JP5747467B2 - Production method of raw materials for blast furnace - Google Patents

Production method of raw materials for blast furnace Download PDF

Info

Publication number
JP5747467B2
JP5747467B2 JP2010216846A JP2010216846A JP5747467B2 JP 5747467 B2 JP5747467 B2 JP 5747467B2 JP 2010216846 A JP2010216846 A JP 2010216846A JP 2010216846 A JP2010216846 A JP 2010216846A JP 5747467 B2 JP5747467 B2 JP 5747467B2
Authority
JP
Japan
Prior art keywords
blast furnace
kneaded
product
raw material
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010216846A
Other languages
Japanese (ja)
Other versions
JP2012072424A (en
Inventor
博幸 當房
博幸 當房
藪田 和哉
和哉 藪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010216846A priority Critical patent/JP5747467B2/en
Publication of JP2012072424A publication Critical patent/JP2012072424A/en
Application granted granted Critical
Publication of JP5747467B2 publication Critical patent/JP5747467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、製鋼工程で発生するスラグから磁力選別によって回収される磁着物のうち、細粒状の磁着物を高炉に直接リサイクルするための高炉用原料の製造方法に関する。   The present invention relates to a method for producing a raw material for a blast furnace for directly recycling a fine-grained magnetic deposit among the magnetic deposits recovered by magnetic separation from slag generated in a steel making process.

製鋼工程で発生するスラグに含まれる金属鉄、いわゆるメタル分は、資源として有用であるため、通常、再利用を目的としてスラグの破砕・分級工程で磁力により選別・回収されている。このように磁着物として選別・回収されたメタル分のうち、粒径が比較的大きい塊状の磁着物は、製鋼工程の各種処理(溶銑予備処理、脱炭吹錬など)が行われる処理炉、高炉、電気炉などに鉄源として投入され、リサイクルされている。一方、細粒状の磁着物は含水率が高いため、高温の炉に直接投入すると水蒸気爆発の危険がある。このため、上記のような高温の炉に投入するには、事前に乾燥処理する必要があり、処理コストが高くなる。   Since metallic iron contained in the slag generated in the steelmaking process, so-called metal content, is useful as a resource, it is usually sorted and recovered by magnetic force in the slag crushing and classification process for the purpose of reuse. Among the metal components selected and collected as magnetic deposits in this way, a massive magnetic deposit having a relatively large particle size is a processing furnace in which various processes in the steelmaking process (hot metal pretreatment, decarburization blowing, etc.) are performed, It is thrown into the blast furnace and electric furnace as iron sources and recycled. On the other hand, finely magnetized magnetic deposits have a high water content, so there is a danger of a steam explosion if they are put directly into a high-temperature furnace. For this reason, in order to put into a high-temperature furnace as described above, it is necessary to perform a drying process in advance, which increases the processing cost.

また、細粒状の磁着物を高炉にリサイクルする場合、そのまま高炉に投入すると、炉内の通気性が悪化するという問題がある。このため細粒状の磁着物を高炉にリサイクルするためには、焼結鉱と同様に、ある程度の大きさ(粒径)に塊状化する必要がある。
細粒状の磁着物をリサイクルする技術として、例えば、特許文献1には、5mm以下の回収地金(磁着物)を焼結原料の一部として使用する方法、すなわち細粒状の磁着物を焼結鉱の一部として高炉にリサイクルする技術が示されている。
In addition, when recycling the finely magnetized magnetic deposits to the blast furnace, there is a problem that the air permeability in the furnace deteriorates if it is put into the blast furnace as it is. For this reason, in order to recycle the fine-grained magnetic deposits into the blast furnace, it is necessary to agglomerate them to a certain size (particle size) as in the case of sintered ore.
As a technique for recycling fine-grained magnetic deposits, for example, Patent Document 1 discloses a method of using a recovered metal (magnetized deposit) of 5 mm or less as a part of a sintering raw material, that is, sintering fine-grained magnetic deposits. Technology to recycle to blast furnace as part of ore is shown.

特開2001−192741号公報JP 2001-192741 A

しかし、細粒状の磁着物を焼結原料に使用した場合、焼結工程において金属鉄が酸化され、酸化鉄として焼結鉱に含まれることになる。この焼結鉱を高炉にリサイクルした場合、上記酸化鉄がコークスなどの還元材で再び金属鉄に還元されることになる。すなわち、細粒状の磁着物を焼結原料に配合して高炉にリサイクルする方法は、元々金属鉄であったものを酸化させてから再び還元することになり、還元材やエネルギーを無用に消費していることになる。   However, when a fine-grained magnetic deposit is used as a sintering raw material, metallic iron is oxidized in the sintering process and is included in the sintered ore as iron oxide. When this sintered ore is recycled to the blast furnace, the iron oxide is reduced again to metallic iron by a reducing material such as coke. In other words, the method of blending finely magnetized magnetic deposits into the sintering raw material and recycling it to the blast furnace involves oxidizing what was originally metallic iron and then reducing it again, consuming unnecessary reducing materials and energy. Will be.

したがって本発明の目的は、以上のような従来技術の課題を解決し、製鋼工程で発生するスラグから磁力選別により回収された細粒状の磁着物を高炉に直接リサイクルするために、細粒状の磁着物を材料とする塊状の高炉用原料を安価に且つ効率的に製造することができる製造方法を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art and to recycle the finely divided magnetic material collected by magnetic separation from the slag generated in the steelmaking process directly to the blast furnace. An object of the present invention is to provide a production method capable of producing a massive blast furnace raw material made of kimono at low cost and efficiently.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]製鋼工程で発生するスラグから磁力選別により回収された細粒状の磁着物に結合材と水を加えて混練し、混練終了時の混練物のフロー値を105〜140mmとし、この混練物を水和硬化させた後、破砕処理及び分級処理して塊状の高炉用原料を得ることを特徴とする高炉用原料の製造方法。
[2]上記[1]の製造方法において、結合材が高炉セメントであることを特徴とする高炉用原料の製造方法。
The gist of the present invention for solving the above problems is as follows.
[1] A kneaded product obtained by adding a binder and water to a fine-grained magnetic material collected by magnetic separation from slag generated in a steelmaking process is kneaded so that the flow value of the kneaded material at the end of kneading is 105 to 140 mm . A method for producing a raw material for a blast furnace, characterized in that after hydrating and curing, a crushing treatment and a classification treatment are performed to obtain a massive raw material for a blast furnace.
[2] A method for producing a raw material for a blast furnace according to [1], wherein the binder is blast furnace cement .

[3]上記[1]又は[2]の製造方法において、細粒状の磁着物は粒径10mm以下の割合が70質量%以上である粒度を有し、製造される塊状の高炉用原料は粒径10〜100mmの割合が70質量%以上である粒度を有することを特徴とする高炉用原料の製造方法。
[4]上記[1]〜[3]のいずれかの製造方法において、混練物をヤードに層状に打設し、硬化した混練物をブレーカーで粗破砕し、次いで、破砕機で破砕処理した後、篩で分級することを特徴とする高炉用原料の製造方法。
[5]上記[4]の製造方法において、ヤードにおいて、ショベルで細粒状の磁着物と結合材を混合した後、水を添加して混練し、次いで、ショベルで混練物を500mm以下の厚みになるようにヤードに層状に打設し、打設してから3日以上養生した後、硬化体をブレーカーで300mm以下に粗破砕し、次いで、破砕機で100mm以下に破砕した後、篩で分級し、篩上を製品とすることを特徴とする高炉用原料の製造方法。
[3] In the production method of [1] or [2 ] above, the finely magnetized magnetic product has a particle size in which the ratio of the particle size of 10 mm or less is 70% by mass or more, and the produced bulk blast furnace raw material is a granule The manufacturing method of the raw material for blast furnaces characterized by having the particle size whose ratio of diameter 10-100mm is 70 mass% or more.
[4] In the manufacturing method according to any one of [1] to [3] , the kneaded material is placed in a layer in a yard, the cured kneaded material is roughly crushed with a breaker, and then crushed with a crusher A method for producing a raw material for a blast furnace, characterized by classifying with a sieve.
[5] In the manufacturing method of [4] above, in the yard, after mixing the fine magnetic adhering material and the binder with a shovel, water is added and kneaded, and then the kneaded material is made to a thickness of 500 mm or less with a shovel. After laying in layers in the yard and curing for 3 days or more, the cured product is roughly crushed to 300 mm or less with a breaker, then crushed to 100 mm or less with a crusher, and then classified with a sieve. A method for producing a raw material for a blast furnace, characterized in that the product on the sieve is used.

本発明によれば、製鋼工程で発生するスラグから磁力選別により回収された細粒状の磁着物を材料として、その中に含まれる金属鉄を酸化させることなく、塊状の高炉用原料を安価に且つ効率的に製造することができる。このため細粒状の磁着物を構成する金属鉄を、鉄原料として高炉に直接リサイクルすることができ、高炉操業でのコークスなどの還元材の削減及び生産能力の向上を図ることができる。   According to the present invention, the material for a granular magnetic deposit recovered by magnetic separation from the slag generated in the steel making process is used as a material, and the bulk blast furnace raw material is inexpensively oxidized without oxidizing the metallic iron contained therein. It can be manufactured efficiently. For this reason, the metallic iron which comprises a fine-grained magnetic deposit can be directly recycled to a blast furnace as an iron raw material, and reduction | restoration materials, such as coke in a blast furnace operation, and the improvement of production capacity can be aimed at.

本発明の製造方法において、結合材として高炉セメント、ポルトランドセメント、高炉スラグ微粉末をそれぞれ用いた場合について、結合材の配合率と塊成化物の圧縮強度との関係を示すグラフThe graph which shows the relationship between the compounding rate of a binder, and the compressive strength of an agglomerate about the case where blast furnace cement, Portland cement, and blast furnace slag fine powder are each used as a binder in the manufacturing method of this invention. 本発明の製造方法において、混練終了時の混練物のフロー値と塊成化物の圧縮強度との関係を示すグラフIn the production method of the present invention, a graph showing the relationship between the flow value of the kneaded product at the end of kneading and the compressive strength of the agglomerated product 本発明の製造方法において、混練終了時の混練物のフロー値と添加水量との関係の一例を示すグラフThe manufacturing method of this invention WHEREIN: The graph which shows an example of the relationship between the flow value of the kneaded material at the time of completion | finish of kneading | mixing, and the amount of added water 本発明の製造方法において、磁着物91質量%と高炉セメント9質量%を配合し、磁着物+高炉セメント100質量%に対して添加水量を7〜10質量%とした場合について、混練物の養生日数と圧縮強度との関係を示すグラフIn the production method of the present invention, in the case where 91% by mass of magnetic deposit and 9% by mass of blast furnace cement are blended and the amount of added water is 7-10% by mass with respect to 100% by mass of magnetic deposit + blast furnace cement, curing of the kneaded product Graph showing the relationship between days and compressive strength 本発明の製造方法において、一連の製造工程をヤードにて行う場合の一実施形態を示す説明図Explanatory drawing which shows one Embodiment in the case of performing a series of manufacturing processes in a yard in the manufacturing method of this invention.

本発明の高炉用原料の製造方法は、製鋼工程で発生するスラグから磁力選別により回収された細粒状の磁着物に結合材と水を加えて混練し、この混練物を水和硬化させた後、破砕処理及び分級処理して塊状の高炉用原料を得るものである。
製鋼工程で発生するスラグ(以下、製鋼スラグという)には相当量の金属鉄が含まれており、この金属鉄の再利用を目的として、製鋼スラグの破砕・分級工程において磁力選別が行われ、金属鉄が磁着物として回収される。通常、この磁着物は篩分けなどによって塊状のものと細粒状のものに分けられ、このうち塊状のものはそのまま製鋼工程の各種処理(溶銑予備処理、脱炭吹錬など)が行われる処理炉、高炉、電気炉等にリサイクル可能であるため、そのままリサイクルできない細粒状の磁着物が本発明の製造方法の材料(原料)として用いられる。
In the method for producing a raw material for a blast furnace according to the present invention, a binder and water are added and kneaded to a fine-grained magnetic material collected by magnetic separation from slag generated in a steelmaking process, and the kneaded material is hydrated and cured. The blast furnace raw material is obtained by crushing and classification.
The slag generated in the steelmaking process (hereinafter referred to as steelmaking slag) contains a considerable amount of metallic iron, and for the purpose of reusing this metallic iron, magnetic separation is performed in the steelmaking slag crushing and classification process, Metallic iron is recovered as a magnetic deposit. Usually, this magnetized material is divided into lumpy and fine granular materials by sieving, etc., and the lumpy ones are processed as they are in various processes in the steelmaking process (hot metal pretreatment, decarburization blowing, etc.). Since it can be recycled to a blast furnace, an electric furnace, etc., a fine-grained magnetic deposit that cannot be recycled as it is is used as a material (raw material) of the production method of the present invention.

製鋼スラグとしては、例えば、溶銑予備処理、転炉吹錬、鋳造などの工程で発生する製鋼スラグ(例えば、脱炭スラグ、溶銑脱燐スラグ、溶銑脱硫スラグ、溶銑脱珪スラグ、造塊スラグなど)、電気炉スラグなどが挙げられ、これらの2種以上を含むものであってもよい。
本発明で使用する細粒状の磁着物の粒度に特別な制限はないが、一般には、粒径が10mmを超えるような磁着物は、塊状化しないでも高炉に直接投入して使用できるため、通常は、粒径10mm以下の割合が多い磁着物が使用されることになる。細粒状の磁着物を高炉に直接リサイクルできるという本発明の効果を十分に得るという観点からは、一般に、粒径10mm以下(10mm篩下)の割合が70質量%以上である粒度を有するものを使用することが好ましく、さらに、粒径5mm以下(5mm篩下)の割合が70質量%以上である粒度を有するものを使用することが、より好ましい。
また、細粒状の磁着物の鉄含有量(金属鉄及び酸化鉄として含まれる鉄分の合計含有量)も特別な制限はないが、鉄分リサイクルの効率化の観点から、50質量%以上が望ましい。
As the steelmaking slag, for example, steelmaking slag generated in processes such as hot metal pretreatment, converter blowing, casting, etc. (for example, decarburization slag, hot metal dephosphorization slag, hot metal desulfurization slag, hot metal desulfurization slag, ingot slag, etc. ), Electric furnace slag, and the like, and may include two or more of these.
Although there is no particular restriction on the particle size of the fine-grained magnetic material used in the present invention, in general, a magnetic material having a particle size exceeding 10 mm can be used by directly putting it into a blast furnace without agglomeration. In this case, a magnetic material having a large ratio of particle size of 10 mm or less is used. From the viewpoint of sufficiently obtaining the effect of the present invention that finely magnetized magnetic deposits can be directly recycled to a blast furnace, generally, those having a particle size in which the ratio of particle size of 10 mm or less (under 10 mm) is 70% by mass or more. It is preferable to use, and it is more preferable to use a particle having a particle size of 70% by mass or more with a particle size of 5 mm or less (5 mm under sieve).
Further, the iron content (total content of iron contained as metallic iron and iron oxide) of the fine-grained magnetic deposit is not particularly limited, but is preferably 50% by mass or more from the viewpoint of improving the efficiency of iron recycling.

結合材としては、セメント、高炉スラグ微粉末等が使用できるが、特に、セメントが好ましい。また、セメントとしては、ポルトランドセメント、高炉セメントなどの各種セメントのいずれを用いてもよいが、高炉セメントを使用した場合の方が、製造される塊成化物の強度は高くなる。
図1は、本発明の製造方法において、結合材として高炉セメント、ポルトランドセメント、高炉スラグ微粉末をそれぞれ用いた場合について、結合材の配合率と得られた塊成化物の圧縮強度(養生3日後の圧縮強度)との関係を示したものである。圧縮強度の測定では、JIS−R−5201:セメントの物理試験方法の強さ試験に従い、機械練り用練混ぜ機に磁着物、結合材及び水を入れ、2分間混練した後、バイブレーターを使用せずにモルタル供試体用3連成型用型に詰めて40mm×40mm×160mmの供試体を作製し、3日間養生後、強さ(圧縮強度)を測定した。
As the binder, cement, blast furnace slag fine powder, or the like can be used, and cement is particularly preferable. In addition, as the cement, any of various cements such as Portland cement and blast furnace cement may be used. However, when the blast furnace cement is used, the strength of the agglomerated material to be produced becomes higher.
FIG. 1 shows the blending ratio of the binder and the compressive strength of the obtained agglomerate (after 3 days of curing) when blast furnace cement, Portland cement and fine powder of blast furnace slag were used as the binder in the production method of the present invention. (Compressive strength). For the measurement of compressive strength, in accordance with the strength test of JIS-R-5201: Physical test method for cement, magnetic materials, binders and water were put into a kneader for mechanical kneading and kneaded for 2 minutes, then use a vibrator. A 40 mm × 40 mm × 160 mm specimen was prepared by packing it in a triple molding mold for a mortar specimen, and the strength (compressive strength) was measured after curing for 3 days.

図1によれば、結合材として高炉セメントを用いた場合に圧縮強度が最も高い。これは、細粒状の磁着物はスラグ分の割合が多く、スラグ中にはCaOやCa(OH)が含まれており、このCaOやCa(OH)がアルカリ刺激剤になり、高炉セメント中に含まれる高炉スラグ微粉末の潜在水硬性を効果的に引き出すため、強度発現性が高まるためであると考えられる。一方、図1に示されるように結合材として高炉スラグ微粉末のみを配合した場合、最低限の圧縮強度は確保できるものの、配合量を増加してもそれほど強度は向上しない。また、ポルトランドセメントの場合は、磁着物に含まれるCa(OH)が余分で、強度を若干阻害しているものと考えられる。
したがって、結合材としては、セメント又はセメントを主材とするものが好ましく、そのなかでも、高炉セメント又は高炉セメントを主材とするものが好ましい。
According to FIG. 1, the compressive strength is highest when blast furnace cement is used as the binder. This is magnetically attached of fine granular many percentage of slag fraction, the slag includes the CaO or Ca (OH) 2, the CaO and Ca (OH) 2 becomes alkaline stimulant, blast furnace cement This is thought to be because strength development is enhanced in order to effectively extract the latent hydraulic properties of the blast furnace slag fine powder contained therein. On the other hand, when only blast furnace slag fine powder is blended as a binder as shown in FIG. 1, the minimum compressive strength can be secured, but the strength is not improved so much even if the blending amount is increased. Further, in the case of Portland cement, it is considered that Ca (OH) 2 contained in the magnetized material is excessive, and the strength is slightly inhibited.
Accordingly, the binder is preferably cement or a material containing cement as a main material, and among them, a material containing blast furnace cement or a blast furnace cement as a main material is preferable.

結合材の配合量に特別な制限はないが、磁着物と結合材との合計質量を100質量%としたとき、結合材の配合量は7〜13質量%程度が適当である。結合材の配合量が7質量%未満では、塊成化物の強度が低く、また、仮に塊成化物の強度を水分量の調整で維持できたとしても、製品歩留が低下するおそれがある。一方、結合材の配合量が13質量%を超えると、特にセメントの場合、短期間で強度が発現し、養生3日で圧縮強度が10N/mmを超えるため、ブレーカーなどによる粗破砕の作業性が低下するおそれがある。また、結合材の配合量が多くなると、それだけ材料コストが高くなるとともに、磁着物の割合が相対的に少なくなるので、高炉リサイクルのメリットが少なくなる。 Although there is no special restriction | limiting in the compounding quantity of a binder, About 7-13 mass% is suitable for the compounding quantity of a binder, when the total mass of a magnetic deposit and a binder is 100 mass%. If the blending amount of the binder is less than 7% by mass, the strength of the agglomerated material is low, and even if the strength of the agglomerated material can be maintained by adjusting the moisture content, the product yield may be lowered. On the other hand, when the blending amount of the binder exceeds 13% by mass, particularly in the case of cement, the strength is developed in a short period of time, and the compressive strength exceeds 10 N / mm 2 after curing for 3 days. May decrease. Further, when the blending amount of the binder is increased, the material cost is increased, and the ratio of the magnetic deposit is relatively reduced, so that the merit of blast furnace recycling is reduced.

細粒状の磁着物に結合材と水を加えて混練する場合、通常は、まず磁着物に結合材を加えて混合し、しかる後に水を加えて混練する。水は、混練終了時のフロー値(モルタルフロー値)が適正範囲となるように添加する。
混練終了時の混練物のフロー値(モルタルフロー値)は105〜140mm、好ましくは110〜130mmであることが望ましく、このために水の添加量などが適宜調整される。混練終了時の混練物のフロー値が105mm未満では、混練が不十分になりやすく、製造される塊成化物の強度や歩留のバラツキが大きくなりやすい。一方、フロー値が140mmを超えると混練物の流動性は良くなるが、塊成化物の強度が低下しやすい。
When kneading by adding a binder and water to a fine-grained magnetic deposit, usually the binder is first added to the magnetic deposit and mixed, and then water is added and kneaded. Water is added so that the flow value (mortar flow value) at the end of kneading is within the proper range.
The flow value (mortar flow value) of the kneaded product at the end of kneading is desirably 105 to 140 mm, and preferably 110 to 130 mm. For this purpose, the amount of water added is appropriately adjusted. If the flow value of the kneaded product at the end of kneading is less than 105 mm, kneading tends to be insufficient, and the strength and yield variation of the agglomerated product to be produced tend to increase. On the other hand, when the flow value exceeds 140 mm, the fluidity of the kneaded product is improved, but the strength of the agglomerated product tends to be lowered.

図2は、本発明の製造方法において、混練終了時の混練物のフロー値と得られた塊成化物の圧縮強度(養生7日後の圧縮強度)との関係を示したものである。混練終了時のフロー値(モルタルフロー値)の測定では、JIS−R−5201:セメントの物理試験方法のフロー試験に従い、機械練り用練混ぜ機に磁着物、結合材及び水を入れ、2分間混練した後、フロー値を測定した。その際、磁着物92.6質量%、高炉セメント7.4質量%の配合比率の場合と、磁着物91.0質量%、高炉セメント9.0質量%の配合比率の場合とで、それぞれ添加水量を変化させてフロー値を変化させた。また、モルタル供試体用3連成型用型に詰めて40mm×40mm×160mmの供試体を作製し、7日間養生後、強さ(圧縮強度)を測定し、フロー値と圧縮強度の関係を調査した。   FIG. 2 shows the relationship between the flow value of the kneaded product at the end of kneading and the compressive strength (compressed strength after 7 days of curing) of the agglomerated product in the production method of the present invention. In the measurement of the flow value (mortar flow value) at the end of kneading, in accordance with the flow test of JIS-R-5201: Physical test method for cement, magnetic materials, binders and water are put into a kneader for mechanical kneading for 2 minutes. After kneading, the flow value was measured. At that time, it was added respectively in the case of a blending ratio of 92.6% by mass of the magnetic deposit and 7.4% by mass of blast furnace cement and in a blending ratio of 91.0% by mass of the magnetic deposit and 9.0% by mass of blast furnace cement. The flow value was changed by changing the amount of water. In addition, a 40mm x 40mm x 160mm specimen was prepared by packing in a triple mold for mortar specimen, and after 7 days curing, the strength (compressive strength) was measured, and the relationship between flow value and compressive strength was investigated. did.

図2によれば、混練終了時の混練物のフロー値が140mmを超えた範囲では、圧縮強度が低下傾向であることが判る。
また、図3は混練終了時の混練物のフロー値と添加水量との関係の一例を示すものであり、添加水量により混練物のフロー値を調整できることが判る。したがって、このようなフロー値と添加水量の関係に基づき、水の添加量を適宜調整すればよい。
According to FIG. 2, it can be seen that the compressive strength tends to decrease in the range where the flow value of the kneaded product at the end of kneading exceeds 140 mm.
FIG. 3 shows an example of the relationship between the flow value of the kneaded product at the end of kneading and the amount of added water, and it can be seen that the flow value of the kneaded product can be adjusted by the amount of added water. Therefore, the amount of water added may be appropriately adjusted based on the relationship between the flow value and the amount of added water.

混練物を水和硬化(養生)させる形態は任意であり、例えば、混練物を適当な型枠に流し込んで水和硬化させてもよいし、屋外などのヤードに層状に打設して水和硬化させてもよい。この養生の期間は、目標とする圧縮強度(破砕処理に適した圧縮強度)が得られるまでである。ここで、破砕処理に適した圧縮強度としては、4〜10N/mm程度が適当である。圧縮強度が4N/mm未満では、粗破砕の際に細かくなって歩留まりが低下しやすい。一方、圧縮強度が10N/mmを超えると粗破砕などの破砕処理の作業性が低下するおそれがある。 The kneaded product can be hydrated and cured (cured) in any form. For example, the kneaded product may be poured into a suitable form and cured by hydration, or placed in a yard such as outdoors to form a hydrate. It may be cured. This curing period is until a target compressive strength (compressive strength suitable for crushing treatment) is obtained. Here, as the compressive strength suitable for the crushing treatment, about 4 to 10 N / mm 2 is appropriate. When the compressive strength is less than 4 N / mm 2 , the yield tends to be reduced due to fineness during rough crushing. On the other hand, when the compressive strength exceeds 10 N / mm 2 , workability of crushing treatment such as rough crushing may be reduced.

また、図4は、磁着物91質量%と高炉セメント(結合材)9質量%を配合し、磁着物+高炉セメント100質量%に対して添加水量を7〜10質量%とした場合において、混練物の養生日数と圧縮強度との関係を示したものであり、ほぼ3日程度の養生で、目標とする圧縮強度4N/mm以上に達している。なお、圧縮強度試験片の作製及び強度試験では、JIS−R−5201:セメントの物理試験方法の強さ試験に従い、機械練り用練混ぜ機に磁着物、結合材及び水を入れ、2分間混練した後、バイブレーターを使用せずにモルタル供試体用3連成型用型に詰めて40mm×40mm×160mmの供試体を作製し、所定期間養生後、強さ(圧縮強度)を測定した。 FIG. 4 shows a mixture of 91% by mass of magnetic deposit and 9% by mass of blast furnace cement (binding material), and the amount of added water is 7 to 10% by mass with respect to 100% by mass of magnetic deposit and blast furnace cement. This shows the relationship between the number of days of product curing and the compressive strength, and the target compressive strength of 4 N / mm 2 or more is reached after curing for about 3 days. In addition, in preparation of a compressive strength test piece and a strength test, according to the strength test of JIS-R-5201: Physical test method of cement, a magnetic material, a binder, and water are put into a kneader for mechanical kneading and kneaded for 2 minutes. After that, a 40 mm × 40 mm × 160 mm specimen was prepared by packing in a triple molding mold for mortar specimens without using a vibrator, and the strength (compressive strength) was measured after curing for a predetermined period.

養生により所定の強度が出た硬化体は、破砕処理された後、篩い分けなどにより分級処理され、所定の粒度を有する塊成化物(塊状の高炉原料)が得られる。このようにして製造される塊成化物の粒度に特別な制限はないが、細粒状の磁着物を高炉に投入可能な大きさに塊成化するという本発明の主旨からして、粒径10mm超100mm以下の割合が70質量%以上であることが好ましく、この範囲に入るように篩い分けすればさらに好ましい。
製品である塊成化物(塊状の高炉原料)の圧縮強度は、7N/mm以上であることが好ましい。圧縮強度が7N/mm未満では高炉炉頂から投入する際の落下衝撃で割れて細粒化し、高炉の通気性を悪化させるなどの問題を生じるおそれがある。
The cured body having a predetermined strength by curing is crushed and then classified by sieving to obtain an agglomerated product (lumped blast furnace raw material) having a predetermined particle size. There is no particular restriction on the particle size of the agglomerate thus produced, but for the purpose of the present invention to agglomerate the fine-grained magnetized material to a size that can be charged into a blast furnace, the particle size is 10 mm. It is preferable that the ratio of ultra 100 mm or less is 70% by mass or more, and it is more preferable if sieving is performed within this range.
The compressive strength of the agglomerated product (bulk blast furnace raw material) as a product is preferably 7 N / mm 2 or more. If the compressive strength is less than 7 N / mm 2 , there is a possibility that problems such as deterioration of the air permeability of the blast furnace may occur due to cracking and fine graining caused by dropping impact when being introduced from the top of the blast furnace.

細粒状の磁着物と結合材との混合や、これに水を加えてなされる混練は、通常のフレッシュコンクリート用の混練設備を利用してもよいが、ショベルなどの土木工事用の重機を用いて屋外などのヤードで行ってもよい。ショベルによる混合・混練は、まず磁着物と結合材を十分に混合し、その後、水を添加して混合すると均一に混合できる。次いで、混練物をヤードに層状に打設し(敷きならす)、水和硬化(養生)させる。混練物の硬化体は、通常、2段階以上の破砕処理がなされた後、分級処理されることで製品となる。例えば、硬化体をまずブレーカーで粗破砕し、次いで破砕機で本破砕した後、篩で分級し、篩上を製品とする。   For mixing finely divided magnetic materials and binders and kneading by adding water to the mixture, you may use normal mixing equipment for fresh concrete, but use heavy machinery for civil engineering such as excavators. You can also go outside in a yard. Mixing and kneading with an excavator can be uniformly mixed by first thoroughly mixing the magnetic deposit and the binder, and then adding water and mixing. Next, the kneaded material is placed in a layer in the yard (laying down) and hydrated and cured (cured). The cured product of the kneaded product is usually subjected to classification treatment after being subjected to crushing treatment in two or more stages to become a product. For example, the cured body is first roughly crushed with a breaker, then main crushed with a crusher, and then classified with a sieve to obtain the product on the sieve.

図5は、本発明の製造方法において、一連の製造工程をヤードにて行う場合の一実施形態を示している。以下、結合材としてセメントを用いる場合を例に説明する。
製鋼スラグから回収された磁着物Aは、例えば5mmで篩分され、粒径5mm以下(5mm篩下)の磁着物aが原料として用いられる。磁着物aの量は、100〜300ton/バッチ程度が適当である。100ton/バッチ未満では混練回数が増え、広い混練場所が必要となり効率的でない。一方、300ton/バッチを超えると混練に時間が掛かり過ぎて結合材の凝結が進み、混練物の流動性が悪化して作業性が悪くなるおそれがある。
FIG. 5 shows an embodiment in which a series of manufacturing steps are performed in a yard in the manufacturing method of the present invention. Hereinafter, a case where cement is used as the binder will be described as an example.
The magnetic deposit A recovered from the steelmaking slag is, for example, sieved to 5 mm, and the magnetic deposit a having a particle size of 5 mm or less (under 5 mm sieve) is used as a raw material. The amount of the magnetic deposit a is suitably about 100 to 300 ton / batch. If it is less than 100 ton / batch, the number of kneading increases, and a wide kneading place is required, which is not efficient. On the other hand, if it exceeds 300 ton / batch, it takes too much time to knead and the coagulation of the binder proceeds, and the fluidity of the kneaded material may be deteriorated and workability may be deteriorated.

ヤードでの重機(以下、ショベルを例に説明する)による混合・混練は、まず磁着物とセメントを十分に混合し、その後、水を添加して混練する。その際、磁着物とセメントの混合物で円形の土手を築いて、その中に水を入れ、徐々に混合物と水を混練していくとよい。この場合、図5に示すように、まず磁着物aで中心を凹ませた円形の土手を作り、そこにローリー車でセメントb(例えば、高炉セメント)を所定量添加する。次いで、ショベルでよく混合した後、磁着物aとセメントbの混合物xで再度中心を凹ませた土手を築く。その凹み部分に給水車から所定量の水を添加し、ショベルで混練する。ショベルで混練する場合、一度に多量の水を添加しても、混合物xと混ざる前に流れ出てしまうので、混練の程度や流動性を確認しながら水を添加すると均一に混合することができる。 In the mixing and kneading by a heavy machine in the yard (hereinafter described as an example of an excavator), first, the magnetized material and the cement are sufficiently mixed, and then water is added and kneaded. At that time, it is advisable to build a circular bank with a mixture of magnetic deposit and cement, put water therein, and gradually knead the mixture and water. In this case, as shown in FIG. 5, first, a circular bank whose center is recessed with a magnetic deposit a is made, and a predetermined amount of cement b (for example, blast furnace cement) is added thereto with a lorry vehicle. Subsequently, after mixing well with shovel, building bank with recessed again centered mixture x 0 of magnetically attracted material a cement b. A predetermined amount of water is added to the dent from a water truck and kneaded with an excavator. If kneading shovel, it is added a large amount of water at a time, since flows out before mixing with the mixture x 0, can be uniformly mixed when water is added while confirming the degree and fluidity of the kneaded .

混練物xのフロー値を測定し、目標フロー値になったら混練を終了する。次いで、ショベルで所定の厚みになるように混練物xをヤードに層状に打設する(敷きならす)。この打設厚さが厚すぎると、硬化後の粗破砕の作業性が悪くなるので、打設厚さは500mm以下が好ましく、通常300mm程度が適当である。また、硬化後の粗破砕の作業性を高めるため、ショベルの先などを用いて、層状に打設した混練物xの上面に適当な間隔(例えば、0.5〜2m間隔)で並列状若しくは格子状などに溝を形成しておくとよい。   The flow value of the kneaded product x is measured, and when the target flow value is reached, the kneading is terminated. Next, the kneaded material x is placed in layers in the yard so as to have a predetermined thickness with an excavator (lay out). If this casting thickness is too thick, the workability of rough crushing after curing deteriorates, so the casting thickness is preferably 500 mm or less, and usually about 300 mm is appropriate. Further, in order to improve the workability of rough crushing after curing, using an excavator tip or the like, the kneaded material x placed in a layer shape is arranged in parallel at an appropriate interval (for example, 0.5 to 2 m) or It is preferable to form grooves in a lattice shape or the like.

打設してから3〜6日間程度養生した後、硬化体yをブレーカーで適当な大きさ(例えば、300mm以下)に粗破砕する。さらに、必要に応じて2〜5日程度養生した後に、破砕機で製品の最大径以下(例えば、100mm以下)に本破砕する。次いで、細粒分を除去するために、例えば5mmで篩分して分級し、篩上を製品(塊状の高炉原料)とする。一方、篩下は、再度材料として用いる。   After curing for 3 to 6 days after placement, the cured body y is roughly crushed to an appropriate size (for example, 300 mm or less) with a breaker. Furthermore, after curing for about 2 to 5 days as necessary, the material is crushed to a maximum diameter of the product (for example, 100 mm or less) with a crusher. Next, in order to remove the fine particles, sieving is performed with, for example, 5 mm, and classification is performed, and the product on the sieve is used as a product (lumped blast furnace raw material). On the other hand, the sieve is used again as a material.

細粒状の材料を塊成化する方法としては、材料に結合材と水を添加して造粒することも考えられるが、この方法では、造粒用の専用設備が必要となる。これに対して本発明は、上述したように場所さえ確保できれば、特別な設備がなくても実施できる利点がある。
本発明法により得られた塊成化物(塊状の高炉用原料)は、磁着物に含まれる金属鉄をそのまま高炉にリサイクルすることができ、また、塊状であるため高炉の通気性を悪化させるなどの問題も生じない。また、結合材中に含まれるCaOは高炉の副原料の一部となる。
As a method of agglomerating a fine-grained material, it is conceivable to add a binder and water to the material and granulate, but this method requires a dedicated facility for granulation. On the other hand, as described above, the present invention has an advantage that it can be carried out without special equipment as long as a place can be secured.
The agglomerates (bulk blast furnace raw material) obtained by the method of the present invention can recycle the metal iron contained in the magnetic deposits to the blast furnace as it is, and also deteriorate the air permeability of the blast furnace because it is agglomerated. No problem arises. Further, CaO contained in the binder becomes a part of the auxiliary material of the blast furnace.

A,a 磁着物
b セメント
混合物
x 混練物
y 硬化体
A, a Magnetic deposit b Cement x 0 mixture x Kneaded material y Hardened body

Claims (5)

製鋼工程で発生するスラグから磁力選別により回収された細粒状の磁着物に結合材と水を加えて混練し、混練終了時の混練物のフロー値を105〜140mmとし、この混練物を水和硬化させた後、破砕処理及び分級処理して塊状の高炉用原料を得ることを特徴とする高炉用原料の製造方法。 A binder and water are added to and kneaded into a fine-grained magnetic product recovered from the slag generated in the steel making process by magnetic separation , and the flow value of the kneaded product at the end of the kneading is set to 105 to 140 mm. A method for producing a blast furnace raw material, characterized by obtaining a massive blast furnace raw material by curing and classifying after curing. 結合材が高炉セメントであることを特徴とする請求項1に記載の高炉用原料の製造方法。 The method for producing a blast furnace raw material according to claim 1, wherein the binder is blast furnace cement . 細粒状の磁着物は粒径10mm以下の割合が70質量%以上である粒度を有し、製造される塊状の高炉用原料は粒径10mm超100mm以下の割合が70質量%以上である粒度を有することを特徴とする請求項1又は2に記載の高炉用原料の製造方法。 The fine-grained magnetized product has a particle size in which the ratio of the particle size of 10 mm or less is 70% by mass or more. The method for producing a raw material for a blast furnace according to claim 1 or 2, characterized by comprising: 混練物をヤードに層状に打設し、硬化した混練物をブレーカーで粗破砕し、次いで、破砕機で破砕処理した後、篩で分級することを特徴とする請求項1〜のいずれかに記載の高炉用原料の製造方法。 The kneaded product was Da設in layers yard, the kneaded product was cured crude crushed in a breaker, then after crushing with a crusher, to any one of claims 1 to 3, characterized in that classified with a sieve The manufacturing method of the raw material for blast furnaces of description. ヤードにおいて、ショベルで細粒状の磁着物と結合材を混合した後、水を添加して混練し、次いで、ショベルで混練物を500mm以下の厚みになるようにヤードに層状に打設し、打設してから3日以上養生した後、硬化体をブレーカーで300mm以下に粗破砕し、次いで、破砕機で100mm以下に破砕した後、篩で分級し、篩上を製品とすることを特徴とする請求項4に記載の高炉用原料の製造方法。In the yard, after mixing the fine magnetic material and the binder with a shovel, water is added and kneaded, and then the kneaded material is placed in a layer in the yard so as to have a thickness of 500 mm or less. After curing for 3 days or more after installation, the cured product is roughly crushed to 300 mm or less with a breaker, then crushed to 100 mm or less with a crusher, classified with a sieve, and the product on the sieve is used. The manufacturing method of the raw material for blast furnaces of Claim 4 to do.
JP2010216846A 2010-09-28 2010-09-28 Production method of raw materials for blast furnace Active JP5747467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010216846A JP5747467B2 (en) 2010-09-28 2010-09-28 Production method of raw materials for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010216846A JP5747467B2 (en) 2010-09-28 2010-09-28 Production method of raw materials for blast furnace

Publications (2)

Publication Number Publication Date
JP2012072424A JP2012072424A (en) 2012-04-12
JP5747467B2 true JP5747467B2 (en) 2015-07-15

Family

ID=46168906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010216846A Active JP5747467B2 (en) 2010-09-28 2010-09-28 Production method of raw materials for blast furnace

Country Status (1)

Country Link
JP (1) JP5747467B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498708B (en) * 2014-12-09 2017-07-28 攀枝花环业冶金渣开发有限责任公司 Blast furnace slag fine powder prepares gained pellet and its preparation method and application

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983728A (en) * 1982-11-02 1984-05-15 Sumitomo Metal Ind Ltd Preparation of non-baked massive ore
JPS60145332A (en) * 1984-01-10 1985-07-31 Kawasaki Heavy Ind Ltd Method for processing furnace slag
JPS621824A (en) * 1985-06-27 1987-01-07 Kawasaki Steel Corp Manufacture of cold-briquetted ore
JP3238227B2 (en) * 1993-03-03 2001-12-10 新日本製鐵株式会社 Method for recovering iron from steelmaking slag
JP3292758B2 (en) * 1993-03-30 2002-06-17 新日本製鐵株式会社 Method for recovering iron from steelmaking slag and method and apparatus for recycling slag
JP2008025934A (en) * 2006-07-24 2008-02-07 Jfe Steel Kk Method for producing desiliconized slag rough concentrate
JP5332806B2 (en) * 2009-03-30 2013-11-06 新日鐵住金株式会社 Electric furnace dust recycling method
JP5558119B2 (en) * 2010-01-12 2014-07-23 産業振興株式会社 How to use granular iron

Also Published As

Publication number Publication date
JP2012072424A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
Papayianni et al. Effect of granulometry on cementitious properties of ladle furnace slag
Sajedi Mechanical activation of cement–slag mortars
CN104529312B (en) Large dosage high-strength nickel slag brick and preparation method thereof
KR101839661B1 (en) Method for producing hydrated solidified body, and hydrated solidified body
CN111508566B (en) Preparation method for preparing low-cost filling cementing material by composite excitation of multiple solid wastes
JP2005058835A (en) Method for reusing used refractory
KR101922045B1 (en) Concrete composition for PHC pile comprising siliceous slag binder, method for manufacturing PHC pile using siliceous slag binder and PHC pile with high performances manufactured thereby
CN111499358A (en) Magnesium-chromium dry-type anti-seepage ramming material
JP5747467B2 (en) Production method of raw materials for blast furnace
CN115028395B (en) Solid waste building material product and preparation method thereof
JP5824719B2 (en) Method for producing solidifying agent
KR20100071272A (en) Method for manufacturing cement additive using slag from pretreatment of hot meta
JP5594025B2 (en) Raw material for blast furnace and method for producing the same
JP2009030112A (en) Method for producing ore raw material for blast furnace
TWI740176B (en) Manufacturing method of cement modifier and functional cement material containing the cement modifier
JP4867394B2 (en) Non-calcined agglomerate for iron making
KR20050076556A (en) Manufacture of powdered iron and iron recovery from water crushed blast furnace slag
JP6292409B2 (en) Method for producing hydrated solid body
KR101366836B1 (en) Inorganic binder compound using slag dust and manufacturing method thereof
CN114656234B (en) Red mud/coal gangue-based cementing material road base layer formula and preparation process
CN113603401B (en) Rapid hardening material for concrete bottom plate of underground coal mine roadway and preparation method and use method thereof
CN101229977B (en) Novel mold-casting steel chassis building materials and method for manufacturing same
JPH061975A (en) Hydraulic composition for improving soil property
Akhinesh et al. Study of the compressive strength of concrete with various proportions of steel mill scale as fine aggregate
Terpakova Studies on concrete incorporating copper slag as a fine aggregate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150427

R150 Certificate of patent or registration of utility model

Ref document number: 5747467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250