JP2021171963A - Metal-laminated film and method for manufacturing the same - Google Patents

Metal-laminated film and method for manufacturing the same Download PDF

Info

Publication number
JP2021171963A
JP2021171963A JP2020075910A JP2020075910A JP2021171963A JP 2021171963 A JP2021171963 A JP 2021171963A JP 2020075910 A JP2020075910 A JP 2020075910A JP 2020075910 A JP2020075910 A JP 2020075910A JP 2021171963 A JP2021171963 A JP 2021171963A
Authority
JP
Japan
Prior art keywords
metal
liquid crystal
crystal polymer
polymer film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020075910A
Other languages
Japanese (ja)
Inventor
裕介 橋本
Yusuke Hashimoto
光司 南部
Koji Nanbu
哲平 黒川
Teppei Kurokawa
輝久 市原
Teruhisa Ichihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2020075910A priority Critical patent/JP2021171963A/en
Priority to PCT/JP2021/015640 priority patent/WO2021215353A1/en
Priority to CN202180027781.1A priority patent/CN115397664A/en
Priority to TW110113508A priority patent/TW202205918A/en
Priority to KR1020227034948A priority patent/KR20230006808A/en
Publication of JP2021171963A publication Critical patent/JP2021171963A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/55Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/02Noble metals
    • B32B2311/04Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/02Noble metals
    • B32B2311/06Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/02Noble metals
    • B32B2311/08Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/18Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/22Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/30Iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a metal-laminated film capable of improving transmission characteristics in a printed wiring board.SOLUTION: A metal layer is laminated on at least one surface of a liquid crystal polymer film, and a degree F of orientation of the liquid crystal polymer film at a central portion in a thickness direction is 0.31 or more.SELECTED DRAWING: Figure 1

Description

本発明は、金属積層フィルム及びその製造方法に関する。 The present invention relates to a metal laminated film and a method for producing the same.

従来、プリント配線板作製用の基材として、紙基材フェノール樹脂等のリジッド基板や液晶ポリマーフィルム等の高分子フィルムに対し、銅箔等の金属層を積層させた金属積層フィルムが知られている。そして、近年は、第5世代移動通信システム(5G)到来に向けて、プリント配線板の高周波特性の向上のために、低誘電特性を有した液晶ポリマーフィルムに対し銅箔等の金属層を積層させた金属積層フィルムの開発が進んでいる。 Conventionally, as a base material for producing a printed wiring board, a metal laminated film in which a metal layer such as copper foil is laminated on a rigid substrate such as a paper base material phenol resin or a polymer film such as a liquid crystal polymer film has been known. There is. In recent years, with the advent of the 5th generation mobile communication system (5G), a metal layer such as copper foil is laminated on a liquid crystal polymer film having low dielectric properties in order to improve the high frequency characteristics of the printed wiring board. The development of the metal laminated film is in progress.

金属積層フィルムとしては、一般的には、高分子フィルムに対し密着性の観点から圧着面を粗面化した金属箔を加熱圧着する熱ラミネート法を用いて作製されるものが知られている。例えば、特許文献1には、液晶ポリマーフィルムの分子配向度SORを1.3以下とした高周波回路基板であって、熱ラミネート法を用い、液晶ポリマーフィルムに対し圧延銅箔を加熱圧着することで作製された高周波回路基板が開示されている。また、特許文献2には、液晶ポリマーフィルムと圧着面の表面粗さRzが規定された銅箔とを連続的に供給しながら、熱ラミネート法を用い、液晶ポリマーフィルムを融点以上の温度に加熱し液晶ポリマーフィルムに対し銅箔を加熱圧着することで作製されるフレキシブルプリント配線板用積層板が開示されている。 As the metal laminated film, generally, one produced by using a thermal laminating method in which a metal foil having a roughened pressure-bonded surface is heat-bonded to a polymer film is known from the viewpoint of adhesion. For example, Patent Document 1 describes a high-frequency circuit board in which the molecular orientation degree SOR of the liquid crystal polymer film is 1.3 or less, and a rolled copper foil is heat-bonded to the liquid crystal polymer film by using a thermal laminating method. The manufactured high frequency circuit board is disclosed. Further, in Patent Document 2, the liquid crystal polymer film is heated to a temperature equal to or higher than the melting point by using a thermal laminating method while continuously supplying the liquid crystal polymer film and the copper foil in which the surface roughness Rz of the pressure-bonded surface is defined. A laminated board for a flexible printed wiring board manufactured by heat-pressing a copper foil to a liquid crystal polymer film is disclosed.

一方、金属積層フィルムとしては、スパッタエッチング等の方法により酸化物や汚れ等を除去することで積層物の表面を活性化し、活性化した積層物の表面を他の積層物の表面に当接させて圧延することで接合する表面活性化接合を用いて作製されるものも知られている。例えば、特許文献3には、フレキシブル回路基板等を用途とする金属積層フィルムとして、高分子フィルム表面に金属薄膜を形成した金属薄膜積層フィルムにおけるスパッタエッチングにより活性化した金属薄膜面と金属箔表面と圧接することで作製される多層金属積層フィルムが開示されている。 On the other hand, as a metal laminated film, the surface of the laminate is activated by removing oxides, stains, etc. by a method such as sputtering etching, and the surface of the activated laminate is brought into contact with the surface of another laminate. It is also known that it is produced by using surface-activated bonding, which is bonded by rolling and rolling. For example, Patent Document 3 describes a metal thin film surface and a metal foil surface activated by sputter etching in a metal thin film laminated film in which a metal thin film is formed on the surface of a polymer film as a metal laminated film for use in a flexible circuit substrate or the like. A multilayer metal laminated film produced by pressure welding is disclosed.

特開2000−269616号公報Japanese Unexamined Patent Publication No. 2000-269616 特許5411656号公報Japanese Patent No. 541165 特許4532713号公報Japanese Patent No. 4532713

特許文献1及び2に開示された熱ラミネート法を用いて、液晶ポリマーフィルムに対し金属層を加熱圧着して金属積層フィルムを作製する場合には、液晶ポリマーフィルムを融点以上に加熱することが必要とされている。このため、液晶ポリマーフィルムが、融点付近又は融点以上に加熱される結果、大きく変質しその配向が大きく乱れることがある。これにより、液晶ポリマーフィルムの誘電特性の劣化を招き、金属積層フィルムから作製されるプリント配線板の伝送特性が低下することがある。 When a metal layer is heat-bonded to a liquid crystal polymer film by using the thermal laminating method disclosed in Patent Documents 1 and 2, it is necessary to heat the liquid crystal polymer film to a temperature equal to or higher than the melting point. It is said that. Therefore, as a result of heating the liquid crystal polymer film near the melting point or above the melting point, the quality of the liquid crystal polymer film may be significantly deteriorated and its orientation may be greatly disturbed. As a result, the dielectric properties of the liquid crystal polymer film may be deteriorated, and the transmission characteristics of the printed wiring board made of the metal laminated film may be deteriorated.

一方、表面活性化接合により作製された金属積層フィルムである特許文献3に開示された多層金属積層フィルムでは、高分子フィルムに液晶ポリマーフィルムが用いられていない。そのため、そこから作製されるプリント配線板は特に高周波領域(例えば28GHz)での伝送特性が低かった。 On the other hand, in the multilayer metal laminated film disclosed in Patent Document 3, which is a metal laminated film produced by surface activation bonding, a liquid crystal polymer film is not used as the polymer film. Therefore, the printed wiring board produced from the printed wiring board has low transmission characteristics especially in a high frequency region (for example, 28 GHz).

そこで、本発明は、プリント配線板の伝送特性を良好にすることができる金属積層フィルム及びその製造方法を提供することを主目的とする。 Therefore, an object of the present invention is to provide a metal laminated film capable of improving the transmission characteristics of a printed wiring board and a method for producing the same.

本発明者らが鋭意検討を行った結果、金属積層フィルムの高分子フィルムに液晶ポリマーフィルムが用いる場合に、表面活性化接合により、液晶ポリマーフィルムに対し金属層を接合することで金属積層フィルムを作製することにより、液晶ポリマーフィルムの配向の乱れを抑制することができ、上記課題が解決できることを見い出し、発明を完成した。すなわち、本発明の要旨は次のとおりである。 As a result of diligent studies by the present inventors, when a liquid crystal polymer film is used as a polymer film of a metal laminated film, the metal laminated film is formed by bonding a metal layer to the liquid crystal polymer film by surface activation bonding. By producing the film, it was found that the disorder of the orientation of the liquid crystal polymer film could be suppressed and the above-mentioned problems could be solved, and the invention was completed. That is, the gist of the present invention is as follows.

(1)液晶ポリマーフィルムの少なくとも一方の表面に金属層が積層されており、上記液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fが0.31以上であることを特徴とする金属積層フィルム。
(2)液晶ポリマーフィルムの少なくとも一方の表面に金属層が積層されており、上記液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fが、上記金属層が積層される前の上記液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fの77%以上であることを特徴とする金属積層フィルム。
(3)上記液晶ポリマーフィルムにおける厚み方向の配向度Fの平均が0.31以上であることを特徴とする上記(1)又は(2)に記載の金属積層フィルム。
(4)上記液晶ポリマーフィルムの誘電正接が、上記金属層が積層される前の上記液晶ポリマーフィルムの誘電正接の114%未満であることを特徴とする上記(1)から(3)いずれか一つに記載の金属積層フィルム。
(5)上記金属層と上記液晶ポリマーフィルムの接合強度が2.0N/cm以上であることを特徴とする上記(1)から(4)いずれか一つに記載の金属積層フィルム。
(6)上記金属層が、金属箔を有することを特徴とする上記(1)から(5)いずれか一つに記載の金属積層フィルム。
(7)上記金属層が、上記液晶ポリマーフィルムと上記金属箔との間に金属を含む中間層をさらに有することを特徴とする上記(6)に記載の金属積層フィルム。
(8)上記中間層が、銅、鉄、ニッケル、亜鉛、クロム、コバルト、チタン、スズ、白金、銀、及び金からなる群より選択されるいずれか一種の金属又は該金属を含有する合金を含むことを特徴とする上記(7)に記載の金属積層フィルム。
(9)上記金属箔が、銅箔、銅合金箔、又はキャリア付き銅箔であることを特徴とする上記(6)から(8)いずれか一つに記載の金属積層フィルム。
(10)上記(7)に記載の金属積層フィルムの製造方法であって、液晶ポリマーフィルムと金属箔とを準備する工程(準備工程)と、上記液晶ポリマーフィルムの少なくとも一方の表面に金属を含む中間層を積層する工程(中間層積層工程)と、上記中間層の表面をスパッタエッチングにより活性化する工程(活性化工程)と、上記金属箔の表面をスパッタエッチングにより活性化する工程(活性化工程)と、上記中間層及び上記金属箔の上記活性化した表面同士を0〜30%の圧下率で圧延接合する工程(圧延接合工程)と、上記圧延接合した上記中間層及び上記金属箔を有する金属層並びに上記液晶ポリマーフィルムに対し、上記液晶ポリマーフィルムの融点−100℃以上上記融点−10℃以下の温度で熱処理を施す工程(熱処理工程)と、を備える金属積層フィルムの製造方法。
(11)上記熱処理後の上記液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fが0.31以上であることを特徴とする上記(10)に記載の金属積層フィルムの製造方法。
(12)上記熱処理後の上記液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fが、上記金属層が積層される前の上記液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fの77%以上であることを特徴とする上記(10)又は(11)に記載の金属積層フィルムの製造方法。
(13)上記熱処理後の上記液晶ポリマーフィルムの誘電正接が、上記金属層が積層される前の上記液晶ポリマーフィルムの誘電正接の114%未満であることを特徴とする上記(10)から(12)いずれか一つに記載の金属積層フィルムの製造方法。
(1) A metal laminated film in which a metal layer is laminated on at least one surface of the liquid crystal polymer film, and the degree of orientation F of the central portion in the thickness direction of the liquid crystal polymer film is 0.31 or more.
(2) A metal layer is laminated on at least one surface of the liquid crystal polymer film, and the degree of orientation F of the central portion in the thickness direction of the liquid crystal polymer film is the same as that of the liquid crystal polymer film before the metal layer is laminated. A metal laminated film having a degree of orientation F of 77% or more in the central portion in the thickness direction.
(3) The metal laminated film according to (1) or (2) above, wherein the average degree F of orientation F in the thickness direction of the liquid crystal polymer film is 0.31 or more.
(4) Any one of (1) to (3) above, wherein the dielectric loss tangent of the liquid crystal polymer film is less than 114% of the dielectric loss tangent of the liquid crystal polymer film before the metal layers are laminated. The metal laminated film described in 1.
(5) The metal laminated film according to any one of (1) to (4) above, wherein the bonding strength between the metal layer and the liquid crystal polymer film is 2.0 N / cm or more.
(6) The metal laminated film according to any one of (1) to (5) above, wherein the metal layer has a metal foil.
(7) The metal laminated film according to (6) above, wherein the metal layer further has an intermediate layer containing a metal between the liquid crystal polymer film and the metal foil.
(8) The intermediate layer is a metal selected from the group consisting of copper, iron, nickel, zinc, chromium, cobalt, titanium, tin, platinum, silver, and gold, or an alloy containing the metal. The metal laminated film according to (7) above, which comprises.
(9) The metal laminated film according to any one of (6) to (8) above, wherein the metal foil is a copper foil, a copper alloy foil, or a copper foil with a carrier.
(10) The method for producing a metal laminated film according to (7) above, wherein the liquid crystal polymer film and the metal foil are prepared (preparation step), and at least one surface of the liquid crystal polymer film contains a metal. A step of laminating the intermediate layer (intermediate layer laminating step), a step of activating the surface of the intermediate layer by sputter etching (activation step), and a step of activating the surface of the metal foil by sputter etching (activation). Step), a step of rolling and joining the intermediate layer and the activated surfaces of the metal foil at a reduction rate of 0 to 30% (rolling joining step), and the rolling-joined intermediate layer and the metal foil. A method for producing a metal laminated film, comprising a step (heat treatment step) of heat-treating the metal layer and the liquid crystal polymer film at a temperature of the melting point of the liquid crystal polymer film of −100 ° C. or higher and the melting point of −10 ° C. or lower.
(11) The method for producing a metal laminated film according to (10) above, wherein the degree of orientation F of the central portion in the thickness direction of the liquid crystal polymer film after the heat treatment is 0.31 or more.
(12) The degree of orientation F of the central portion in the thickness direction of the liquid crystal polymer film after the heat treatment is 77% or more of the degree of orientation F of the central portion in the thickness direction of the liquid crystal polymer film before the metal layers are laminated. The method for producing a metal laminated film according to the above (10) or (11).
(13) The dielectric loss tangent of the liquid crystal polymer film after the heat treatment is less than 114% of the dielectric loss tangent of the liquid crystal polymer film before the metal layers are laminated (10) to (12). ) The method for producing a metal laminated film according to any one of them.

本発明によれば、プリント配線板の伝送特性を良好にすることができる。 According to the present invention, the transmission characteristics of the printed wiring board can be improved.

実施形態の金属積層フィルムの一例を示す概略断面図である。It is the schematic sectional drawing which shows an example of the metal laminated film of embodiment. 実施形態の金属積層フィルムの製造方法の一例の要部を示す概略断面図である。It is schematic cross-sectional view which shows the main part of the example of the manufacturing method of the metal laminated film of embodiment. 実施形態の金属積層フィルムの製造方法の一例の要部を示す概略断面図である。It is schematic cross-sectional view which shows the main part of the example of the manufacturing method of the metal laminated film of embodiment. 液晶ポリマーフィルムの切片における配向度Fの測定領域を示す概略図である。It is the schematic which shows the measurement region of the degree of orientation F in the section of a liquid crystal polymer film. 未処理並びに実施例1及び比較例2の液晶ポリマーフィルムの切片における測定領域の位置毎の配向度Fを示すグラフである。It is a graph which shows the degree of orientation F for each position of the measurement area in the untreated and the section of the liquid crystal polymer film of Example 1 and Comparative Example 2.

以下、本発明の金属積層フィルム及びその製造方法に係る実施形態ついて説明する。 Hereinafter, embodiments relating to the metal laminated film of the present invention and the method for producing the same will be described.

A.金属積層フィルム
ここで、本発明の金属積層フィルムに係る実施形態について例示して説明する。図1は、実施形態の金属積層フィルムの一例を示す概略断面図である。
A. Metal Laminated Film Here, an embodiment according to the metal laminated film of the present invention will be illustrated and described. FIG. 1 is a schematic cross-sectional view showing an example of the metal laminated film of the embodiment.

図1に示すように、本例の金属積層フィルム1Aは、液晶ポリマーフィルム20の一方の表面20aに金属層10が積層されている。金属層10は、液晶ポリマーフィルム20の一方の表面20aに積層された銅を含む中間層14と、中間層14の液晶ポリマーフィルム20側とは反対側の表面14aに積層された銅箔(金属箔)12とを有している。 As shown in FIG. 1, in the metal laminated film 1A of this example, the metal layer 10 is laminated on one surface 20a of the liquid crystal polymer film 20. The metal layer 10 is a copper foil (metal) laminated on an intermediate layer 14 containing copper laminated on one surface 20a of the liquid crystal polymer film 20 and a surface 14a of the intermediate layer 14 opposite to the liquid crystal polymer film 20 side. It has a foil) 12.

金属層10が積層される前の液晶ポリマーフィルム20における厚み方向の中央部の配向度Fは0.4である。これに対し、金属積層フィルム1Aでは、液晶ポリマーフィルム20における厚み方向の中央部の配向度Fは、0.31以上となっており、金属層10が積層される前の液晶ポリマーフィルム20における厚み方向の中央部の配向度Fの77%以上となっている。これにより、液晶ポリマーフィルム20の誘電正接は、金属層10が積層される前の液晶ポリマーフィルム20の誘電正接の114%未満となっている。このため、金属積層フィルム1Aから作製されるプリント配線板の伝送特性を良好にすることができる。さらに、金属層10と液晶ポリマーフィルム20の接合強度は、2.0N/cm以上となっており、金属層10と液晶ポリマーフィルム20の密着性が高い。このため、金属積層フィルム1Aから作製されるプリント配線板の微細配線の信頼性を向上することもできる。 The degree of orientation F of the central portion in the thickness direction of the liquid crystal polymer film 20 before the metal layer 10 is laminated is 0.4. On the other hand, in the metal laminated film 1A, the degree of orientation F of the central portion in the thickness direction of the liquid crystal polymer film 20 is 0.31 or more, and the thickness of the liquid crystal polymer film 20 before the metal layer 10 is laminated. The degree of orientation F at the center of the direction is 77% or more. As a result, the dielectric loss tangent of the liquid crystal polymer film 20 is less than 114% of the dielectric loss tangent of the liquid crystal polymer film 20 before the metal layer 10 is laminated. Therefore, the transmission characteristics of the printed wiring board made of the metal laminated film 1A can be improved. Further, the bonding strength between the metal layer 10 and the liquid crystal polymer film 20 is 2.0 N / cm or more, and the adhesion between the metal layer 10 and the liquid crystal polymer film 20 is high. Therefore, it is possible to improve the reliability of the fine wiring of the printed wiring board produced from the metal laminated film 1A.

従って、実施形態の金属積層フィルムによれば、上記例の金属積層フィルム1Aと同様に、プリント配線板の伝送特性を良好にすることができる。さらに、金属層と液晶ポリマーフィルムの接合強度が2.0N/cm以上である場合には、プリント配線板の伝送特性及び微細配線の信頼性を両立することができる。 Therefore, according to the metal laminated film of the embodiment, the transmission characteristics of the printed wiring board can be improved as in the metal laminated film 1A of the above example. Further, when the bonding strength between the metal layer and the liquid crystal polymer film is 2.0 N / cm or more, it is possible to achieve both the transmission characteristics of the printed wiring board and the reliability of the fine wiring.

続いて、実施形態の金属積層フィルムの各構成について詳細に説明する。 Subsequently, each configuration of the metal laminated film of the embodiment will be described in detail.

1.液晶ポリマーフィルム
液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fは、金属層が積層される前の液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fの77%以上である。
1. 1. Liquid crystal polymer film The degree of orientation F of the central portion in the thickness direction of the liquid crystal polymer film is 77% or more of the degree of orientation F of the central portion in the thickness direction of the liquid crystal polymer film before the metal layers are laminated.

ここで、「液晶ポリマーフィルム」とは、溶融状態で液晶の性質を示すような、パラヒドロキシ安息香酸等を基本構造とする芳香族ポリエステル系樹脂からなるフィルムをいう。 Here, the "liquid crystal polymer film" refers to a film made of an aromatic polyester resin having a basic structure such as parahydroxybenzoic acid, which exhibits the properties of a liquid crystal in a molten state.

ここで「配向度F」とはMD(フィルムの延伸方向)への分子配向度のことを意味しており、以下の方法を用いて算出する。まず、顕微赤外分光装置(顕微FT−IR装置)へ赤外光に対する偏光子を取り付けて、高分子フィルム(ここでは液晶ポリマーフィルム)のMDに平行な偏光方向の赤外透過スペクトル及びMDに垂直な偏光方向の赤外透過スペクトルを測定する。次に、これらの赤外透過スペクトルの1601cm−1のピークを用いて赤外二色比D(MDに平行な偏光方向の赤外透過スペクトルの1601cm−1のピークの強度A‖とMDに垂直な偏光方向の赤外透過スペクトルの1601cm−1のピークの強度A⊥の比)を求める。なお、これらのピークの強度のベースラインは、各赤外透過スペクトルの1618.9cm−1及び1572.4cm−1を結ぶ直線に設定する。また、ここで、1601cm−1のピークは、ベンゼン環のC=C伸縮振動に帰属され、分子鎖に対して平行な遷移モーメントを有するピークである。次に、赤外二色比Dから配向度Fを算出する。なお、赤外二色比D及び配向度Fの算出方法はそれぞれ式(1)及び(2)である。 Here, the "degree of orientation F" means the degree of molecular orientation in the MD (stretching direction of the film), and is calculated using the following method. First, a polarizer for infrared light is attached to a micro-infrared spectroscope (micro-FT-IR device) to obtain an infrared transmission spectrum and MD in the polarization direction parallel to the MD of the polymer film (here, a liquid crystal polymer film). Infrared transmission spectrum in the vertical polarization direction is measured. Next, using the peaks of 1601 cm -1 in these infrared transmission spectra, the infrared dichroic ratio D (the intensity A‖ of the peak of 1601 cm -1 in the infrared transmission spectrum in the polarization direction parallel to MD and perpendicular to MD. The ratio of the intensity A⊥ of the peak of 1601 cm -1 in the infrared transmission spectrum in the parallel polarization direction) is obtained. The base line of the intensity of these peaks is set to a line connecting the 1618.9Cm -1 and 1572.4Cm -1 of the infrared transmission spectrum. Further, here, the peak of 1601 cm -1 is a peak that is attributed to the C = C expansion and contraction vibration of the benzene ring and has a transition moment parallel to the molecular chain. Next, the degree of orientation F is calculated from the infrared bicolor ratio D. The methods for calculating the infrared bicolor ratio D and the degree of orientation F are the formulas (1) and (2), respectively.

Figure 2021171963
Figure 2021171963
Figure 2021171963
Figure 2021171963

「厚み方向の中央部の配向度F」とは、例えば、液晶ポリマーフィルムの表面に垂直でMDに平行な断面(垂直断面)における厚み方向の中央に位置する測定領域で赤外二色比Dを測定し、該測定領域で測定される赤外二色比Dから算出した配向度Fを指す。なお、該測定領域としては、特に限定されないが、例えば、図3に示すMDの長さ100μm×厚み方向の長さ10μmの矩形領域等が挙げられる。 The “degree of orientation F at the center in the thickness direction” is, for example, an infrared dichroic ratio D in a measurement region located at the center in the thickness direction in a cross section (vertical cross section) perpendicular to the surface of the liquid crystal polymer film and parallel to the MD. Refers to the degree of orientation F calculated from the infrared bicolor ratio D measured in the measurement region. The measurement region is not particularly limited, and examples thereof include a rectangular region having an MD length of 100 μm and a length of 10 μm in the thickness direction shown in FIG.

「金属層が積層される前の液晶ポリマーフィルム」とは、後述する「B.金属積層フィルムの製造方法 1.準備工程」の項目で説明する準備工程で準備する液晶ポリマーフィルムを指す。 The “liquid crystal polymer film before the metal layer is laminated” refers to the liquid crystal polymer film prepared in the preparatory step described in the item “B. Manufacturing method of metal laminated film 1. Preparation step” described later.

液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fは、金属層が積層される前の液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fの77%以上であれば特に限定されず、金属層が積層される前の液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fに近いほど好ましいが、具体的には、例えば、0.31以上であり、より好ましくは0.315以上であり、さらに好ましくは0.32以上である。特に伝送特性が良好となるからである。 The degree of orientation F of the central portion in the thickness direction of the liquid crystal polymer film is not particularly limited as long as it is 77% or more of the degree of orientation F of the central portion in the thickness direction of the liquid crystal polymer film before the metal layers are laminated, and the metal layer. It is preferable that the degree of orientation F in the central portion in the thickness direction of the liquid crystal polymer film before laminating is closer, but specifically, for example, it is 0.31 or more, more preferably 0.315 or more, and further. It is preferably 0.32 or more. This is because the transmission characteristics are particularly good.

液晶ポリマーフィルムにおける厚み方向の配向度Fの平均は、特に限定されず、金属層が積層される前の液晶ポリマーフィルムにおける厚み方向の配向度Fの平均に近いほど好ましいが、金属層が積層される前の液晶ポリマーフィルムにおける厚み方向の配向度Fの平均の79%以上であることが好ましい。伝送特性が良好となるからである。また、液晶ポリマーフィルムにおける厚み方向の配向度Fの平均は、具体的には、例えば、0.31以上が好ましく、より好ましくは0.315以上である。特に伝送特性が良好となるからである。 The average degree of orientation F in the thickness direction of the liquid crystal polymer film is not particularly limited, and is preferably closer to the average degree of orientation F in the thickness direction of the liquid crystal polymer film before the metal layers are laminated, but the metal layers are laminated. It is preferable that the degree of orientation F in the thickness direction of the liquid crystal polymer film before the film is 79% or more of the average. This is because the transmission characteristics are good. Further, the average degree of orientation F in the thickness direction of the liquid crystal polymer film is, for example, preferably 0.31 or more, and more preferably 0.315 or more. This is because the transmission characteristics are particularly good.

ここで、「厚み方向の配向度Fの平均」とは、例えば、液晶ポリマーフィルムの表面に垂直でMDに平行な断面(垂直断面)における所定のMDの長さの領域を厚み方向に均等に分割した複数の測定領域(例えば、5個以上の測定領域)でそれぞれ測定される赤外二色比Dから算出した複数の配向度Fの平均値を指す。なお、複数の測定領域としては、特に限定されないが、例えば、図3に示す表面からの厚み方向の距離が5μm、15μm、25μm、35μm、及び45μmにそれぞれ位置する5個の矩形領域等が挙げられる。 Here, the "average degree of orientation F in the thickness direction" means, for example, a region of a predetermined MD length in a cross section perpendicular to the surface of the liquid crystal polymer film and parallel to the MD (vertical cross section) evenly in the thickness direction. It refers to the average value of a plurality of degrees of orientation F calculated from the infrared dichroic ratio D measured in each of a plurality of divided measurement regions (for example, five or more measurement regions). The plurality of measurement regions are not particularly limited, and examples thereof include five rectangular regions located at distances in the thickness direction from the surface shown in FIG. 3 at 5 μm, 15 μm, 25 μm, 35 μm, and 45 μm, respectively. Be done.

液晶ポリマーフィルムの誘電正接は、特に限定されず、金属層が積層される前の液晶ポリマーフィルムの誘電正接に近いほど好ましいが、例えば、金属層が積層される前の液晶ポリマーフィルムの誘電正接の114%未満が好ましく、中でも金属層が積層される前の液晶ポリマーフィルムの誘電正接の112%未満が好ましく、さらに好ましくは110%未満である。伝送特性が良好となるからである。液晶ポリマーフィルムの誘電正接は、具体的には、例えば、0.0024未満が好ましい。特に伝送特性が良好となるからである。 The dielectric loss tangent of the liquid crystal polymer film is not particularly limited, and it is preferable that the dielectric loss tangent is closer to the dielectric loss tangent of the liquid crystal polymer film before the metal layer is laminated. It is preferably less than 114%, more preferably less than 112% of the dielectric loss tangent of the liquid crystal polymer film before the metal layer is laminated, and even more preferably less than 110%. This is because the transmission characteristics are good. Specifically, the dielectric loss tangent of the liquid crystal polymer film is preferably less than 0.0024, for example. This is because the transmission characteristics are particularly good.

ここで、「誘電正接」とは、28GHz付近の誘電正接を指し、例えば、開放型共振器法により、測定周波数を28GHzとして比誘電率/誘電正接測定システム(キーコム株式会社製DPS03)を使用して測定されるものを指す。 Here, the "dielectric loss tangent" refers to a dielectric loss tangent in the vicinity of 28 GHz. For example, a relative permittivity / dielectric loss tangent measurement system (DPS03 manufactured by Keycom Co., Ltd.) is used with a measurement frequency of 28 GHz by the open resonator method. Refers to what is measured.

液晶ポリマーフィルムの厚みは、金属積層フィルムの用途等に応じて適宜設定することができる。例えば、フレキシブルプリント基板として用いる場合は、厚みは10μm以上150μm以下であることが好ましく、より好ましくは10μm以上120μm以下である。なお、液晶ポリマーフィルムの厚みは、マイクロメータ等によって測定可能であり、対象とする液晶ポリマーフィルムの表面上からランダムに選択した10点において測定した厚みの平均値をいう。また、液晶ポリマーフィルムについては、10点の測定値の平均値からの偏差が全ての測定値で20%以内であることが好ましく、より好ましくは15%以内である。 The thickness of the liquid crystal polymer film can be appropriately set according to the use of the metal laminated film and the like. For example, when used as a flexible printed substrate, the thickness is preferably 10 μm or more and 150 μm or less, and more preferably 10 μm or more and 120 μm or less. The thickness of the liquid crystal polymer film can be measured with a micrometer or the like, and refers to the average value of the thickness measured at 10 points randomly selected from the surface of the target liquid crystal polymer film. Further, for the liquid crystal polymer film, the deviation from the average value of the measured values at 10 points is preferably 20% or less, more preferably 15% or less for all the measured values.

2.金属層
金属層は、金属箔を有するものであれば特に限定されず、図1に示す金属積層フィルム1Aにおける金属層10のように、当該金属箔に加え、液晶ポリマーフィルムと金属箔との間に金属を含む中間層をさらに有するものでも良いし、当該金属箔であるものでも良いが、当該金属箔に加え、液晶ポリマーフィルムと金属箔との間に金属を含む中間層をさらに有するものが好ましい。以下、金属層が有する金属箔、及び金属層が中間層と金属箔とを有する場合における中間層について説明する。
2. Metal layer The metal layer is not particularly limited as long as it has a metal foil, and as in the metal layer 10 in the metal laminated film 1A shown in FIG. 1, in addition to the metal foil, between the liquid crystal polymer film and the metal foil. It may have an intermediate layer containing a metal in the metal, or it may be a metal foil, but in addition to the metal foil, an intermediate layer containing a metal is further provided between the liquid crystal polymer film and the metal foil. preferable. Hereinafter, the metal foil of the metal layer and the intermediate layer when the metal layer has the intermediate layer and the metal foil will be described.

(1)金属箔
金属箔は、金属積層フィルムの用途により異なり特に限定されないが、例えば、銅箔、ニッケル箔、アルミ箔、及び鉄箔等の単層箔、これらの積層箔(クラッド材)、合金箔、圧延薄板等が挙げられる。金属箔としては、中でも銅箔又は銅合金箔等が好ましい。これらを液晶ポリマーフィルムと圧延接合することで、例えば微細な配線形成用のフレキシブル基板を得ることができるからである。また、さらに微細な配線形成用のフレキシブル基板を作製する場合は、金属箔として極薄銅箔、剥離層、及びキャリア層からなるキャリア付き銅箔を用いることが好ましい。キャリア付き銅箔を使用する場合、液晶ポリマーフィルム側又は中間層側から極薄銅箔、剥離層、及びキャリア層の順番になるようにキャリア付き銅箔を積層させる。キャリア層付き銅箔としては特に限定されないが、三井金属鉱業(株)製MT18FLやJX金属(株)製JXUT−III等が挙げられる。
(1) Metal foil The metal foil varies depending on the use of the metal laminated film and is not particularly limited. For example, a single layer foil such as a copper foil, a nickel foil, an aluminum foil, and an iron foil, a laminated foil (clad material) thereof, and the like. Examples include alloy foils and rolled thin plates. As the metal foil, copper foil, copper alloy foil, or the like is preferable. This is because, for example, a flexible substrate for forming fine wiring can be obtained by rolling and joining these with a liquid crystal polymer film. Further, when producing a flexible substrate for forming finer wiring, it is preferable to use a carrier-attached copper foil composed of an ultrathin copper foil, a release layer, and a carrier layer as the metal foil. When a copper foil with a carrier is used, the copper foil with a carrier is laminated in the order of the ultrathin copper foil, the release layer, and the carrier layer from the liquid crystal polymer film side or the intermediate layer side. The copper foil with a carrier layer is not particularly limited, and examples thereof include MT18FL manufactured by Mitsui Mining & Smelting Co., Ltd. and JXUT-III manufactured by JX Nippon Mining & Metals Co., Ltd.

金属箔の厚みは、金属積層フィルムの用途により異なり特に限定されないが、例えば、フレキシブルプリント配線基板用途であれば、3μm以上100μm以下が好ましく、中でも10μm以上35μm以下が好ましい。金属箔としてキャリア層付き銅箔を用いる場合は、極薄銅箔の厚みは、特に限定されないが、例えば0.5μm以上10μm以下が好ましく、1μm以上7μm以下がより好ましい。また、剥離層の厚みは、特に限定されないが、例えば1nm以上1μm以下が好ましく、キャリア層の厚みは、特に限定されないが、例えば10μm以上100μm以下が好ましい。 The thickness of the metal foil varies depending on the use of the metal laminated film and is not particularly limited. For example, in the case of a flexible printed wiring board application, it is preferably 3 μm or more and 100 μm or less, and more preferably 10 μm or more and 35 μm or less. When a copper foil with a carrier layer is used as the metal foil, the thickness of the ultrathin copper foil is not particularly limited, but is preferably 0.5 μm or more and 10 μm or less, and more preferably 1 μm or more and 7 μm or less. The thickness of the release layer is not particularly limited, but is preferably 1 nm or more and 1 μm or less, and the thickness of the carrier layer is not particularly limited, but is preferably 10 μm or more and 100 μm or less.

なお、金属層としては、図1には記載していないが、金属箔の液晶ポリマーフィルム側の表面に粗化粒子層、防錆層、及びシランカップリング剤による処理層等のうちの少なくとも一種の層(以下、「処理層」ということがある)をさらに有するものでも良い。処理層は、いずれか一種の層が積層されていても良いし、複数種の層が積層されていても良い。粗化粒子層は、例えば、Cu、Co及びNiからなる群より選択されるいずれか一種の金属又はその合金を含むことができるが、これに限定されなくても良い。具体的には、コバルト−ニッケル合金めっき層、銅−コバルト−ニッケル合金めっき層等が挙げられる。また、防錆層は、例えば、Cr、Ni及びZnからなる群より選択されるいずれか一種の金属又はその合金を含むことができるが、これに限定されなくても良い。具体的には、クロム酸化物の皮膜処理、クロム酸化物と亜鉛/亜鉛酸化物との混合物皮膜処理、Niめっき層等を挙げることができる。さらに、シランカップリング剤としては、オレフィン系シラン、エポキシ系シラン、アクリル系シラン、アミノ系シラン、メルカプト系シランを挙げることができるが、これらに限定されるものではない。シランカップリング剤の塗布は、スプレーによる吹付け、コーターによる塗布、浸漬等の方法を適宜用いて行うことができる。 Although not shown in FIG. 1, the metal layer is at least one of a roughened particle layer, a rust preventive layer, a treated layer with a silane coupling agent, and the like on the surface of the metal foil on the liquid crystal polymer film side. A layer (hereinafter, may be referred to as a “treatment layer”) may be further provided. As the treatment layer, any one type of layer may be laminated, or a plurality of types of layers may be laminated. The roughened particle layer can include, but is not limited to, any kind of metal selected from the group consisting of Cu, Co and Ni, or an alloy thereof. Specific examples thereof include a cobalt-cobalt-nickel alloy plating layer and a copper-cobalt-nickel alloy plating layer. Further, the rust preventive layer may contain, for example, any kind of metal selected from the group consisting of Cr, Ni and Zn or an alloy thereof, but is not limited thereto. Specific examples thereof include a coating treatment of chromium oxide, a coating treatment of a mixture of chromium oxide and zinc / zinc oxide, and a Ni plating layer. Further, examples of the silane coupling agent include, but are not limited to, olefin-based silanes, epoxy-based silanes, acrylic-based silanes, amino-based silanes, and mercapto-based silanes. The silane coupling agent can be applied by appropriately using a method such as spraying, coating with a coater, or dipping.

(2)中間層
中間層は、金属を含む層であれば特に限定されず、1層の金属を含む層でも良いし、2層以上の金属を含む層が積層されたものでも良い。中間層としては、液晶ポリマーフィルム上に設けられた、スパッタ成膜、又は蒸着若しくは無電解めっきによる層が挙げられる。
(2) Intermediate layer The intermediate layer is not particularly limited as long as it is a layer containing a metal, and may be a layer containing one metal layer or a laminated layer containing two or more layers of metal. Examples of the intermediate layer include a layer provided on a liquid crystal polymer film by sputter film formation, thin film deposition, or electroless plating.

中間層は、金属を含むものであれば特に限定されないが、銅、鉄、ニッケル、亜鉛、クロム、コバルト、チタン、スズ、白金、銀、金、アルミ二ウム、パラジウム、及びジルコニウムからなる群より選択されるいずれか一種の金属又は該金属を含有する合金を含むものが好ましい。また、中間層は、金属を含む層が複数積層されたものでもよい。特に、金属箔が銅箔又は銅合金箔である場合には、中間層についても、銅又は銅ニッケル合金等の銅合金を含むもの等であることが好ましく、中でも金属箔と同一の組成の金属を含むものが好ましい。エッチングが容易となるからである。 The intermediate layer is not particularly limited as long as it contains a metal, but is composed of a group consisting of copper, iron, nickel, zinc, chromium, cobalt, titanium, tin, platinum, silver, gold, aluminum, palladium, and zirconium. Those containing any one of the selected metals or alloys containing the metals are preferred. Further, the intermediate layer may be one in which a plurality of layers containing a metal are laminated. In particular, when the metal foil is a copper foil or a copper alloy foil, it is preferable that the intermediate layer also contains a copper alloy such as copper or a copper nickel alloy, and among them, a metal having the same composition as the metal foil. Is preferable. This is because etching becomes easy.

中間層が、例えば、Cu−Ni合金である場合は、Cuに対するNiの比率がat%で10〜90%であるものが好ましい。しかし、これに限定されるものではない。中間層を設けることにより、金属箔又は液晶ポリマーフィルムの表面を保護し、また金属箔と液晶ポリマーフィルムとの密着性を向上することができるだけでなく、中間層特有の機能を付与することもできる(例えば、エッチング加工時のエッチングストッパー層としての機能等)。中間層の厚みは、密着性向上等の機能を発揮し得る厚みであれば良く、特に限定されないが、例えば、5nm以上200nm以下が好ましく、中でも10nm以上100nm以下が好ましい。 When the intermediate layer is, for example, a Cu—Ni alloy, the ratio of Ni to Cu is preferably 10 to 90% at%. However, it is not limited to this. By providing the intermediate layer, it is possible not only to protect the surface of the metal foil or the liquid crystal polymer film and improve the adhesion between the metal foil and the liquid crystal polymer film, but also to impart a function peculiar to the intermediate layer. (For example, the function as an etching stopper layer during etching processing, etc.). The thickness of the intermediate layer may be any thickness as long as it can exert a function such as improving adhesion, and is not particularly limited. For example, 5 nm or more and 200 nm or less are preferable, and 10 nm or more and 100 nm or less are particularly preferable.

3.金属積層フィルム
金属積層フィルムでは、特に限定されないが、図1に示される金属積層フィルム1Aのように、金属層と液晶ポリマーフィルムの接合強度が2.0N/cm以上であることが好ましい。プリント配線板の微細配線の信頼性を向上できるからである。
3. 3. The metal laminated film is not particularly limited, but as in the metal laminated film 1A shown in FIG. 1, the bonding strength between the metal layer and the liquid crystal polymer film is preferably 2.0 N / cm or more. This is because the reliability of the fine wiring of the printed wiring board can be improved.

なお、上記接合強度の値を測定するには、まず金属積層フィルムからの試験片を作製し、金属層にナイフ等を用いて幅1cmの切込みを入れる。そして、金属層と液晶ポリマーフィルムを一部剥離後、液晶ポリマーフィルムを支持体へ固定し、金属層を、液晶ポリマーフィルムに対して90°方向へ50mm/min.の速度で引っ張る。その際の引き剥がすのに要する力をもって接合強度とする(単位:N/cm)。また、金属層が薄く脆弱な場合は、上記接合強度を測定する際に切断するおそれがある。その場合は金属層表面に電解めっき等(金属層が銅である場合、例えば銅めっき)を施して、金属層の厚みを約5〜50μmに増やしてから上記接合強度を測定しても良い。上記接合強度の値の測定方法は、JIS C6471に規定された測定方法である。 In order to measure the value of the bonding strength, first, a test piece is prepared from a metal laminated film, and a notch having a width of 1 cm is made in the metal layer using a knife or the like. Then, after partially peeling the metal layer and the liquid crystal polymer film, the liquid crystal polymer film is fixed to the support, and the metal layer is placed at 50 mm / min in the 90 ° direction with respect to the liquid crystal polymer film. Pull at the speed of. The force required for peeling at that time is used as the joint strength (unit: N / cm). Further, if the metal layer is thin and fragile, it may be cut when measuring the joint strength. In that case, the surface of the metal layer may be electroplated (when the metal layer is copper, for example, copper plating) to increase the thickness of the metal layer to about 5 to 50 μm, and then the bonding strength may be measured. The method for measuring the value of the joint strength is the measuring method specified in JIS C6471.

本明細書において、「金属層と液晶ポリマーフィルムの接合強度」というときは、金属層と液晶ポリマーフィルムとの界面で剥離する場合の接合強度をいう他、金属層の内部が破壊されることにより剥離する場合の接合強度、及び液晶ポリマーフィルムの内部が破壊されることにより剥離する場合の接合強度をも意味する。 In the present specification, the term "bonding strength between the metal layer and the liquid crystal polymer film" refers to the bonding strength when the metal layer and the liquid crystal polymer film are peeled off at the interface, and is also caused by the destruction of the inside of the metal layer. It also means the bonding strength at the time of peeling and the bonding strength at the time of peeling due to the destruction of the inside of the liquid crystal polymer film.

金属積層フィルムは、フレキシブルプリント基板を作製するための金属張積層板として利用することができる。 The metal laminated film can be used as a metal-clad laminate for producing a flexible printed substrate.

金属積層フィルムを用いて微細配線が形成されたプリント配線板を得ることができる。配線を形成する工程において、配線部分にのみ追加の金属層を形成することもできる。具体的には、モディファイドセミアディティブ法(MSAP法)やセミアディティブ法(SAP法)やサブトラクティブ法等の従来知られた手法を適宜用いてプリント配線板を得ることができる。例えば、モディファイドセミアディティブ法(MSAP法)を用いた場合、金属積層フィルムにおける金属層上の非配線部分をマスクし、マスクされていない部分に銅めっきを施して追加の金属層を形成し、マスクを除去し、マスクにより隠れていた金属層をエッチングにより除去することによってプリント配線板を製造することができる。なお、本発明における「プリント配線板」には、配線を形成した積層体のみならず、配線を形成した後にIC等の電子部品類を搭載したものも含む。 A printed wiring board on which fine wiring is formed can be obtained by using a metal laminated film. In the process of forming the wiring, an additional metal layer can be formed only on the wiring portion. Specifically, a printed wiring board can be obtained by appropriately using conventionally known methods such as a modified semi-additive method (MSAP method), a semi-additive method (SAP method), and a subtractive method. For example, when the modified semi-additive method (MSAP method) is used, the non-wiring portion on the metal layer in the metal laminated film is masked, and the unmasked portion is copper-plated to form an additional metal layer and masked. The printed wiring board can be manufactured by removing the metal layer hidden by the mask by etching. The "printed wiring board" in the present invention includes not only a laminated body in which wiring is formed, but also a board in which electronic components such as ICs are mounted after the wiring is formed.

図1に示される金属積層フィルム1Aでは、液晶ポリマーフィルムの一方の表面に金属層が積層された場合について説明したが、金属積層フィルムはこれに限定されるものではない。すなわち、必要に応じて、液晶ポリマーフィルムの両方の表面に金属層を設けても良い。液晶ポリマーフィルムの両表面に金属層を設けた金属積層フィルムを利用することにより、液晶ポリマーフィルムの両表面に配線が形成されたフレキシブルプリント基板を得ることができる。 In the metal laminated film 1A shown in FIG. 1, a case where a metal layer is laminated on one surface of a liquid crystal polymer film has been described, but the metal laminated film is not limited to this. That is, if necessary, metal layers may be provided on both surfaces of the liquid crystal polymer film. By using a metal laminated film having metal layers provided on both surfaces of the liquid crystal polymer film, it is possible to obtain a flexible printed substrate in which wiring is formed on both surfaces of the liquid crystal polymer film.

B.金属積層フィルムの製造方法
ここで、本発明の金属積層フィルムの製造方法に係る実施形態について例示して説明する。図2A及び2Bは、実施形態の金属積層フィルムの製造方法の一例の要部を示す概略断面図である。
B. Method for Producing Metal Laminated Film Here, an embodiment related to the method for producing a metal laminated film of the present invention will be illustrated and described. 2A and 2B are schematic cross-sectional views showing a main part of an example of the method for producing a metal laminated film of the embodiment.

本例の金属積層フィルムの製造方法においては、まず、液晶ポリマーフィルムと銅箔(金属箔)とを準備する。液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fは0.4となっている。 In the method for producing the metal laminated film of this example, first, a liquid crystal polymer film and a copper foil (metal foil) are prepared. The degree of orientation F of the central portion in the thickness direction of the liquid crystal polymer film is 0.4.

次に、図2A(a)に示すように、活性化処理装置(図示せず)を用いて、常温において、液晶ポリマーフィルム20の一方の表面20aをスパッタエッチングにより活性化する。続いて、図2A(b)に示すように、スパッタ装置(図示せず)を用いて、常温において、活性化した液晶ポリマーフィルム20の表面20a上に銅を含む中間層14をスパッタ成膜する。 Next, as shown in FIG. 2A (a), one surface 20a of the liquid crystal polymer film 20 is activated by sputtering etching at room temperature using an activation treatment device (not shown). Subsequently, as shown in FIG. 2A (b), an intermediate layer 14 containing copper is sputtered and formed on the surface 20a of the activated liquid crystal polymer film 20 at room temperature using a sputtering apparatus (not shown). ..

次に、図2A(c)に示すように、活性化接合装置(図示せず)を用いて、常温において、中間層14の表面14aをスパッタエッチングにより活性化し、銅箔12の表面12aをスパッタエッチングにより活性化し、中間層14及び銅箔12の活性化した表面同士を0〜30%の圧下率で圧延接合する。 Next, as shown in FIG. 2A (c), the surface 14a of the intermediate layer 14 is activated by sputtering etching at room temperature using an activation bonding device (not shown), and the surface 12a of the copper foil 12 is sputtered. It is activated by etching, and the activated surfaces of the intermediate layer 14 and the copper foil 12 are rolled and joined to each other at a reduction rate of 0 to 30%.

次に、図2B(d)に示すように、圧延接合した中間層14及び銅箔12を有する金属層10並びに液晶ポリマーフィルム20に対し、熱処理炉(図示せず)を用いて、真空雰囲気中又はN、Ar、NHガス(例えばN+5%H混合ガス)等の不活性ガス雰囲気中において、液晶ポリマーフィルム20の融点−100℃以上液晶ポリマーフィルム20の融点−10℃以下の温度で熱処理を施す。これにより、金属層10及び液晶ポリマーフィルム20の密着性を向上する。以上により、図2B(e)に示すように、金属積層フィルム1Aを製造する。 Next, as shown in FIG. 2B (d), the metal layer 10 having the intermediate layer 14 and the copper foil 12 and the liquid crystal polymer film 20 which were rolled and joined were subjected to a heat treatment furnace (not shown) in a vacuum atmosphere. Alternatively , in an inert gas atmosphere such as N 2 , Ar, NH gas (for example, N 2 + 5% H 2 mixed gas), the temperature of the liquid crystal polymer film 20 is -100 ° C. or higher and the melting point of the liquid crystal polymer film 20 is -10 ° C. or lower. Heat-treat with. This improves the adhesion between the metal layer 10 and the liquid crystal polymer film 20. As described above, as shown in FIG. 2B (e), the metal laminated film 1A is manufactured.

本例の金属積層フィルムの製造方法では、液晶ポリマーフィルム20の表面20aをスパッタエッチングにより活性化する処理、中間層14をスパッタ成膜する処理、中間層14及び銅箔12の表面をスパッタエッチングにより活性化する処理、並びに中間層14及び銅箔12の活性化した表面同士を圧延接合する処理を常温において行う。その上で、液晶ポリマーフィルム20の融点−100℃以上液晶ポリマーフィルム20の融点−10℃以下の温度で熱処理を施すことで、金属層10及び液晶ポリマーフィルム20の密着性を向上する。このため、熱ラミネート法を用いて金属積層フィルムを作製する場合とは異なり、液晶ポリマーフィルム20が融点付近の温度又は融点を超える温度で加熱されることがないので、金属層10及び液晶ポリマーフィルム20の密着性を向上できる上に、液晶ポリマーフィルム20の配向が乱れその誘電特性が劣化することを抑制でき、液晶ポリマーフィルム20の表面形態の変質を抑制できる。 In the method for producing the metal laminated film of this example, the surface 20a of the liquid crystal polymer film 20 is activated by sputtering etching, the intermediate layer 14 is formed by sputtering, and the surfaces of the intermediate layer 14 and the copper foil 12 are subjected to sputtering etching. The activating treatment and the treatment of rolling and joining the activated surfaces of the intermediate layer 14 and the copper foil 12 are performed at room temperature. Then, heat treatment is performed at a temperature of the melting point of the liquid crystal polymer film 20 of −100 ° C. or higher and the melting point of the liquid crystal polymer film 20 of −10 ° C. or lower to improve the adhesion between the metal layer 10 and the liquid crystal polymer film 20. Therefore, unlike the case where the metal laminated film is produced by using the thermal laminating method, the liquid crystal polymer film 20 is not heated at a temperature near the melting point or a temperature exceeding the melting point, so that the metal layer 10 and the liquid crystal polymer film are not heated. In addition to improving the adhesion of the liquid crystal polymer film 20, it is possible to suppress the disorder of the orientation of the liquid crystal polymer film 20 and the deterioration of its dielectric properties, and it is possible to suppress the deterioration of the surface morphology of the liquid crystal polymer film 20.

従って、実施形態の金属積層フィルムの製造方法によれば、上記例の製造方法のように、金属層及び液晶ポリマーフィルムの密着性が向上し、かつ誘電特性の劣化が抑制された金属積層フィルムを製造できる。よって、プリント配線板の伝送特性及び微細配線の信頼性を両立できる金属積層フィルムを製造できる。 Therefore, according to the method for producing a metal laminated film of the embodiment, as in the manufacturing method of the above example, a metal laminated film in which the adhesion between the metal layer and the liquid crystal polymer film is improved and the deterioration of the dielectric property is suppressed is suppressed. Can be manufactured. Therefore, it is possible to manufacture a metal laminated film that can achieve both the transmission characteristics of the printed wiring board and the reliability of the fine wiring.

続いて、実施形態の金属積層フィルムの製造方法の各条件について詳細に説明する。 Subsequently, each condition of the method for producing the metal laminated film of the embodiment will be described in detail.

1.準備工程
準備工程で準備する液晶ポリマーフィルムとしては、特に限定されないが、厚み方向の中央部の配向度Fが0.4以上であるものが好ましく、中でも株式会社クラレ製ベクスターCTQ等が好ましい。誘電正接が低く誘電特性に優れているからである。
1. 1. Preparation Step The liquid crystal polymer film prepared in the preparation step is not particularly limited, but a film having an orientation degree F at the center in the thickness direction of 0.4 or more is preferable, and Vecstar CTQ manufactured by Kuraray Co., Ltd. is particularly preferable. This is because the dielectric loss tangent is low and the dielectric properties are excellent.

準備工程で準備する金属箔については、「A.金属積層フィルム 2.金属層 (1)金属箔」の項目で説明した金属箔と同様であるため、ここでの説明は省略する。 Since the metal foil prepared in the preparatory step is the same as the metal foil described in the item of "A. Metal laminated film 2. Metal layer (1) Metal foil", the description here is omitted.

2.中間層積層工程
中間層積層工程で液晶ポリマーフィルムの少なくとも一方の表面に金属を含む中間層を積層する方法としては、特に限定されないが、例えば、液晶ポリマーフィルムの少なくとも一方の表面をスパッタエッチングにより活性化した後、該活性化した表面に金属を含む中間層をスパッタ成膜する方法等が好ましい。当該方法でスパッタ成膜を行う際の条件は、中間層を構成する金属種や中間層の厚みに応じて適宜設定することができる。中間層を構成する金属種や中間層の厚みについては、「A.金属積層フィルム 2.金属層 (2)中間層」の項目で説明した中間層と同様であるため、ここでの説明は省略する。
2. Intermediate layer laminating step The method of laminating an intermediate layer containing a metal on at least one surface of a liquid crystal polymer film in the intermediate layer laminating step is not particularly limited, but for example, at least one surface of the liquid crystal polymer film is activated by sputter etching. After the formation, a method of forming an intermediate layer containing a metal on the activated surface by etching is preferable. The conditions for performing sputtering film formation by this method can be appropriately set according to the metal type constituting the intermediate layer and the thickness of the intermediate layer. The metal types and thicknesses of the intermediate layers that make up the intermediate layer are the same as those explained in the section "A. Metal laminated film 2. Metal layer (2) Intermediate layer", so the explanation here is omitted. do.

3.活性化工程
活性化工程でのスパッタエッチング処理は、例えば、接合する金属箔あるいは中間層を設けた液晶ポリマーフィルムを、幅100mm〜600mmの長尺コイルとして用意し、金属箔又は中間層の接合面をアース接地した一方の電極とし、絶縁支持された他の電極との間に1MHz〜50MHzの交流を印加してグロー放電を発生させ、且つグロー放電によって生じたプラズマ中に露出される電極の面積を他の電極の面積の1/3以下として行うことができる。スパッタエッチング処理中は、アース接地した電極が冷却ロールの形をとっており、搬送材の温度上昇を防いでいる。
3. 3. Activation step In the spatter etching treatment in the activation step, for example, a metal foil to be bonded or a liquid crystal polymer film provided with an intermediate layer is prepared as a long coil having a width of 100 mm to 600 mm, and the bonding surface of the metal foil or the intermediate layer is prepared. Is one electrode grounded on the ground, and an AC of 1 MHz to 50 MHz is applied between the electrode and the other electrode supported by insulation to generate a glow discharge, and the area of the electrode exposed in the plasma generated by the glow discharge. Can be performed as 1/3 or less of the area of the other electrodes. During the sputter etching process, the grounded electrode is in the form of a cooling roll to prevent the temperature of the conveyed material from rising.

活性化工程でのスパッタエッチング処理では、真空下で、金属箔、又は中間層を設けた液晶ポリマーフィルムの接合する表面を不活性ガスによりスパッタすることにより、表面の吸着物を完全に除去し、且つ表面の酸化物層の一部又は全部を除去する。銅の酸化物層は完全に除去することが好ましい。不活性ガスとしては、アルゴン、ネオン、キセノン、クリプトン等や、これらを少なくとも1種類含む混合気体を適用することができる。金属の種類にもよるが、金属箔及び中間層の表面の吸着物は、エッチング量約1nm程度で完全に除去することができ、特に銅の酸化物層は通常5nm〜12nm(SiO換算)程度で除去が可能である。 In the sputter etching treatment in the activation step, the adsorbed substances on the surface are completely removed by sputtering the bonded surface of the metal foil or the liquid crystal polymer film provided with the intermediate layer with an inert gas under vacuum. Moreover, a part or all of the oxide layer on the surface is removed. It is preferable to completely remove the copper oxide layer. As the inert gas, argon, neon, xenon, krypton and the like, and a mixed gas containing at least one of these can be applied. Although it depends on the type of metal, adsorbents on the surface of the metal foil and the intermediate layer can be completely removed with an etching amount of about 1 nm, and in particular, the copper oxide layer is usually 5 nm to 12 nm (SiO 2 equivalent). It can be removed by degree.

スパッタエッチングの処理条件は、金属箔及び中間層の種類等に応じて適宜設定することができる。例えば、真空下で、100W〜10kWのプラズマ出力、ライン速度0.5m/分〜30m/分で行うことができる。この時の真空度は、表面への再吸着物を防止するため高い方が好ましいが、例えば、1×10−5Pa〜10Paであれば良い。 The processing conditions for sputter etching can be appropriately set according to the type of the metal foil and the intermediate layer and the like. For example, it can be performed under vacuum at a plasma output of 100 W to 10 kW and a line speed of 0.5 m / min to 30 m / min. The degree of vacuum at this time is preferably high in order to prevent re-adsorbed substances on the surface, but may be, for example, 1 × 10 -5 Pa to 10 Pa.

なお、金属箔の表面に粗化粒子層や防錆層が設けられている場合は、当該粗化粒子層や防錆層表面がスパッタエッチングにより活性化される。その際、スパッタエッチングによって、当該粗化粒子層や防錆層が完全に除去されても良いし、除去されずに残存しても良い。 When a roughened particle layer or a rust preventive layer is provided on the surface of the metal foil, the surface of the roughened particle layer or the rust preventive layer is activated by sputter etching. At that time, the roughened particle layer and the rust preventive layer may be completely removed by sputter etching, or may remain without being removed.

また、スパッタエッチングにより活性化する前の金属箔の表面又は中間層の表面には、必要に応じて、酸化防止や密着性向上のため、Niめっき、クロメート処理、シランカップリング剤処理等が施されていても良い。また、金属箔の表面は、中間層との密着性を高めるため、必要に応じて粗化処理を施すことができる。 Further, the surface of the metal foil or the surface of the intermediate layer before being activated by sputter etching is subjected to Ni plating, chromate treatment, silane coupling agent treatment, etc., if necessary, in order to prevent oxidation and improve adhesion. It may have been done. Further, the surface of the metal foil can be roughened as necessary in order to improve the adhesion with the intermediate layer.

4.圧延接合工程
スパッタエッチングを経た金属箔及び中間層の活性化した表面同士の圧接は、ロール圧接により行うことができる。ロール圧接の圧延線荷重は、特に限定されずに、例えば、0.1tf/cm〜10tf/cmの範囲に設定して行うことができる。ただし、金属箔又は中間層を設けた液晶ポリマーフィルムの接合前の厚みが大きい場合等には、接合時の圧力確保のために圧延線荷重を高くすることが必要になる場合があり、この数値範囲に限定されるものではない。一方で、圧延線荷重が高過ぎると、金属箔又は中間層の表層だけでなく、接合界面も変形しやすくなるため、金属積層フィルムにおけるそれぞれの層の厚み精度が低下する恐れがある。また、圧延線荷重が高いと接合時に加わる加工ひずみが大きくなる恐れがある。
4. Rolling and joining step The pressure welding between the activated surfaces of the metal foil and the intermediate layer that have undergone sputtering etching can be performed by roll pressure welding. The rolling wire load for roll pressure welding is not particularly limited, and can be set, for example, in the range of 0.1 tf / cm to 10 tf / cm. However, if the thickness of the liquid crystal polymer film provided with the metal foil or the intermediate layer before joining is large, it may be necessary to increase the rolling wire load in order to secure the pressure at the time of joining. It is not limited to the range. On the other hand, if the rolling wire load is too high, not only the surface layer of the metal foil or the intermediate layer but also the bonding interface is easily deformed, so that the thickness accuracy of each layer in the metal laminated film may decrease. Further, if the rolling wire load is high, the machining strain applied at the time of joining may increase.

圧延接合する際の圧下率は、0〜30%とする。好ましくは0〜15%である。上記の表面活性化接合による方法は、圧下率を低くすることができるため、皺や割れ等を生ずることなく、厚み精度に優れた金属層を形成することができる。さらに、金属箔と中間層及び液晶ポリマーフィルムとの界面のうねりを小さくすることができるため、金属箔及び中間層を有する金属層へパターンエッチングを施して配線を形成する場合に、厚み精度が優れるため精密な配線を得ることができる。 The rolling reduction is 0 to 30%. It is preferably 0 to 15%. Since the reduction rate can be lowered by the above-mentioned method by surface activation bonding, it is possible to form a metal layer having excellent thickness accuracy without causing wrinkles or cracks. Further, since the waviness at the interface between the metal foil and the intermediate layer and the liquid crystal polymer film can be reduced, the thickness accuracy is excellent when pattern etching is performed on the metal foil and the metal layer having the intermediate layer to form wiring. Therefore, precise wiring can be obtained.

ロール圧接による接合は、金属箔又は中間層表面への酸素の再吸着によって両者間の接合強度が低下するのを防止するため、非酸化雰囲気中、例えば真空雰囲気中やAr等の不活性ガス雰囲気中で行うことが好ましい。 Bonding by roll pressure welding is performed in a non-oxidizing atmosphere, for example, in a vacuum atmosphere or an inert gas atmosphere such as Ar, in order to prevent the bonding strength between the two from being lowered due to readsorption of oxygen on the surface of the metal foil or the intermediate layer. It is preferable to do it inside.

5.熱処理工程
熱処理温度は、液晶ポリマーフィルムの融点−100℃以上液晶ポリマーフィルムの融点−10℃以下であり、中でも液晶ポリマーフィルムの融点−70℃以上液晶ポリマーフィルムの融点−20℃以下が好ましい。熱処理温度をこれらの範囲の下限以上とすることにより、金属層と液晶ポリマーフィルムの接合強度を所望の強度まで向上することができ、圧延接合時に湾曲した金属積層フィルムの形状を平坦にすることができる。熱処理温度をこれらの範囲の上限以下とすることにより、液晶ポリマーフィルムの配向が乱れることを回避でき、金属積層フィルムが軟化しその厚みや幅が変化することを抑制できる。なお、液晶ポリマーフィルムの融点はその材料に応じ変化するため、熱処理温度は、その材料に応じ適宜設定でき、例えば、株式会社クラレ製ベクスターCTQ(融点:310℃)である場合には、熱処理温度は、同様の理由から210℃以上300℃以下の温度であり、中でも240℃以上290℃以下の温度が好ましい。
5. Heat treatment step The heat treatment temperature is preferably −100 ° C. or higher for the liquid crystal polymer film or −10 ° C. or lower for the liquid crystal polymer film, and more preferably −70 ° C. or higher for the liquid crystal polymer film or −20 ° C. or lower for the liquid crystal polymer film. By setting the heat treatment temperature to the lower limit of these ranges or more, the bonding strength between the metal layer and the liquid crystal polymer film can be improved to a desired strength, and the shape of the curved metal laminated film during rolling bonding can be flattened. can. By setting the heat treatment temperature to the upper limit of these ranges or less, it is possible to prevent the orientation of the liquid crystal polymer film from being disturbed, and it is possible to prevent the metal laminated film from softening and changing its thickness and width. Since the melting point of the liquid crystal polymer film changes depending on the material, the heat treatment temperature can be appropriately set according to the material. For example, in the case of Vecstar CTQ manufactured by Kuraray Co., Ltd. (melting point: 310 ° C.), the heat treatment temperature. Is a temperature of 210 ° C. or higher and 300 ° C. or lower, and a temperature of 240 ° C. or higher and 290 ° C. or lower is preferable.

熱処理を施す雰囲気は、特に限定されないが、真空雰囲気、又はN、Ar、NHガス等の不活性ガス雰囲気等が好ましく、中でも真空雰囲気等が好ましい。熱処理により金属層が酸化し金属層と液晶ポリマーフィルムの接合強度が低下することを回避できるからである。 Atmosphere heat treatment is not particularly limited, a vacuum atmosphere, or N 2, Ar, is preferably an inert gas atmosphere such as NH 3 gas, among them a vacuum atmosphere and the like are preferable. This is because it is possible to prevent the metal layer from being oxidized by the heat treatment and the bonding strength between the metal layer and the liquid crystal polymer film from being lowered.

熱処理を施す時間は、金属層と液晶ポリマーフィルムの接合強度を所望の強度にすることができ、かつ液晶ポリマーフィルムの配向が乱れることを回避できれば特に限定されないが、例えば、180秒以上18000秒以下が好ましく、中でも200秒以上15000秒以下が好ましい。これらの範囲の下限以上とすることにより、金属層と液晶ポリマーフィルムの十分な密着性を確保することができるからであり、これらの範囲の上限以下とすることにより、金属積層フィルムの高い生産効率と低コストを実現することができるからである。 The time for applying the heat treatment is not particularly limited as long as the bonding strength between the metal layer and the liquid crystal polymer film can be made to a desired strength and the orientation of the liquid crystal polymer film can be avoided from being disturbed. Is preferable, and more preferably 200 seconds or more and 15,000 seconds or less. This is because sufficient adhesion between the metal layer and the liquid crystal polymer film can be ensured by setting the lower limit of these ranges or more, and high production efficiency of the metal laminated film by setting it below the upper limit of these ranges. This is because low cost can be realized.

熱処理を施す方法は、例えば、バッチ式熱処理炉により、所望の雰囲気中(例えば真空雰囲気中やN、Ar、NHガス等の不活性ガス雰囲気中)において、金属層及び液晶ポリマーフィルムを所望の熱処理温度に所望の時間だけ維持する方法等が挙げられる。また、熱処理温度や雰囲気によっては連続式熱処理炉を用いてロール・ツー・ロール方式で熱処理を施してもよい。その場合、連続式熱処理炉内の少なくとも加熱部や冷却部を、所望の雰囲気(例えば真空雰囲気やN、Ar、NHガス等の不活性ガス雰囲気)とし、所望の温度に維持した上で、金属層及び液晶ポリマーフィルムを所望の速度で加熱部や冷却部を通過させることで金属層及び液晶ポリマーフィルムを所望の熱処理温度に所望の時間だけ維持する方法等が挙げられる。 Method of applying a heat treatment, for example, a batch type heat treatment furnace, a desired atmosphere (e.g., a vacuum atmosphere and N 2, Ar, inert gas atmosphere such as NH 3 gas), the desired metal layer and the liquid crystal polymer film Examples thereof include a method of maintaining the heat treatment temperature for a desired time. Further, depending on the heat treatment temperature and atmosphere, the heat treatment may be performed by a roll-to-roll method using a continuous heat treatment furnace. In that case, at least the heating section and the cooling section of a continuous heat treatment furnace, a desired atmosphere (e.g., vacuum atmosphere and N 2, Ar, inert gas atmosphere such as NH 3 gas), in terms of maintaining the desired temperature, Examples thereof include a method of maintaining the metal layer and the liquid crystal polymer film at a desired heat treatment temperature for a desired time by passing the metal layer and the liquid crystal polymer film through a heating part and a cooling part at a desired speed.

6.金属積層フィルムの製造方法
実施形態の金属積層フィルムの製造方法では、熱処理後の液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fは、金属層が積層される前の液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fの77%以上であることが好ましい。熱処理後の液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fは、具体的には、0.31以上であることが好ましい。また、熱処理後の液晶ポリマーフィルムの誘電正接は、金属層が積層される前の液晶ポリマーフィルムの誘電正接の114%未満であることが好ましく、中でも金属層が積層される前の液晶ポリマーフィルムの誘電正接の112%未満であることが好ましく、さらに好ましくは110%未満である。
6. Method for Manufacturing Metal Laminated Film In the method for manufacturing a metal laminated film of the embodiment, the degree of orientation F at the center in the thickness direction of the liquid crystal polymer film after heat treatment is the thickness direction of the liquid crystal polymer film before the metal layers are laminated. It is preferably 77% or more of the degree of orientation F of the central portion. Specifically, the degree of orientation F of the central portion in the thickness direction of the liquid crystal polymer film after the heat treatment is preferably 0.31 or more. Further, the dielectric loss tangent of the liquid crystal polymer film after the heat treatment is preferably less than 114% of the dielectric loss tangent of the liquid crystal polymer film before the metal layer is laminated, and above all, the liquid crystal polymer film before the metal layer is laminated. It is preferably less than 112% of the dielectric loss tangent, and more preferably less than 110%.

金属積層フィルムを製造する際の高圧下での接合及び/又は熱処理は、接合前後及び/又は熱処理前後で金属積層フィルムの各層における組織を著しく変化させ、金属積層フィルムの特性を損なう恐れがあるため、そのような組織変化を回避できる接合・熱処理条件を選択することが好ましい。 Since joining and / or heat treatment under high pressure during the production of the metal laminated film may significantly change the structure of each layer of the metal laminated film before and after joining and / or before and after the heat treatment, and may impair the characteristics of the metal laminated film. , It is preferable to select bonding / heat treatment conditions that can avoid such structural changes.

以下、実施例及び比較例に基づき本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to these Examples.

(実施例1)
まず、厚み50μmの液晶ポリマーフィルム(株式会社クラレ製ベクスターCTQ−50)を準備し、金属箔として、厚み16μmの圧延銅箔を2枚準備した。次に、液晶ポリマーフィルムの両方の表面をスパッタエッチングにより片面ずつ活性化した後、該活性化した両方の表面上に銅を含む中間層(銅層)(厚み40nm)を片面ずつスパッタ成膜した。次に、片方の中間層の表面及び片方の圧延銅箔の表面をスパッタエッチングにより活性化し、中間層の活性化した表面に対し圧延銅箔の活性化した表面が接するようにした上で、1.5tf/cmの線荷重で中間層及び圧延銅箔の活性化した表面同士を圧延接合した。さらに、上記圧延銅箔が積層されていない側の中間層の表面をスパッタエッチングにより活性化し、もう片方の圧延銅箔の表面をスパッタエッチングにより活性化し、中間層の活性化した表面に対し圧延銅箔の活性化した表面が接するようにした上で、1.5tf/cmの線荷重で中間層及び圧延銅箔の活性化した表面同士を圧延接合した。圧下率は2.4%となった。次に、中間層及び圧延銅箔を有する金属層並びに液晶ポリマーフィルムに対し、真空雰囲気中にて250℃で10800秒間維持する熱処理を施した。これにより、金属積層フィルム(層構成:圧延銅箔/中間層(銅層)/液晶ポリマーフィルム/中間層(銅層)/圧延銅箔)を作製した。
(Example 1)
First, a liquid crystal polymer film having a thickness of 50 μm (Vecstar CTQ-50 manufactured by Kuraray Co., Ltd.) was prepared, and two rolled copper foils having a thickness of 16 μm were prepared as metal foils. Next, both surfaces of the liquid crystal polymer film were activated one side at a time by sputtering etching, and then an intermediate layer (copper layer) (thickness 40 nm) containing copper was sputtered and formed on both of the activated surfaces one side at a time. .. Next, the surface of one intermediate layer and the surface of the rolled copper foil on one side were activated by sputter etching so that the activated surface of the rolled copper foil was in contact with the activated surface of the intermediate layer, and then 1 The intermediate layer and the activated surfaces of the rolled copper foil were rolled and joined with a linear load of .5 tf / cm. Further, the surface of the intermediate layer on the side where the rolled copper foil is not laminated is activated by sputter etching, the surface of the other rolled copper foil is activated by sputter etching, and rolled copper is applied to the activated surface of the intermediate layer. After the activated surfaces of the foil were brought into contact with each other, the intermediate layer and the activated surfaces of the rolled copper foil were rolled and joined with a linear load of 1.5 tf / cm. The reduction rate was 2.4%. Next, the intermediate layer, the metal layer having the rolled copper foil, and the liquid crystal polymer film were heat-treated in a vacuum atmosphere at 250 ° C. for 10800 seconds. As a result, a metal laminated film (layer structure: rolled copper foil / intermediate layer (copper layer) / liquid crystal polymer film / intermediate layer (copper layer) / rolled copper foil) was produced.

(実施例2)
まず、厚み25μmの液晶ポリマーフィルム(株式会社クラレ製ベクスターCTQ−25)を準備し、金属箔として、厚み16μmの圧延銅箔を準備した。次に、液晶ポリマーフィルムの片方の表面をスパッタエッチングにより活性化した後、該活性化した表面上に銅を含む中間層(銅層)(厚み40nm)をスパッタ成膜した。次に、中間層の表面及び圧延銅箔の表面をスパッタエッチングにより活性化し、中間層の活性化した表面に対し圧延銅箔の活性化した表面が接するようにした上で、1.5tf/cmの線荷重で中間層及び圧延銅箔の活性化した表面同士を圧延接合した。圧下率は2.4%となった。次に、中間層及び圧延銅箔を有する金属層並びに液晶ポリマーフィルムに対し、真空雰囲気中にて280℃で10800秒間維持する熱処理を施した。これにより、金属積層フィルム(層構成:圧延銅箔/中間層(銅層)/液晶ポリマーフィルム)を作製した。
(Example 2)
First, a liquid crystal polymer film having a thickness of 25 μm (Vecstar CTQ-25 manufactured by Kuraray Co., Ltd.) was prepared, and a rolled copper foil having a thickness of 16 μm was prepared as a metal foil. Next, one surface of the liquid crystal polymer film was activated by sputtering etching, and then an intermediate layer (copper layer) (thickness 40 nm) containing copper was sputter-deposited on the activated surface. Next, the surface of the intermediate layer and the surface of the rolled copper foil were activated by sputter etching so that the activated surface of the rolled copper foil was in contact with the activated surface of the intermediate layer, and then 1.5 tf / cm. The intermediate layer and the activated surfaces of the rolled copper foil were rolled and joined with each other under the linear load of. The reduction rate was 2.4%. Next, the intermediate layer, the metal layer having the rolled copper foil, and the liquid crystal polymer film were heat-treated in a vacuum atmosphere at 280 ° C. for 10800 seconds. As a result, a metal laminated film (layer structure: rolled copper foil / intermediate layer (copper layer) / liquid crystal polymer film) was produced.

(実施例3)
圧延接合後の熱処理をN雰囲気中にて施した点以外は実施例2と同様の方法で、金属積層フィルム(層構成:圧延銅箔/中間層(銅層)/液晶ポリマーフィルム)を作製した。
(Example 3)
Preparation: (rolled copper foil / intermediate layer (copper layer) / liquid crystal polymer film layer structure) except that heat-treated after rolling joined with an N 2 atmosphere in the same manner as in Example 2, a metal laminate film bottom.

(実施例4)
液晶ポリマーフィルムの片方の表面に、中間層として、ニッケルを含む第1中間層(ニッケル層)(厚み40nm)及び銅を含む第2中間層(銅層)(厚み40nm)をこの順番でスパッタ成膜した点以外は実施例3と同様の方法で、金属積層フィルム(層構成:圧延銅箔/第2中間層(銅層)/第1中間層(ニッケル層)/液晶ポリマーフィルム)を作製した。
(Example 4)
A first intermediate layer (nickel layer) containing nickel (thickness 40 nm) and a second intermediate layer containing copper (copper layer) (thickness 40 nm) are sputtered on one surface of the liquid crystal polymer film in this order as intermediate layers. A metal laminated film (layer structure: rolled copper foil / second intermediate layer (copper layer) / first intermediate layer (nickel layer) / liquid crystal polymer film) was produced in the same manner as in Example 3 except for the filmed points. ..

(実施例5)
まず、厚み25μmの液晶ポリマーフィルム(株式会社クラレ製ベクスターCTQ−25)を準備し、金属箔として、厚み18μmの銅を含むキャリア層に剥離層(有機系剥離層)を介して厚み1.5μmの極薄銅層が設けられ、さらに極薄銅層の表面に粗化粒子層及び防錆層が設けられたキャリア層付き銅箔(三井金属鉱業(株)製MT18FL)を準備した。次に、液晶ポリマーフィルムの片方の表面をスパッタエッチングにより活性化した後、該活性化した表面上に銅を含む中間層(銅層)(厚み40nm)をスパッタ成膜した。次に、中間層の表面及び極薄銅層の表面をスパッタエッチングにより活性化し、中間層の活性化した表面に対し極薄銅層の活性化した表面が接するようにした上で、1.5tf/cmの線荷重で中間層及び極薄銅層の活性化した表面同士を圧延接合した。圧下率は2.4%となった。次に、中間層及びキャリア層付き銅箔を有する金属層並びに液晶ポリマーフィルムに対し、真空雰囲気中にて250℃で10800秒間維持する熱処理を施した。これにより、金属積層フィルム(層構成:キャリア層付き銅箔/中間層(銅層)/液晶ポリマーフィルム)を作製した。
(Example 5)
First, a liquid crystal polymer film having a thickness of 25 μm (Vexter CTQ-25 manufactured by Kuraray Co., Ltd.) was prepared, and as a metal foil, a carrier layer containing copper having a thickness of 18 μm was passed through a release layer (organic release layer) to a thickness of 1.5 μm. A copper foil with a carrier layer (MT18FL manufactured by Mitsui Metal Mining Co., Ltd.) was prepared in which an ultra-thin copper layer was provided and a roughened particle layer and a rust-preventive layer were further provided on the surface of the ultra-thin copper layer. Next, one surface of the liquid crystal polymer film was activated by sputtering etching, and then an intermediate layer (copper layer) (thickness 40 nm) containing copper was sputter-deposited on the activated surface. Next, the surface of the intermediate layer and the surface of the ultrathin copper layer are activated by sputter etching so that the activated surface of the intermediate layer is in contact with the activated surface of the ultrathin copper layer, and then 1.5 tf. The activated surfaces of the intermediate layer and the ultrathin copper layer were rolled and joined with a linear load of / cm. The reduction rate was 2.4%. Next, the metal layer having the intermediate layer and the copper foil with the carrier layer and the liquid crystal polymer film were heat-treated to be maintained at 250 ° C. for 10800 seconds in a vacuum atmosphere. As a result, a metal laminated film (layer structure: copper foil with carrier layer / intermediate layer (copper layer) / liquid crystal polymer film) was produced.

(実施例6)
金属箔として、厚み18μmの銅を含むキャリア層に剥離層(有機系剥離層)を介して厚み5.0μmの極薄銅層が設けられ、さらに極薄銅層の表面に防錆層のみが設けられたキャリア層付き銅箔を用いた点、及び圧延接合後の熱処理を270℃で施した点以外は実施例5と同様の方法で、金属積層フィルム(層構成:キャリア層付き銅箔/中間層(銅層)/液晶ポリマーフィルム)を作製した。
(Example 6)
As a metal foil, an ultrathin copper layer having a thickness of 5.0 μm is provided on a carrier layer containing copper having a thickness of 18 μm via a release layer (organic release layer), and only a rust preventive layer is provided on the surface of the ultrathin copper layer. A metal laminated film (layer structure: copper foil with carrier layer / An intermediate layer (copper layer) / liquid crystal polymer film) was prepared.

(実施例7)
まず、厚み25μmの液晶ポリマーフィルム(株式会社クラレ製ベクスターCTQ−25)を準備し、金属箔として、厚み18μmの銅を含むキャリア層に剥離層(無機系剥離層)を介して厚み2.0μmの極薄銅層が設けられ、さらに極薄銅層の表面に防錆層のみが設けられたキャリア層付き銅箔を準備した。次に、液晶ポリマーフィルムの片方の表面をスパッタエッチングにより活性化した後、該活性化した表面上に銅を含む中間層(銅層)(厚み40nm)をスパッタ成膜した。次に、中間層の表面及び極薄銅層の表面をスパッタエッチングにより活性化し、中間層の活性化した表面に対し極薄銅層の活性化した表面が接するようにした上で、1.5tf/cmの線荷重で中間層及び極薄銅層の活性化した表面同士を圧延接合した。圧下率は2.4%となった。次に、中間層及びキャリア層付き銅箔を有する金属層並びに液晶ポリマーフィルムに対し、N雰囲気中にて280℃で10800秒間維持する熱処理を施した。これにより、金属積層フィルム(層構成:キャリア層付き銅箔/中間層(銅層)/液晶ポリマーフィルム)を作製した。
(Example 7)
First, a liquid crystal polymer film having a thickness of 25 μm (Vecstar CTQ-25 manufactured by Kuraray Co., Ltd.) was prepared, and as a metal foil, a carrier layer containing copper having a thickness of 18 μm was passed through a release layer (inorganic release layer) to a thickness of 2.0 μm. A copper foil with a carrier layer was prepared in which the ultra-thin copper layer was provided and only the rust preventive layer was provided on the surface of the ultra-thin copper layer. Next, one surface of the liquid crystal polymer film was activated by sputtering etching, and then an intermediate layer (copper layer) (thickness 40 nm) containing copper was sputter-deposited on the activated surface. Next, the surface of the intermediate layer and the surface of the ultrathin copper layer are activated by sputter etching so that the activated surface of the intermediate layer is in contact with the activated surface of the ultrathin copper layer, and then 1.5 tf. The activated surfaces of the intermediate layer and the ultrathin copper layer were rolled and joined with a linear load of / cm. The reduction rate was 2.4%. Then, the metal layer and the liquid crystal polymer film having an intermediate layer and a carrier layer with a copper foil to, was subjected to heat treatment to keep 10800 seconds at 280 ° C. at a N 2 atmosphere. As a result, a metal laminated film (layer structure: copper foil with carrier layer / intermediate layer (copper layer) / liquid crystal polymer film) was produced.

(実施例8)
液晶ポリマーフィルムの片方の表面に、中間層として、ニッケルを含む第1中間層(ニッケル層)(厚み40nm)及び銅を含む第2中間層(銅層)(厚み40nm)をこの順番でスパッタ成膜した点以外は実施例7と同様の方法で、金属積層フィルム(層構成:キャリア層付き銅箔/第2中間層(銅層)/第1中間層(ニッケル層)/液晶ポリマーフィルム)を作製した。
(Example 8)
A first intermediate layer (nickel layer) containing nickel (thickness 40 nm) and a second intermediate layer containing copper (copper layer) (thickness 40 nm) are sputtered on one surface of the liquid crystal polymer film in this order as intermediate layers. A metal laminated film (layer structure: copper foil with carrier layer / second intermediate layer (copper layer) / first intermediate layer (nickel layer) / liquid crystal polymer film) is applied in the same manner as in Example 7 except for the filmed points. Made.

(比較例1)
熱ラミネート法により、厚み50μmの液晶ポリマーフィルム(株式会社クラレ製ベクスターCTQ−50)の両方の表面に対し、片面に粗化粒子層等からなる処理層を有した厚み12μmの圧延銅箔を1枚ずつ熱圧着することで、金属積層フィルム(層構成:圧延銅箔/液晶ポリマーフィルム/圧延銅箔)を作製した。該金属積層フィルムは、液晶ポリマーフィルムの両方の表面に対し2枚の圧延銅箔の処理層の表面がそれぞれ接するように、2枚の圧延銅箔で液晶ポリマーフィルムを挟み、液晶ポリマーフィルムを310℃以上の温度に加熱し液晶ポリマーフィルム及び圧延銅箔を熱圧成形することで液晶ポリマーフィルム及び圧延銅箔の表面同士を接合したものである。
(Comparative Example 1)
By the thermal laminating method, a rolled copper foil having a thickness of 12 μm having a treated layer made of a roughened particle layer or the like on one side was applied to both surfaces of a liquid crystal polymer film having a thickness of 50 μm (Vexter CTQ-50 manufactured by Kuraray Co., Ltd.). A metal laminated film (layer structure: rolled copper foil / liquid crystal polymer film / rolled copper foil) was produced by heat-pressing the sheets one by one. In the metal laminated film, the liquid crystal polymer film is sandwiched between the two rolled copper foils so that the surfaces of the treated layers of the two rolled copper foils are in contact with both surfaces of the liquid crystal polymer film, and the liquid crystal polymer film is 310. The surfaces of the liquid crystal polymer film and the rolled copper foil are joined to each other by hot-press molding the liquid crystal polymer film and the rolled copper foil by heating to a temperature of ° C. or higher.

(比較例2)
熱ラミネート法により、厚み50μmの液晶ポリマーフィルム(株式会社クラレ製ベクスターCTQ−50)の両方の表面に対し、片面に粗化粒子層等からなる処理層を有した厚み12μmの電解銅箔を1枚ずつ熱圧着することで、金属積層フィルム(層構成:電解銅箔/液晶ポリマーフィルム/電解銅箔)を作製した。該金属積層フィルムは、液晶ポリマーフィルムの両方の表面に対し2枚の電解銅箔の処理層の表面がそれぞれ接するように、2枚の電解銅箔で液晶ポリマーフィルムを挟み、液晶ポリマーフィルムを310℃以上の温度に加熱し液晶ポリマーフィルム及び電解銅箔を熱圧成形することで液晶ポリマーフィルム及び電解銅箔の表面同士を接合したものである。
(Comparative Example 2)
By the thermal laminating method, an electrolytic copper foil having a thickness of 12 μm having a treated layer made of a roughened particle layer or the like on one side was applied to both surfaces of a liquid crystal polymer film having a thickness of 50 μm (Vexter CTQ-50 manufactured by Kuraray Co., Ltd.). A metal laminated film (layer structure: electrolytic copper foil / liquid crystal polymer film / electrolytic copper foil) was produced by thermocompression bonding one by one. In the metal laminated film, the liquid crystal polymer film is sandwiched between the two electrolytic copper foils so that the surfaces of the treated layers of the two electrolytic copper foils are in contact with both surfaces of the liquid crystal polymer film, and the liquid crystal polymer film is 310. The surfaces of the liquid crystal polymer film and the electrolytic copper foil are joined to each other by hot-press molding the liquid crystal polymer film and the electrolytic copper foil by heating to a temperature of ° C. or higher.

[液晶ポリマーフィルムの配向度F]
実施例1及び比較例2の金属積層フィルムから銅層及び電解銅箔をそれぞれ塩化第二鉄溶液等で化学的にエッチング除去し、それらを除去後の液晶ポリマーフィルムから幅方向に寸法約4μmの切片を切り出し、各切片の厚み方向の各領域の配向度Fを測定した。また、比較のために、実施例1及び比較例2の金属積層フィルムの作製に用いられたものと同一の未処理の液晶ポリマーフィルムから幅方向に寸法約4μmの切片を切り出し、その切片の厚み方向の各領域の配向度Fを測定した。図3は、液晶ポリマーフィルムの切片における配向度Fの測定領域を示す概略図である。
[Orientation degree F of liquid crystal polymer film]
The copper layer and the electrolytic copper foil were chemically removed by etching with a ferric chloride solution or the like from the metal laminated films of Example 1 and Comparative Example 2, respectively, and the size of the liquid crystal polymer film after removing them was about 4 μm in the width direction. The sections were cut out, and the degree of orientation F of each region in the thickness direction of each section was measured. Further, for comparison, a section having a dimension of about 4 μm in the width direction was cut out from the same untreated liquid crystal polymer film used for producing the metal laminated films of Example 1 and Comparative Example 2, and the thickness of the section was cut out. The degree of orientation F of each region in the direction was measured. FIG. 3 is a schematic view showing a measurement region of the degree of orientation F in a section of the liquid crystal polymer film.

配向度Fの測定では、図3に示されるように、液晶ポリマーフィルムの切片の表面に垂直でMDに平行な断面(垂直断面)において、表面からの厚み方向の距離が5μm、15μm、25μm、35μm、及び45μmに位置する各矩形領域をアパーチャーで測定領域とし、各測定領域で顕微赤外分光分析により赤外二色比Dを測定し、赤外二色比Dから配向度Fを算出した。使用した測定装置、測定方法、及び偏光子、並びに測定条件は下記の通りである。 In the measurement of the degree of orientation F, as shown in FIG. 3, in the cross section (vertical cross section) perpendicular to the surface of the section of the liquid crystal polymer film and parallel to the MD, the distances in the thickness direction from the surface are 5 μm, 15 μm, and 25 μm. Each rectangular region located at 35 μm and 45 μm was used as a measurement region with an aperture, and the infrared dichroic ratio D was measured by microinfrared spectroscopic analysis in each measurement region, and the degree of orientation F was calculated from the infrared dichroic ratio D. .. The measuring device, measuring method, and polarizer used, and the measuring conditions are as follows.

測定装置:アジレントテクノロジー株式会社製Cary670/620
測定方法:偏光顕微FT−IR分析/透過法
アパーチャーサイズ:MDの長さ100μm×厚み方向の長さ10μm
偏光子:基材KRS−5
分解能:4cm−1
積算回数:128回
Measuring device: Agilent Technologies Co., Ltd. Cary670 / 620
Measurement method: Polarized microscopic FT-IR analysis / transmission method Aperture size: MD length 100 μm × thickness direction length 10 μm
Polarizer: Subbase KRS-5
Resolution: 4 cm -1
Accumulation number: 128 times

赤外二色比Dは、ベンゼン環のC=C伸縮振動に帰属され、分子鎖に対して平行な遷移モーメントを有する1601cm−1のピークの強度から求めた。具体的には、MDに平行な偏光方向で測定した赤外透過スペクトルのピークの強度A‖及びMDに垂直な偏光方向で測定した赤外透過スペクトルのピークの強度A⊥を、1601cm−1のピークを定量ピークとしスペクトルの1618.9cm−1の点及び1572.4cm−1の点を結ぶ直線をベースラインとして測定した上で、式(1)により赤外二色比Dを求めた。さらに、式(2)によりMDへの配向度Fを算出した。 The infrared dipole ratio D was determined from the intensity of the peak of 1601 cm -1 , which is attributed to the C = C expansion and contraction vibration of the benzene ring and has a transition moment parallel to the molecular chain. Specifically, the intensity A‖ of the peak of the infrared transmission spectrum measured in the polarization direction parallel to the MD and the intensity A⊥ of the peak of the infrared transmission spectrum measured in the polarization direction perpendicular to the MD are set to 1601 cm -1 . the straight line connecting the points of the points and 1572.4Cm -1 in the spectrum of 1618.9Cm -1 and quantitated peaks peaks on measured as a baseline to determine the infrared dichroic ratio D by the formula (1). Further, the degree of orientation F with respect to MD was calculated by the formula (2).

Figure 2021171963
Figure 2021171963
Figure 2021171963
Figure 2021171963

未処理並びに実施例1及び比較例2の液晶ポリマーフィルムの切片について測定領域の位置毎に測定した1601cm−1のピークの強度A‖及び強度A⊥、赤外二色比D、並びに配向度Fと、切片毎の厚み方向の配向度Fの平均値とを表1に示す。また、図4は、未処理並びに実施例及び比較例2の液晶ポリマーフィルムの切片における測定領域の位置毎の配向度Fを示すグラフである。 The intensity A‖ and intensity A⊥ of the peak of 1601 cm -1 measured for each position of the measurement region for the untreated and the sections of the liquid crystal polymer films of Example 1 and Comparative Example 2, the infrared dichroic ratio D, and the degree of orientation F. And the average value of the degree of orientation F in the thickness direction for each section are shown in Table 1. Further, FIG. 4 is a graph showing the degree of orientation F for each position of the measurement region in the untreated and the sections of the liquid crystal polymer films of Examples and Comparative Examples 2.

Figure 2021171963
Figure 2021171963

表1及び図4に示すように、実施例1及び比較例2の液晶ポリマーフィルムの切片では、未処理の液晶ポリマーフィルムの切片と比較し、厚み方向の全体で配向度Fが低くなった。そして、実施例1及び比較例2の液晶ポリマーフィルムの切片を比較すると、実施例1の液晶ポリマーフィルムの切片の配向度Fが、比較例2の液晶ポリマーフィルムの切片よりも厚み方向の全体で高くなった。また、未処理及び実施例1の液晶ポリマーフィルムの切片では、比較例2の液晶ポリマーフィルムの切片とは異なり、厚み方向の中央側に位置する測定領域(切片の表面からの厚み方向の距離:15μm、25μm、及び35μm)の配向度が、厚み方向の表面側に位置する測定領域(切片の表面からの厚み方向の距離:5μm及び45μm)の配向度より高くなる傾向が見られた。 As shown in Table 1 and FIG. 4, the sections of the liquid crystal polymer films of Example 1 and Comparative Example 2 had a lower degree of orientation F in the entire thickness direction as compared with the sections of the untreated liquid crystal polymer films. Then, when the sections of the liquid crystal polymer films of Example 1 and Comparative Example 2 are compared, the degree of orientation F of the sections of the liquid crystal polymer film of Example 1 is as a whole in the thickness direction as compared with the sections of the liquid crystal polymer film of Comparative Example 2. It got higher. Further, in the untreated and the section of the liquid crystal polymer film of Example 1, unlike the section of the liquid crystal polymer film of Comparative Example 2, the measurement region located on the central side in the thickness direction (distance in the thickness direction from the surface of the section: The degree of orientation of 15 μm, 25 μm, and 35 μm) tended to be higher than the degree of orientation of the measurement region (distance in the thickness direction from the surface of the section: 5 μm and 45 μm) located on the surface side in the thickness direction.

[液晶ポリマーフィルムの誘電特性]
実施例1、比較例1、及び比較例2の金属積層フィルムから銅層、圧延銅箔、及び電解銅箔をそれぞれ塩化第二鉄溶液等で化学的にエッチング除去し、実施例1、比較例1、及び比較例2の誘電特性測定用の液晶ポリマーフィルムを作製した。そして、実施例1、比較例1、及び比較例2の金属積層フィルムの作製に用いられたものと同一の未処理の液晶ポリマーフィルム、並びに実施例1、比較例1、及び比較例2の誘電特性測定用の液晶ポリマーフィルムについて、厚み並びに比誘電率及び誘電正接を測定した。比誘電率及び誘電正接については、開放型共振器法により、測定周波数を28GHzとして比誘電率/誘電正接測定システム(キーコム株式会社製DPS03)を使用して測定した。これらの測定結果を表2に示す。
[Dielectric properties of liquid crystal polymer film]
The copper layer, rolled copper foil, and electrolytic copper foil were chemically removed by etching with a ferric chloride solution or the like from the metal laminated films of Example 1, Comparative Example 1, and Comparative Example 2, respectively, and Example 1 and Comparative Example Liquid crystal polymer films for measuring the dielectric properties of No. 1 and Comparative Example 2 were produced. Then, the same untreated liquid crystal polymer film used for producing the metal laminated film of Example 1, Comparative Example 1, and Comparative Example 2, and the dielectric of Example 1, Comparative Example 1, and Comparative Example 2 The thickness, relative permittivity and dielectric loss tangent of the liquid crystal polymer film for characteristic measurement were measured. The relative permittivity and the dielectric loss tangent were measured by the open resonator method at a measurement frequency of 28 GHz using a relative permittivity / dielectric loss tangent measurement system (DPS03 manufactured by Keycom Co., Ltd.). The results of these measurements are shown in Table 2.

Figure 2021171963
Figure 2021171963

表2に示すように、未処理の液晶ポリマーフィルムに対する比較例1及び比較例2の液晶ポリマーフィルムの誘電正接の増加量は14%を超えたのに対し、未処理の液晶ポリマーフィルムに対する実施例1の液晶ポリマーフィルムの誘電正接の増加量は5%未満であった。 As shown in Table 2, the increase in dielectric loss tangent of the liquid crystal polymer films of Comparative Example 1 and Comparative Example 2 with respect to the untreated liquid crystal polymer film exceeded 14%, whereas the amount of increase in the dielectric loss tangent with respect to the untreated liquid crystal polymer film was more than 14%. The amount of increase in the dielectric loss tangent of the liquid crystal polymer film No. 1 was less than 5%.

[金属層と液晶ポリマーフィルムの接合強度]
実施例1〜8並びに比較例1及び2の金属積層フィルムについて、「A.金属積層フィルム 3.金属積層フィルム」の項目で説明した測定方法により、金属層と液晶ポリマーフィルムの接合強度を測定した。なお、実施例5〜8の金属積層フィルムについては、キャリア層付き銅箔のキャリア層及び剥離層を除去して極薄銅層を露出させた後に、「A.金属積層フィルム 3.金属積層フィルム」の項目で説明した金属層表面に電解めっきを施す方法と同様に、薄く脆弱な極薄銅層の切断を防ぐために、極薄銅層表面に電解銅めっきを施し、極薄銅層の厚みを増やしてから金属層と液晶ポリマーフィルムの接合強度を測定した。これらの測定結果を表3に示す。
[Bonding strength between metal layer and liquid crystal polymer film]
For the metal laminated films of Examples 1 to 8 and Comparative Examples 1 and 2, the bonding strength between the metal layer and the liquid crystal polymer film was measured by the measuring method described in the item of "A. Metal laminated film 3. Metal laminated film". .. Regarding the metal laminated films of Examples 5 to 8, after removing the carrier layer and the peeling layer of the copper foil with the carrier layer to expose the ultrathin copper layer, "A. Metal laminated film 3. Metal laminated film. In order to prevent cutting of the thin and fragile ultra-thin copper layer, electrolytic copper plating is applied to the surface of the ultra-thin copper layer, and the thickness of the ultra-thin copper layer is similar to the method of applying electrolytic plating to the surface of the metal layer described in the item of "". Then, the bonding strength between the metal layer and the liquid crystal polymer film was measured. The results of these measurements are shown in Table 3.

Figure 2021171963
Figure 2021171963

表3に示すように、実施例1〜8の金属積層フィルムは、いずれも金属層と液晶ポリマーフィルムの接合強度が2.0N/cm以上となった。また、実施例1〜8の金属積層フィルムでは、熱処理の温度が高くなるほど、接合強度が高くなる傾向が見られた。 As shown in Table 3, in each of the metal laminated films of Examples 1 to 8, the bonding strength between the metal layer and the liquid crystal polymer film was 2.0 N / cm or more. Further, in the metal laminated films of Examples 1 to 8, the higher the heat treatment temperature, the higher the bonding strength tended to be.

1A 金属積層フィルム
10 金属層
12 銅箔(金属箔)
12a 銅箔の表面
14 中間層
14a 中間層の液晶ポリマーフィルム側とは反対側の表面
20 液晶ポリマーフィルム
20a 液晶ポリマーフィルムの一方の表面
1A Metal laminated film 10 Metal layer 12 Copper foil (metal foil)
12a Copper foil surface 14 Intermediate layer 14a Surface of the intermediate layer opposite to the liquid crystal polymer film side 20 Liquid crystal polymer film 20a One surface of the liquid crystal polymer film

Claims (13)

液晶ポリマーフィルムの少なくとも一方の表面に金属層が積層されており、
前記液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fが0.31以上であることを特徴とする金属積層フィルム。
A metal layer is laminated on at least one surface of the liquid crystal polymer film.
A metal laminated film characterized in that the degree of orientation F of the central portion in the thickness direction of the liquid crystal polymer film is 0.31 or more.
液晶ポリマーフィルムの少なくとも一方の表面に金属層が積層されており、
前記液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fが、前記金属層が積層される前の前記液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fの77%以上であることを特徴とする金属積層フィルム。
A metal layer is laminated on at least one surface of the liquid crystal polymer film.
The orientation degree F of the central portion in the thickness direction of the liquid crystal polymer film is 77% or more of the orientation degree F of the central portion in the thickness direction of the liquid crystal polymer film before the metal layers are laminated. Metal laminated film.
前記液晶ポリマーフィルムにおける厚み方向の配向度Fの平均が0.31以上であることを特徴とする請求項1又は2に記載の金属積層フィルム。 The metal laminated film according to claim 1 or 2, wherein the average degree F of orientation F in the thickness direction of the liquid crystal polymer film is 0.31 or more. 前記液晶ポリマーフィルムの誘電正接が、前記金属層が積層される前の前記液晶ポリマーフィルムの誘電正接の114%未満であることを特徴とする請求項1から3いずれか一項に記載の金属積層フィルム。 The metal lamination according to any one of claims 1 to 3, wherein the dielectric loss tangent of the liquid crystal polymer film is less than 114% of the dielectric loss tangent of the liquid crystal polymer film before the metal layer is laminated. the film. 前記金属層と前記液晶ポリマーフィルムの接合強度が2.0N/cm以上であることを特徴とする請求項1から4いずれか一項に記載の金属積層フィルム。 The metal laminated film according to any one of claims 1 to 4, wherein the bonding strength between the metal layer and the liquid crystal polymer film is 2.0 N / cm or more. 前記金属層が、金属箔を有することを特徴とする請求項1から5いずれか一項に記載の金属積層フィルム。 The metal laminated film according to any one of claims 1 to 5, wherein the metal layer has a metal foil. 前記金属層が、前記液晶ポリマーフィルムと前記金属箔との間に金属を含む中間層をさらに有することを特徴とする請求項6に記載の金属積層フィルム。 The metal laminated film according to claim 6, wherein the metal layer further has an intermediate layer containing a metal between the liquid crystal polymer film and the metal foil. 前記中間層が、銅、鉄、ニッケル、亜鉛、クロム、コバルト、チタン、スズ、白金、銀、及び金からなる群より選択されるいずれか一種の金属又は該金属を含有する合金を含むことを特徴とする請求項7に記載の金属積層フィルム。 The intermediate layer comprises any one metal selected from the group consisting of copper, iron, nickel, zinc, chromium, cobalt, titanium, tin, platinum, silver, and gold, or an alloy containing the metal. The metal laminated film according to claim 7. 前記金属箔が、銅箔、銅合金箔、又はキャリア付き銅箔であることを特徴とする請求項6から8いずれか一項に記載の金属積層フィルム。 The metal laminated film according to any one of claims 6 to 8, wherein the metal foil is a copper foil, a copper alloy foil, or a copper foil with a carrier. 請求項7に記載の金属積層フィルムの製造方法であって、
液晶ポリマーフィルムと金属箔とを準備する工程と、
前記液晶ポリマーフィルムの少なくとも一方の表面に金属を含む中間層を積層する工程と、
前記中間層の表面をスパッタエッチングにより活性化する工程と、
前記金属箔の表面をスパッタエッチングにより活性化する工程と、
前記中間層及び前記金属箔の前記活性化した表面同士を0〜30%の圧下率で圧延接合する工程と、
前記圧延接合した前記中間層及び前記金属箔を有する金属層並びに前記液晶ポリマーフィルムに対し、前記液晶ポリマーフィルムの融点−100℃以上前記融点−10℃以下の温度で熱処理を施す工程と、
を備える金属積層フィルムの製造方法。
The method for producing a metal laminated film according to claim 7.
The process of preparing the liquid crystal polymer film and the metal foil,
A step of laminating an intermediate layer containing a metal on at least one surface of the liquid crystal polymer film, and
A step of activating the surface of the intermediate layer by sputter etching and
A step of activating the surface of the metal foil by sputter etching and
A step of rolling and joining the intermediate layer and the activated surfaces of the metal foil at a rolling reduction of 0 to 30%.
A step of heat-treating the rolled-bonded intermediate layer, the metal layer having the metal foil, and the liquid crystal polymer film at a temperature of the melting point of the liquid crystal polymer film of −100 ° C. or higher and the melting point of −10 ° C. or lower.
A method for producing a metal laminated film comprising.
前記熱処理後の前記液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fが0.31以上であることを特徴とする請求項10に記載の金属積層フィルムの製造方法。 The method for producing a metal laminated film according to claim 10, wherein the degree of orientation F of the central portion in the thickness direction of the liquid crystal polymer film after the heat treatment is 0.31 or more. 前記熱処理後の前記液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fが、前記金属層が積層される前の前記液晶ポリマーフィルムにおける厚み方向の中央部の配向度Fの77%以上であることを特徴とする請求項10又は11に記載の金属積層フィルムの製造方法。 The degree of orientation F of the central portion in the thickness direction of the liquid crystal polymer film after the heat treatment is 77% or more of the degree of orientation F of the central portion in the thickness direction of the liquid crystal polymer film before the metal layers are laminated. The method for producing a metal laminated film according to claim 10 or 11. 前記熱処理後の前記液晶ポリマーフィルムの誘電正接が、前記金属層が積層される前の前記液晶ポリマーフィルムの誘電正接の114%未満であることを特徴とする請求項10から12いずれか一項に記載の金属積層フィルムの製造方法。 The invention according to any one of claims 10 to 12, wherein the dielectric loss tangent of the liquid crystal polymer film after the heat treatment is less than 114% of the dielectric loss tangent of the liquid crystal polymer film before the metal layer is laminated. The method for producing a metal laminated film according to the above.
JP2020075910A 2020-04-22 2020-04-22 Metal-laminated film and method for manufacturing the same Pending JP2021171963A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020075910A JP2021171963A (en) 2020-04-22 2020-04-22 Metal-laminated film and method for manufacturing the same
PCT/JP2021/015640 WO2021215353A1 (en) 2020-04-22 2021-04-15 Metal-laminated film and method for manufacturing same
CN202180027781.1A CN115397664A (en) 2020-04-22 2021-04-15 Metal laminated film and method for producing same
TW110113508A TW202205918A (en) 2020-04-22 2021-04-15 Metal-laminated film and method for manufacturing same
KR1020227034948A KR20230006808A (en) 2020-04-22 2021-04-15 Metal laminated film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020075910A JP2021171963A (en) 2020-04-22 2020-04-22 Metal-laminated film and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2021171963A true JP2021171963A (en) 2021-11-01

Family

ID=78269305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020075910A Pending JP2021171963A (en) 2020-04-22 2020-04-22 Metal-laminated film and method for manufacturing the same

Country Status (5)

Country Link
JP (1) JP2021171963A (en)
KR (1) KR20230006808A (en)
CN (1) CN115397664A (en)
TW (1) TW202205918A (en)
WO (1) WO2021215353A1 (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411656B1 (en) 1968-10-21 1979-05-16
JP3984387B2 (en) * 1998-04-09 2007-10-03 株式会社クラレ Coating method using polymer film and method for producing metal foil laminate
JP2000269616A (en) 1999-03-17 2000-09-29 Kuraray Co Ltd High-frequency circuit board
JP4532713B2 (en) 2000-10-11 2010-08-25 東洋鋼鈑株式会社 Multilayer metal laminated film and method for producing the same
JP2005236196A (en) * 2004-02-23 2005-09-02 Yamaichi Electronics Co Ltd Manufacturing method for multilayered wiring board
JP2005324466A (en) * 2004-05-14 2005-11-24 Toyo Kohan Co Ltd Low thermal expansion laminated material and part using it
TW200804626A (en) * 2006-05-19 2008-01-16 Mitsui Mining & Smelting Co Copper foil provided with carrier sheet, method for fabricating copper foil provided with carrier sheet, surface-treated copper foil provided with carrier sheet, and copper-clad laminate using the surface-treated copper foil provided with carrier she
WO2010055613A1 (en) * 2008-11-12 2010-05-20 東洋鋼鈑株式会社 Polymer laminate substrate for formation of epitaxially grown film, and manufacturing method therefor
EP2455949B1 (en) * 2009-07-17 2016-08-31 Toyo Kohan Co., Ltd. Metal laminated substrate for use as an oxide superconducting wire material, and manufacturing method therefor
US20150295058A1 (en) * 2012-12-28 2015-10-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thin-film transistor and manufacturing method therefor
EP3217775B1 (en) * 2014-11-07 2021-07-28 Kuraray Co., Ltd. Circuit board and method for manufacturing same
JP6656231B2 (en) * 2015-04-20 2020-03-04 株式会社クラレ Method for producing metal-clad laminate and metal-clad laminate using the same
CN108778713B (en) * 2016-03-03 2021-05-07 株式会社可乐丽 Metal-clad laminate and method for producing same
CN113580690B (en) * 2016-03-08 2023-12-08 株式会社可乐丽 Metal-clad laminate
JP7178634B2 (en) * 2016-05-20 2022-11-28 パナソニックIpマネジメント株式会社 Method for manufacturing metal-clad laminate, method for manufacturing electronic circuit board

Also Published As

Publication number Publication date
KR20230006808A (en) 2023-01-11
TW202205918A (en) 2022-02-01
WO2021215353A1 (en) 2021-10-28
CN115397664A (en) 2022-11-25

Similar Documents

Publication Publication Date Title
JP2021035755A (en) Carrier-layer-included metal laminate base material and method for manufacturing the same, metal laminate base material and method for manufacturing the same, and printed wiring board
US20090246554A1 (en) Laminate having peelability and production method therefor
WO2016174970A1 (en) Surface-treated copper foil, manufacturing method therefor, printed circuit board copper-clad laminate, and printed circuit board
WO2015122258A1 (en) Carrier-equipped ultrathin copper foil, and copper-clad laminate, printed circuit substrate and coreless substrate that are manufactured using same
JP6035679B2 (en) Plating laminate manufacturing method and plating laminate
JP2008091463A (en) Manufacturing method for both-side flexible-copper-laminated board and carrier-attached both-side flexible-copper-laminated board
TWI783190B (en) laminated body
WO2021215353A1 (en) Metal-laminated film and method for manufacturing same
JP4677381B2 (en) Metal materials for printed wiring boards
WO2021039759A1 (en) Carrier-layer-included metal laminate base material and method for producing same, metal laminate base material and method for producing same, and printed wiring board
TWI528875B (en) Rolled copper foil for flexible dielectric wiring boards
KR20120053195A (en) Laminated structure for a flexible circuit board having a improved heat resistance adhesive strength and manufacturing method the same
WO2023074531A1 (en) Metal laminate, method for manufacturing same, and printed wiring board
KR20240093456A (en) Metal laminate and its manufacturing method, and printed wiring board
JP2018176565A (en) Method for producing metallized film
JP3664708B2 (en) Polyimide metal laminate and manufacturing method thereof
JP2008091431A (en) Method for manufacturing flexible copper clad laminated plate
KR20220042307A (en) A polyarylene sulfide-based resin film, a metal laminate, a method for producing a polyarylene sulfide-based resin film, and a method for producing a metal laminate
TW202041369A (en) Laminate body
KR20210106811A (en) Method manufacturing structure for flexible printed circuit board and device thereof
KR102218282B1 (en) Method manufacturing stacked structure for printed circuit board comprising ternary-compound and device operating thereof
JP4389627B2 (en) Method for producing flexible metal laminate
JP6432793B2 (en) Copper foil with release film
JP6671050B2 (en) Copper foil with release film
JP7513717B2 (en) Copper foil laminate film, electronic device including same, and method for manufacturing said copper foil laminate film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240424