JP5594025B2 - Raw material for blast furnace and method for producing the same - Google Patents

Raw material for blast furnace and method for producing the same Download PDF

Info

Publication number
JP5594025B2
JP5594025B2 JP2010219770A JP2010219770A JP5594025B2 JP 5594025 B2 JP5594025 B2 JP 5594025B2 JP 2010219770 A JP2010219770 A JP 2010219770A JP 2010219770 A JP2010219770 A JP 2010219770A JP 5594025 B2 JP5594025 B2 JP 5594025B2
Authority
JP
Japan
Prior art keywords
blast furnace
raw material
slag
hot metal
metal desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010219770A
Other languages
Japanese (ja)
Other versions
JP2012072473A (en
Inventor
博幸 當房
康人 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010219770A priority Critical patent/JP5594025B2/en
Publication of JP2012072473A publication Critical patent/JP2012072473A/en
Application granted granted Critical
Publication of JP5594025B2 publication Critical patent/JP5594025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、溶銑予備処理として行われる溶銑の脱硫工程で発生する溶銑脱硫スラグを主原料とする高炉用原料及びその製造方法に関する。   The present invention relates to a raw material for a blast furnace using a hot metal desulfurization slag generated in a hot metal desulfurization process performed as a hot metal pretreatment and a method for producing the same.

溶銑予備処理として行われる溶銑の脱硫工程で発生する溶銑脱硫スラグは、粉状で未滓化石灰が多いこと、スラグに含まれる硫黄によって黄水が発生しやすいこと、などの理由から土木材料としての利用は難しい。このため多くはセメント原料として利用されているが、発生量に対して需要が十分でない場合があり、溶銑脱硫スラグを大量に利材化できる新たな用途や技術の開発が望まれている。
溶銑脱硫スラグは相当量の石灰や鉄分を含有しており、このため高炉の石灰源・鉄源として有用であると考えられる。しかし、溶銑脱硫スラグを石灰源・鉄源として高炉などにリサイクルする場合、そのまま高炉に投入すると、炉内の通気性が悪化するという問題がある。
Hot metal desulfurization slag generated in the hot metal desulfurization process, which is performed as hot metal pretreatment, is a powder material and contains a large amount of unfoamed lime, and yellow water is likely to be generated due to sulfur contained in the slag. Is difficult to use. For this reason, although many are utilized as a raw material for cement, there is a case where the demand is not sufficient with respect to the generated amount, and the development of new applications and technologies capable of using a large amount of hot metal desulfurization slag is desired.
Hot metal desulfurization slag contains a considerable amount of lime and iron, and is therefore considered useful as a source of lime and iron for the blast furnace. However, when recycling hot metal desulfurization slag as a lime source / iron source to a blast furnace or the like, there is a problem that if the molten iron is put into the blast furnace as it is, the air permeability in the furnace deteriorates.

このような問題に対しては、溶銑脱硫スラグにセメント(結合材)を混合し、その混練物を水和硬化させることで塊状化することが考えられるが、本発明者らが検討した結果では、その塊状原料は強度が不十分で粉化しやすく、炉内の通気性を悪化させるおそれがあることが判った。
したがって本発明の目的は、溶銑脱硫スラグを主原料とし、高炉の炉内通気性を悪化させることなく使用することができる高炉用原料とその製造方法を提供することにある。
For such a problem, it is conceivable that the molten iron desulfurization slag is mixed with cement (binding material) and the kneaded product is hydrated and hardened to form a lump. It has been found that the bulk material has insufficient strength and is easily pulverized and may deteriorate the air permeability in the furnace.
Accordingly, an object of the present invention is to provide a raw material for a blast furnace which can be used without deteriorating the in-furnace air permeability of the blast furnace using hot metal desulfurization slag as a main raw material, and a method for producing the same.

本発明者らは上記課題を解決するため検討を重ねた結果、溶銑脱硫スラグに結合材として高炉水砕スラグ微粉末を加え、その混練物を水和硬化させて得られた水和硬化体を破砕・分級することにより、十分な強度を有する高炉用原料が得られることを見出した。
本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]溶銑脱硫スラグと高炉水砕スラグ微粉末の混練物を水和硬化させて得られた水和硬化体の破砕物からなることを特徴とする高炉用原料。
[2]上記[1]の高炉用原料において、粒径10mm超100mm以下の割合が70質量%以上であることを特徴とする高炉用原料。
As a result of repeated investigations to solve the above problems, the present inventors added a blast furnace granulated slag fine powder as a binder to hot metal desulfurization slag, and obtained a hydrated cured product obtained by hydrating and curing the kneaded product. It has been found that blast furnace raw materials having sufficient strength can be obtained by crushing and classification.
The present invention has been made on the basis of such findings and has the following gist.
[1] A raw material for a blast furnace comprising a hydrated and hardened crushed product obtained by hydrating and curing a mixture of hot metal desulfurized slag and ground granulated blast furnace slag.
[2] A blast furnace raw material according to the above [1], wherein the ratio of the particle size of more than 10 mm to 100 mm is 70% by mass or more.

[3]溶銑脱硫スラグに高炉水砕スラグ微粉末と水を加えて混練し、この混練物を水和硬化させた後、破砕処理及び分級処理して塊状の高炉用原料を得ることを特徴とする高炉用原料の製造方法。
[4]上記[3]の製造方法において、粒径10mm超100mm以下の割合が70質量%以上である塊状の高炉用原料を得ることを特徴とする高炉用原料の製造方法。
[5]上記[3]又は[4]の製造方法において、混練物をヤードに層状に打設し、硬化した混練物をブレーカーで粗破砕し、次いで、破砕機で破砕処理した後、篩で分級することを特徴とする高炉用原料の製造方法。
[3] It is characterized in that blast furnace granulated slag fine powder and water are added to hot metal desulfurization slag and kneaded. The kneaded product is hydrated and cured, and then crushed and classified to obtain a massive blast furnace raw material. The manufacturing method of the raw material for blast furnaces.
[4] The method for producing a blast furnace raw material according to the method of [3], wherein a bulk blast furnace raw material having a particle size of more than 10 mm and not more than 100 mm is 70% by mass or more.
[5] In the production method of [3] or [4] above, the kneaded product is placed in a layer in a yard, and the cured kneaded product is roughly crushed with a breaker, then crushed with a crusher, and then sieved. A method for producing a raw material for a blast furnace characterized by classifying.

溶銑脱硫スラグを主原料とする本発明の高炉用原料は、塊状でしかも十分な強度を有するので、高炉の炉内通気性を悪化させることなく使用することができる。このため溶銑脱硫スラグに含まれる鉄分と石灰分を高炉に直接リサイクルすることができ、溶銑脱硫スラグの有効利用と、鉄鋼製造プロセスにおける原料コストの低減化を実現することができる。また、本発明の製造方法によれば、そのような高炉用原料を安定して製造することができる。   Since the blast furnace raw material of the present invention using hot metal desulfurization slag as a main raw material is in a lump shape and has sufficient strength, it can be used without deteriorating the furnace air permeability of the blast furnace. For this reason, the iron content and lime content contained in the hot metal desulfurization slag can be directly recycled to the blast furnace, and the effective utilization of the hot metal desulfurization slag and the reduction of the raw material cost in the steel manufacturing process can be realized. Moreover, according to the manufacturing method of this invention, such a blast furnace raw material can be manufactured stably.

溶銑脱硫スラグを水和硬化させるための結合材として、高炉セメントと高炉水砕スラグ微粉末をそれぞれ用いた場合について、結合材の配合率と塊成化物の圧縮強度との関係を示すグラフA graph showing the relationship between the blending ratio of the binder and the compressive strength of the agglomerate when using blast furnace cement and granulated blast furnace slag as binders for hydrating and hardening hot metal desulfurization slag 本発明の製造方法において、溶銑脱硫スラグに対して高炉水砕スラグ微粉末を12質量%または15質量%配合し、溶銑脱硫スラグ+高炉水砕スラグ微粉末に対して添加水量を6〜8質量%とした場合について、混練物の養生日数と圧縮強度との関係を示すグラフIn the manufacturing method of this invention, 12 mass% or 15 mass% of blast furnace granulated slag fine powder is mix | blended with hot metal desulfurization slag, and 6-8 mass of added water is added with respect to hot metal desulfurization slag + blast furnace granulated slag fine powder. % Graph showing the relationship between the curing days of the kneaded material and the compressive strength 本発明の製造方法において、一連の製造工程をヤードにて行う場合の一実施形態を示す説明図Explanatory drawing which shows one Embodiment in the case of performing a series of manufacturing processes in a yard in the manufacturing method of this invention.

本発明の高炉用原料は、溶銑脱硫スラグと高炉水砕スラグ微粉末(結合材)との混練物を水和硬化させて得られた水和硬化体の破砕物からなる。この高炉用原料(水和硬化体の破砕物)の粒度は、粉状の溶銑脱硫スラグを高炉に投入な可能な大きさに塊状化するという本発明の主旨からして、粒径10mm超100mm以下の割合が70質量%以上であることが好ましく、この範囲に入るように篩い分けすれば、さらに好ましい。   The raw material for a blast furnace of the present invention is a hydrated cured product obtained by hydrating and curing a kneaded mixture of hot metal desulfurization slag and blast furnace granulated slag fine powder (binding material). The particle size of the raw material for blast furnace (crushed material of hydrated and cured product) is such that the powdered hot metal desulfurization slag is agglomerated to a size that can be charged into the blast furnace. It is preferable that the following ratio is 70 mass% or more, and it is further more preferable if it sifts so that it may fall into this range.

このような塊状の高炉用原料は、溶銑脱硫スラグに高炉水砕スラグ微粉末(結合材)と水を加えて混練し、この混練物を水和硬化させた後、破砕処理及び分級処理することにより製造される。
図1は、溶銑脱硫スラグに結合材として高炉セメントを添加した場合と高炉水砕スラグ微粉末を添加した場合について、結合材の配合率と得られた塊成化物の圧縮強度(養生7日後の各圧縮強度)との関係を示したものである。圧縮強度試験片の作製及び強度試験は、JIS−R−5201:セメントの物理試験方法の強さ試験に従い、機械練り用練混ぜ機に溶銑脱硫スラグ、結合材(高炉セメントまたは高炉水砕スラグ微粉末)および水を入れて2分間混練し、フロー値を測定後、バイブレーターを使用せずにモルタル供試体用3連成型用型に詰めて40mm×40mm×160mmの供試体を作製した。所定期間養生後の供試体について、強さ(圧縮強度)を測定した。なお、混練の際には、フロー値が目標の110〜150mmの範囲内になるように、水の添加量を調整した。
Such a massive blast furnace raw material is prepared by adding blast furnace granulated slag fine powder (binding material) and water to hot metal desulfurization slag, kneading, hydrating and curing the kneaded material, and then crushing and classifying it. Manufactured by.
Fig. 1 shows the combination ratio of the binder and the compressive strength of the resulting agglomerate (7 days after curing) when blast furnace cement is added to the hot metal desulfurization slag as a binder and when ground granulated blast furnace slag is added. Each compression strength) is shown. Preparation of the compressive strength test piece and the strength test were conducted in accordance with the strength test of JIS-R-5201: Cement physical test method, with hot metal desulfurization slag, binder (blast furnace cement or granulated blast furnace granulated slag) Powder) and water were added and kneaded for 2 minutes. After measuring the flow value, a test piece of 40 mm × 40 mm × 160 mm was prepared by packing in a triple molding die for a mortar specimen without using a vibrator. The strength (compressive strength) of the specimen after curing for a predetermined period was measured. During kneading, the amount of water added was adjusted so that the flow value was within the target range of 110 to 150 mm.

図1によれば、結合材として高炉セメントを用いた場合に較べ、高炉水砕スラグ微粉末を用いた場合の方が圧縮強度が高い。この理由は次のように考えられる。すなわち、溶銑脱硫スラグは未滓化石灰が多いため、結合材として高炉水砕スラグ微粉末を用いた場合には、石灰がアルカリ刺激材として働き、水和反応により強度が増加したものと考えられる。これに対して、結合材として高炉セメントを用いた場合には、石灰(溶銑脱硫スラグに含まれる石灰)が過剰でセメントの水和反応が阻害されたものと考えられる。   According to FIG. 1, the compressive strength is higher when blast furnace granulated slag fine powder is used than when blast furnace cement is used as the binder. The reason is considered as follows. In other words, hot metal desulfurization slag contains a large amount of undehydrated lime, so when blast furnace granulated slag fine powder is used as the binder, it is thought that lime worked as an alkali stimulant and increased in strength due to the hydration reaction. . On the other hand, when blast furnace cement is used as the binder, it is considered that lime (lime contained in the hot metal desulfurization slag) is excessive and hinders the cement hydration reaction.

結合材である高炉水砕スラグ微粉末の配合量に特別な制限はないが、溶銑脱硫スラグの質量に対して10〜16質量%程度が適当である。溶銑脱硫スラグの質量に対する高炉水砕スラグ微粉末の配合量が10質量%未満では、塊成化物の強度が不十分となりやすい。一方、高炉水砕スラグ微粉末の配合量が16質量%を超えると、それだけ材料コストが高くなるとともに、スラグの割合が相対的に少なくなるので、高炉リサイクルのメリットが少なくなる。   Although there is no special restriction | limiting in the compounding quantity of the blast furnace granulated slag fine powder which is a binder, About 10-16 mass% is suitable with respect to the mass of hot metal desulfurization slag. When the blending amount of the granulated blast furnace slag powder with respect to the mass of the hot metal desulfurization slag is less than 10% by mass, the strength of the agglomerate tends to be insufficient. On the other hand, when the blending amount of the granulated blast furnace slag powder exceeds 16% by mass, the material cost is increased, and the slag ratio is relatively reduced, so that the merit of blast furnace recycling is reduced.

溶銑脱硫スラグに高炉水砕スラグ微粉末と水を加えて混練する場合、通常は、まず溶銑脱硫スラグに高炉水砕スラグ微粉末を加えて混合し、しかる後に水を加えて混練する。
水添加量は、溶銑脱硫スラグ+高炉水砕スラグ微粉末に対して、4〜10質量%程度が適当である。
溶銑脱硫スラグは冷却の際に水を用いて冷却しており、且つ粉状であるため、一般に含水率が高い。含水率が高いと同時に含水率のバラツキも大きく、混練する際の水添加量も溶銑脱硫スラグの含水量によって大きく変動する。したがって、混練の際は、混練物の流動性(フロー値)に応じて水の添加量を調節する必要がある。
When adding blast furnace granulated slag fine powder and water to hot metal desulfurization slag and kneading, usually, blast furnace granulated slag fine powder is first added to and mixed with hot metal desulfurization slag, and then water is added and kneaded.
The amount of water added is suitably about 4 to 10% by mass with respect to hot metal desulfurization slag + ground granulated blast furnace slag.
The hot metal desulfurization slag is cooled with water at the time of cooling and is in the form of powder, so that the water content is generally high. At the same time as the moisture content is high, the variation in moisture content is large, and the amount of water added during kneading varies greatly depending on the moisture content of the hot metal desulfurization slag. Therefore, at the time of kneading, it is necessary to adjust the amount of water added according to the fluidity (flow value) of the kneaded product.

混練物を水和硬化(養生)させる形態は任意であり、例えば、混練物を適当な型枠に流し込んで水和硬化させてもよいし、屋外などのヤードに層状に打設して水和硬化させてもよい。この養生の期間は、目標とする圧縮強度(破砕処理に適した圧縮強度)が得られるまでである。ここで、破砕処理に適した圧縮強度としては、4〜10N/mm程度が適当である。圧縮強度が4N/mm未満では、粗破砕の際に細かくなって歩留まりが低下する。一方、圧縮強度が10N/mmを超えると粗破砕などの破砕処理の作業性が低下するおそれがある。
また、図2は、溶銑脱硫スラグに対して高炉水砕スラグ微粉末を12質量%または15質量%配合し、溶銑脱硫スラグ+高炉水砕スラグ微粉末に対して添加水量を6〜8質量%とした場合において、混練物の養生日数と圧縮強度との関係を示したものであり、ほぼ4〜7日程度の養生で、目標とする圧縮強度4N/mm以上に達している。
The kneaded product can be hydrated and cured (cured) in any form. For example, the kneaded product may be poured into a suitable form and cured by hydration, or placed in a yard such as outdoors to form a hydrate. It may be cured. This curing period is until a target compressive strength (compressive strength suitable for crushing treatment) is obtained. Here, as the compressive strength suitable for the crushing treatment, about 4 to 10 N / mm 2 is appropriate. When the compressive strength is less than 4 N / mm 2, it becomes fine during rough crushing and yield decreases. On the other hand, when the compressive strength exceeds 10 N / mm 2 , workability of crushing treatment such as rough crushing may be reduced.
Moreover, FIG. 2 mix | blends 12 mass% or 15 mass% of blast furnace granulated slag fine powder with respect to hot metal desulfurization slag, and adds 6-8 mass% of water addition with respect to hot metal desulfurization slag + blast furnace granulated slag fine powder. In this case, the relationship between the curing days of the kneaded product and the compressive strength is shown, and the target compressive strength of 4 N / mm 2 or more is reached after curing for about 4 to 7 days.

養生により所定の強度が出た硬化体は、破砕処理された後、篩い分けなどにより分級処理され、所定の粒度を有する塊成化物(塊状の高炉原料)が得られる。このようにして製造される塊成化物の粒度に特別な制限はないが、粉状の溶銑脱硫スラグを高炉に投入可能な大きさに塊状化するという本発明の主旨からして、粒径10mm超100mm以下の割合が70質量%以上であることが好ましく、この範囲に入るように篩い分けすれば、さらに好ましい。
製品である塊成化物(塊状の高炉原料)の圧縮強度は、7N/mm以上であることが好ましい。圧縮強度が7N/mm未満では高炉炉頂から投入する際の落下衝撃で割れて細粒化しやすいため、高炉の通気性を悪化させる恐れがある。
The cured body having a predetermined strength by curing is crushed and then classified by sieving to obtain an agglomerated product (lumped blast furnace raw material) having a predetermined particle size. There is no particular limitation on the particle size of the agglomerate thus produced, but from the gist of the present invention that the powdered hot metal desulfurization slag is agglomerated to a size that can be charged into a blast furnace, the particle size is 10 mm. The ratio of ultra 100 mm or less is preferably 70% by mass or more, and it is more preferable if sieving so as to fall within this range.
The compressive strength of the agglomerated product (bulk blast furnace raw material) as a product is preferably 7 N / mm 2 or more. If the compressive strength is less than 7 N / mm 2, it is likely to break down due to a drop impact at the time of charging from the top of the blast furnace, so that the air permeability of the blast furnace may be deteriorated.

溶銑脱硫スラグと高炉水砕スラグ微粉末との混合や、これに水を加えてなされる混練は、通常のフレッシュコンクリート用の混練設備を利用してもよいが、ショベルなどの土木工事用の重機を用いて屋外などのヤードで行ってもよい。ショベルによる混合・混練は、まず溶銑脱硫スラグと高炉水砕スラグ微粉末を十分に混合し、その後、水を添加して混合すると均一に混合できる。次いで、混練物をヤードに層状に打設し(敷きならす)、水和硬化(養生)させる。混練物の硬化体は、通常、2段階以上の破砕処理がなされた後、分級処理されることで製品となる。例えば、硬化体をまずブレーカーで粗破砕し、次いで破砕機で本破砕した後、篩で分級し、篩上を製品とする。   Mixing of hot metal desulfurization slag and ground granulated blast furnace slag and kneading by adding water to this may be done using ordinary kneading equipment for fresh concrete, but heavy machinery for civil works such as excavators. May be used in a yard such as outdoors. Mixing and kneading with an excavator can be uniformly mixed by first thoroughly mixing hot metal desulfurization slag and blast furnace granulated slag fine powder, and then adding and mixing water. Next, the kneaded material is placed in a layer in the yard (laying down) and hydrated and cured (cured). The cured product of the kneaded product is usually subjected to classification treatment after being subjected to crushing treatment in two or more stages to become a product. For example, the cured body is first roughly crushed with a breaker, then main crushed with a crusher, and then classified with a sieve to obtain the product on the sieve.

図3は、本発明の製造方法において、一連の製造工程をヤードにて行う場合の一実施形態を示している。
溶銑脱硫スラグAは、例えば5mmで篩分され、粒径5mm以下(5mm篩下)の溶銑脱硫スラグaが原料として用いられる。
溶銑脱硫スラグと高炉水砕スラグ微粉末の混合および水との混練は、混合機を用いる方法でもヤード上で重機を用いて混合・混練する方法のどちらでもよい。ここでは、図3のように混合機1を用いて混練する方法を説明する。溶銑脱硫スラグaと高炉水砕スラグ微粉末bを所定比率で連続的にドラム式の混合機1に投入して混合し、次いで水を添加して混練する。
FIG. 3 shows an embodiment in which a series of manufacturing steps are performed in a yard in the manufacturing method of the present invention.
The hot metal desulfurization slag A is, for example, sieved at 5 mm, and the hot metal desulfurization slag a having a particle size of 5 mm or less (under 5 mm) is used as a raw material.
Mixing of hot metal desulfurization slag and ground granulated blast furnace slag and kneading of water may be either a method using a mixer or a method of mixing and kneading using a heavy machine on a yard. Here, a method of kneading using the mixer 1 as shown in FIG. 3 will be described. Hot metal desulfurization slag a and blast furnace granulated slag fine powder b are continuously fed into a drum-type mixer 1 at a predetermined ratio and mixed, and then water is added and kneaded.

混合機1から排出された混練物xをショベル2で運搬し、所定の厚みになるようにヤードに層状に打設する(敷きならす)。この打設厚さが厚すぎると、硬化後の粗破砕の作業性が悪くなるので、打設厚さは500mm以下が好ましく、通常300mm程度が適当である。また、硬化後の粗破砕の作業性を高めるため、ショベルの先などを用いて、層状に打設した混練物xの上面に適当な間隔(例えば、0.5〜2m間隔)で並列状若しくは格子状などに溝を形成しておくとよい。
打設してから4〜7日間程度養生した後、硬化体yをブレーカー3で適当な大きさ(例えば、300mm以下)に粗破砕する。さらに、必要に応じて2〜5日程度養生した後に、破砕機4で製品の最大径以下(例えば、100mm以下)に本破砕する。次いで、細粒分を除去するために、例えば5mmで篩分して分級し、篩上を製品(塊状の高炉原料)とする。一方、篩下は、再度材料として用いる。
The kneaded material x discharged from the mixer 1 is transported by the excavator 2 and placed in a layer in a yard so as to have a predetermined thickness (lay out). If this casting thickness is too thick, the workability of rough crushing after curing deteriorates, so the casting thickness is preferably 500 mm or less, and usually about 300 mm is appropriate. Further, in order to improve the workability of rough crushing after curing, using an excavator tip or the like, the kneaded material x placed in a layer shape is arranged in parallel at an appropriate interval (for example, 0.5 to 2 m) or It is preferable to form grooves in a lattice shape or the like.
After curing for about 4 to 7 days after placement, the cured body y is roughly crushed to an appropriate size (for example, 300 mm or less) by the breaker 3. Furthermore, after curing for about 2 to 5 days as necessary, the crusher 4 crushes the product to the maximum diameter of the product (for example, 100 mm or less). Next, in order to remove the fine particles, sieving is performed with, for example, 5 mm, and classification is performed, and the product on the sieve is used as a product (lumped blast furnace raw material). On the other hand, the sieve is used again as a material.

細粒状の材料を塊成化する方法としては、材料に結合材と水を添加して造粒することも考えられるが、この方法では、造粒用の専用設備が必要となる。これに対して本発明は、上述したように場所さえ確保できれば、特別な設備がなくても実施できる利点がある。
本発明法により得られた塊成化物(塊状の高炉用原料)は、溶銑脱硫スラグに含まれる鉄分とCaO分をそのまま高炉にリサイクルすることができ、また、塊状であるため高炉の通気性を悪化させるなどの問題も生じない。また、高炉水砕スラグ微粉末中に含まれるCaOは高炉の副原料の一部となる。
As a method of agglomerating a fine-grained material, it is conceivable to add a binder and water to the material and granulate, but this method requires a dedicated facility for granulation. On the other hand, as described above, the present invention has an advantage that it can be carried out without special equipment as long as a place can be secured.
The agglomerates (raw blast furnace raw material) obtained by the method of the present invention can recycle the iron content and CaO content contained in the hot metal desulfurization slag to the blast furnace as they are, and because they are in a bulk shape, the air permeability of the blast furnace is improved. There is no problem of worsening. Further, CaO contained in the granulated blast furnace slag powder becomes a part of the auxiliary raw material of the blast furnace.

A,a 溶銑脱硫スラグ
b 高炉水砕スラグ微粉末
x 混練物
y 硬化体
1 混合機
2 ショベル
3 ブレーカー
4 破砕機
A, a Hot metal desulfurization slag b Blast furnace granulated slag fine powder x Kneaded material y Cured material 1 Mixer 2 Excavator 3 Breaker 4 Crusher

Claims (5)

溶銑脱硫スラグと高炉水砕スラグ微粉末の混練物を水和硬化させて得られた水和硬化体の破砕物からなることを特徴とする高炉用原料。   A raw material for a blast furnace comprising a crushed product of a hydrated and cured product obtained by hydrating and curing a mixture of hot metal desulfurized slag and ground granulated blast furnace slag. 粒径10mm超100mm以下の割合が70質量%以上であることを特徴とする請求項1に記載の高炉用原料。   2. The raw material for a blast furnace according to claim 1, wherein the ratio of the particle size exceeding 10 mm to 100 mm is 70% by mass or more. 溶銑脱硫スラグに高炉水砕スラグ微粉末と水を加えて混練し、この混練物を水和硬化させた後、破砕処理及び分級処理して塊状の高炉用原料を得ることを特徴とする高炉用原料の製造方法。   Blast furnace granulated slag fine powder and water are added to hot metal desulfurization slag, kneaded, hydrated and cured, and then crushed and classified to obtain a bulk blast furnace raw material. Raw material manufacturing method. 粒径10mm超100mm以下の割合が70質量%以上である塊状の高炉用原料を得ることを特徴とする請求項3に記載の高炉用原料の製造方法。   The method for producing a blast furnace raw material according to claim 3, wherein a bulk blast furnace raw material having a particle size of more than 10 mm and not more than 100 mm is 70 mass% or more. 混練物をヤードに層状に打設し、硬化した混練物をブレーカーで粗破砕し、次いで、破砕機で破砕処理した後、篩で分級することを特徴とする請求項3又は4に記載の高炉用原料の製造方法。   The blast furnace according to claim 3 or 4, wherein the kneaded material is cast in layers in a yard, the cured kneaded material is roughly crushed with a breaker, then crushed with a crusher, and then classified with a sieve. For manufacturing raw materials.
JP2010219770A 2010-09-29 2010-09-29 Raw material for blast furnace and method for producing the same Active JP5594025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010219770A JP5594025B2 (en) 2010-09-29 2010-09-29 Raw material for blast furnace and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010219770A JP5594025B2 (en) 2010-09-29 2010-09-29 Raw material for blast furnace and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012072473A JP2012072473A (en) 2012-04-12
JP5594025B2 true JP5594025B2 (en) 2014-09-24

Family

ID=46168946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010219770A Active JP5594025B2 (en) 2010-09-29 2010-09-29 Raw material for blast furnace and method for producing the same

Country Status (1)

Country Link
JP (1) JP5594025B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048423A1 (en) * 2022-08-30 2024-03-07 Jfeミネラル株式会社 Circulating reduction system, iron ore reduction method, and blast furnace operation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123706A (en) * 1982-12-28 1984-07-17 Kawasaki Steel Corp Treatment of desulfurized slag
JP2001131615A (en) * 1999-11-01 2001-05-15 Kawasaki Steel Corp Utilizing method of steelmaking slag
JP3797059B2 (en) * 2000-03-30 2006-07-12 Jfeスチール株式会社 Hot metal pretreatment method
JP2003034562A (en) * 2000-12-28 2003-02-07 Nkk Corp Hydraulic composition and hydrated hardened body
JP3617488B2 (en) * 2001-10-30 2005-02-02 住友金属工業株式会社 How to use recovered slag
JP2004105783A (en) * 2002-09-13 2004-04-08 Jfe Steel Kk Solidification material and solidification method for soil
JP5042586B2 (en) * 2006-10-16 2012-10-03 新日本製鐵株式会社 Powder granulation method using desulfurized slag

Also Published As

Publication number Publication date
JP2012072473A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP6299711B2 (en) Rolled concrete pavement
KR101839661B1 (en) Method for producing hydrated solidified body, and hydrated solidified body
CN104163596A (en) Ferro-nickel slag water permeable brick for pavements and preparation method of water permeable brick
JP5907246B2 (en) Manufacturing method of solidified body
KR101115721B1 (en) Cement composition containing blast furnance air-cooled slag and method for manufacturing the same
JP2008104941A (en) Method of and apparatus for manufacturing granular solidified body using coal ash as raw material
JP5594025B2 (en) Raw material for blast furnace and method for producing the same
KR100718581B1 (en) Substituting for pig iron and manufacturing method thereof
JP4850777B2 (en) Method for producing steelmaking slag solidified body, and steelmaking slag solidified body
JP6642506B2 (en) Manufacturing method of solidified body
JP2016216274A (en) Artificial stone material
JP5668634B2 (en) Expanded controlled steel slag hydrated solid artificial stone and method for producing the same
JP5747467B2 (en) Production method of raw materials for blast furnace
JP4204922B2 (en) Roadbed material and method for manufacturing the same
JP6292409B2 (en) Method for producing hydrated solid body
JP6015585B2 (en) Hydrated cured body
KR101322911B1 (en) Concrete compound using granulated slag-water cooled and manufacturing method thereof
KR101300680B1 (en) Concrete composite and bank protection block by using slag
KR101590992B1 (en) A manufacturing method of body using by-products, the body and the binder
KR101366836B1 (en) Inorganic binder compound using slag dust and manufacturing method thereof
KR20160096325A (en) Cement brick having gypsum wastes and manufacturing process thereof
JP7368726B2 (en) Method for producing unfired coal-containing agglomerated ore for blast furnaces
JP6225802B2 (en) Pavement plate made of steel slag hydrated solidified by rolling steel slag-containing composition
JP6182929B2 (en) Manufacturing method of steelmaking slag roadbed material
JPS60248831A (en) Manufacture of uncalcined lump ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R150 Certificate of patent or registration of utility model

Ref document number: 5594025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250