm程度の厚さを有する透明なガラス基板などが適用される。ここで、例えば、太陽電池部3Bに、N個(Nは2以上の自然数)の太陽電池素子31Bが含まれる場合を想定する。この場合、例えば、N個の太陽電池素子31Bが電気的に直列に接続されれば、数値Nが大きい程、太陽電池部3Bの出力電圧が大きくなり得る。図12(a)および図12(b)には、+Y方向に沿って複数個(ここでは7個)の太陽電池素子31Bが並んでいる例が示されている。ここでは、例えば、太陽電池素子31Bのそれぞれが、+X方向に沿った長手方向を有する細長い形状を有する。この場合、例えば、太陽電池素子31Bの+Y方向における幅が数ミリメートル(mm)から1センチメートル(cm)程度であれば、太陽電池部3Bには数十個から数百個の太陽電池素子31Bが並び得る。 As shown in FIGS. 11(a) to 12(b), the solar cell section 3B includes a substrate 6 and a plurality of solar cell elements 31B arranged in a plane on the substrate 6. have Here, being lined up in a plane means that each of the plurality of solar cell elements 31B is located along a virtual or actual plane, and that the plurality of solar cell elements 31B are lined up. In the examples shown in FIGS. 12(a) and 12(b), the plurality of solar cell elements 31B are arranged on the substrate 6 along the surface of the substrate 6. As the substrate 6, for example, a transparent glass substrate having a thickness of about 0.5 mm to 2 mm is applied. Here, for example, it is assumed that the solar cell section 3B includes N solar cell elements 31B (N is a natural number of 2 or more). In this case, for example, if N solar cell elements 31B are electrically connected in series, the larger the numerical value N, the larger the output voltage of the solar cell section 3B can be. FIGS. 12(a) and 12(b) show an example in which a plurality of solar cell elements 31B (seven in this case) are lined up along the +Y direction. Here, for example, each of the solar cell elements 31B has an elongated shape with a longitudinal direction along the +X direction. In this case, for example, if the width of the solar cell element 31B in the +Y direction is approximately several millimeters (mm) to 1 centimeter (cm), the solar cell section 3B may include several tens to hundreds of solar cell elements 31B. can be lined up.
 複数の太陽電池素子31Bのそれぞれは、例えば、図12(b)で示されるように、第1電極層8aと、半導体層8bと、第2電極層8cと、を有する。また、太陽電池部3Bには、例えば、図12(b)で示されるように、隣り合う太陽電池素子31Bの間に、接続部9および透明部7が存在している。ここでは、例えば、第2電極層8cが、半導体層8bよりも特定範囲の波長の光に対する透光性が高い層(透光性電極層ともいう)であれば、各太陽電池素子31Bにおいて、入射光が第2電極層8cを透過し得る。これにより、例えば、第1保護層1を透過した入射光が、第2電極層8cを透過して半導体層8bに照射され得る。このとき、例えば、入射光が半導体層8bで吸収され得る。ここで、例えば、第2保護層2が第1保護層1と同じく透光性を有する素材で構成されている場合には、第1電極層8aが、半導体層8bよりも特定範囲の波長の光に対する透光性が高い層(透光性電極層)であれば、第2保護層2を透過した入射光が、第1電極層8aを透過して半導体層8bに照射され得る。 Each of the plurality of solar cell elements 31B includes, for example, a first electrode layer 8a, a semiconductor layer 8b, and a second electrode layer 8c, as shown in FIG. 12(b). Further, in the solar cell section 3B, for example, as shown in FIG. 12(b), a connecting section 9 and a transparent section 7 are present between adjacent solar cell elements 31B. Here, for example, if the second electrode layer 8c is a layer (also referred to as a translucent electrode layer) that has higher transmissivity for light in a specific range of wavelengths than the semiconductor layer 8b, in each solar cell element 31B, Incident light can pass through the second electrode layer 8c. Thereby, for example, incident light that has passed through the first protective layer 1 can pass through the second electrode layer 8c and be irradiated onto the semiconductor layer 8b. At this time, for example, the incident light may be absorbed by the semiconductor layer 8b. Here, for example, if the second protective layer 2 is made of a light-transmitting material like the first protective layer 1, the first electrode layer 8a is more sensitive to wavelengths in a specific range than the semiconductor layer 8b. If the layer is highly transparent to light (transparent electrode layer), the incident light that has passed through the second protective layer 2 can pass through the first electrode layer 8a and be irradiated onto the semiconductor layer 8b.
 第1電極層8aは、例えば、基板6のうちの+Z方向を向いた面上に位置している。第1電極層8aは、例えば、半導体層8bにおける光の照射に応じた光電変換で生じた電荷を集めることができる電極(第1電極ともいう)である。第1電極層8aの素材に、例えば、特定範囲の波長の光に対して透光性を有する透明導電性酸化物(TCO:Transparent Conductive Oxide)などが適用されれば、特定範囲の波長の光が第2保護層2と第1電極層8aとを透過して半導体層8bに入射され得る。TCOには、例えば、酸化インジウムスズ(ITO:Indium Tin Oxide)、フッ素ドープ酸化スズ(FTO:Fluorine-doped tin oxide)または酸化亜鉛(ZnO)などが含まれる。TCOとして酸化亜鉛を使用する場合には、TCOは、必要に応じてアルミニウム(Al)、ホウ素(B)またはガリウム(Ga)を含んでいてもよい。図12(b)の例では、基板6の上に、7つの第1電極層8aが、+Y方向に沿って平面的に並んでいる状態にある。ここで、第mの太陽電池素子31Bm(mは1から6の自然数)の第1電極層8aと、第(m+1)の太陽電池素子31B(m+1)の第1電極層8aが第mの太陽電池素子31Bmに向けて延出している部分とが、間隙(第1間隙ともいう)G1を挟んで並んでいる状態にある。例えば、第1太陽電池素子31B1の第1電極層8aと、第2太陽電池素子31B2のうちの第1電極層8aが第1太陽電池素子31B1に向けて延出している部分とが、第1間隙G1を挟んで並んでいる。各第1間隙G1は、+X方向に沿った長手方向を有する。ここでは、各第1間隙G1において、基板6の表面を底面とする第1溝部P1が存在している。 The first electrode layer 8a is located, for example, on the surface of the substrate 6 facing the +Z direction. The first electrode layer 8a is, for example, an electrode (also referred to as a first electrode) that can collect charges generated by photoelectric conversion in response to light irradiation in the semiconductor layer 8b. If the material of the first electrode layer 8a is, for example, a transparent conductive oxide (TCO) that is transparent to light in a specific range of wavelengths, can be transmitted through the second protective layer 2 and the first electrode layer 8a and incident on the semiconductor layer 8b. Examples of TCO include indium tin oxide (ITO), fluorine-doped tin oxide (FTO), and zinc oxide (ZnO). When using zinc oxide as the TCO, the TCO may contain aluminum (Al), boron (B), or gallium (Ga) as necessary. In the example of FIG. 12(b), seven first electrode layers 8a are arranged on the substrate 6 in a plane along the +Y direction. Here, the first electrode layer 8a of the m-th solar cell element 31Bm (m is a natural number from 1 to 6) and the first electrode layer 8a of the (m+1)-th solar cell element 31B (m+1) The portions extending toward the battery element 31Bm are lined up with a gap (also referred to as a first gap) G1 in between. For example, the first electrode layer 8a of the first solar cell element 31B1 and the portion of the second solar cell element 31B2 where the first electrode layer 8a extends toward the first solar cell element 31B1 are connected to the first electrode layer 8a of the first solar cell element 31B1. They are lined up with a gap G1 in between. Each first gap G1 has a longitudinal direction along the +X direction. Here, in each first gap G1, there is a first groove portion P1 whose bottom surface is the surface of the substrate 6.
 半導体層8bは、第1電極層8aと第2電極層8cとの間に位置している。ここでは、第mの太陽電池素子31Bmの半導体層8bは、+Y方向における隣の第(m+1)の太陽電池素子31B(m+1)の第1電極層8aが-Y方向に向けて延出している部分の端部上に至るまで延びた状態で位置している。例えば、第1太陽電池素子31B1の半導体層8bは、隣の第2太陽電池素子31B2の第1電極層8aが-Y方向に向けて延出している部分の端部上に至るまで延びた状態で位置している。半導体層8bは、例えば、上述した薄膜系半導体によって構成されている。 The semiconductor layer 8b is located between the first electrode layer 8a and the second electrode layer 8c. Here, in the semiconductor layer 8b of the m-th solar cell element 31Bm, the first electrode layer 8a of the adjacent (m+1)-th solar cell element 31B (m+1) in the +Y direction extends in the -Y direction. It extends over the end of the section. For example, the semiconductor layer 8b of the first solar cell element 31B1 extends until it reaches the end of the portion where the first electrode layer 8a of the adjacent second solar cell element 31B2 extends in the -Y direction. It is located in The semiconductor layer 8b is made of, for example, the above-mentioned thin film semiconductor.
 第2電極層8cは、半導体層8bの上に位置している。第2電極層8cは、半導体層8bにおける光の照射に応じた光電変換で生じた電荷を集めることができる電極(第2電極ともいう)である。第2電極層8cの素材には、例えば、第1電極層8aの素材と同じく、特定範囲の波長の光に対して透光性を有する透明導電性酸化物(TCO)などが採用され得る。図12(b)の例では、7つの第2電極層8cが、+Y方向に沿って平面的に並んでいる状態にある。ここでは、第mの太陽電池素子31Bmの第2電極層8cが第(m+1)の太陽電池素子31B(m+1)に向けて延びた部分と、第(m+1)の太陽電池素子31B(m+1)の第2電極層8cとが、間隙(第2間隙ともいう)G2を挟んで並んでいる状態にある。例えば、第1太陽電池素子31B1の第2電極層8cが+Y方向に向けて延びた部分と、第2太陽電池素子31B2の第2電極層8cとが、間隙(第2間隙)G2を挟んで並んでいる状態にある。各第2間隙G2は、+X方向に沿った長手方向を有する。ここでは、各第2間隙G2において、第1電極層8aを底面とする第3溝部P3が存在している。また、ここでは、例えば、+Y方向において隣り合う第mの太陽電池素子31Bmと第(m+1)の太陽電池素子31B(m+1)との間において、第2間隙G2は、第1間隙G1よりも+Y方向にずれた位置に存在している。このため、例えば、+Y方向において隣り合う第mの太陽電池素子31Bmと第(m+1)の太陽電池素子31B(m+1)との間のセル間領域31gaは、第1間隙G1の-Y方向の縁部から第2間隙G2の+Y方向の縁部まで位置している。 The second electrode layer 8c is located on the semiconductor layer 8b. The second electrode layer 8c is an electrode (also referred to as a second electrode) that can collect charges generated by photoelectric conversion in response to light irradiation in the semiconductor layer 8b. As the material of the second electrode layer 8c, for example, like the material of the first electrode layer 8a, a transparent conductive oxide (TCO) that is transparent to light in a specific range of wavelengths may be used. In the example of FIG. 12(b), seven second electrode layers 8c are arranged in a plane along the +Y direction. Here, a portion where the second electrode layer 8c of the m-th solar cell element 31Bm extends toward the (m+1)th solar cell element 31B(m+1) and a portion of the (m+1)-th solar cell element 31B(m+1) are shown. The second electrode layers 8c are lined up with a gap (also referred to as a second gap) G2 in between. For example, the portion where the second electrode layer 8c of the first solar cell element 31B1 extends in the +Y direction and the second electrode layer 8c of the second solar cell element 31B2 are arranged with a gap (second gap) G2 in between. They are in line. Each second gap G2 has a longitudinal direction along the +X direction. Here, in each second gap G2, there is a third groove portion P3 having the first electrode layer 8a as the bottom surface. Further, here, for example, between the m-th solar cell element 31Bm and the (m+1)th solar cell element 31B (m+1) that are adjacent in the +Y direction, the second gap G2 is +Y larger than the first gap G1. It is located at a position shifted in the direction. Therefore, for example, the inter-cell region 31ga between the m-th solar cell element 31Bm and the (m+1)-th solar cell element 31B (m+1) adjacent in the +Y direction is the edge of the first gap G1 in the -Y direction. from the edge of the second gap G2 in the +Y direction.
 接続部9は、複数の太陽電池素子31Bのうちの隣り合う2つの太陽電池素子31Bを電気的に直列に接続している状態にある。図12(b)の例では、第mの接続部9mは、半導体層8bと透明部7との間を貫通した状態で位置している。この第mの接続部9mは、第mの太陽電池素子31Bmと第(m+1)の太陽電池素子31B(m+1)とを電気的に接続している状態にある。例えば、第1接続部91が、第1太陽電池素子31B1と第2太陽電池素子31B2とを電気的に接続している状態にある。より具体的には、第mの接続部9mは、第mの太陽電池素子31Bmの第2電極層8cと第(m+1)の太陽電池素子31B(m+1)の第1電極層8aとを電気的に接続している状態にある。例えば、第1接続部91は、第1太陽電池素子31B1の第2電極層8cと第2太陽電池素子31B2の第1電極層8aとを電気的に接続している状態にある。これにより、複数の太陽電池素子31Bが電気的に直列に接続されている状態にある。また、接続部9は、半導体層8bの+Y方向を向いた端面と透明部7の-Y方向を向いた端面とを両側面とし、第1電極層8aの-Z方向を向いた面を底面とする第2溝部(不図示)内に存在している。各第2溝部は、+X方向に沿った長手方向を有する。そして、この第2溝部に接続部9が充填された状態にある。 The connecting portion 9 is in a state where two adjacent solar cell elements 31B among the plurality of solar cell elements 31B are electrically connected in series. In the example of FIG. 12(b), the m-th connection portion 9m is located penetrating between the semiconductor layer 8b and the transparent portion 7. This m-th connection portion 9m is in a state of electrically connecting the m-th solar cell element 31Bm and the (m+1)th solar cell element 31B (m+1). For example, the first connection portion 91 is in a state of electrically connecting the first solar cell element 31B1 and the second solar cell element 31B2. More specifically, the m-th connection portion 9m electrically connects the second electrode layer 8c of the m-th solar cell element 31Bm and the first electrode layer 8a of the (m+1)-th solar cell element 31B (m+1). is connected to. For example, the first connecting portion 91 is in a state of electrically connecting the second electrode layer 8c of the first solar cell element 31B1 and the first electrode layer 8a of the second solar cell element 31B2. Thereby, the plurality of solar cell elements 31B are in a state where they are electrically connected in series. In addition, the connecting portion 9 has the end surface of the semiconductor layer 8b facing the +Y direction and the end surface of the transparent portion 7 facing the −Y direction as both side surfaces, and the surface facing the −Z direction of the first electrode layer 8a as the bottom surface. It exists in a second groove portion (not shown). Each second groove has a longitudinal direction along the +X direction. The second groove is filled with the connecting portion 9.
 透明部7は、半導体層8bよりも特定範囲の波長の光に対する透光性が高い。透明部7は、例えば、ペロブスカイト構造を有する半導体層の一部が局所的に加熱されることで、形成され得る。ここでは、第mの透明部7mは、第mの太陽電池素子31Bmの第mの接続部9mと第(m+1)の太陽電池素子31B(m+1)との間に位置している。例えば、第1透明部71は、第1太陽電池素子31B1の第1接続部91と第2太陽電池素子31B2との間に位置している。図12(b)の例では、第mの透明部7mは、第mの太陽電池素子31Bmの第mの接続部9mと、第mの太陽電池素子31Bmと第(m+1)の太陽電池素子31B(m+1)との間に存在している第3溝部P3と、の間に位置している。例えば、第1透明部71は、第1太陽電池素子31B1の第1接続部91と、第1太陽電池素子31B1と第2太陽電池素子31B2との間に存在している第3溝部P3と、の間に位置している。透明部7は、例えば、透明でない半導体層で構成されていてもよく、半導体層8bと同じであってもよい。 The transparent portion 7 has higher translucency than the semiconductor layer 8b for light having wavelengths in a specific range. The transparent portion 7 can be formed, for example, by locally heating a part of the semiconductor layer having a perovskite structure. Here, the m-th transparent portion 7m is located between the m-th connection portion 9m of the m-th solar cell element 31Bm and the (m+1)th solar cell element 31B (m+1). For example, the first transparent part 71 is located between the first connection part 91 of the first solar cell element 31B1 and the second solar cell element 31B2. In the example of FIG. 12(b), the m-th transparent portion 7m connects the m-th connecting portion 9m of the m-th solar cell element 31Bm, and the m-th solar cell element 31Bm and the (m+1)th solar cell element 31B. (m+1), and the third groove portion P3 exists between the groove portion P3 and the third groove portion P3. For example, the first transparent part 71 includes a first connection part 91 of the first solar cell element 31B1, a third groove part P3 existing between the first solar cell element 31B1 and the second solar cell element 31B2, It is located between. The transparent portion 7 may be made of a non-transparent semiconductor layer, or may be the same as the semiconductor layer 8b, for example.
 第1太陽電池素子31B1では、第1電極層8aが、半導体層8bおよび第2電極層8cよりも、-Y方向に延びた部分(第1部分とも言う)8aeを有する。第7の太陽電池素子31B7では、半導体層8bおよび第2電極層8cは、第1電極層8aよりも+Y方向に延びており、第2電極層8cが、半導体層8bよりも、+Y方向に延びた部分(第2部分とも言う)8ceを有する。第1部分8ae上には、第1極性の出力用の第1配線材32aが電気的に接続されている状態にある。ここでは、第1配線材32aは、例えば、第1太陽電池素子31B1の電極の一部である第1部分8aeに接合された状態にある。具体的には、例えば、第1配線材32aと第1部分8aeとの間に位置しており、第1配線材32aと第1部分8aeとを接合している状態にある部分(第3接合部分ともいう)321Bが存在している。図12(a)の例では、第1太陽電池素子31B1の-Y方向に位置する端辺に沿って、第1配線材32aが位置している。第2部分8ce上には、第2極性の出力用の第2配線材32bが電気的に接続されている状態にある。ここでは、第2配線材32bは、例えば、第7の太陽電池素子31B7の電極の一部である第2部分8ceに接合された状態にある。具体的には、例えば、第2配線材32bと第2部分8ceとの間に位置しており、第2配線材32bと第2部分8ceとを接合している状態にある部分(第4接合部分ともいう)322Bが存在している。図12(a)の例では、第7の太陽電池素子31B7の+Y方向に位置する端辺に沿って、第2配線材32bが位置している。 In the first solar cell element 31B1, the first electrode layer 8a has a portion (also referred to as a first portion) 8ae that extends in the −Y direction further than the semiconductor layer 8b and the second electrode layer 8c. In the seventh solar cell element 31B7, the semiconductor layer 8b and the second electrode layer 8c extend further in the +Y direction than the first electrode layer 8a, and the second electrode layer 8c extends further in the +Y direction than the semiconductor layer 8b. It has an extended portion (also referred to as a second portion) 8ce. A first wiring material 32a for output of the first polarity is electrically connected to the first portion 8ae. Here, the first wiring material 32a is in a state of being joined to the first portion 8ae, which is a part of the electrode of the first solar cell element 31B1, for example. Specifically, for example, a portion located between the first wiring material 32a and the first portion 8ae and in a state of joining the first wiring material 32a and the first portion 8ae (a third joint (also referred to as part) 321B exists. In the example of FIG. 12(a), the first wiring material 32a is located along the edge of the first solar cell element 31B1 located in the -Y direction. A second wiring material 32b for outputting the second polarity is electrically connected to the second portion 8ce. Here, the second wiring material 32b is in a state of being joined to the second portion 8ce, which is a part of the electrode of the seventh solar cell element 31B7, for example. Specifically, for example, a portion located between the second wiring material 32b and the second portion 8ce and in a state of joining the second wiring material 32b and the second portion 8ce (a fourth joint (also referred to as part) 322B exists. In the example of FIG. 12A, the second wiring material 32b is located along the edge of the seventh solar cell element 31B7 located in the +Y direction.
 第1配線材32aおよび第2配線材32bには、例えば、線状あるいは帯状の導電性を有する金属体がそれぞれ適用される。第3接合部分321Bおよび第4接合部分322Bの素材には、例えば、半田(はんだ)などの低融点の合金または低融点の単体の金属などが適用される。より具体的には、例えば、0.1mmから0.2mm程度の厚さと1mmから2mm程度の幅とを有する銅箔が第1配線材32aおよび第2配線材32bにそれぞれ適用され、これらの第1配線材32aおよび第2配線材32bの全面に半田が被覆された状態にある。第1配線材32aは、例えば、半田付けによって、第1部分8aeに電気的に接続されている状態にある。また、第2配線材32bは、例えば、半田付けによって、第2部分8ceに電気的に接続されている状態にある。この場合には、例えば、第1配線材32aと第1部分8aeとの間に位置している半田が第3接合部分321Bを構成している状態にある。また、例えば、第2配線材32bと第2部分8ceとの間に位置している半田が第4接合部分322Bを構成している状態にある。以下では、第3接合部分321Bおよび第4接合部分322Bも、適宜「接合部分」と略称する。また、ここで、例えば、第1極性が負極であれば、第2極性が正極となる。例えば、第1極性が正極であれば、第2極性が負極となる。そして、第1配線材32aおよび第2配線材32bのそれぞれは、例えば、第2保護層2を貫通する貫通孔などを介して外部に引き出された状態にある。 For example, a linear or strip-shaped conductive metal body is applied to the first wiring material 32a and the second wiring material 32b, respectively. The material for the third joint portion 321B and the fourth joint portion 322B may be, for example, a low melting point alloy such as solder or a low melting point single metal. More specifically, for example, copper foil having a thickness of about 0.1 mm to 0.2 mm and a width of about 1 mm to 2 mm is applied to the first wiring material 32a and the second wiring material 32b, respectively. The entire surfaces of the first wiring material 32a and the second wiring material 32b are coated with solder. The first wiring material 32a is in a state of being electrically connected to the first portion 8ae, for example, by soldering. Further, the second wiring material 32b is in a state of being electrically connected to the second portion 8ce by, for example, soldering. In this case, for example, the solder located between the first wiring material 32a and the first portion 8ae constitutes the third joint portion 321B. Further, for example, the solder located between the second wiring material 32b and the second portion 8ce constitutes the fourth joint portion 322B. Hereinafter, the third joint portion 321B and the fourth joint portion 322B will also be abbreviated as “joint portions” as appropriate. Further, here, for example, if the first polarity is a negative polarity, the second polarity is a positive polarity. For example, if the first polarity is positive, the second polarity is negative. Each of the first wiring material 32a and the second wiring material 32b is in a state of being drawn out to the outside through, for example, a through hole penetrating the second protective layer 2.
 ここで、例えば、太陽電池部3Bのうちの基板6が第2保護層2とされてもよい。また、上述の例では、複数の太陽電池素子31BはY方向に沿って並んでいるものの、必ずしもこれに限らない。複数の太陽電池素子31Bの配列方向はX方向であってもよく、適宜に変更し得る。 Here, for example, the substrate 6 of the solar cell section 3B may be used as the second protective layer 2. Moreover, in the above-mentioned example, although the plurality of solar cell elements 31B are lined up along the Y direction, the arrangement is not necessarily limited to this. The arrangement direction of the plurality of solar cell elements 31B may be the X direction, and can be changed as appropriate.
 <3.その他>
 上記第1実施形態から上記第6実施形態では、例えば、第2保護層2を省略しても構わない。この構造では、充填材4で生じた遊離酸(例えば酢酸)がガス状態で-Z方向に向かって充填材4から脱離するので、遊離酸による太陽電池部3の不具合を低減させることができる。
<3. Others>
In the first to sixth embodiments, for example, the second protective layer 2 may be omitted. In this structure, the free acid (for example, acetic acid) generated in the filler 4 is desorbed from the filler 4 in the -Z direction in a gaseous state, so it is possible to reduce defects in the solar cell section 3 due to the free acid. .
 上記第1実施形態から上記第6実施形態では、2つの支持部材5が太陽電池パネル10のX方向の両側ではなく、Y方向の両側にそれぞれ位置していてもよい。太陽電池パネル10は、視線がX方向に沿う状態で見た場合において、撓むことができる。この場合、太陽電池素子31のY方向の配列数が偶数であってもよい。これによれば、太陽電池パネル10のY方向の中央部分が、太陽電池素子31の間の部分に相当する。このため、配列数が奇数である構造に比べて、太陽電池素子31に生じる応力を低減させることができる。 In the first to sixth embodiments, the two support members 5 may be located on both sides of the solar cell panel 10 in the Y direction instead of on both sides in the X direction. The solar cell panel 10 can be bent when viewed with the line of sight along the X direction. In this case, the number of solar cell elements 31 arranged in the Y direction may be an even number. According to this, the central portion of the solar cell panel 10 in the Y direction corresponds to the portion between the solar cell elements 31. Therefore, stress generated in the solar cell elements 31 can be reduced compared to a structure in which the number of arrays is an odd number.
 上記第1実施形態から上記第6実施形態において、第1保護層1および/または第2保護層2の外側にはみ出した状態で位置する充填材4を覆う、被覆部材が位置してもよい。被覆部材は、少なくとも、充填材4のうち第1保護層1および/または第2保護層2からはみ出した部分(以下、はみ出し部分と呼ぶ)を覆う。被覆部材は、例えば、アルミ蒸着粘着テープであってもよい。アルミ蒸着粘着テープは、例えば、アルミが蒸着されたPET(ポリエチレンテレフタラート)フィルムと、該フィルムの片面に位置したアクリル系粘着剤と、を含む。このアルミ蒸着PETテープは、充填材4のはみ出し部分に貼り付けられ得る。 In the first to sixth embodiments described above, a covering member may be located to cover the filler 4 located in a state protruding from the first protective layer 1 and/or the second protective layer 2. The covering member covers at least a portion of the filler 4 that protrudes from the first protective layer 1 and/or the second protective layer 2 (hereinafter referred to as a protruding portion). The covering member may be, for example, an aluminum vapor-deposited adhesive tape. The aluminum vapor-deposited adhesive tape includes, for example, a PET (polyethylene terephthalate) film on which aluminum is vapor-deposited, and an acrylic adhesive located on one side of the film. This aluminum-deposited PET tape can be attached to the protruding portion of the filler 4.
 被覆部材は、充填材4のはみ出し部分を、紫外線、外気および雨水等の環境負荷から保護することができる。被覆部材が経時劣化等により剥離すると、充填材4のはみ出し部分が紫外線、外気および雨水等に暴露され得るものの、被覆部材が剥離するまでは該はみ出し部分を保護することができる。つまり、被覆部材によって、充填材4のはみ出し部分に環境負荷が加わるタイミングを遅らせることができる。このため、第1保護層1および/または第2保護層2が充填材4から剥離する可能性をさらに低減させることができる。つまり、太陽電池モジュール100の対候性を向上させることができる。 The covering member can protect the protruding portion of the filler 4 from environmental loads such as ultraviolet rays, outside air, and rainwater. If the covering member peels off due to deterioration over time, etc., the protruding portion of the filler 4 may be exposed to ultraviolet rays, outside air, rainwater, etc., but the protruding portion can be protected until the covering member peels off. In other words, the covering member can delay the timing at which the environmental load is applied to the protruding portion of the filler 4. Therefore, the possibility that the first protective layer 1 and/or the second protective layer 2 will peel off from the filler 4 can be further reduced. In other words, the weather resistance of the solar cell module 100 can be improved.
 また、被覆部材が経時劣化等によって充填材4から剥離しても、充填材4が第1保護層1からはみ出していれば、第1保護層1の剥離の可能性を低減させることができ、充填材4が第2保護層2からはみ出していれば、第2保護層2の剥離の可能性を低減させることができる。 Furthermore, even if the covering member peels off from the filler 4 due to deterioration over time, as long as the filler 4 protrudes from the first protective layer 1, the possibility of peeling of the first protective layer 1 can be reduced. If the filler 4 protrudes from the second protective layer 2, the possibility of peeling of the second protective layer 2 can be reduced.
 なお、被覆部材はアルミ蒸着PETテープに限られるものではない。被覆部材は、例えば、アルミ蒸着されていないPETテープであってもよく、あるいは、ステンレスおよびアルミニウム合金の少なくともいずれか一方などを用いた金属箔テープなどであってもよい。要するに、被覆部材は、耐候性を有する基材と、該基材の片面に位置した接着剤と、を含んでいてもよい。 Note that the covering member is not limited to aluminum-deposited PET tape. The covering member may be, for example, a PET tape without aluminum vapor deposition, or a metal foil tape using at least one of stainless steel and aluminum alloy. In short, the covering member may include a weather-resistant base material and an adhesive located on one side of the base material.
 以上のように、太陽電池モジュールは詳細に説明されたが、上記した説明は、全ての局面において例示であって、この開示がそれに限定されるものではない。また、上述した各種例は、相互に矛盾しない限り組み合わせて適用可能である。そして、例示されていない無数の例が、この開示の範囲から外れることなく想定され得るものと解される。 As mentioned above, although the solar cell module has been explained in detail, the above explanation is an example in all aspects, and this disclosure is not limited thereto. Furthermore, the various examples described above can be applied in combination as long as they do not contradict each other. And it is understood that countless examples not illustrated can be envisioned without departing from the scope of this disclosure.
 本開示には以下の内容が含まれる。 This disclosure includes the following content:
 一実施形態において、(1)太陽電池モジュールは、第1面、および、前記第1面と逆側の第2面を有する第1保護層と、前記第1保護層の前記第2面に対向した状態で位置する太陽電池部と、前記太陽電池部と隣り合う状態で位置しており、前記第1保護層の前記第2面と対向した状態で位置する内側部分、および、前記内側部分から前記第1保護層の外側に延びた状態で位置する外側部分を含む1以上の支持部材と、前記第1保護層の前記第2面に接し、前記太陽電池部を覆い、かつ、前記第1保護層の前記第2面と前記支持部材との間から、平面視において前記第1保護層の外側にはみ出した状態で位置する充填材とを備える。 In one embodiment, (1) the solar cell module includes a first protective layer having a first surface and a second surface opposite to the first surface, and a first protective layer facing the second surface of the first protective layer. a solar cell part located in a state where the solar cell part is located in a state where the solar cell part is located in a state where one or more support members including an outer portion extending to the outside of the first protective layer; and one or more supporting members that are in contact with the second surface of the first protective layer, cover the solar cell section, and and a filler located between the second surface of the protective layer and the support member to protrude outside the first protective layer in plan view.
 (2)上記(1)の太陽電池モジュールは、前記充填材に対して前記第1保護層と逆側において、前記充填材と接し、かつ、前記太陽電池部と対向した状態で位置する第2保護層をさらに備えることができる。 (2) In the solar cell module of (1) above, the second protective layer is located on the side opposite to the first protective layer with respect to the filler, in contact with the filler and facing the solar cell part. A protective layer can further be provided.
 (3)上記(2)の太陽電池モジュールにおいて、前記第2保護層は、前記支持部材の前記内側部分とも対向した状態で位置し、前記充填材は、前記第2保護層と前記支持部材との間から、平面視において前記第2保護層の外側にはみ出した状態で位置することができる。 (3) In the solar cell module according to (2) above, the second protective layer is located opposite to the inner portion of the support member, and the filler is located between the second protective layer and the support member. The second protective layer can be located in such a way that it protrudes from between the second protective layer and the second protective layer in a plan view.
 (4)上記(2)または(3)の太陽電池モジュールにおいて、前記充填材の、前記第2保護層側かつ前記外側部分側の端縁は、前記第1保護層側かつ前記外側部分側の端縁に対して、前記太陽電池部側に位置することができる。 (4) In the solar cell module according to (2) or (3) above, the edge of the filler on the second protective layer side and the outer portion side is on the first protective layer side and the outer portion side. It can be located on the solar cell part side with respect to the edge.
 (5)上記(2)から(4)のいずれか一つの太陽電池モジュールにおいて、前記第2保護層の前記支持部材側の端縁は、前記第1保護層の前記支持部材側の端縁に対して、前記太陽電池部側に位置することができる。 (5) In the solar cell module according to any one of (2) to (4) above, the edge of the second protective layer on the supporting member side is the same as the edge of the first protective layer on the supporting member side. On the other hand, it can be located on the solar cell section side.
 (6)上記(2)の太陽電池モジュールにおいて、前記第2保護層は、前記支持部材と対向する領域を避けた状態で位置することができる。 (6) In the solar cell module according to (2) above, the second protective layer may be positioned avoiding a region facing the support member.
 (7)上記(1)から(6)のいずれか一つの太陽電池モジュールにおいて、前記太陽電池部は、前記第1保護層の前記第2面に対向した状態で位置する複数の太陽電池素子を含み、前記複数の太陽電池素子の配列数は偶数であってもよい。 (7) In the solar cell module according to any one of (1) to (6) above, the solar cell section includes a plurality of solar cell elements located facing the second surface of the first protective layer. The number of arrays of the plurality of solar cell elements may be an even number.
 (8)上記(1)から(7)のいずれか一つの太陽電池モジュールにおいて、前記支持部材は複数の支持部材であり、前記第1保護層は矩形形状を有し、前記複数の支持部材は前記第1保護層の1辺に沿って間隔を空けて並んだ状態で位置することができる。 (8) In the solar cell module according to any one of (1) to (7) above, the support member is a plurality of support members, the first protective layer has a rectangular shape, and the plurality of support members are The first protective layer may be spaced apart along one side of the first protective layer.
 (9)上記(1)から(8)のいずれか一つの太陽電池モジュールにおいて、前記第1保護層は矩形形状を有し、前記支持部材は、前記第1保護層の1辺のみに位置することができる。 (9) In the solar cell module according to any one of (1) to (8) above, the first protective layer has a rectangular shape, and the support member is located on only one side of the first protective layer. be able to.
 (10)上記(1)から(9)のいずれか一つの太陽電池モジュールは、強化繊維部材をさらに備え、前記第1保護層は矩形形状を有し、前記支持部材は、前記第1保護層の第1辺に位置し、前記強化繊維部材は、前記支持部材が位置していない前記第1保護層の第2辺側において、前記充填材に覆われた状態で位置することができる。 (10) The solar cell module according to any one of (1) to (9) above further includes a reinforcing fiber member, the first protective layer has a rectangular shape, and the supporting member The reinforcing fiber member may be located on a second side of the first protective layer where the supporting member is not located, covered with the filler.
 1 第1保護層
 1a 第1保護層1の支持部材5A側の端縁
 1b 第1保護層1の支持部材5B側の端縁
 1f 第1面
 1s 第2面
 2 第2保護層
 2a 第2保護層2の支持部材5A側の端縁
 2b 第2保護層2の支持部材5B側の端縁
 3,3B 太陽電池部
 31,31B 太陽電池素子
 4 充填材
 41a 充填材4のうち第1保護層1側かつ支持部材5Aの外側部分52側の端縁
 41b 充填材4のうち第1保護層1側かつ支持部材5Bの外側部分52側の端縁
 42a 充填材4のうち第2保護層2側かつ支持部材5Aの外側部分52側の端縁
 42b 充填材4のうち第2保護層2側かつ支持部材5Bの外側部分52側の端縁
 5,5A,5B 支持部材
 60 強化繊維部材
 100 太陽電池モジュール
1 First protective layer 1a Edge of first protective layer 1 on support member 5A side 1b Edge of first protective layer 1 on support member 5B side 1f First surface 1s Second surface 2 Second protective layer 2a Second protection Edge of layer 2 on support member 5A side 2b Edge of second protective layer 2 on support member 5B side 3, 3B Solar cell section 31, 31B Solar cell element 4 Filler 41a First protective layer 1 of filler 4 side and an edge on the outer portion 52 side of the support member 5A 41b An edge of the filler 4 on the first protective layer 1 side and on the outer portion 52 side of the support member 5B 42a An edge of the filler 4 on the second protective layer 2 side and Edge of the support member 5A on the outer portion 52 side 42b Edge of the filler 4 on the second protective layer 2 side and the outer portion 52 side of the support member 5B 5, 5A, 5B Support member 60 Reinforced fiber member 100 Solar cell module

Claims (10)

  1.  太陽電池モジュールであって、
     第1面、および、前記第1面と逆側の第2面を有する第1保護層と、
     前記第1保護層の前記第2面と対向した状態で位置する太陽電池部と、
     前記太陽電池部と隣り合う状態で位置した1以上の支持部材と、
     前記第1保護層の前記第2面に接し、かつ、前記太陽電池部を覆った状態で位置する充填材と
    を備え、
     前記支持部材は、前記第1保護層の前記第2面と対向した状態で位置する内側部分、および、前記内側部分から前記第1保護層の外側に延びた状態で位置する外側部分を含み、
     前記充填材は、前記第1保護層の前記第2面と前記支持部材との間から、平面視において前記第1保護層の外側にはみ出した状態で位置する、太陽電池モジュール。
    A solar cell module,
    a first protective layer having a first surface and a second surface opposite to the first surface;
    a solar cell section located opposite the second surface of the first protective layer;
    one or more support members located adjacent to the solar cell section;
    a filler located in contact with the second surface of the first protective layer and covering the solar cell part,
    The support member includes an inner portion facing the second surface of the first protective layer, and an outer portion extending from the inner portion to the outside of the first protective layer,
    In the solar cell module, the filler is located between the second surface of the first protective layer and the support member so as to protrude to the outside of the first protective layer in plan view.
  2.  請求項1に記載の太陽電池モジュールであって、
     前記充填材に対して前記第1保護層と逆側において、前記充填材と接し、かつ、前記太陽電池部と対向した状態で位置する第2保護層をさらに備える、太陽電池モジュール。
    The solar cell module according to claim 1,
    The solar cell module further includes a second protective layer located on a side opposite to the first protective layer with respect to the filler, in contact with the filler, and facing the solar cell section.
  3.  請求項2に記載の太陽電池モジュールであって、
     前記第2保護層は、前記支持部材の前記内側部分とも対向した状態で位置し、
     前記充填材は、前記第2保護層と前記支持部材との間から、平面視において前記第2保護層の外側にはみ出した状態で位置する、太陽電池モジュール。
    The solar cell module according to claim 2,
    The second protective layer is located opposite to the inner portion of the support member,
    In the solar cell module, the filler is located between the second protective layer and the support member and protrudes to the outside of the second protective layer in a plan view.
  4.  請求項2または請求項3に記載の太陽電池モジュールであって、
     前記充填材の、前記第2保護層側かつ前記外側部分側の端縁は、前記第1保護層側かつ前記外側部分側の端縁に対して、前記太陽電池部側に位置している、太陽電池モジュール。
    The solar cell module according to claim 2 or 3,
    An edge of the filler on the second protective layer side and the outer part side is located on the solar cell part side with respect to an edge on the first protective layer side and the outer part side. solar cell module.
  5.  請求項2から請求項4のいずれか一つに記載の太陽電池モジュールであって、
     前記第2保護層の前記支持部材側の端縁は、前記第1保護層の前記支持部材側の端縁に対して、前記太陽電池部側に位置している、太陽電池モジュール。
    The solar cell module according to any one of claims 2 to 4,
    In the solar cell module, an edge of the second protective layer on the support member side is located on the solar cell unit side with respect to an edge of the first protective layer on the support member side.
  6.  請求項2に記載の太陽電池モジュールであって、
     前記第2保護層は、前記支持部材と対向する領域を避けた状態で位置している、太陽電池モジュール。
    The solar cell module according to claim 2,
    In the solar cell module, the second protective layer is located so as to avoid a region facing the support member.
  7.  請求項1から請求項6のいずれか一つに記載の太陽電池モジュールであって、
     前記太陽電池部は、前記第1保護層の前記第2面に対向した状態で位置する複数の太陽電池素子を含み、
     前記複数の太陽電池素子の配列数は偶数である、太陽電池モジュール。
    The solar cell module according to any one of claims 1 to 6,
    The solar cell section includes a plurality of solar cell elements located opposite the second surface of the first protective layer,
    The solar cell module, wherein the number of the plurality of solar cell elements arranged is an even number.
  8.  請求項1から請求項7のいずれか一つに記載の太陽電池モジュールであって、
     前記支持部材は複数の支持部材であり、
     前記第1保護層は矩形形状を有し、
     前記複数の支持部材は前記第1保護層の1辺に沿って間隔を空けて並んだ状態で位置している、太陽電池モジュール。
    The solar cell module according to any one of claims 1 to 7,
    The support member is a plurality of support members,
    The first protective layer has a rectangular shape,
    In the solar cell module, the plurality of support members are arranged at intervals along one side of the first protective layer.
  9.  請求項1から請求項8のいずれか一つに記載の太陽電池モジュールであって、
     前記第1保護層は矩形形状を有し、
     前記支持部材は、前記第1保護層の1辺のみに位置している、太陽電池モジュール。
    The solar cell module according to any one of claims 1 to 8,
    The first protective layer has a rectangular shape,
    In the solar cell module, the support member is located on only one side of the first protective layer.
  10.  請求項1から請求項9のいずれか一つに記載の太陽電池モジュールであって、
     強化繊維部材をさらに備え、
     前記第1保護層は矩形形状を有し、
     前記支持部材は、前記第1保護層の第1辺に位置し、
     前記強化繊維部材は、前記支持部材が位置していない前記第1保護層の第2辺側において、前記充填材に覆われた状態で位置している、太陽電池モジュール。
    The solar cell module according to any one of claims 1 to 9,
    Further comprising a reinforcing fiber member,
    The first protective layer has a rectangular shape,
    The support member is located on a first side of the first protective layer,
    In the solar cell module, the reinforcing fiber member is located on a second side of the first protective layer where the supporting member is not located, covered with the filler.
PCT/JP2023/019200 2022-05-27 2023-05-23 Solar cell module WO2023228950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-086773 2022-05-27
JP2022086773 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023228950A1 true WO2023228950A1 (en) 2023-11-30

Family

ID=88919419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019200 WO2023228950A1 (en) 2022-05-27 2023-05-23 Solar cell module

Country Status (1)

Country Link
WO (1) WO2023228950A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331079A (en) * 1996-06-07 1997-12-22 M S K:Kk Frameless solar cell module
JP2007300086A (en) * 2006-04-07 2007-11-15 Kyocera Corp Photoelectric transducer module
CN106253829A (en) * 2016-09-14 2016-12-21 宁波山迪光能技术有限公司 Block frame and the manufacture method of ultra-thin substrate film solaode
JP2017073451A (en) * 2015-10-06 2017-04-13 株式会社カネカ Solar cell module and method of manufacturing solar cell module
JP2019176153A (en) * 2018-03-28 2019-10-10 エルジー エレクトロニクス インコーポレイティド Solar cell panel and manufacturing method thereof
JP2021072298A (en) * 2019-10-29 2021-05-06 京セラ株式会社 Solar cell module
WO2021161847A1 (en) * 2020-02-12 2021-08-19 京セラ株式会社 Solar cell module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331079A (en) * 1996-06-07 1997-12-22 M S K:Kk Frameless solar cell module
JP2007300086A (en) * 2006-04-07 2007-11-15 Kyocera Corp Photoelectric transducer module
JP2017073451A (en) * 2015-10-06 2017-04-13 株式会社カネカ Solar cell module and method of manufacturing solar cell module
CN106253829A (en) * 2016-09-14 2016-12-21 宁波山迪光能技术有限公司 Block frame and the manufacture method of ultra-thin substrate film solaode
JP2019176153A (en) * 2018-03-28 2019-10-10 エルジー エレクトロニクス インコーポレイティド Solar cell panel and manufacturing method thereof
JP2021072298A (en) * 2019-10-29 2021-05-06 京セラ株式会社 Solar cell module
WO2021161847A1 (en) * 2020-02-12 2021-08-19 京セラ株式会社 Solar cell module

Similar Documents

Publication Publication Date Title
US5679176A (en) Group of solar cell elements, and solar cell module and production method thereof
US20190123229A1 (en) Solar cell module
US20160336472A1 (en) Solar cell and solar cell module
KR20120047894A (en) Method for manufacturing photovoltaic cells with multiple junctions and multiple electrodes
JP6925434B2 (en) Solar cell module
JP2019102620A (en) Solar cell module
US20170373210A1 (en) Solar cell module
KR20110014913A (en) Solar cell module and method of manufacturing the same
WO2020184301A1 (en) Solar battery device, solar battery module, and production method for solar battery device
JP2023181470A (en) Solar cell module
US9373738B2 (en) Solar module
EP3648173B1 (en) Thin-film photovoltaic module with integrated electronics and methods for manufacturing thereof
WO2023228950A1 (en) Solar cell module
JP5196821B2 (en) Solar cell module
JP5342150B2 (en) Solar cell module
JP7274398B2 (en) solar module
WO2023210490A1 (en) Solar cell module
WO2019003892A1 (en) Solar cell module and method for manufacturing solar cell module
WO2012073802A1 (en) Solar battery cell and solar battery module
KR20150049259A (en) Junction box and photovoltaic module comprising the same
JP7483345B2 (en) Solar Cell Module
JP2022006836A (en) Solar cell string and solar cell module
JP2006165169A (en) Solar cell module, manufacturing method thereof and installing method thereof
WO2023127382A1 (en) Solar cell device and solar cell module
WO2017119036A1 (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811822

Country of ref document: EP

Kind code of ref document: A1