JP2021165417A - Method for producing non-fired carbon-containing agglomerate for blast furnace - Google Patents
Method for producing non-fired carbon-containing agglomerate for blast furnace Download PDFInfo
- Publication number
- JP2021165417A JP2021165417A JP2020069073A JP2020069073A JP2021165417A JP 2021165417 A JP2021165417 A JP 2021165417A JP 2020069073 A JP2020069073 A JP 2020069073A JP 2020069073 A JP2020069073 A JP 2020069073A JP 2021165417 A JP2021165417 A JP 2021165417A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- blast furnace
- mass
- coal
- raw materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000002994 raw material Substances 0.000 claims abstract description 181
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 100
- 238000001125 extrusion Methods 0.000 claims abstract description 68
- 229910052742 iron Inorganic materials 0.000 claims abstract description 47
- 239000002245 particle Substances 0.000 claims abstract description 44
- 238000011049 filling Methods 0.000 claims abstract description 40
- 239000011230 binding agent Substances 0.000 claims abstract description 29
- 239000000463 material Substances 0.000 claims abstract description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- 238000000465 moulding Methods 0.000 claims abstract description 23
- 239000000843 powder Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000003245 coal Substances 0.000 claims description 77
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 30
- 239000000377 silicon dioxide Substances 0.000 claims description 15
- 238000009849 vacuum degassing Methods 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 6
- 238000010304 firing Methods 0.000 claims description 3
- 238000009628 steelmaking Methods 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 6
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 28
- 238000010298 pulverizing process Methods 0.000 description 25
- 239000000571 coke Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 239000004568 cement Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 230000009257 reactivity Effects 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 238000001354 calcination Methods 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000010881 fly ash Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910021487 silica fume Inorganic materials 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 2
- 239000003830 anthracite Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000002801 charged material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、高炉や堅型溶解炉などの製鉄炉の原料に用いられる、高炉用非焼成含炭塊成鉱を製造する技術に関する。 The present invention relates to a technique for producing a non-firing coal-containing agglomerate ore for a blast furnace, which is used as a raw material for a steelmaking furnace such as a blast furnace or a rigid melting furnace.
高炉では、炉上部から原料鉱石と塊状コークスを投入しつつ炉下部から送風し、塊状コークスと送風エアから生成する還元ガスを炉下部から炉上部へと通風しながら、原料鉱石中の酸化鉄を還元溶解している。炉内での還元ガスの通風性を確保するため、原料鉱石には炉内で粉化しない強度を持つことが要求されている。このため、高炉では通常、焼結鉱や焼成ペレットのように、事前に高温で焼成した原料が用いられている。 In the blast furnace, raw material ore and massive coke are injected from the upper part of the furnace and blown from the lower part of the furnace, and the reducing gas generated from the bulky coke and blown air is ventilated from the lower part of the furnace to the upper part of the furnace to release iron oxide in the raw material ore. It is reduced and dissolved. In order to ensure the ventilation of the reducing gas in the furnace, the raw material ore is required to have strength that does not pulverize in the furnace. For this reason, in a blast furnace, raw materials that have been fired at a high temperature in advance, such as sinter and calcined pellets, are usually used.
これに対し、セメントなどの水硬性バインダーを用いて焼成に必要なエネルギー消費を抑え、地球温暖化ガスである炭酸ガスの発生量を抑制する高炉用非焼成含炭塊成鉱が開発されている。この高炉用非焼成含炭塊成鉱の原料には、焼結性が低く、塊状に成型することが難しいとされてきた劣質な粉鉱石も用いることができる可能性がある。 On the other hand, non-calcination coal-containing agglomerates for blast furnaces have been developed that suppress the energy consumption required for calcination by using a water-hard binder such as cement and suppress the amount of carbon dioxide gas, which is a greenhouse gas. .. As a raw material for this uncalcined coal-containing lump ore for a blast furnace, there is a possibility that inferior powder ore, which has low sinterability and is difficult to be molded into a lump, can also be used.
また、高炉用非焼成含炭塊成鉱には、粒径が小さく高炉へ直接装入するのが困難な粉コークスや、価格は安いが粘結性が低くコークス化困難な無煙炭も還元材として配合できる可能性があり、高炉の還元材比を削減できると期待されている。最新の知見では、高炉用非焼成含炭塊成鉱に内装されるカーボン含有率(T.C.)は、酸化鉄を還元して金属鉄とするために必要な理論炭素量の120〜200%(T.C.換算で15〜25質量%に相当)とすることで、高炉での還元材比低減効果が最大になることが明らかとなっている(特許文献1)。 In addition, for non-firing coal-containing agglomerates for blast furnaces, powdered coke, which has a small particle size and is difficult to directly charge into a blast furnace, and anthracite coal, which is inexpensive but has low cohesiveness and is difficult to coke, are also used as reducing agents. There is a possibility that it can be mixed, and it is expected that the ratio of reducing agents in the blast furnace can be reduced. According to the latest findings, the carbon content (TC) contained in the uncalcined coal-containing agglomerate for blast furnace is 120 to 200 of the theoretical carbon content required to reduce iron oxide to metallic iron. It has been clarified that the effect of reducing the ratio of the reducing material in the blast furnace is maximized by setting it to% (corresponding to 15 to 25% by mass in terms of TC) (Patent Document 1).
水硬性バインダーの硬化反応により形成される高炉用非焼成含炭塊成鉱中の水和物は、高炉内で約400℃以上に加熱されると吸熱反応により分解される。このため、高炉用非焼成含炭塊成鉱の強度は炉内で著しく低下し、粉化する懸念がある。高炉用非焼成含炭塊成鉱が高炉内で粉化すると、炉内の通気性を悪化さるため、高炉用非焼成含炭塊成鉱には一定の熱間強度が求められる。一方で、熱間強度確保のために水硬性バインダーを大量に使うと、吸熱反応により奪われる熱を補填するために高炉への還元材投入量が増加し、溶銑コストが増加してしまう。 The hydrate in the uncalcined coal-containing agglomerate for blast furnace formed by the curing reaction of the hydraulic binder is decomposed by the endothermic reaction when heated to about 400 ° C. or higher in the blast furnace. For this reason, the strength of the uncalcined coal-containing agglomerate for blast furnace is significantly reduced in the furnace, and there is a concern that it will be pulverized. When the non-calcined coal-containing agglomerate for blast furnace is pulverized in the blast furnace, the air permeability in the furnace is deteriorated. Therefore, the non-calcined coal-containing agglomerate for blast furnace is required to have a certain hot strength. On the other hand, if a large amount of water-hard binder is used to secure the hot strength, the amount of reducing agent input to the blast furnace increases in order to compensate for the heat taken by the endothermic reaction, and the hot metal cost increases.
以上より、高炉用非焼成含炭塊成鉱の製造方法では、なるべく少ない水硬性バインダーで高炉使用に必要な熱間強度を発現できる製造方法が求められている。 From the above, in the method for producing a non-calcined coal-containing agglomerate for a blast furnace, a production method capable of exhibiting the hot strength required for the use of a blast furnace with as little hydraulic binder as possible is required.
高炉内での高炉用非焼成含炭塊成鉱の粉化は、他の高炉原燃料(焼結鉱、ペレット、コークス、等)との摩擦(表面破壊)により起こる。よって、強度指標としては、熱間(高温、還元雰囲気下)で反応した後の高炉用非焼成含炭塊成鉱の粉化率を用いることが適している。
これまで、高炉用非焼成含炭含炭塊成鉱の熱間強度を向上させるために、その製造条件について種々の技術開発が行われてきた(特許文献2〜6)。
The pulverization of non-fired coal-containing agglomerates for blast furnace in a blast furnace is caused by friction (surface destruction) with other blast furnace raw fuels (sintered ore, pellets, coke, etc.). Therefore, as a strength index, it is suitable to use the pulverization rate of the uncalcined coal-containing agglomerate for blast furnace after the reaction in hot water (high temperature, under reducing atmosphere).
So far, in order to improve the hot strength of uncalcined coal-containing coal-containing agglomerates for blast furnaces, various technological developments have been made regarding the production conditions thereof (Patent Documents 2 to 6).
しかし、多くは強度指標として、表面破壊による粉化率ではなく、体積破壊による耐荷重を用いており(特許文献1〜4)、高炉使用に適切な強度を評価できているとは言えない。また、炉内の高温、還元雰囲気下での粉化に着目したもの(特許文献6)については、好ましい粒度範囲が狭い(鉱石:10〜50μm、炭素含有原料:〜100μm)、高結晶水鉱石の配合量が制約される(5〜20質量%)等の課題があり、産業利用上の制約が厳しい。 However, most of them use the load capacity due to volumetric fracture instead of the pulverization rate due to surface fracture as a strength index (Patent Documents 1 to 4), and it cannot be said that the strength suitable for use in a blast furnace can be evaluated. Further, for those focusing on pulverization in a high temperature and reducing atmosphere in a furnace (Patent Document 6), a preferable particle size range is narrow (ore: 10 to 50 μm, carbon-containing raw material: ~ 100 μm), and high water of crystallization ore. There are problems such as restrictions on the blending amount of water of crystallization (5 to 20% by mass), and restrictions on industrial use are severe.
本発明は、T.C.が多くかつ水硬性バインダーの配合率が少なくても、高炉用非焼成含炭塊成鉱の熱間強度を低下させることなく、高強度を達成可能な高炉用非焼成含炭塊成鉱の製造条件を提供する。 The present invention relates to T.I. C. Production of non-calcined coal-containing agglomerates for blast furnaces that can achieve high strength without lowering the hot strength of uncalcined coal-containing agglomerates for blast furnaces even if the amount of water-hard binder is small. Provide conditions.
上記課題を解決するため、原料の粒度条件を所定の範囲とし、かつ真空脱気条件が−40kPaG以下の真空圧で成型することで、T.C.が多くかつ水硬性バインダーの配合率が少なくても、高炉用非焼成含炭塊成鉱の熱間強度を低下させることなく、高強度を達成可能な高炉用非焼成含炭塊成鉱を製造することに成功した。即ち、
(1)製鉄における高炉の原料として使用される高炉用非焼成含炭塊成鉱を製造する方法であって、
当該高炉用非焼成含炭塊成鉱原料には、水分ゼロ換算の質量比率で、
水硬性バインダーを2.0〜9.0質量%、
微粒シリカ源を1.0〜4.0質量%、かつ水硬性バインダーと微粒シリカ源の合計が6.0〜13.0質量%とし、
さらに当該高炉用非焼成含炭塊成鉱原料中に含まれる炭素の割合(T.C.)が15.0〜40.0質量%となるように、鉄含有原料、炭素含有原料、その他原料を合わせて87.0〜94.0質量%を配合したものを用い、
ミキサーにて当該高炉用非焼成含炭塊成鉱原料と水を混合して混合原料とする際に、水の質量比率を当該高炉用非焼成含炭塊成鉱原料と水との合計を100質量%としたときに水の質量比率が9.0〜14.0質量%となるように加えて連続的に混合し、
当該混合原料を第一の押出部、真空室、第二の押出部へ、第一の押出部の充填率が50〜90体積%、第二の押出部の充填率が50〜95体積%となるように移送して連続的に前記混合原料を押し出して成型体として高炉用非焼成含炭塊成鉱を製造する方法であって、
前記混合原料の粒度が、鉄含有原料中−10μm粉率≧15.0質量%である原料を用い、
前記第一の押出部では、充填率が50〜90体積%となるように前記混合原料を移送方向前方に設置された多孔板で形成された堰へ混合原料を押込むことで第一のマテリアルシールを形成させ、
前記真空室では、前記堰の出側から連続的に供給される前記混合原料を真空脱気し、前記第二の押出部へ移送し、
前記第二の押出部では、充填率が50〜95体積%となるように当該真空室から供給される真空脱気された前記混合原料を多数の孔を備えた成型部へ押し込むことで、第二のマテリアルシールを形成させつつ連続的に前記混合原料を押し出し、
前記真空脱気条件は−40kPaG以下として成型することを特徴とする、高炉用非焼成含炭塊成鉱の製造方法である。
In order to solve the above problems, T.I. C. Manufactures uncalcined coal-containing lump deposits for blast furnaces that can achieve high strength without lowering the hot strength of uncalcined coal-containing lump deposits for blast furnaces I succeeded in doing it. That is,
(1) A method for producing a non-calcined coal-containing lump ore for a blast furnace used as a raw material for a blast furnace in steelmaking.
The uncalcined coal-containing agglomerate ore raw material for the blast furnace has a mass ratio equivalent to zero moisture.
2.0-9.0% by mass of hydraulic binder,
The fine silica source is 1.0 to 4.0% by mass, and the total of the water-hard binder and the fine silica source is 6.0 to 13.0% by mass.
Further, iron-containing raw materials, carbon-containing raw materials, and other raw materials so that the ratio of carbon (TC) contained in the non-calcined coal-containing agglomerate ore raw material for the blast furnace is 15.0 to 40.0% by mass. A total of 87.0 to 94.0% by mass was used.
When the non-fired coal-containing agglomerate ore raw material for blast furnace and water are mixed with a mixer to prepare a mixed raw material, the mass ratio of water is 100. Add water so that the mass ratio of water is 9.0 to 14.0 mass% when it is set to mass%, and mix continuously.
The mixed raw material is applied to the first extrusion section, the vacuum chamber, and the second extrusion section, the filling rate of the first extrusion section is 50 to 90% by volume, and the filling rate of the second extrusion section is 50 to 95% by volume. It is a method of producing a non-calcined coal-containing agglomerate for a blast furnace as a molded body by continuously extruding the mixed raw material by transferring the mixture so as to be.
Using a raw material having a particle size of the mixed raw material of −10 μm powder ratio ≧ 15.0% by mass in the iron-containing raw material,
In the first extrusion portion, the mixed raw material is pushed into a weir formed of a perforated plate installed in front of the transfer direction so that the filling rate is 50 to 90% by volume, so that the mixed raw material is pushed into the first material. Form a seal,
In the vacuum chamber, the mixed raw material continuously supplied from the outlet side of the weir is evacuated and transferred to the second extrusion section.
In the second extrusion section, the vacuum degassed mixed raw material supplied from the vacuum chamber is pushed into a molding section having a large number of holes so that the filling rate is 50 to 95% by volume. The mixed raw material is continuously extruded while forming the second material seal.
The vacuum degassing condition is a method for producing a non-calcined coal-containing agglomerate ore for a blast furnace, which comprises molding at −40 kPaG or less.
本発明により、T.C.を15.0〜40.0質量%、水硬性バインダー添加率を2.0〜9.0質量%の範囲で、高炉装入に適する高炉用非焼成含炭塊成鉱を製造することが可能となり、低還元材比操業に寄与する。 According to the present invention, T.I. C. It is possible to produce a non-calcined coal-containing agglomerate for blast furnace suitable for blast furnace charging in the range of 15.0 to 40.0% by mass and the water-hard binder addition rate of 2.0 to 9.0% by mass. Contributes to low-reduction material ratio operation.
前述のように、高炉用非焼成含炭塊成鉱の原料は、一般に、還元材である炭素含有原料と、鉄源である鉄含有原料、およびその他原料の3種で構成される。そしてこれら3種の原料に、水硬性バインダーと微粒シリカ源を配合し、高炉用非焼成含炭塊成鉱原料とし、さらに水を加えて混合した後、成型して含炭塊成鉱とする。各項目について以下で説明する。 As described above, the raw material of the non-calcined coal-containing agglomerate for blast furnace is generally composed of three kinds of a carbon-containing raw material as a reducing agent, an iron-containing raw material as an iron source, and other raw materials. Then, a hydraulic binder and a fine silica source are mixed with these three kinds of raw materials to prepare a non-calcination coal-containing agglomerate ore raw material for a blast furnace, and water is further added and mixed, and then molded to obtain a coal-containing agglomerate ore. .. Each item will be described below.
原料;
「1」鉄含有原料
炭素含有原料、バインダーの添加率を決定した後の残分を鉄含有原料とする。鉄含有原料としては、鉄鉱石を所定粒度に砕いたものや鉄鉱石微粉(ペレットフィード)、また、製鉄プロセスにおいて大量に発生する炭素分が比較的少なく鉄成分を多く含むダストやスラッジ、スケール等を使用することができる。また、圧延ロールの研削屑等や、特に製銑工程の搬送過程で落下した鉄鉱石や焼結鉱等の集積物を用いても良いし、含炭塊成鉱の成型の過程で発生する粉や欠片も鉄含有原料に含まれる。
material;
"1" Iron-containing raw material The residue after determining the addition rate of the carbon-containing raw material and the binder is used as the iron-containing raw material. Examples of iron-containing raw materials include iron ore crushed to a predetermined particle size, iron ore fine powder (pellet feed), dust, sludge, scale, etc., which generate a large amount of carbon in the iron-making process and contain a large amount of iron components. Can be used. Further, grinding debris from a rolling roll or an aggregate such as iron ore or sinter that has fallen during the transportation process of the ironmaking process may be used, or powder generated during the molding process of the coal-containing agglomerate ore. And fragments are also included in the iron-containing raw materials.
「2」炭素含有原料
前述の高炉での還元材比低減メリット享受のため、T.C.が約15.0〜40.0質量%となるようにする。例えば、一般的な粉コークスはT.C.が約85質量%であるため、これらをRCEに用いる場合は、配合率は24.0質量%前後となる。なお、炭材含有原料としては、コークスを所定粒度に砕いた粉コークスやコークス炉の集塵ダストなど、石炭を乾留したものの微粉が好ましいが、無煙炭や石炭、高炉から発生する炭素分を多く含有するダストなどを使用しても良い。
"2" Carbon-containing raw material In order to enjoy the merit of reducing the ratio of reducing agent in the above-mentioned blast furnace, T.I. C. Is about 15.0 to 40.0% by mass. For example, common coke breeze is T.I. C. Is about 85% by mass, so when these are used for RCE, the blending ratio is about 24.0% by mass. As the raw material containing carbonaceous material, fine powder obtained by carbonizing coal such as powdered coke obtained by crushing coke to a predetermined particle size or dust collected from a coke oven is preferable, but it contains a large amount of carbon content generated from anthracite, coal, and a blast furnace. You may use dust or the like.
「3」その他原料
特に製鉄工程において発生する鉄成分の少ない(鉄含有率として30質量%以下)、もしくは鉄成分が含まれないスラッジ、スラグなどを指す。鉄含有率が少ない分、炭素分が含まれる場合がある。
"3" Other raw materials Refers to sludge, slag, etc., which have a small amount of iron components (iron content of 30% by mass or less) or do not contain iron components, especially in the iron making process. Carbon may be contained due to the low iron content.
「4」水硬性バインダー等
次に高炉用非焼成含炭塊成鉱の強度発現に必要な水硬性バインダー配合率を低減するための考え方を述べる。水硬性バインダーは単にセメントとも呼ばれることがあり、原料中に含有する水分や添加水分との水和反応により硬化することにより造粒物の冷間圧潰強度を高める機能を有するバインダーを意味する。水硬性バインダーには、ケイ酸カルシウムを含有する、ポルトランドセメント(JIS R 5210で規定)、混合セメント(高炉セメント(JIS R 5211で規定))、シリカセメント(JIS R 5212で規定)、フライアッシュセメント(JIS R 5213で規定))、超速硬セメント、高炉スラグ等が用いられるが、これに限定されるものではない。
"4" Hydraulic binder, etc. Next, the concept for reducing the blending ratio of the hydraulic binder required for the strength development of the non-calcined coal-containing agglomerate for blast furnace will be described. The hydraulic binder is sometimes simply called cement, and means a binder having a function of increasing the cold crushing strength of the granulated product by hardening by a hydration reaction with water contained in the raw material or added water. Water-hard binders include Portland cement (specified in JIS R 5210), mixed cement (blast furnace cement (specified in JIS R 5211)), silica cement (specified in JIS R 5212), and fly ash cement containing calcium silicate. (Specified in JIS R 5213)), ultrafast hard cement, blast furnace slag, etc. are used, but the present invention is not limited thereto.
水硬性バインダーが形成する水和物は高炉内で分解されるため、水硬性バインダーにより保持していた強度は炉内では徐々に減少する。この強度低下を補うため、従来技術では水硬性バインダーを約10質量%添加する必要があった。 Since the hydrate formed by the hydraulic binder is decomposed in the blast furnace, the strength held by the hydraulic binder gradually decreases in the furnace. In order to compensate for this decrease in strength, it has been necessary to add about 10% by mass of a hydraulic binder in the prior art.
ところが高炉装入制約であるセメントなどの水硬性バインダーは、水分ゼロ換算の質量比率で、2.0〜9.0質量%、硬化促進剤として細粒SiO2を水分ゼロ換算の質量比率で、1.0〜4.0質量%で、水硬性バインダーや細粒SiO2が過剰だと、高炉投入還元材やスラグが増加して高炉用非焼成含炭塊成鉱のメリットが相殺されてしまい、過小だと必要強度を発現できないため高炉に装入できない。ここで各原料の水分ゼロ換算の質量は以下の方法で求める。2〜3kg程度の各原料を105℃以上に設定した乾燥機に投入し、乾燥減量が 1 時間あたり、 0.1%未満となるまで乾燥を続け(通常6〜12時間程度)、総乾燥減量を求める。総乾燥減量/乾燥前原料重量をその原料の水分比率とし、乾燥前原料重量−(乾燥前原料重量×水分比率)を原料の水分ゼロ換算の質量とする。 However, hydraulic binders such as cement, which are restricted to blast furnace charging, have a mass ratio of 2.0 to 9.0 mass% in terms of zero moisture, and fine-grained SiO2 as a curing accelerator has a mass ratio of 1 in terms of zero moisture. If the hydraulic binder and fine-grained SiO2 are excessive in the range of 0 to 4.0% by mass, the blast furnace input reducing material and slag increase, and the merits of the non-fired coal-containing agglomerate for blast furnace are offset, which is too small. If this is the case, the required strength cannot be achieved and the blast furnace cannot be charged. Here, the mass of each raw material in terms of water content is determined by the following method. Put each raw material of about 2 to 3 kg into a dryer set at 105 ° C or higher, and continue drying until the weight loss is less than 0.1% per hour (usually about 6 to 12 hours), and the total weight loss is reduced. Ask for. The total weight loss before drying / the weight of the raw material before drying is defined as the water content ratio of the raw material, and the weight of the raw material before drying − (weight of the raw material before drying × the water content ratio) is defined as the mass of the raw material converted to zero moisture.
そこで本発明では、高炉内にて高炉用非焼成含炭塊成鉱が還元されることにより鉄含有原料粒子間生成されるMe−Fe結合に注目した。高炉用非焼成含炭塊成鉱内に密なMe−Fe結合を張り巡らせることができれば、水硬性バインダーに依らずとも、高炉用非焼成含炭塊成鉱の熱間強度を向上させることができると考える。 Therefore, in the present invention, attention is paid to the Me-Fe bond formed between the iron-containing raw material particles by reducing the uncalcined coal-containing agglomerate for blast furnace in the blast furnace. If a dense Me-Fe bond can be spread in the non-calcined coal-containing agglomerate for blast furnace, the hot strength of the non-calcinated coal-containing agglomerate for blast furnace can be improved without using a hydraulic binder. I think I can.
Me−Fe結合の形成度合を決定するのは、高炉用非焼成含炭塊成鉱を構成する鉄含有原料粒子、炭素含有原料粒子の性状とその配置である。具体的には、鉄含有原料粒子の反応性、炭素含有原料粒子の反応性、鉄含有原料粒子と炭素含有原料粒子の近接度合の3つが重要である。 The degree of formation of the Me-Fe bond is determined by the properties and arrangement of the iron-containing raw material particles and the carbon-containing raw material particles constituting the uncalcined coal-containing agglomerate for blast furnace. Specifically, the reactivity of the iron-containing raw material particles, the reactivity of the carbon-containing raw material particles, and the degree of proximity between the iron-containing raw material particles and the carbon-containing raw material particles are important.
「5」微粒シリカ源
微粒シリカ源とは、シリカフューム、マイクロシリカのみならず、フライアッシュも含まれる。上記原料を水分ゼロ換算の質量比率で、水硬性バインダーを2.0〜9.0質量%、微粒シリカ源を1.0〜4.0質量%、水硬性バインダーと微粒シリカ源の合計を6.0質量%以上となるようにし、高炉用非焼成含炭塊成鉱原料中に含まれる炭素の割合(T.C.)を15.0〜40.0質量%となるように、鉄含有原料、炭素含有原料、その他原料の配合率を調整して合わせて87.0〜94.0質量%を配合した高炉用非焼成含炭塊成鉱原料に、当該原料と水の合計を100質量%としたときの水の質量比率を9.0〜14.0質量%として加えて連続的に混合して成型原料とする。
"5" Fine-grained silica source The fine-grained silica source includes not only silica fume and microsilica but also fly ash. The weight ratio of the above raw materials is converted to zero water content, the water-hard binder is 2.0 to 9.0% by mass, the fine silica source is 1.0 to 4.0% by mass, and the total of the water-hard binder and the fine silica source is 6. The iron content should be 0.0% by mass or more, and the ratio of carbon (TC) contained in the non-fired carbon-containing agglomerate ore raw material for blast furnace should be 15.0 to 40.0% by mass. A total of 100% by mass of the raw material and water is added to the non-fired carbon-containing agglomerate ore raw material for blast furnace, which is a total of 87.0 to 94.0% by mass adjusted by adjusting the mixing ratio of the raw material, carbon-containing raw material, and other raw materials. The mass ratio of water when% is 9.0 to 14.0 mass% is added and continuously mixed to obtain a molding raw material.
本発明の実施例では、上記条件を加味し、配合条件の例として、例えば以下の表1を用いる。 In the examples of the present invention, in consideration of the above conditions, for example, Table 1 below is used as an example of the compounding conditions.
高炉用非焼成含炭塊成鉱の製造方法
本発明では、高炉用非焼成含炭塊成鉱内の空隙をできるだけ低減するため、高炉用非焼成含炭塊成鉱の製造方法として、図1に示すような真空押出成型法を採用した。真空押出成型法では、図1の真空室で原料を脱気することにより、空気由来の空隙が少ない強固な塊成鉱を製造する。
Method for producing uncalcined coal-containing agglomerate for blast furnace In the present invention, in order to reduce voids in the non-calcined coal-containing agglomerate for blast furnace as much as possible, FIG. The vacuum extrusion molding method as shown in is adopted. In the vacuum extrusion molding method, a strong agglomerate ore with few air-derived voids is produced by degassing the raw material in the vacuum chamber shown in FIG.
含炭塊成鉱の製造装置10は、ミキサー1、投入口2、第一の押出部3、真空室4、第二の押出部5、成型部6、真空ポンプ7を有している。
The coal-containing lump
第一の押出部3(混練部とも称する)は、円筒状のケーシング3aとこのケーシング3aの内部に回転自在に配設され縦長に連続形成されたスクリュー3bを有した、1軸式のスクリューフィーダである。スクリュー3bは、図示しない駆動手段により回転されるようになっている。ケーシング3aの基部の上部は、接続管8によって、投入口2と接続している。ケーシング3aの先端には多孔板で形成された堰3cが配設されている。本実施形態では、多孔板で形成された堰3cは厚板状の円板に多数の孔が開けられた構造となっている。
The first extruded portion 3 (also referred to as a kneaded portion) is a uniaxial screw feeder having a cylindrical casing 3a and a screw 3b rotatably arranged inside the casing 3a and continuously formed vertically. Is. The screw 3b is rotated by a driving means (not shown). The upper portion of the base portion of the casing 3a is connected to the input port 2 by the connecting
第一の押出部3の下方には、第二の押出部5が配設されている。第一の押出部3の先端部と、第二の押出部5の基部は、真空室4により接続されている。真空室4は、真空ポンプ接続管9により真空ポンプ7と接続している。第二の押出部5(押出成型部とも称する)は、円筒状のケーシング5aと、このケーシング5aの内部に回転自在に配設され縦長に連続形成されたスクリュー5bを有した、1軸式のスクリューフィーダである。スクリュー5bは、図示しない駆動手段により回転されるようになっている。ケーシング5aの先端には、成型部6が取り付けられている。本実施形態では、成型部6は、厚板状の円板に多数の孔が開けられた構造となっている。
A
高炉用非焼成含炭塊成鉱の原料は各々、所定の配合率になるようミキサー1に供給され、水を添加されて混合されて混合原料が生成される。混合原料は、投入口2に連続的又は断続的に投入される。投入口2に投入された混合原料は、接続管8を通って第一の押出部3内に供給され、スクリュー3bによって徐々に圧縮され、多孔板で形成された堰3cに到達する。この時、多孔板で形成された堰3cのすべての孔を混合原料で満たすように、スクリュー3bの回転速度および混合原料の供給速度を調整することで、多孔板で形成された堰3cにはマテリアルシールが形成される。スクリュー3bにより、混合原料は連続的に供給されるので、多孔板で形成された堰3cの裏面には常時マテリアルシールを形成しつつ、混合原料が連続的に排出され、真空室4内へ供給されることになる。なお、前記多孔板(堰3c)の孔形状には特に決まりはないが、マテリアルシールが容易に形成できるよう、混合原料の物性に応じて、孔径や開口率を調整して決定することが重要である。
The raw materials of the non-calcined coal-containing lump ore for blast furnace are supplied to the mixer 1 so as to have a predetermined blending ratio, and water is added and mixed to produce a mixed raw material. The mixed raw material is continuously or intermittently charged into the inlet 2. The mixed raw material charged into the charging port 2 is supplied into the
真空室4内は、真空ポンプ接続管9で接続された真空ポンプ7の作動によって真空引きされるので、真空室4に供給された混合原料は脱気され、原料中の原料粒子同士が確実に接触して緻密化することで、製造された高炉用非焼成含炭塊成鉱の強度を増加させることができる。
Since the inside of the vacuum chamber 4 is evacuated by the operation of the
真空室4内で緻密化した混合原料は、第二の押出部5に供給される。第二の押出部5に供給された混合原料は、スクリュー5bによって、成型部6に押し出される。
The mixed raw material densified in the vacuum chamber 4 is supplied to the
このように、本発明に係る高炉用非焼成含炭塊成鉱の製造装置の例では、マテリアルシールを利用して連続的に、真空脱気しつつ押出成型することにしたので、生産性を向上させることが可能となっている。
ここで、第二のマテリアルシールを連続的に維持できる条件を調査した。この調査内容と結果を表2に示す。後に述べる高炉用非焼成含炭塊成鉱の品質を満たす条件から、真空脱気条件を−40kPa以下の状態で1hr以上連続操業できる状態を総合評価〇とした。
As described above, in the example of the production apparatus for the non-calcined coal-containing agglomerate for blast furnace according to the present invention, it was decided to continuously extrude while vacuum degassing using the material seal, so that the productivity was improved. It is possible to improve.
Here, the conditions under which the second material seal can be continuously maintained were investigated. Table 2 shows the contents and results of this survey. From the conditions that satisfy the quality of the uncalcined coal-containing lump ore for blast furnace, which will be described later, the state where the vacuum degassing condition is -40 kPa or less and the continuous operation can be performed for 1 hr or more is evaluated as 〇.
上記の通り、第二の押出部5に調整された多孔板の成型部6を設置することで第二のマテリアルシールは形成できる。しかしながら、実際の生産においては原料の流動抵抗が変化したり(操業変動)、スクリュー回転数が変化したり(操業アクション)することで、成型部6への原料供給速度が変化する。例えば、原料水分が過剰になると原料の流動性が低下し、第二のマテリアルシールが形成される前に原料が排出されることになり、真空室4の圧力が安定保持できなくなる。スクリュー5bの回転数の上昇についても同様の変化が起きる。これらの現象を調査した結果、第二の押出部5の混合原料充填率が50体積%未満になると、成型部6への原料供給速度が増加した時に第二のマテリアルシールが崩壊しやすくなることが分かった。
As described above, the second material seal can be formed by installing the adjusted molded
一方で、原料の流動抵抗が増加したり、スクリュー5bの回転数を低下させたりすると、成型部6への原料供給量が低下してしまい、第二の押出部5から真空室4にかけて原料が過剰に堆積してしまい、第二の押出部5内のスクリュー5bが過負荷となり停止し易くなることが分かった。調査の結果、第二の押出部5の充填率が95体積%を超えると、成型部6への原料供給が低下した時に原料が過剰に堆積しやすくなることが分かった。
On the other hand, if the flow resistance of the raw material is increased or the rotation speed of the
したがって、第二の押出部5のスクリュー5bの回転速度と真空室4上流の第一の押出部3のスクリュー3bの回転速度および原料物性を随時調整し、第二の押出部5の原料充填率を50体積%以上95体積%以下に制御し続けることで、操業変動があっても安定的かつ連続的な成型体の製造が可能となることを見出した。
Therefore, the rotation speed of the
なお、第二の押出部5の原料充填率とは、第二の押出部5のスクリュー5bが回転している円筒状空間の体積(スクリュー5bの体積を除く)に対して、原料が占める割合をいう。第二の押出部5のスクリュー5bの回転数増減と原料供給量の増減により、原料充填率を50体積%以上95体積%以下に制御することで安定的かつ連続的な成型が可能となる。
The raw material filling rate of the
ここで、原料充填率の判定は、例えば図2の様に、第一の押出部3の上部に取り付けられた第1の押出部原料レベルの観察部や、真空室4の上部に取り付けられた第2の押出部原料レベルの観察窓から、それぞれの押出し成型部を目視する目視判定で、目視状況を5体積%区切りで判定するのが一般的である。今回は観察窓から見えるスクリューの範囲から原料充填率が判定できるように、例えば予め、原料でスクリュー羽根が隠れる範囲と原料充填率の関係を調査しておき、観察窓からスクリューを見るだけで充填率が判定できるようにしたが、例えば、押出し成型部の各部にレベル計(マイクロ波式レベル計、近接センサー、各種レベルスイッチなど)を設置して、レベル計測値から充填率を算出しても良い。
Here, the determination of the raw material filling rate is performed, for example, as shown in FIG. 2, a first extruded portion raw material level observing portion attached to the upper part of the first extruded
この様に第二の押出部5の原料充填率の制御範囲については、50体積%以上95体積%以下であれば連続安定成型が可能となるが、50体積%以上70体積%以下であればなお良く、さらに50体積%以上60体積%以下であれば最適である。その理由は、充填率を一定に制御することで、スクリュー5bが成型部6へ押し付ける力が安定するため、排出される成型体のバラつきが小さくなるためである。
As described above, regarding the control range of the raw material filling rate of the
第一のマテリアルシールについても、連続的に維持できる条件を同様に調査し、表3に示すように第一の押出部3の原料充填率を50体積%以上90体積%以下であれば安定成型が可能となることが分かった。充填率が50体積%未満になるとマテリアルシールが維持できなくなる。また、充填率が90体積%を超えると、過負荷になったり、第一の押出部3上面のグレーチング部や原料供給シュートに原料があふれやすくなり、連続操業困難になる。したがって、第一の押出部3の原料充填率は50体積%以上90体積%以下である必要がある。充填率は、50体積%以上80体積%以下であればなお良く、さらに50体積%以上65体積%以下であれば最適である。その理由は、充填率を一定に制御することで、スクリュー3bが多孔板3cへ押し付ける力が安定するため、排出される成型体のバラつきが小さくなるためである。第一のマテリアルシールの観察は、第二のマテリアルシールと同様に行うことができる。第一の押出部3の容器内は常圧なので、通常は第一の押出部3の上面をグレーチングにして内部を観察する。これは、ガラス窓より視認性が良いためだが、内部が観察できればどちらでもよい。
For the first material seal, the conditions under which it can be continuously maintained are also investigated, and as shown in Table 3, if the raw material filling rate of the
なお本実施形態で、各原料の粒径を8mm以下(最大粒子径が8mm、平均粒子径は60〜100μm程度)とすれば、スクリュー3b、5bで押し出す際に、混合原料がスクリュー3b、5b、ケーシング3a、5a、多孔板で形成された堰3c、成型部6それぞれの間隙を通過できるので、互いに噛み合うことが無く、好ましい。混合原料は、成型部6を通過する際に、成型部6の断面形状に成型される。成型部6から押し出された混合原料は、その自重により折れ、所定の長さの成型物に成型される。
In the present embodiment, if the particle size of each raw material is 8 mm or less (maximum particle size is 8 mm, average particle size is about 60 to 100 μm), when extruding with the
成型物の形状は、成型部6の断面形状によって決定され、その孔は円柱の他、四角柱、六角柱等の角柱状にも形成可能であるが、円柱形状に形成することが最も望ましい。その理由を以下に記載する。
The shape of the molded product is determined by the cross-sectional shape of the molded
様々な傾向の高炉用非焼成含炭塊成鉱で、高炉の充填層通風圧損失を比較すると、円柱状が最も低い圧力損失を呈する。また、角柱と比較すると、円柱形状の高炉用非焼成含炭塊成鉱は、充填層内での壁や含炭塊成鉱同士の摺れや落下衝撃の際に、粉化し難いという特徴がある。直径が30mm〜40mmの塊成鉱が最も圧壊強度が高くなる一方で、高炉への原料装入機構が、既存の焼結鉱に合わせて直径20mm以下の原料の輸送に適した構造となっているため、直径10〜20mm程度の円柱状に成型するのが望ましい。 When comparing the ventilation pressure loss of the packed bed of the blast furnace in the non-calcination coal-bearing mass ore for blast furnace of various tendencies, the columnar shape shows the lowest pressure loss. In addition, compared to prisms, the columnar non-calcined coal-bearing agglomerates for blast furnaces are characterized by being less likely to be pulverized when the walls in the packed bed or the coal-bearing agglomerates rub against each other or when a drop impact occurs. be. While agglomerates with a diameter of 30 mm to 40 mm have the highest crushing strength, the raw material charging mechanism into the blast furnace has a structure suitable for transporting raw materials with a diameter of 20 mm or less in accordance with the existing sinter. Therefore, it is desirable to mold it into a columnar shape with a diameter of about 10 to 20 mm.
成型された成型物は、屋根付きの養生ヤードに積み上げられて、当該養生ヤードで所定期間養生される。養生期間中に成型物は、固化するとともに、自然乾燥によって徐々に水分が除去され高炉用非焼成含炭塊成鉱の製造が完了する。 The molded products are stacked in a covered curing yard and cured in the curing yard for a predetermined period of time. During the curing period, the molded product solidifies and is gradually dehydrated by natural drying to complete the production of a non-calcined coal-containing agglomerate for blast furnace.
高炉用非焼成含炭塊成鉱が保持すべき熱間強度の定義;
一方、本発明の課題である高炉用非焼成含炭塊成鉱の熱間強度について説明する。高炉用非焼成含炭塊成鉱が高炉内で粉化すると炉内での通気を悪化させる。よって、高炉で使用するために高炉用非焼成含炭塊成鉱が保持するべき強度指標は、高温還元雰囲気に曝された後の粉化率による。この時の粉化率は低い方が好ましい。具体的には、以下に測定方法を述べる反応後粉化率を定義し、高炉用非焼成含炭塊成鉱の強度指標とした。
Definition of hot strength to be retained by uncalcined coal-bearing agglomerates for blast furnaces;
On the other hand, the hot strength of the uncalcined coal-containing agglomerate for blast furnace, which is an object of the present invention, will be described. When uncalcined coal-containing lump ore for blast furnace is pulverized in the blast furnace, the ventilation in the furnace is deteriorated. Therefore, the strength index that the uncalcined coal-containing agglomerate for blast furnace should hold for use in a blast furnace depends on the pulverization rate after exposure to a high-temperature reducing atmosphere. The powdering rate at this time is preferably low. Specifically, the post-reaction pulverization rate, which describes the measurement method below, was defined and used as a strength index for uncalcined coal-containing agglomerates for blast furnaces.
反応後粉化率の測定方法は、まず図3に示すような高炉内を模擬した荷重軟化装置に非焼成含炭塊成鉱を装入した後、図4に示すように室温から900℃まで10℃/minで昇温し、高炉内の還元ガスを模擬したガス雰囲気下で還元させる。本還元過程では、高炉用非焼成含炭塊成鉱は図4中の太点線の温度・ガス組成の履歴を経る。図4の縦軸はCOとCO2の比率であるが、高炉内では反応(FeO+CO=Fe+CO2,CO2+C=2CO)により温度域ごとにCOとCO2の比率が変わるため、本還元過程でも高炉用非焼成含炭塊成鉱の温度域に応じてCO2/(CO+CO2)を変えている。昇温速度10℃/minは炉内での装入物の昇温速度を再現している。900℃までの昇温が完了した後に室温まで冷却した高炉用非焼成含炭塊成鉱について、図5に示すようなタンブラー試験機で30rpmで4分間回転する。その後、その試料全量を目開き1mmの試験篩で篩う。そして、篩下と篩上の試料質量をそれぞれ測定し、下記の式(1)により、篩下試料の質量分率を求める。この値を反応後粉化率と定義する。
反応後粉化率[−1mm質量%]= 篩下試料質量[kg]/(篩下試料質量[kg]+篩上試料質量[kg])×100・・・(1)
The method for measuring the pulverization rate after the reaction is as follows: First, a non-calcined coal-containing agglomerate ore is charged into a load softening device simulating the inside of a blast furnace as shown in FIG. 3, and then from room temperature to 900 ° C. as shown in FIG. The temperature is raised at 10 ° C./min, and the reducing gas in the blast furnace is reduced in a simulated gas atmosphere. In this reduction process, the uncalcined coal-containing agglomerate for blast furnace goes through the history of temperature and gas composition of the thick dotted line in FIG. The vertical axis of FIG. 4 is the ratio of CO and CO 2 , but in the blast furnace, the ratio of CO and CO 2 changes depending on the temperature range due to the reaction (FeO + CO = Fe + CO 2 , CO 2 + C = 2CO), so this reduction process However, CO 2 / (CO + CO 2 ) is changed according to the temperature range of the uncalcined coal-containing agglomerate for blast furnace. The heating rate of 10 ° C./min reproduces the heating rate of the charged material in the furnace. The uncalcined coal-containing agglomerate for blast furnace cooled to room temperature after the temperature rise to 900 ° C. is completed is rotated at 30 rpm for 4 minutes in a tumbler tester as shown in FIG. Then, the entire amount of the sample is sieved with a test sieve having an opening of 1 mm. Then, the mass of the sample under the sieve and the mass of the sample on the sieve are measured, respectively, and the mass fraction of the sample under the sieve is obtained by the following formula (1). This value is defined as the post-reaction pulverization rate.
Post-reaction pulverization rate [-1 mm mass%] = Under-sieve sample mass [kg] / (Unsieve sample mass [kg] + Sieve sample mass [kg]) × 100 ... (1)
高炉用として非焼成含炭塊成鉱を使用するためには、反応後粉化率は低い方が良く、安定使用するためには、反応後粉化率は約16.0質量%以下であることが好ましい。 In order to use a non-calcined coal-containing agglomerate ore for a blast furnace, the post-reaction pulverization rate should be low, and for stable use, the post-reaction pulverization rate is about 16.0% by mass or less. Is preferable.
各原料の反応性向上;
[1]鉄含有原料粒子の反応性向上
さらに鉄含有原料の反応性は、一般的に、その粒子を細粒化(比表面積を拡大)することで向上する。ここで、高炉用非焼成含炭塊成鉱の鉄含有原料として用いられる鉱石は、その時々の鉱石事情(コスト、安定供給性)の面から決定され、自在に変更できないこともあるため、その銘柄や性状は限定されない方が好ましい。また、産業利用上、高炉用非焼成含炭塊成鉱の原料のような湿潤粉体から細粒のみをカットすることは困難であるため、細粒割合に上限制約を設ける指標は好ましくない。本発明では、図6に示すように、鉄含有原料中の粒子の直径が10μm以下の微粒粉の分率である−10μm粉率という指標を用いることで、異なる鉱石銘柄についても同一の指標で整理可能なことを見出した。
Improved reactivity of each raw material;
[1] Improvement of Reactivity of Iron-Containing Raw Material Particles Further, the reactivity of the iron-containing raw material is generally improved by making the particles finer (increasing the specific surface area). Here, the ore used as an iron-containing raw material for the non-calcined coal-containing agglomerate for blast furnace is determined from the aspect of the ore situation (cost, stable supply) at that time, and may not be changed freely. It is preferable that the brand and properties are not limited. Further, for industrial use, it is difficult to cut only fine particles from a wet powder such as a raw material for non-calcined coal-containing agglomerates for blast furnaces, so an index that imposes an upper limit on the ratio of fine particles is not preferable. In the present invention, as shown in FIG. 6, by using an index of -10 μm powder ratio, which is a fraction of fine particles having a particle diameter of 10 μm or less in the iron-containing raw material, the same index can be used for different ore brands. I found that it can be organized.
図6より、反応後粉化率を低位にするためには、鉄含有原料中−10μm粉率が高いほど良く、反応後粉化率[−1mm質量%]≦16質量%のためには、鉄含有原料中−10μm粉率が15.0質量%以上あることが必要である。図6中では、種々の鉱石を用いており、同一名称で異なるプロットがある場合は、鉱石の粒度調整(粉砕等)を行っていることを意味する。なお、鉄含有原料の過剰な粒度調整(粉砕等)はその操作に必要な設備の導入費やランニングコストが増大し、本発明のメリットを低減させてしまう。よって、−10μm粉率の上限は、比較的安価かつ大量処理が可能なボールミル等(ローラーミル等の他の粒度調整方法でも可)で実現可能な35.0質量%程度が好ましい。ここで、各原料の粒度分布の測定は、1mm以上の粒子については篩、1mm未満の粒子についてはレーザ回折/散乱式粒度分布測定器を用いた。ただし、細粒の測定が可能な他の測定方法(湿式ふるい等)でも代用可能である。尚、図6における真空室4の真空脱気条件は−90〜−75kPaGである。 From FIG. 6, in order to lower the post-reaction pulverization rate, the higher the -10 μm powder ratio in the iron-containing raw material, the better, and for the post-reaction pulverization rate [-1 mm mass%] ≤ 16 mass%, It is necessary that the powder ratio of −10 μm in the iron-containing raw material is 15.0% by mass or more. In FIG. 6, various ores are used, and if there are different plots with the same name, it means that the particle size of the ore is adjusted (crushing, etc.). Excessive particle size adjustment (crushing, etc.) of the iron-containing raw material increases the installation cost and running cost of the equipment required for the operation, and reduces the merit of the present invention. Therefore, the upper limit of the -10 μm powder ratio is preferably about 35.0% by mass, which can be realized by a ball mill or the like that is relatively inexpensive and capable of mass processing (another particle size adjusting method such as a roller mill is also possible). Here, the particle size distribution of each raw material was measured by using a sieve for particles of 1 mm or more and a laser diffraction / scattering type particle size distribution measuring device for particles of less than 1 mm. However, other measuring methods (wet sieving, etc.) capable of measuring fine particles can be used instead. The vacuum degassing condition of the vacuum chamber 4 in FIG. 6 is −90 to −75 kPaG.
[2]炭素含有原料粒子の反応性
炭素含有原料による鉄含有原料の還元は、固体炭素含有原料と固体鉄含有原料の接触による反応または、炭素含有原料のガス化により生じた還元ガスと固体鉄含有原料の接触による反応により進行する。ここで、炭素含有原料もまた、その粒子が粗粒過ぎると粒子内部が還元反応に寄与できず、還元能力が低下する。一方で、炭素含有原料の粒子が細粒すぎると、ガス化が早く進み過ぎ、還元ガスが鉄含有原料粒子と反応する前に系外へ放散してしまう。
[2] Reactivity of carbon-containing raw material particles The reduction of iron-containing raw material by carbon-containing raw material is the reduction gas and solid iron generated by the reaction by contact between solid carbon-containing raw material and solid iron-containing raw material or by gasification of carbon-containing raw material. It proceeds by the reaction due to the contact of the contained raw materials. Here, if the particles of the carbon-containing raw material are too coarse, the inside of the particles cannot contribute to the reduction reaction, and the reducing ability is lowered. On the other hand, if the particles of the carbon-containing raw material are too fine, the gasification proceeds too quickly, and the reducing gas is released to the outside of the system before reacting with the iron-containing raw material particles.
[3]鉄含有原料の粒子と炭素含有原料の粒子の近接度合
還元反応を促進させるためには、鉄含有原料の粒子と還元材である炭素含有原料の粒子がなるべく近接配置されていることが好ましい。ここで、高炉用非焼成含炭塊成鉱では、一般的に、粒子間の空隙は主に水分と空気が占めている。鉄含有原料粒子と他炭素含有原料粒子の近接配置のためには、この空隙を可能な限り低減することが必要である。
[3] Proximity of particles of iron-containing raw material and particles of carbon-containing raw material In order to promote the reduction reaction, the particles of the iron-containing raw material and the particles of the carbon-containing raw material which is the reducing material should be arranged as close as possible. preferable. Here, in a non-calcined coal-containing agglomerate for a blast furnace, in general, the voids between particles are mainly occupied by water and air. It is necessary to reduce this void as much as possible in order to arrange the iron-containing raw material particles and the other carbon-containing raw material particles in close proximity to each other.
本発明では、前述の図1の真空押出成型法を用いることで、高炉用非焼成含炭塊成鉱内の空気由来の空隙を低減させることにより、高比重の高炉用非焼成含炭塊成鉱を製造する。図7に真空度と反応後粉化率[−1mm質量%]の関係を示す。反応後粉化率[−1mm質量%]を低位にするためには、真空押出成型における真空度が低い方が良く、反応後粉化率[−1mm質量%]≦16質量%のためには、真空度が−40kPaG以下であること必要である。なお、真空度は理論的には−101.13kPaGまで低減可能であるが、真空度の過度の低減は真空ポンプ等の設備費増大につながるため、真空度の下限は一般的な真空ポンプで到達可能な−98.0kPaG程度が好ましい。また、図7における鉄含有原料中−10μm粉率は26.9%である。 In the present invention, by using the vacuum extrusion molding method of FIG. 1 described above, air-derived voids in the uncalcined coal-containing agglomerate for a blast furnace are reduced, thereby forming a non-calcined coal-containing agglomerate for a blast furnace having a high specific density. Manufacture ore. FIG. 7 shows the relationship between the degree of vacuum and the post-reaction pulverization rate [-1 mm mass%]. In order to lower the post-reaction pulverization rate [-1 mm mass%], it is better that the degree of vacuum in vacuum extrusion molding is low, and for the post-reaction pulverization rate [-1 mm mass%] ≤ 16 mass%. It is necessary that the degree of vacuum is -40 kPaG or less. The degree of vacuum can theoretically be reduced to −101.13 kPaG, but an excessive reduction in the degree of vacuum leads to an increase in equipment costs such as a vacuum pump, so the lower limit of the degree of vacuum is reached by a general vacuum pump. Possible about -98.0 kPaG is preferable. The powder ratio of −10 μm in the iron-containing raw material in FIG. 7 is 26.9%.
次に、本発明の実施例について説明するが、本発明はこれに限られるものではない。高炉用非焼成含炭塊成鉱原料は、炭素含有原料、鉄含有原料、その他原料を用いて、T.C.を調整した。炭素含有原料として、粉コークス(T.C.=84%)と、炭素含有率の高い製銑系ダスト(T.C.=23%)を5mmの篩で篩い、その篩下を用いた。鉄含有原料として鉱石P(豪州系粉鉱石)、鉱石B、F(ブラジル系粉鉱石)、と鉱石C(カナダ系粉鉱石)をボールミルで粉砕したもの5mmの篩で篩って、その篩下を用いた。また、水硬性バインダーとしては、早強セメントを用いた。微粒シリカ源としては、シリカヒュームとフライアッシュを用いた。前記の原料を秤量し、その全量を1軸式のパドル型連続式混合機に投入し1分間混合した後、所定量の水を加えて3分間混合し、混合原料とした。混合原料は、1軸のスクリュー式混練機と1軸のスクリュー式の押出し成型部で構成される押出成型装置に投入し、押出し速度(原料が成型部6の孔を通過する速度)を10mm/sとなるように調整して成型試験を実施した。なお、押出成型部の孔(多孔)の径はφ16mmとした。その詳細を表4(表4-1、表4-2)、表5に示す。 Next, examples of the present invention will be described, but the present invention is not limited thereto. As the raw material for the non-calcined coal-containing agglomerate for blast furnace, a carbon-containing raw material, an iron-containing raw material, and other raw materials were used, and T.I. C. Was adjusted. As the carbon-containing raw material, coke breeze (TC = 84%) and iron-making dust (TC = 23%) having a high carbon content were sieved with a 5 mm sieve, and the under-sieve was used. As iron-containing raw materials, ore P (Australian powder ore), ore B, F (Brazilian powder ore), and ore C (Canada powder ore) are crushed with a ball mill, sieved with a 5 mm sieve, and under the sieve. Was used. As the hydraulic binder, early-strength cement was used. Silica fume and fly ash were used as the fine silica source. The raw materials were weighed, the whole amount was put into a uniaxial paddle type continuous mixer and mixed for 1 minute, then a predetermined amount of water was added and mixed for 3 minutes to prepare a mixed raw material. The mixed raw material is put into an extrusion molding apparatus composed of a uniaxial screw type kneader and a uniaxial screw type extrusion molding unit, and the extrusion speed (the speed at which the raw material passes through the hole of the molding unit 6) is 10 mm /. The molding test was carried out after adjusting so as to be s. The diameter of the holes (perforated) in the extruded portion was set to φ16 mm. The details are shown in Table 4 (Table 4-1 and Table 4-2) and Table 5.
マテリアルシールの評価については、図1の真空ポンプを起動させると真空室4内の真空脱気条件を−40kPa以下で継続的に(例えば連続1hr以上)保てる状態を○、真空脱気条件が−40kPa以下まで低下しない状態や、真空脱気条件が断続的に変動して−40kPa以下の状態を継続的に(例えば連続1hr以上)保てない状態を×と評価した。 Regarding the evaluation of the material seal, when the vacuum pump shown in FIG. 1 is started, the vacuum degassing condition in the vacuum chamber 4 can be continuously maintained at -40 kPa or less (for example, continuous 1 hr or more), and the vacuum degassing condition is-. A state in which the value did not decrease to 40 kPa or less or a state in which the vacuum deaeration condition fluctuated intermittently and the state of −40 kPa or less could not be maintained continuously (for example, continuously 1 hr or more) was evaluated as ×.
塊成化した含炭塊成鉱は、室温で1日間大気養生し、続いて80℃で2日間恒温恒湿槽内に入れて養生したのち30℃まで空冷する。その後、前述の図3に示すような高炉内を模擬した荷重軟化装置に高炉用非焼成含炭塊成鉱を装入した後、図4に示すように室温から900℃まで10℃/minで昇温し、高炉内の還元ガスを模擬したガス雰囲気下で還元させる。そして、前述の図5に示すようなタンブラー試験機で30rpmで4分間回転した後、その試料全量を目開き1mmの試験篩で篩い、篩下と篩上の試料質量をそれぞれ測定し、前記式(1)により、篩下試料の質量分率を求めて反応後粉化率とする。反応後粉化率[−1mm質量%]は、前述の16.0%以下を合格とした。 The agglomerated coal-containing agglomerate ore is air-cured at room temperature for 1 day, then placed in a constant temperature and humidity chamber at 80 ° C. for 2 days to be cured, and then air-cooled to 30 ° C. Then, after charging the uncalcined coal-containing lump ore for the blast furnace into the load softening device simulating the inside of the blast furnace as shown in FIG. 3, the temperature is 10 ° C./min from room temperature to 900 ° C. as shown in FIG. The temperature is raised and the reducing gas in the blast furnace is reduced in a simulated gas atmosphere. Then, after rotating at 30 rpm for 4 minutes with the above-mentioned tumbler tester as shown in FIG. 5, the entire amount of the sample is sieved with a test sieve having an opening of 1 mm, and the sample mass under the sieve and on the sieve are measured, respectively. According to (1), the mass fraction of the sample under the sieve is obtained and used as the post-reaction pulverization rate. As the post-reaction pulverization rate [-1 mm mass%], the above-mentioned 16.0% or less was accepted.
表4(表4-1、表4-2)で、実施例1〜実施例21は、T.C.=15.0〜40.0質量%の条件で、水硬性バインダー=2.0〜9.0質量%、微粒シリカ源=1.0〜4.0質量%、かつ水硬性バインダーと微粒シリカ源の合計が6.0〜13.0質量%、成型物水分=9.0〜14.0質量%とし、第一の押出部3の充填率を50〜90体積%とし、第二の押出部5の充填率を50〜95体積%として成型した場合であり、すべて反応後粉化率は約16質量%以下である。
In Table 4 (Table 4-1 and Table 4-2), Examples 1 to 21 are described in T.I. C. Under the condition of = 15.0 to 40.0% by mass, the water-hard binder = 2.0 to 9.0% by mass, the fine silica source = 1.0 to 4.0% by mass, and the water-hard binder and the fine silica source. The total is 6.0 to 13.0% by mass, the moisture content of the molded product is 9.0 to 14.0% by mass, the filling rate of the
表5において、比較例1は、鉄源含有原料中―10μm粉率が下限外れの例である。鉄源含有原料中―10μm粉率は高炉内で高炉用非焼成含炭塊成鉱が還元されたときのMe−Fe結合の形成度合に影響し、条件を満たさないと高炉内での還元時にMe−Fe結合が十分に形成されず、目標反応後粉化率を確保できない。比較例2は真空脱気条件の上限外れの例である。真空度は、高炉用非焼成含炭塊成鉱内での鉄源含有原料粒子と炭材含有原料粒子の近接度合に影響する。真空度が条件を満たさないと、鉄源含有粒子と炭材含有粒子が十分に近接せず、Me−Fe結合の形成が阻害されるので、目標反応後粉化率を確保できない。ここで比較例2では真空脱気条件の上限を見極めるため、第一、第二のマテリアルシールが安定的に形成できている条件下で、真空ポンプのバルブを調整し、真空脱気条件を上げた。真空脱気条件が高いほど混合原料の密度が小さくなるので押出に必要な力は小さくて済むが、−40kPaを超えるような条件では、たとえその状態を安定的に維持できたとしても、目標反応後粉化率を達成できなくなる。比較例3は第一の押出部3の充填率が下限外れの例である、充填率が下限を外れる第一の押出部3のマテリアルシールを安定的に維持できず、真空脱気条件を―40kPa以下で安定操業できないため、高炉用非焼成含炭塊成鉱の反応後粉化率が16質量%以下にならない。比較例4は第一の押出部3の充填率が上限はずれの例である。充填率が上限を外れた場合、第一の押出部3の負荷が過剰となり、操業停止となる。比較例5は第二の押出部5の充填率が下限外れの例である、充填率が下限を外れる第二の押出部5のマテリアルシールを安定的に維持できず、真空脱気条件を―40kPa以下で安定操業できないため、高炉用非焼成含炭塊成鉱の反応後粉化率が16質量%以下にならない。比較例6は第二の押出部5の充填率が上限はずれの例である。充填率が上限を外れた場合、第二の押出部5の負荷が過剰となり、操業停止となる。
In Table 5, Comparative Example 1 is an example in which the powder ratio of −10 μm in the iron source-containing raw material is out of the lower limit. The -10 μm powder ratio in the iron source-containing raw material affects the degree of formation of Me-Fe bonds when the uncalcined coal-containing agglomerate for blast furnace is reduced in the blast furnace. The Me-Fe bond is not sufficiently formed, and the pulverization rate after the target reaction cannot be secured. Comparative Example 2 is an example in which the upper limit of the vacuum degassing condition is not exceeded. The degree of vacuum affects the degree of proximity between the iron source-containing raw material particles and the carbonaceous material-containing raw material particles in the uncalcined coal-containing agglomerate for blast furnace. If the degree of vacuum does not satisfy the condition, the iron source-containing particles and the carbonaceous material-containing particles are not sufficiently close to each other, and the formation of the Me—Fe bond is inhibited, so that the pulverization rate after the target reaction cannot be secured. Here, in Comparative Example 2, in order to determine the upper limit of the vacuum degassing condition, the valve of the vacuum pump is adjusted and the vacuum degassing condition is raised under the condition that the first and second material seals are stably formed. rice field. The higher the vacuum degassing condition, the smaller the density of the mixed raw material, so the force required for extrusion can be small, but under conditions exceeding -40 kPa, even if that state can be maintained stably, the target reaction The post-pulverization rate cannot be achieved. Comparative Example 3 is an example in which the filling rate of the
1 ミキサー
2 投入口
3 第一の押出部(混練部)
3a ケーシング
3b スクリュー
3c 多孔板で形成された堰
4 真空室
5 第二の押出部(押出成型部)
5a ケーシング
5b スクリュー
6 成型部
7 真空ポンプ
8 接続管
9 真空ポンプ接続管
10 高炉用非焼成含炭塊成鉱の製造装置
1 Mixer 2
3a
Claims (1)
当該高炉用非焼成含炭塊成鉱原料には、水分ゼロ換算の質量比率で、
水硬性バインダーを2.0〜9.0質量%、
微粒シリカ源を1.0〜4.0質量%、
かつ水硬性バインダーと微粒シリカ源の合計が6.0〜13.0質量%とし、
さらに当該高炉用非焼成含炭塊成鉱原料中に含まれる炭素の割合が15.0〜40.0質量%となるように、鉄含有原料、炭素含有原料、その他原料を合わせて87.0〜94.0質量%を配合したものを用い、
ミキサーにて当該高炉用非焼成含炭塊成鉱原料と水を混合して混合原料とする際に、水の質量比率を当該高炉用非焼成含炭塊成鉱原料と水との合計を100質量%としたときに水の質量比率が9.0〜14.0質量%となるように加えて連続的に混合し、
当該混合原料を第一の押出部、真空室、第二の押出部へ、第一の押出部の充填率が50〜90体積%、第二の押出部の充填率が50〜95体積%となるように移送して連続的に前記混合原料を押し出して成型体として高炉用非焼成含炭塊成鉱を製造する方法であって、
前記混合原料の粒度が、鉄含有原料中−10μm粉率≧15.0質量%である原料を用い、
前記第一の押出部では、充填率が50〜90体積%となるように前記混合原料を移送方向前方に設置された多孔板で形成された堰へ混合原料を押込むことで第一のマテリアルシールを形成させ、
前記真空室では、前記堰の出側から連続的に供給される前記混合原料を真空脱気し、前記第二の押出部へ移送し、
前記第二の押出部では、充填率が50〜95体積%となるように当該真空室から供給される真空脱気された前記混合原料を多数の孔を備えた成型部へ押し込むことで、第二のマテリアルシールを形成させつつ連続的に前記混合原料を押し出し、
前記真空脱気条件は−40kPaG以下として成型することを特徴とする、高炉用非焼成含炭塊成鉱の製造方法。 A method for producing a non-calcined coal-containing lump ore for a blast furnace, which is used as a raw material for a blast furnace in steelmaking.
The uncalcined coal-containing agglomerate ore raw material for the blast furnace has a mass ratio equivalent to zero moisture.
2.0-9.0% by mass of hydraulic binder,
Fine silica source 1.0-4.0 mass%,
Moreover, the total of the hydraulic binder and the fine silica source is 6.0 to 13.0% by mass.
Furthermore, the total of iron-containing raw materials, carbon-containing raw materials, and other raw materials is 87.0 so that the proportion of carbon contained in the non-firing carbon-containing agglomerate ore raw material for the blast furnace is 15.0 to 40.0% by mass. Using a mixture of ~ 94.0% by mass,
When the non-fired coal-containing agglomerate ore raw material for blast furnace and water are mixed with a mixer to prepare a mixed raw material, the mass ratio of water is 100. Add water so that the mass ratio of water is 9.0 to 14.0 mass% when it is set to mass%, and mix continuously.
The mixed raw material is applied to the first extrusion section, the vacuum chamber, and the second extrusion section, the filling rate of the first extrusion section is 50 to 90% by volume, and the filling rate of the second extrusion section is 50 to 95% by volume. It is a method of producing a non-calcined coal-containing agglomerate for a blast furnace as a molded body by continuously extruding the mixed raw material by transferring the mixture so as to be.
Using a raw material having a particle size of the mixed raw material of −10 μm powder ratio ≧ 15.0% by mass in the iron-containing raw material,
In the first extrusion portion, the mixed raw material is pushed into a weir formed of a perforated plate installed in front of the transfer direction so that the filling rate is 50 to 90% by volume, so that the mixed raw material is pushed into the first material. Form a seal,
In the vacuum chamber, the mixed raw material continuously supplied from the outlet side of the weir is evacuated and transferred to the second extrusion section.
In the second extrusion section, the vacuum degassed mixed raw material supplied from the vacuum chamber is pushed into a molding section having a large number of holes so that the filling rate is 50 to 95% by volume. The mixed raw material is continuously extruded while forming the second material seal.
A method for producing a non-calcined coal-containing agglomerate ore for a blast furnace, characterized in that the vacuum degassing condition is -40 kPaG or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020069073A JP7389355B2 (en) | 2020-04-07 | 2020-04-07 | Method for producing unfired coal-containing agglomerated ore for blast furnaces |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020069073A JP7389355B2 (en) | 2020-04-07 | 2020-04-07 | Method for producing unfired coal-containing agglomerated ore for blast furnaces |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021165417A true JP2021165417A (en) | 2021-10-14 |
JP7389355B2 JP7389355B2 (en) | 2023-11-30 |
Family
ID=78021561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020069073A Active JP7389355B2 (en) | 2020-04-07 | 2020-04-07 | Method for producing unfired coal-containing agglomerated ore for blast furnaces |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7389355B2 (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000238022A (en) * | 1999-02-22 | 2000-09-05 | Denso Corp | Extrusion molding device for ceramic molded body |
JP2005200719A (en) * | 2004-01-16 | 2005-07-28 | Kobe Steel Ltd | Method for manufacturing non-fired agglomerated ore |
JP2006322058A (en) * | 2005-05-20 | 2006-11-30 | Kobe Steel Ltd | Method for manufacturing non-fired agglomerated ore |
JP2007191748A (en) * | 2006-01-18 | 2007-08-02 | Nippon Steel Corp | Method for manufacturing carbonaceous-material-containing pellet |
JP2009030114A (en) * | 2007-07-27 | 2009-02-12 | Jfe Steel Kk | Method for producing ore raw material for blast furnace |
WO2013108856A1 (en) * | 2012-01-18 | 2013-07-25 | 旭硝子株式会社 | Method for producing acrylic rubber/fluoro-rubber composition, crosslinked composition, laminate body, and heat-resistant air rubber hose |
JP2013209748A (en) * | 2012-02-28 | 2013-10-10 | Kobe Steel Ltd | Method of manufacturing reduced iron agglomerate |
JP2015044402A (en) * | 2013-07-31 | 2015-03-12 | ケイミュー株式会社 | Extrusion molding machine |
JP2016077965A (en) * | 2014-10-16 | 2016-05-16 | 新日鐵住金株式会社 | Fly ash recycle method and non-fired agglomerated ore |
JP2016094524A (en) * | 2014-11-13 | 2016-05-26 | 旭化成ケミカルズ株式会社 | Manufacturing method of polyacetal copolymer |
WO2020049691A1 (en) * | 2018-09-06 | 2020-03-12 | 日本たばこ産業株式会社 | Extruder control method and method for producing flavor source using same, and extruder and extrusion molding system using same |
JP2020200489A (en) * | 2019-06-06 | 2020-12-17 | 日本製鉄株式会社 | Manufacturing method of non-calcined coal-containing mass ore for blast furnace and manufacturing apparatus |
-
2020
- 2020-04-07 JP JP2020069073A patent/JP7389355B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000238022A (en) * | 1999-02-22 | 2000-09-05 | Denso Corp | Extrusion molding device for ceramic molded body |
JP2005200719A (en) * | 2004-01-16 | 2005-07-28 | Kobe Steel Ltd | Method for manufacturing non-fired agglomerated ore |
JP2006322058A (en) * | 2005-05-20 | 2006-11-30 | Kobe Steel Ltd | Method for manufacturing non-fired agglomerated ore |
JP2007191748A (en) * | 2006-01-18 | 2007-08-02 | Nippon Steel Corp | Method for manufacturing carbonaceous-material-containing pellet |
JP2009030114A (en) * | 2007-07-27 | 2009-02-12 | Jfe Steel Kk | Method for producing ore raw material for blast furnace |
WO2013108856A1 (en) * | 2012-01-18 | 2013-07-25 | 旭硝子株式会社 | Method for producing acrylic rubber/fluoro-rubber composition, crosslinked composition, laminate body, and heat-resistant air rubber hose |
JP2013209748A (en) * | 2012-02-28 | 2013-10-10 | Kobe Steel Ltd | Method of manufacturing reduced iron agglomerate |
JP2015044402A (en) * | 2013-07-31 | 2015-03-12 | ケイミュー株式会社 | Extrusion molding machine |
JP2016077965A (en) * | 2014-10-16 | 2016-05-16 | 新日鐵住金株式会社 | Fly ash recycle method and non-fired agglomerated ore |
JP2016094524A (en) * | 2014-11-13 | 2016-05-26 | 旭化成ケミカルズ株式会社 | Manufacturing method of polyacetal copolymer |
WO2020049691A1 (en) * | 2018-09-06 | 2020-03-12 | 日本たばこ産業株式会社 | Extruder control method and method for producing flavor source using same, and extruder and extrusion molding system using same |
JP2020200489A (en) * | 2019-06-06 | 2020-12-17 | 日本製鉄株式会社 | Manufacturing method of non-calcined coal-containing mass ore for blast furnace and manufacturing apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP7389355B2 (en) | 2023-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008214715A (en) | Method for manufacturing nonfired agglomerated ore for iron manufacture | |
JP5762403B2 (en) | Method for producing aggregate for raw materials charged in blast furnace from metal oxide-containing fine material | |
JP6056492B2 (en) | Method for producing unfired carbon-containing agglomerated blast furnace | |
US6921427B2 (en) | Process for cold briquetting and pelletization of ferrous or non-ferrous ores or mineral fines by iron bearing hydraulic mineral binder | |
JPS61163152A (en) | Manufacture of artificial lightweight aggregate | |
KR101211302B1 (en) | Blast furnace operating method using carbon-containing unfired pellets | |
JP5114742B2 (en) | Method for producing carbon-containing unfired pellets for blast furnace | |
KR101444562B1 (en) | Unfired carbon-containing agglomerate and production method therefor | |
KR100718581B1 (en) | Substituting for pig iron and manufacturing method thereof | |
JP7389355B2 (en) | Method for producing unfired coal-containing agglomerated ore for blast furnaces | |
JP7265158B2 (en) | Method for producing non-fired coal-containing agglomerate ore for blast furnace | |
JP5786668B2 (en) | Method for producing unfired carbon-containing agglomerated mineral | |
JP2009030115A (en) | Method for producing ore raw material for blast furnace | |
JP3863052B2 (en) | Blast furnace raw material charging method | |
JP5825180B2 (en) | Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char | |
JP5454505B2 (en) | Method for producing unfired carbon-containing agglomerated blast furnace | |
JP7188126B2 (en) | Method for manufacturing carbon-containing non-fired pellets for blast furnace | |
JP5835144B2 (en) | Method for producing unfired carbon-containing agglomerated blast furnace | |
JP4867394B2 (en) | Non-calcined agglomerate for iron making | |
TW201329247A (en) | Metallurgical composition for the manufacture of ferrochrome | |
JP3837845B2 (en) | Method for producing reduced iron | |
JP7368726B2 (en) | Method for producing unfired coal-containing agglomerated ore for blast furnaces | |
JPH0660359B2 (en) | Method for producing unfired agglomerated ore | |
JP2007302956A (en) | Nonfired agglomerated ore for iron manufacture | |
JP5594025B2 (en) | Raw material for blast furnace and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231017 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231030 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7389355 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |