JP2021167915A - 光学素子の製造方法、及び、光学素子 - Google Patents

光学素子の製造方法、及び、光学素子 Download PDF

Info

Publication number
JP2021167915A
JP2021167915A JP2020071534A JP2020071534A JP2021167915A JP 2021167915 A JP2021167915 A JP 2021167915A JP 2020071534 A JP2020071534 A JP 2020071534A JP 2020071534 A JP2020071534 A JP 2020071534A JP 2021167915 A JP2021167915 A JP 2021167915A
Authority
JP
Japan
Prior art keywords
main surface
optical
region
resist layer
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020071534A
Other languages
English (en)
Other versions
JP7469946B2 (ja
Inventor
聡 上野山
So Uenoyama
宏記 亀井
Hiroki Kamei
和義 廣瀬
Kazuyoshi Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2020071534A priority Critical patent/JP7469946B2/ja
Priority to US17/226,721 priority patent/US20210318611A1/en
Publication of JP2021167915A publication Critical patent/JP2021167915A/ja
Application granted granted Critical
Publication of JP7469946B2 publication Critical patent/JP7469946B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

【課題】所望の構造を有する光学機能部が設けられた光学素子の製造方法を提供する。【解決手段】光学素子1の製造方法は、基板10の主面10a上にレジスト層41を形成することと、パターン領域Pをレジスト層41に形成することと、溝部42を形成することと、パターン領域Pを覆う誘電体層51を形成することと、光学機能部20を形成することとを有する。パターン領域Pは、レジスト層41に形成される。溝部42は、主面10aに直交する方向D1から見てパターン領域Pの周辺に相当する部分に形成される。誘電体層51は、誘電体50を堆積することで形成される。光学機能部20は、パターン領域Pを覆う誘電体層51を形成した後にレジスト層41を取り除くことによって主面のうちパターン領域Pが配置されていた位置上に形成される。光学機能部20は、誘電体50によって構成される。【選択図】図5

Description

本発明は、光学素子の製造方法、及び、光学素子に関する。
基板と基板の主面上に設けられた光学機能部とを備える光学素子が知られている(たとえば、特許文献1)。特許文献1では、光学機能部は、誘電体によって構成される。
特表2018−536204号公報
特許文献1は、光学機能部の形成において、基板の主面上にレジスト層が形成され、所定のパターンが設けられた領域がレジスト層に形成され、当該パターン領域に誘電体が堆積されることを記載している。パターン領域に誘電体が堆積されることによって、基板の主面上に所望の構造を有する光学機能部が形成される。
本願発明者は、誘電体を堆積させる際にレジスト層に亀裂が入り、パターン領域の構造が崩壊するという問題に直面した。パターン領域の構造が崩壊した場合、所望の構造を有する光学機能部が形成されない。このため、パターン領域における構造の崩壊を抑制することが望まれている。当該構造の崩壊が抑制されれば、所望の構造を有する光学機能部が設けられた光学素子が実現され得る。
本発明の一つの態様は、所望の構造を有する光学機能部が設けられた光学素子の製造方法を提供することを目的とする。本発明の別の態様は、所望の構造を有する光学機能部が設けられた光学素子を提供することを目的とする。
本発明の一つの態様における光学素子の製造方法は、基板の主面上にレジスト層を形成することと、パターン領域をレジスト層に形成することと、溝部を形成することと、パターン領域を覆う誘電体層を形成することと、光学機能部を形成することと、を有している。パターン領域には、レジスト層を貫通するパターンが設けられている。溝部は、主面に直交する方向から見てパターン領域の周辺に相当する部分に形成される。誘電体層は、レジスト層が主面上に設けられている状態において誘電体を堆積することで形成される。光学機能部は、パターン領域を覆う誘電体層を形成した後にレジスト層を取り除くことによって主面のうちパターン領域が配置されていた位置上に形成される。光学機能部は、誘電体によって構成される。
上記一つの態様において、パターン領域の周辺に相当する部分に溝部が形成されている。本願発明者は、鋭意研究の結果、上記製造方法において、誘電体を堆積させる際にパターン領域における亀裂の発生が抑制されることを見いだした。パターン領域における亀裂の発生が抑制されれば、誘電体層が形成された後にレジスト層を取り除くことによって、所望の構造を有する光学機能部が実現され得る。
上記一つの態様において、上記製造方法は、レジスト層が主面上に設けられている状態において誘電体を堆積することで溝部を覆う誘電体層を形成することと、誘電体からなる壁部を形成することと、をさらに有してもよい。壁部は、溝部を覆う誘電体層を形成した後にレジスト層を取り除くことによって、主面のうち溝部が配置されていた位置上に形成されてもよい。この場合、パターン領域への亀裂の到達が抑制される。
上記一つの態様において、溝部は、主面に直交する方向から見て、パターン領域を完全に囲むようにレジスト層に形成されてもよい。この場合、パターン領域における亀裂の発生がより確実に抑制される。
上記一つの態様において、溝部は、主面に直交する方向から見て、パターン領域を囲むように形成されることで、パターン領域を含む内部領域を画定してもよい。主面に直交する方向から見て、内部領域からパターン領域を除いた部分の面積は、レジスト層が設けられた部分から当該内部領域を除いた部分の面積よりも小さくてもよい。この場合、パターン領域における亀裂の発生がより確実に抑制される。
上記一つの態様において、光学機能部は、複数の構造体を含んでいてもよい。各構造体は、主面に沿った方向における各構造体の最大長さが200nm以下になるように形成されていてもよい。
上記一つの態様において、レジスト層には、互いに離間する複数のパターン領域が形成されてもよい。溝部は、主面に直交する方向から見て、各パターン領域の周辺に相当する部分に形成されてもよい。誘電体層は、各パターン領域を覆うように形成されてもよい。光学機能部は、各パターン領域が配置されていた位置に形成されてもよい。この場合、複数の光学機能部が一度に形成されながら、各パターン領域における亀裂の発生が抑制される。
本発明の別の態様における光学素子は、基板と、光学機能部と、壁部とを備えている。基板は、主面を有している。光学機能部は、基板の主面上に設けられていると共に誘電体によって構成されている。壁部は、基板の主面上において、主面に直交する方向から見て光学機能部の周辺に設けられている。
上記別の態様において、光学機能部の周辺に壁部が設けられている。光学機能部の周辺に壁部が形成される構成であれば、所望の構造を有する光学機能部を容易に実現できる。
上記別の態様において、壁部は、主面に直交する方向から見て、光学機能部を完全に囲っていてもよい。この場合、所望の構造を有する光学機能部がより容易かつ確実に実現され得る。
上記別の態様では、主面は、光学機能部が設けられている光学領域を含んでいてもよい。壁部は、主面に直交する方向から見て、光学領域を含む内部領域を画定していてもよい。主面に直交する方向から見て、内部領域から光学領域を除いた部分の面積は、主面から当該内部領域を除いた部分の面積よりも小さくてもよい。この場合、所望の構造を有する光学機能部がより確実に実現され得る。
上記別の態様では、光学機能部は、複数の構造体を含んでいてもよい。主面に沿った方向における各構造体の最大長さは、200nm以下であってもよい。
上記別の態様では、基板の主面上には、互いに離間する光学領域にそれぞれ光学機能部が設けられていてもよい。壁部は、主面に直交する方向から見て、各光学領域の周辺に設けられていてもよい。この場合、所望の構造を有している複数の光学機能部が設けられた光学素子が容易に実現され得る。
本発明の一つの態様は、所望の構造を有する光学機能部が設けられた光学素子の製造方法を提供する。本発明の別の態様は、所望の構造を有する光学機能部が設けられた光学素子を提供する。
本実施形態における光学素子の概略平面図である。 光学素子の拡大斜視図である。 光学素子の拡大断面図である。 光学素子の製造方法を示すフローチャートである。 (a)から(e)は、光学素子の製造方法を説明するための図である。 光学素子の製造方法を説明するための図である。 本実施形態の変形例における光学素子の製造方法を説明するための図である。 本実施形態の変形例における光学素子を示す概略平面図である。 本実施形態の変形例における光学素子の製造方法を説明するための図である。 (a)及び(b)は、レジスト層に亀裂が生じている状態を示す図である。 保護壁により亀裂が抑制されている状態を示す図である。
以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有している要素には、同一符号を用いることとし、重複する説明は省略する。
まず、図1から図3を参照して、本実施形態における光学素子の構成を説明する。図1は、本実施形態における光学素子の概略平面図である。光学素子1は、電磁波が入射される面1aを有している。光学素子1は、入射された電磁波に対して所望の光学的作用を生じさせる。たとえば、光学素子1は、入射された電磁波に対して透過率、反射率及び屈折率などに関する所望の光学性能を有している。たとえば、光学素子1は、200nm〜2000nmの波長を有する電磁波に対して所望の光学性能を有するように構成されている。光学素子1は、たとえば、266nmの波長を有する電磁波に対して、500μmの焦点距離を有するレンズである。
光学素子1は、基板10と、光学機能部20と、壁部30とを備えている。光学素子1は、面1aのうち、少なくとも上記電磁波を入射する部分に光学機能部20を備えている。光学素子1は、少なくとも光学機能部20が設けられている部分において、入射された電磁波に対して上記所望の光学的作用を生じさせる。図2は、光学機能部20が設けられた部分における光学素子1の拡大斜視図である。図3は、光学機能部20が設けられた部分における光学素子1の拡大断面図である。
基板10は、主面10aを有している。基板10の主面10aは、光学機能部20が設けられている光学領域αを含んでいる。本実施形態では、基板10は、光学素子1に入射される上記電磁波に対して透過性を有している。基板10は、たとえば、200nm〜2000nmの波長を有している電磁波に対して透過性を有している。本明細書において、「透過性を有する」とは、少なくとも約80%の光透過率を有するこという。基板10は、材料として、たとえば石英を含んでいる。たとえば、基板10は、石英ガラスを含んでいる。主面10aは、平面である。主面10aの最大幅は、たとえば10mm以上である。本実施形態では、主面10aは、たとえば、一辺が10mm以上の矩形状を呈している。
光学機能部20は、人工的な微細構造を有している。光学機能部20によって、誘電体メタサーフェスが形成されている。光学機能部20は、その構造によって、入射された電磁波に対して光学的に作用する。光学機能部20は、主面10a上に設けられている。「主面上に設けられている」とは、主面に接している場合だけでなく、別部材を介して主面上に設けられている場合も含んでいる。
光学機能部20は、誘電体によって構成されている。光学機能部20は、複数の構造体22を含んでいる。本実施形態において、光学機能部20は、図1に示されているように、基板10の主面10a上における矩形状の光学領域αに設けられている。本実施形態において、光学素子1は、1つの光学領域αを有している。光学領域αは、主面10aに直交する方向D1から見て、複数の構造体22が配置されている領域である。光学領域αは、たとえば、320μm四方である。
複数の構造体22は、誘電体からなる。複数の構造体22は、主面10a上に配置されている。複数の構造体22は、基板10の主面10a上に二次元配列されている。本実施形態において、複数の構造体22は、主面10aに直交する方向D1から見て、上述した光学領域α内に配置されている。
光学機能部20は、複数の構造体22の構造に応じて、入射される電磁波に対する種々の光学的作用を生じる。換言すれば、複数の構造体22は、入射される電磁波に対して所望の光学的作用を生じるように構成されている。複数の構造体22は、たとえば、二酸化ハフニウム、二酸化チタン、二酸化ケイ素、窒化ケイ素、ケイ素、及びヒ化ガリウムの少なくとも1つを含んでいる。
各構造体22は、基板10の主面10aに交差する方向D1に延在している。本実施形態において、方向D1は、主面10aに直交している。各構造体22は、たとえば、柱形状を呈している。各構造体22は、たとえば、図2に示されているように、円柱形状を呈している。本実施形態において、各構造体22は、主面10aに対して直立している。複数の構造体22は、互いに異なる形状を有している構造体23,24を含んでいてもよい。方向D2は、方向D1に交差している。方向D2は、基板10の主面10aに沿っている。本実施形態において、方向D2は、主面10aに平行であり、方向D1に直交している。方向D1が第一方向である場合、方向D2は第二方向である。
方向D1における各構造体22の最大長さL1は、たとえば、1nm〜2000nmである。主面10aに沿った方向D2における各構造体22の最大長さL2は、たとえば、200nm以下である。最大長さL2は、たとえば、1nm〜200nmである。最大長さL2がたとえば30nm〜200nmであれば、各構造体22の形成がさらに容易に実現される。方向D1における各構造体の最大長さL1に対する、方向D2における当該構造体22の最大長さL2の比率は、たとえば、0.06〜0.40である。本実施形態では、266nmの波長を有する電磁波が光学素子1に入射されることを想定しており、最大長さL1は500nmであり、構造体23,24の最大長さL2は80nm〜120nmであり、複数の構造体22の間隔は160nmである。複数の構造体22の間隔は、方向D1から見て、各構造体22の幾何中心の間隔を意味する。
構造体23及び構造体24は、たとえば、円柱形状である。構造体23と構造体24とは、たとえば、主面10aに沿った方向D2における最大長さL2が異なる。方向D2における構造体23,24の最大長さL2は、底面の直径である。構造体23,24の底面が楕円形状を呈している場合には、方向D2は短軸方向である。構造体23,24の底面が矩形状を呈している場合には、方向D2は短辺方向である。構造体23,24の底面が長尺形状を呈している場合には、方向D2は長尺方向に直交する方向である。
図3に示されているように、壁部30は、基板10の主面10a上に設けられている。壁部30は、方向D1から見て、光学領域αの周辺に設けられている。壁部30は、方向D1から見て、光学機能部20の周辺に設けられている。本実施形態において、壁部30は、方向D1から見て、光学機能部20が設けられた1つの光学領域αを囲っている。壁部30は、環状を呈している。壁部30は、方向D1から見て、環状を呈している。壁部30は、光学領域αの縁に沿って配置されている。本実施形態の変形例として、光学素子1が互いに離間した複数の光学領域αを有していてもよい。壁部30は、互いに離間した複数の光学領域αを纏めて囲っていてもよい。換言すれば、互いに隣り合う光学領域αの間に壁部30が位置していなくてもよい。
本実施形態において、図1に示されているように、壁部30は、方向D1から見て、光学機能部20を完全に囲っている。換言すれば、壁部30は、連続した環状に形成されている。本実施形態の変形例として、壁部30は、方向D1から見て、光学機能部20を断続的に囲っていてもよい。換言すれば、壁部30は、少なくとも一部において破断した環状に形成されていてもよい。さらに換言すれば、壁部30は、互いに離間する複数の部材から形成されていてもよく、これらの複数の部材が1つの光学領域αを囲っていてもよい。
壁部30は、方向D1から見て、内部領域β1を画定している。換言すれば、内部領域β1は、壁部30によって囲まれている。光学領域αは、内部領域β1に含まれている。光学機能部20は、内部領域β1に設けられている。方向D1から見て、内部領域β1から光学領域αを除いた部分の面積は、主面10aから当該内部領域β1を除いた部分の面積よりも小さい。本実施形態では、内部領域β1の面積は、主面10aのうち当該内部領域β1を除いた部分の面積よりも小さい。本実施形態では、壁部30は矩形環状を呈しており、内部領域β1は矩形状を呈している。
本実施形態において、方向D1から見て、内部領域β1の外縁30aの最大幅W1は、約650μmである。方向D1から見て、方向D2における内部領域β1の外縁30aの一辺の長さW2は、約460μmである。方向D2における壁部30の幅W3は、約20μmである。壁部30と光学領域αとの最短距離W4は、約70μmである。
次に、図4、図5(a)から図5(e)、図6、及び図3を参照して、光学素子1の製造方法を説明する。図4は、光学素子の製造方法を示すフローチャートである。図5(a)から図5(e)及び図6は、光学素子の製造方法を説明するための図である。
まず、基板10を準備する(工程S1)。基板10は、図5(a)に示されているように主面10aを有している。方向D1は主面10aに直交する方向であり、方向D2は主面10aに沿った方向である。基板10は、光学素子1に入射される上記電磁波に対して透過性を有している。基板10は、たとえば、石英によって形成されている。たとえば、基板10は、石英ガラスを含んでいる。
次に、基板10の主面10a上にレジスト層41を形成する(工程S2)。工程S2において、レジスト層41は、図5(b)に示されているように、連続する一つの層として主面10a上に形成される。工程S2において、レジスト層41は、主面10aと対向する第一面41aと、第一面41aの反対側に位置する第二面41bとを有している。レジスト層41の厚さは、形成する各構造体22の最大長さL1に応じて決定される。レジスト層41の厚さは、たとえば各構造体22の最大長さL1と同一である。「同一」には、製造誤差の範囲を含んでいる。レジスト層41は、たとえば、電子ビームレジストによって形成されている。レジスト層41は、フォトレジストによって形成されていてもよい。レジスト層41は、工程S2において、たとえば、スピンコートによって主面10a上にレジストを塗布することで形成される。主面10aとレジスト層41との間に、別の層が形成されてもよい。
次に、パターン領域Pを形成するようにレジスト層41を加工する(工程S3)。パターン領域Pは、パターニングが行われた領域である。工程S3のパターニングにおいて、レジスト層41は、図5(c)及び図6に示されているように、レジスト層41の第二面41bから第一面41aに貫通するパターンが形成されるように加工される。当該加工によって、上記パターンが設けられたパターン領域Pがレジスト層41に形成される。本実施形態では、パターン領域Pのパターンから基板10の主面10aが露出する。主面10aとレジスト層41との間に別の層が設けられた場合には、パターン領域Pのパターンにおいて当該別の層が露出する。パターン領域Pのパターンは、形成する各構造体22に応じて決定される。本実施形態において、パターン領域Pは、矩形状を呈している。
次に、溝部42を形成するようにレジスト層41を加工する(工程S4)。レジスト層41には、図5(c)及び図6に示されているように、溝部42が、方向D1から見てパターン領域Pの周辺に相当する部分に形成される。溝部42は、レジスト層41の第二面41bから第一面41aに貫通するように形成される。溝部42において、基板10の主面10aが露出する。本実施形態において、溝部42は、方向D1から見て、1つのパターン領域Pを囲むように形成される。溝部42は、環状を呈している。
本実施形態において、溝部42は、方向D1から見て、パターン領域Pを完全に囲むようにレジスト層41に形成される。換言すれば、溝部42は、連続した環状に形成される。本実施形態の変形例として、溝部42は、方向D1から見て、パターン領域Pを断続的に囲むようにレジスト層41に形成されてもよい。換言すれば、溝部42は、少なくとも一部において破断した環状に形成されていてもよい。さらに換言すれば、溝部42は、互いに離間する複数の部位から形成されていてもよく、これらの複数の部位が1つのパターン領域Pを囲むように形成されてもよい。これらの場合、レジスト層41の加工に要する時間が低減される。
工程S4において、溝部42は、方向D1から見て、内部領域β2を画定する。換言すれば、内部領域β2は、溝部42によって囲まれる。パターン領域Pは、内部領域β2に含まれている。方向D1から見て、内部領域β2からパターン領域Pを除いた部分の面積は、レジスト層41が設けられた部分から当該内部領域β2を除いた部分の面積よりも小さい。本実施形態において、内部領域β2の面積は、レジスト層41が設けられた部分のうち当該内部領域β2を除いた部分の面積よりも小さい。本実施形態において、溝部42は矩形環状を呈しており、内部領域β2は矩形状を呈している。
本実施形態において、方向D1から見て、内部領域β2の外縁42aの最大幅W6は、約650μmである。方向D1から見て、方向D2における内部領域β2の外縁42aの一辺の長さW7は、約460μmである。方向D2における溝部42の幅W8は、約20μmである。溝部42とパターン領域Pとの最短距離W9は、約70μmである。
工程S3及び工程S4において、レジスト層41は、たとえば、電子ビームリソグラフィによる露光及び現像によって加工される。レジスト層41がフォトレジストによって形成されている場合には、レジスト層41は、フォトリソグラフィによる露光及び現像によって加工される。本実施形態の変形例として、工程S4は、工程S3の前に行われてもよいし、工程S3と同時に行われてもよい。
次に、工程S3及び工程S4において加工されたレジスト層41が主面10a上に設けられている状態において誘電体50を堆積することで、誘電体層51を形成する(工程S5)。誘電体50は、レジスト層41及びレジスト層41から露出した主面10a上に積層される。誘電体層51は、パターン領域P及び溝部42を覆う。方向D1において、レジスト層41から露出した主面10aに形成された誘電体層51の長さは、レジスト層41の長さよりも長い。換言すれば、誘電体50は、レジスト層41から露出した主面10aにおいて、方向D1におけるレジスト層41の厚さよりも厚くなるように堆積される。
誘電体50は、たとえば、気相薄膜形成法によって基板10の主面10aに面する側から堆積される。気相薄膜形成法としては、たとえば、原子層堆積法(ALD:Atomic Layer Deposition)が用いられる。気相薄膜形成法としては、たとえば、化学気相成長(CVD:chemical Vapor deposition)が用いられる。本実施形態では、図5(d)に示されているように、誘電体50は、原子層堆積法によって、主面10aが面する側からパターン領域P及び溝部42に積層される。工程S5において、誘電体50は、少なくともレジスト層41及びレジスト層41から露出した主面10aが視認できなくなるまで積層される。誘電体50の積層処理を続けることで、誘電体層51が形成される。誘電体50は、たとえば二酸化ハフニウム、二酸化チタン、二酸化ケイ素、窒化ケイ素、ケイ素、及びヒ化ガリウムの少なくとも1つを含んでいる。本実施形態において、誘電体層51は、約170℃の成膜温度によって、パターン領域P及び溝部42に積層される。
次に、誘電体層51の一部を取り除く(工程S6)。図5(e)に示されているように、誘電体層51の一部は、レジスト層41の第二面41bと誘電体層51とが面一になるように取り除かれる。このように誘電体層51の不要部を除去することによって、誘電体層51は、基板10の主面10aに直交する方向D1から見て、主面10aにレジスト層41が設けられていない部分のみに残る。工程S6において、誘電体層51は、たとえば、エッチングによって取り除かれる。エッチングとしては、たとえば、ドライエッチングが用いられる。ドライエッチングとしては、たとえば、反応性イオンエッチング(RIE:Reactive Ion Etching)が用いられる。反応イオンエッチングには、たとえば、誘導結合型プラズマが用いられる。
次に、レジスト層41を取り除く(工程S7)。図3に示されているように、基板10の主面10a上に配置されているレジスト層41が全て取り除かれる。工程S7について、レジスト層41は、たとえば、レジスト剥離処理(アッシング)によって除去される。レジスト剥離処理としては、たとえば、酸素プラズマアッシングが用いられる。
工程S7では、レジスト層41を取り除くことによって、誘電体50からなる複数の構造体22と誘電体50からなる壁部30とが主面10a上に形成される。複数の構造体22によって、光学機能部20が形成される。このように、レジスト層41を取り除くことによって、誘電体50によって構成された光学機能部20が主面10a上に形成される。光学機能部20は、パターン領域Pが配置されていた位置に形成される。壁部30は、溝部42が配置されていた位置に形成される。内部領域β2は、内部領域β1に相当する。
本実施形態の変形例として、図7に示されているように、工程S7の後に、壁部30が取り除かれてもよい。壁部30は、たとえば、薬液によって取り除かれてもよい。壁部30は、ダイシングによって基板10を切削する際に取り除かれてもよい。壁部30を残す構成の方が、生産スループットが高い。
次に、本実施形態の変形例における光学素子1Aに関して説明する。本変形例は、概ね、上述した実施形態と類似又は同じである。以下、上述した実施形態と本変形例との相違点を主として説明する。まず、図8を参照して、光学素子1Aの構成について説明する。図8は、本実施形態の変形例における光学素子を示す概略平面図である。本変形例の光学素子1Aは、基板10に複数の光学領域αと壁部30とが設けられている点に関して、上述した実施形態と相違する。
図8に示されているように、光学素子1Aにおいて、互いに離間する複数の光学領域αが基板10の主面10a上に設けられている。各光学領域αには、光学機能部20が設けられている。したがって、光学素子1Aには、主面10a上に複数の光学機能部20が設けられている。本変形例において、複数の光学領域αは、主面10a上に二次元配列されている。複数の光学領域αは、行方向及び列方向のそれぞれにおいて、等間隔に配置されている。
方向D1から見て、壁部30は、各光学領域αの周辺に設けられている。壁部30は、各光学領域αに設けられた光学機能部20を囲っている。互いに隣り合う光学領域αの間には、壁部30が配置されている。壁部30は、互いに離間した複数の内部領域β1を画定している。複数の光学領域αは、それぞれ、壁部30によって画定された互いに異なる内部領域β1に配置されている。換言すれば、各内部領域β1に1つの光学領域αが配置されている。本変形例のさらなる変形例として、各内部領域β1に互いに離間する複数の光学領域αが配置されていてもよい。
図8に示されている変形例において、壁部30は、互いに離間した複数の壁部31を含んでいる。互いに隣り合う壁部30の最短距離W11は、たとえば、壁部30と光学領域αとの最短距離W4と同一である。本変形例において、最短距離W11は、約70μmである。互いに隣り合う光学領域αは、互いに離間した壁部31によってそれぞれ囲われている。本変形例のさらなる変形例として、互いに隣り合う光学領域αは、互いに連結された壁部30によってそれぞれ囲われていてもよい。換言すれば、互いに隣り合う光学領域αは、互いに共通する部分を有している壁部30によってそれぞれ囲われていてもよい。
次に、図9を参照して、上述した光学素子1Aの製造方法について説明する。図9は、本実施形態の変形例における光学素子の製造方法を説明するための図である。本変形例の光学素子1Aは、工程S3及び工程S4において、基板10に複数のパターン領域Pが形成される点に関して、上述した実施形態と相違する。
光学素子1Aの製造方法において、図9に示されているように、工程S3において、互いに離間する複数のパターン領域Pがレジスト層41に形成される。たとえば、複数のパターン領域Pは、方向D1から見て、二次元配列される。たとえば、複数のパターン領域Pは、行方向及び列方向のそれぞれにおいて、等間隔に形成される。この場合、工程S4において、溝部42は、方向D1から見て、各パターン領域Pの周辺に相当する部分に形成される。換言すれば、溝部42は、各パターン領域Pを囲むように形成される。互いに隣り合うパターン領域Pの間には、溝部42が配置される。溝部42は、互いに離間した複数の内部領域β2を画定する。複数のパターン領域Pは、それぞれ、溝部42によって画定された互いに異なる内部領域β2に配置される。換言すれば、各内部領域β2に1つのパターン領域Pが配置される。
本変形例のさらなる変形例として、各内部領域β2に互いに離間する複数のパターン領域Pが配置されてもよい。溝部42は、互いに離間した複数のパターン領域Pを纏めて囲っていてもよい。溝部42は、互いに隣り合う光学領域αの間に壁部30が位置していなくてもよい。
図9に示されている変形例において、溝部42は、互いに離間した複数の溝部43を含んでいる。互いに隣り合う溝部43の最短距離W12は、たとえば、溝部42とパターン領域Pとの最短距離W9と同一である。本変形例において、最短距離W12は、約70μmである。互いに隣り合うパターン領域Pは、互いに離間した溝部43によってそれぞれ囲われる。本変形例のさらなる変形例として、互いに隣り合うパターン領域Pは、互いに連結された溝部42によってそれぞれ囲われてもよい。換言すれば、互いに隣り合うパターン領域Pは、互いに共通する部分を有している溝部42によってそれぞれ囲われてもよい。
図9に示されている状態から、工程S5において、誘電体層51が各パターン領域P及び溝部42を覆うように形成される。その後、工程S6及び工程S7が行われることによって、図8を用いて説明した変形例のように、互いに離間する複数の光学領域α及び壁部30が基板10の主面10a上に形成される。各光学領域αには、光学機能部20が形成される。光学機能部20は、各パターン領域Pが配置されていた位置に形成される。この結果、光学素子1Aが形成される。
次に、上述した光学素子1,1Aの製造方法及び光学素子1,1Aの作用効果について説明する。工程S5において説明したように誘電体を堆積させる際には、図10(a)及び図10(b)に示されているようにレジスト層に亀裂が入る。図10(a)及び図10(b)は、レジスト層101に形成されているパターン領域PA,PBを覆うように誘電体を積層した際に、レジスト層101に亀裂102が発生している状態を示している。発生した亀裂は、パターン領域PA,PBに達している。図10(b)には、亀裂によってパターン領域PBにおける構造が崩壊している様子が示されている。
光学素子1,1Aの製造方法では、パターン領域Pの周辺に相当する部分に溝部42が形成されている。この場合、図11に示されているように、誘電体50を堆積させる際にパターン領域Pにおける亀裂の発生が抑制される。図11において、内部領域β2の外部において発生した亀裂103は、溝部42において留まっている。パターン領域Pにおける亀裂103の発生が抑制されれば、誘電体層51が形成された後にレジスト層41を取り除くことによって、所望の構造を有する光学機能部20が実現され得る。パターン領域Pにおける亀裂103の発生が抑制されることによって、光学機能部20が設けられた光学素子1,1Aの歩留まりが向上し、生産スループットも向上し得る。
光学素子1,1Aの製造方法において、複数の構造体22のような微細な構造を光学機能部20に形成する場合には、工程S3及び工程S4において、レジスト層41は電子ビームリソグラフィによって加工される。この場合、工程S3及び工程S4において、光学機能部20の形成に不要なレジスト層41の部分を全て取り除くには膨大な時間を要する。本実施形態における光学素子1,1Aの製造方法によれば、所望の構造を有する光学機能部20の形成時間が短縮され得る。
光学素子1,1Aの製造方法は、レジスト層41が主面10a上に設けられている状態において誘電体50を堆積することで溝部42を覆う誘電体層51を形成することと、誘電体50からなる壁部30を形成することと、をさらに有している。壁部30は、溝部42を覆う誘電体層51を形成した後にレジスト層41を取り除くことによって、主面10aのうち溝部42が配置されていた位置上に形成される。この場合、内部領域β2の外部からの亀裂のパターン領域Pへの到達が抑制される。
光学素子1,1Aの製造方法において、溝部42は、方向D1から見て、パターン領域Pを完全に囲むようにレジスト層41に形成されている。この場合、パターン領域Pにおける亀裂の発生がより確実に抑制される。
光学素子1,1Aの製造方法において、溝部42は、方向D1から見て、パターン領域Pを囲むように形成されることで、パターン領域Pを含む内部領域β2を画定している。方向D1から見て、内部領域β2からパターン領域Pを除いた部分の面積は、レジスト層41が設けられた部分から当該内部領域β2を除いた部分の面積よりも小さい。この場合、パターン領域Pにおける亀裂の発生がより確実に抑制される。
光学素子1Aの製造方法において、レジスト層41には、互いに離間する複数のパターン領域Pが形成されている。溝部42は、方向D1から見て、各パターン領域Pの周辺に相当する部分に形成されている。誘電体層51は、各パターン領域Pを覆うように形成されている。光学機能部20は、各パターン領域Pが配置されていた位置に形成されている。この場合、複数の光学機能部20が一度に形成されながら、各パターン領域Pにおける亀裂の発生が抑制される。
光学素子1,1Aでは、光学機能部20の周辺に壁部30が設けられている。このように光学機能部20の周辺に壁部30が形成される構成であれば、所望の構造を有する光学機能部20を容易に実現できる。この場合、光学機能部20が設けられた光学素子1,1Aの歩留まりが向上し、生産スループットも向上し得る。たとえば、光学機能部20の周辺に壁部30が形成される構成では、壁部30を形成する誘電体を堆積する際において、当該光学機能部20に対応するパターン領域Pを構成する部分とそれ以外のレジスト層41の部分とが分断される。このため、パターン領域Pに亀裂が発生し難い。
光学素子1,1Aにおいて、壁部30は、方向D1から見て、光学機能部20を完全に囲っている。この場合、所望の構造を有する光学機能部20がより容易かつ確実に実現され得る。
光学素子1,1Aにおいて、壁部30は、方向D1から見て、光学領域αを含む内部領域β1を画定している。方向D1から見て、内部領域β1から光学領域αを除いた部分の面積は、主面10aから当該内部領域β1を除いた部分の面積よりも小さい。この場合、所望の構造を有する光学機能部20がより確実に実現され得る。
光学素子1Aにおいて、基板10の主面10a上には、互いに離間する光学領域αにそれぞれ光学機能部20が設けられている。壁部30は、方向D1から見て、各光学領域αの周辺に設けられている。この場合、所望の構造を有している複数の光学機能部20が設けられた光学素子1Aが容易に実現され得る。
以上、本発明の実施形態及び変形例について説明してきたが、本発明は必ずしも上述した実施形態及び変形例に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
たとえば、方向D1から見て、光学領域α及びパターン領域Pの形状は、矩形状に限定されない。たとえば、方向D1から見て、光学領域α及びパターン領域Pの形状は、円形状であってもよい。壁部30及び溝部42の形状は、矩形環状に限定されない。たとえば、光学領域α及びパターン領域Pの形状は、円環状であってもよい。光学領域α及びパターン領域Pの形状が矩形状である場合、それらの形成が容易であり、所望の構造を有する光学機能部20が容易に実現され得る。壁部30及び溝部42が光学領域α及びパターン領域Pの縁に沿って形成される場合、パターン領域Pにおける亀裂が発生し難い。
1,1A…光学素子、10…基板、20…光学機能部、22,23,24…構造体、30,31…壁部、41…レジスト層、42,43…溝部、50…誘電体、51…誘電体層、D1,D2…方向、P…パターン領域、α…光学領域、β1,β2…内部領域。

Claims (11)

  1. 基板の主面上にレジスト層を形成することと、
    前記レジスト層を貫通するパターンが設けられたパターン領域を前記レジスト層に形成することと、
    前記主面に直交する方向から見て、前記パターン領域の周辺に相当する部分に溝部を形成することと、
    前記レジスト層が前記主面上に設けられている状態において誘電体を堆積することで、前記パターン領域を覆う誘電体層を形成することと、
    前記パターン領域を覆う前記誘電体層を形成した後に前記レジスト層を取り除くことによって、前記主面のうち前記パターン領域が配置されていた位置上に、誘電体によって構成された光学機能部を、形成することと、を有する、光学素子の製造方法。
  2. 前記レジスト層が前記主面上に設けられている状態において誘電体を堆積することで、前記溝部を覆う誘電体層を形成することと、
    前記溝部を覆う前記誘電体層を形成した後に前記レジスト層を取り除くことによって、前記主面のうち前記溝部が配置されていた位置上に、誘電体からなる壁部を形成することと、をさらに有する、請求項1に記載の光学素子の製造方法。
  3. 前記溝部は、前記主面に直交する方向から見て、前記パターン領域を完全に囲むように前記レジスト層に形成される、請求項1又は2に記載の光学素子の製造方法。
  4. 前記溝部は、前記主面に直交する方向から見て、前記パターン領域を囲むように形成されることで、前記パターン領域を含む内部領域を画定しており、
    前記主面に直交する方向から見て、前記内部領域から前記パターン領域を除いた部分の面積は、前記レジスト層が設けられた部分から当該内部領域を除いた部分の面積よりも小さい、請求項1〜3のいずれか一項に記載の光学素子の製造方法。
  5. 前記光学機能部は、複数の構造体を含んでおり、
    各前記構造体は、前記主面に沿った方向における各前記構造体の最大長さが200nm以下になるように形成されている、請求項1〜4のいずれか一項に記載の光学素子の製造方法。
  6. 前記レジスト層には、互いに離間する複数の前記パターン領域が形成され、
    前記溝部は、前記主面に直交する方向から見て、各前記パターン領域の周辺に相当する部分に形成され、
    前記誘電体層は、前記各パターン領域を覆うように形成され、
    前記光学機能部は、前記各パターン領域が配置されていた位置に形成される、請求項1〜5のいずれか一項に記載の光学素子の製造方法。
  7. 主面を有している基板と、
    前記基板の前記主面上に設けられていると共に誘電体によって構成されている光学機能部と、
    前記基板の前記主面上において、前記主面に直交する方向から見て前記光学機能部の周辺に設けられている壁部と、を備える、光学素子。
  8. 前記壁部は、前記主面に直交する方向から見て、前記光学機能部を完全に囲っている、請求項7に記載の光学素子。
  9. 前記主面は、前記光学機能部が設けられている光学領域を含んでおり、
    前記壁部は、前記主面に直交する方向から見て、前記光学領域を含む内部領域を画定しており、
    前記主面に直交する方向から見て、前記内部領域から前記光学領域を除いた部分の面積は、前記主面から当該内部領域を除いた部分の面積よりも小さい、請求項7又は8に記載の光学素子。
  10. 前記光学機能部は、複数の構造体を含んでおり、
    前記主面に沿った方向における各前記構造体の最大長さは、200nm以下である、請求項7〜9のいずれか一項に記載の光学素子。
  11. 前記基板の前記主面上には、互いに離間する光学領域にそれぞれ前記光学機能部が設けられており、
    前記壁部は、前記主面に直交する方向から見て、各前記光学領域の周辺に設けられている、請求項7〜10のいずれか一項に記載の光学素子。
JP2020071534A 2020-04-13 2020-04-13 光学素子の製造方法、及び、光学素子 Active JP7469946B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020071534A JP7469946B2 (ja) 2020-04-13 2020-04-13 光学素子の製造方法、及び、光学素子
US17/226,721 US20210318611A1 (en) 2020-04-13 2021-04-09 Method for producing optical element and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020071534A JP7469946B2 (ja) 2020-04-13 2020-04-13 光学素子の製造方法、及び、光学素子

Publications (2)

Publication Number Publication Date
JP2021167915A true JP2021167915A (ja) 2021-10-21
JP7469946B2 JP7469946B2 (ja) 2024-04-17

Family

ID=78007125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020071534A Active JP7469946B2 (ja) 2020-04-13 2020-04-13 光学素子の製造方法、及び、光学素子

Country Status (2)

Country Link
US (1) US20210318611A1 (ja)
JP (1) JP7469946B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516263A (ja) * 2004-06-09 2008-05-15 ショット アクチエンゲゼルシャフト 構造化されたガラスコーティングによる回折光学素子の形成
JP2014194553A (ja) * 2008-05-26 2014-10-09 Canon Inc 光学素子の製造方法
JP2018536204A (ja) * 2015-11-24 2018-12-06 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 可視スペクトルの波長のための誘電体メタサーフェス(metasurface)を製造するための原子層堆積プロセス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227511A (ja) 1999-02-04 2000-08-15 Canon Inc 回折光学素子の保持機構
JP5109520B2 (ja) 2007-07-27 2012-12-26 セイコーエプソン株式会社 光学素子、液晶装置、液晶装置用マザー基板、及び電子機器、並びにワイヤグリッド偏光素子
US10036837B2 (en) 2013-11-08 2018-07-31 Sharp Kabushiki Kaisha Mother substrate, light-control member, method for manufacturing light-control member, and display device
KR102568789B1 (ko) * 2016-03-10 2023-08-21 삼성전자주식회사 무기 컬러 필터를 포함하는 컬러 필터 어레이, 상기 컬러 필터 어레이를 포함하는 이미지 센서 및 디스플레이 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516263A (ja) * 2004-06-09 2008-05-15 ショット アクチエンゲゼルシャフト 構造化されたガラスコーティングによる回折光学素子の形成
JP2014194553A (ja) * 2008-05-26 2014-10-09 Canon Inc 光学素子の製造方法
JP2018536204A (ja) * 2015-11-24 2018-12-06 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 可視スペクトルの波長のための誘電体メタサーフェス(metasurface)を製造するための原子層堆積プロセス

Also Published As

Publication number Publication date
JP7469946B2 (ja) 2024-04-17
US20210318611A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP2021167914A (ja) 光学素子の製造方法、及び、光学素子
WO2014171467A1 (ja) Led素子及びその製造方法
JP5772135B2 (ja) 反射型マスクブランク及び反射型マスク
JP5319247B2 (ja) 半導体装置の製造方法
WO2017204326A1 (ja) ファブリペロー干渉フィルタの製造方法
WO2018037725A1 (ja) ファブリペロー干渉フィルタ
JP2020505302A5 (ja)
JPWO2017203949A1 (ja) ファブリペロー干渉フィルタ、及びファブリペロー干渉フィルタの製造方法
JP2001223156A (ja) フォトリソグラフィによる多層フォトレジストプロセス
JP6861213B2 (ja) ファブリペロー干渉フィルタ
TW202046449A (zh) 多深度光學裝置的圖案化
US20190187350A1 (en) Polarizing element
JP5736900B2 (ja) 反射型露光用マスク
JP2021167915A (ja) 光学素子の製造方法、及び、光学素子
EP3923046A1 (en) Multilayer optical phased arrays for sidelobe mitigation
KR100273704B1 (ko) 반도체기판제조방법
TWI748495B (zh) 用於平板光學元件製造之光阻劑負載方案
CN110658574B (zh) 一种斜齿图形光栅板的制作方法及光栅板
JPWO2007004296A1 (ja) 誘電体多層膜を含んだ光学素子およびその製造方法
US20190186957A1 (en) Scale and manufacturing method of the same
KR20200059061A (ko) 극자외선 리소그래피용 펠리클 및 그 제조방법
JP6019966B2 (ja) パターン形成方法
JP6019967B2 (ja) パターン形成方法
JP7483711B2 (ja) 格子を形成する方法
JP7393574B2 (ja) 極紫外線用フォトマスク

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240405

R150 Certificate of patent or registration of utility model

Ref document number: 7469946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150