JP2008025934A - Method for producing desiliconized slag rough concentrate - Google Patents
Method for producing desiliconized slag rough concentrate Download PDFInfo
- Publication number
- JP2008025934A JP2008025934A JP2006200451A JP2006200451A JP2008025934A JP 2008025934 A JP2008025934 A JP 2008025934A JP 2006200451 A JP2006200451 A JP 2006200451A JP 2006200451 A JP2006200451 A JP 2006200451A JP 2008025934 A JP2008025934 A JP 2008025934A
- Authority
- JP
- Japan
- Prior art keywords
- desiliconized slag
- desiliconized
- slag
- mass
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Furnace Details (AREA)
Abstract
Description
本発明は、溶銑の予備処理で発生する脱珪スラグから鉄分を回収し、鉄鉱石とともに鉄源として高炉に装入できる脱珪スラグ粗精鉱を製造する方法に関するものである。 The present invention relates to a method for producing a desiliconized slag coarse concentrate that can recover iron from desiliconized slag generated in the hot metal pretreatment and can be charged into a blast furnace as an iron source together with iron ore.
鉄鉱石を高炉に装入して溶銑を得る製銑工程では、鉄鉱石のみならず様々な鉄源が利用されている。たとえば、スクラップやダストを鉄源として高炉に装入する技術が検討されており、
(a)産業廃棄物として廃棄処理されていたスクラップやダストを製銑原料として使用することによる資源の有効利用、
(b)鉄鉱石の溶融還元に比べて少ない熱量でスクラップやダストを溶融できることによるエネルギーの有効利用およびCO2排出量の削減
等の効果が得られることが分かっている。
In the ironmaking process in which iron ore is charged into a blast furnace to obtain hot metal, not only iron ore but various iron sources are used. For example, technology to charge scrap and dust into the blast furnace as an iron source has been studied.
(a) Effective use of resources by using scrap and dust that have been disposed of as industrial waste as raw materials for making iron,
(b) It has been found that effects such as effective use of energy and reduction of CO 2 emissions can be obtained by being able to melt scrap and dust with less heat than iron ore smelting reduction.
特許文献1には、スクラップやダストを鉄源として再利用する技術の一例として、ホットブリケット還元鉄(いわゆるHBI)や直接還元鉄(いわゆるDRI)を併用する技術が開示されている。しかしながらHBIやDRIは高価であるから、特許文献1に開示された技術では原料コストの上昇を招く。
本発明は、鉄鉱石とともに高炉に装入して溶銑を得るための安価な鉄源となる脱珪スラグ粗精鉱の製造方法を提供することを目的とする。 An object of this invention is to provide the manufacturing method of the desiliconization slag coarse concentrate used as an inexpensive iron source for charging a blast furnace with iron ore and obtaining molten iron.
発明者は、製銑工程にて鉄鉱石とともに使用する鉄源として、溶銑の予備処理で発生する脱珪スラグに着目した。溶銑の予備処理は、製銑工程(すなわち高炉)で得られた溶銑を製鋼工程(すなわち転炉)へ搬送する過程で溶銑中のSi,P,Sを除去する処理を指し、Siを除去する処理(いわゆる脱珪処理),Pを除去する処理(いわゆる脱燐処理),Sを除去する処理(いわゆる脱硫処理)の総称である。 The inventor paid attention to desiliconized slag generated in the hot metal pretreatment as an iron source used with iron ore in the iron making process. The hot metal pretreatment refers to the process of removing Si, P, and S in the hot metal in the process of transporting the hot metal obtained in the iron making process (ie, blast furnace) to the steel making process (ie, converter). It is a general term for treatment (so-called desiliconization treatment), treatment for removing P (so-called dephosphorization treatment), and treatment for removing S (so-called desulfurization treatment).
溶銑の予備処理のうち、脱珪処理は、高炉の鋳床で混銑車に収容する前の溶銑に脱珪剤を添加して行なう。脱珪処理によって発生するスラグ(以下、脱珪スラグという)は、脱燐処理を行なう前に混銑車から排出され、多量の金属Feを含んでいる。そこで発明者は、脱珪スラグを凝固させて破砕し、鉄源として製銑工程で使用する技術について鋭意研究した。その結果、
(1)破砕された脱珪スラグ凝固物に含有される水分量を規定する、
(2)破砕された脱珪スラグ凝固物の粒度分布を規定する、
(3)破砕された脱珪スラグ凝固物の中から金属Feの含有量が大きいものを選別する
という条件を満たすことによって、脱珪スラグ凝固物を高炉に装入して支障なく操業できることを見出した。ここでは溶融状態の脱珪スラグと区別するために、凝固した脱珪スラグを脱珪スラグ凝固物と記す。
Of the hot metal preliminary treatment, the desiliconization treatment is performed by adding a desiliconizing agent to the hot metal before being accommodated in the kneading vehicle on the cast floor of the blast furnace. Slag generated by the desiliconization process (hereinafter referred to as desiliconization slag) is discharged from the kneading vehicle before the dephosphorization process and contains a large amount of metallic Fe. Therefore, the inventor conducted intensive research on a technique for solidifying and crushing the desiliconized slag and using it as an iron source in the iron making process. as a result,
(1) regulates the amount of water contained in the crushed desiliconized slag coagulum,
(2) Define the particle size distribution of the crushed desiliconized slag coagulum.
(3) By satisfying the condition that the metal Fe content in the crushed desiliconized slag coagulated material is selected, it is found that the desiliconized slag coagulated material can be operated without any trouble by charging it into the blast furnace. It was. Here, in order to distinguish from a desiliconized slag in a molten state, the solidified desiliconized slag is referred to as a desiliconized slag solidified product.
なお上記(1)の水分は、混銑車から排出された溶融状態の脱珪スラグを冷却する際に散布する冷却水、あるいは脱珪スラグ凝固物を屋外に保管する間に浸入する雨水等である。
本発明は、これらの知見に基づいてなされたものである。
すなわち本発明は、脱珪スラグ凝固物の水分含有量を5質量%以下まで乾燥した後、脱珪スラグ凝固物を破砕して脱珪スラグ粒とし、さらに脱珪スラグ粒の中から磁石に吸着する脱珪スラグ磁着粒を選別し、脱珪スラグ磁着粒を分級して粒径5mm以下の配合比を5質量%以下とする脱珪スラグ粗精鉱の製造方法である。
The water of (1) above is cooling water sprayed when cooling the desiliconized slag in a molten state discharged from the kneading vehicle, or rainwater entering during storage of the desiliconized slag coagulum outdoors. .
The present invention has been made based on these findings.
That is, according to the present invention, after the moisture content of the desiliconized slag coagulum is dried to 5% by mass or less, the desiliconized slag coagulum is crushed into desiliconized slag particles, and further adsorbed on the magnet from the desiliconized slag particles. This is a method for producing a desiliconized slag coarse concentrate in which the desiliconized slag magnetically-adhered grains to be selected are classified, and the desiliconized slag magnetically-adhered grains are classified so that the blending ratio of the particle diameter of 5 mm or less is 5 mass% or less.
本発明の脱珪スラグ粗精鉱の製造方法においては、脱珪スラグ凝固物の乾燥を天日乾燥で行なうことが好ましい。また、脱珪スラグ磁着粒のうち粒径が50mmを超える脱珪スラグ磁着粒を破砕して磁力選別を行ない、磁石に吸着した粒子を分級して、粒径5mm超え50mm以下の配合比を90質量%以上とすることが好ましい。さらに、脱珪スラグ磁着粒の破砕,磁力選別および分級を2回以上繰り返し、金属Feの含有量を70質量%以上とすることが好ましい。 In the method for producing the desiliconized slag crude concentrate of the present invention, it is preferable to dry the desiliconized slag solidified product by sun drying. Also, among the desiliconized slag magnetized particles, the desiliconized slag magnetized particles having a particle size exceeding 50 mm are crushed and subjected to magnetic selection, and the particles adsorbed on the magnet are classified to a compounding ratio of particle size exceeding 5 mm and 50 mm or less. Is preferably 90% by mass or more. Further, it is preferable that the desiliconized slag magnetically-adhered granule is crushed, sorted by magnetic force and classified twice or more so that the content of metallic Fe is 70% by mass or more.
本発明によれば、高炉に装入して溶銑を得るための安価な鉄源となる脱珪スラグ粗精鉱を製造でき、その脱珪スラグ粗精鉱を鉄鉱石とともに高炉に装入することによって、原料コストの削減,資源の有効利用,エネルギーの有効利用,CO2排出量の削減を達成できる。 According to the present invention, it is possible to produce a desiliconized slag coarse concentrate that is an inexpensive iron source for obtaining molten iron by charging into a blast furnace, and charging the desiliconized slag coarse concentrate together with iron ore into the blast furnace. Thus, reduction of raw material costs, effective use of resources, effective use of energy, and reduction of CO 2 emissions can be achieved.
溶融状態の脱珪スラグを冷却して脱珪スラグ凝固物とする。溶融状態の脱珪スラグを冷却する方法は特に限定せず、冷却水を散布して水冷する方法あるいは屋外に保管して放冷する方法等の従来から知られている方法を用いる。いずれの方法を採用しても、得られた脱珪スラグ凝固物を乾燥して、脱珪スラグ凝固物中の水分含有量を低下させる。水分含有量が5質量%を超えると、鉄源として高炉に装入したときに水分の蒸発に熱エネルギーが消費されるので、エネルギー損失が増大する。したがって、脱珪スラグ凝固物の水分含有量が5質量%以下になるまで乾燥する。 The molten desiliconized slag is cooled to obtain a desiliconized slag solidified product. The method for cooling the desiliconized slag in the molten state is not particularly limited, and a conventionally known method such as a method of spraying cooling water and cooling it with water or a method of storing it outdoors and letting it cool is used. Even if which method is employ | adopted, the obtained desiliconization slag solidified material is dried and the water content in a desiliconized slag solidified material is reduced. If the water content exceeds 5% by mass, heat energy is consumed to evaporate the water when it is charged into the blast furnace as an iron source, resulting in an increase in energy loss. Therefore, it is dried until the moisture content of the desiliconized slag coagulum becomes 5% by mass or less.
脱珪スラグ凝固物を乾燥する方法は特に限定せず、加熱による乾燥あるいは送風による乾燥等の従来から知られている方法を採用する。ただし加熱や送風はいずれもエネルギーを消費するので、天日乾燥を採用することが好ましい。
脱珪スラグ凝固物を乾燥した後、脱珪スラグ凝固物を破砕する。ここでは脱珪スラグ凝固物と区別するために、脱珪スラグ凝固物を破砕した粒状体を脱珪スラグ粒と記す。
A method for drying the desiliconized slag coagulated product is not particularly limited, and a conventionally known method such as drying by heating or drying by blowing is adopted. However, since both heating and blowing consume energy, it is preferable to employ sun drying.
After the desiliconized slag coagulum is dried, the desiliconized slag coagulum is crushed. Here, in order to distinguish from the desiliconized slag coagulated product, the granular material obtained by crushing the desiliconized slag coagulated product is referred to as a desiliconized slag particle.
次いで脱珪スラグ粒の磁力選別を行なう。つまり磁石を用いて、磁石に吸着する脱珪スラグ粒と磁石に吸着しない脱珪スラグ粒とを選別する。ここでは脱珪スラグ粒のうち、磁石に吸着する脱珪スラグ粒を脱珪スラグ磁着粒と記す。この脱珪スラグ磁着粒には金属Feが多量に含まれている。
こうして脱珪スラグ粒のうちの脱珪スラグ磁着粒を回収し、分級して粒度分布を調整する。粒径5mm以下の配合比が5質量%を超えると、高炉に装入するために貯蔵するホッパー内で凝集して円滑な流動を妨げる現象(いわゆる棚吊り)が発生する。したがって、粒径5mm以下の配合比は5質量%以下とする。
Next, magnetic separation of desiliconized slag grains is performed. That is, using a magnet, the desiliconized slag grains adsorbed on the magnet and the desiliconized slag grains not adsorbed on the magnet are selected. Here, among the desiliconized slag particles, the desiliconized slag particles adsorbed on the magnet are referred to as desiliconized slag magnetically-adhered particles. The desiliconized slag magnetized particles contain a large amount of metallic Fe.
In this way, the desiliconized slag magnetically-adhered particles of the desiliconized slag particles are collected and classified to adjust the particle size distribution. When the blending ratio of the particle size of 5 mm or less exceeds 5% by mass, a phenomenon (so-called shelf hanging) occurs that aggregates in a hopper stored for charging into a blast furnace and prevents smooth flow. Therefore, the blending ratio with a particle size of 5 mm or less is 5% by mass or less.
脱珪スラグ磁着粒を分級する方法は特に限定せず、篩い網を用いる方法等の従来から知られている方法を採用する。たとえば、目開き5mmの篩い網を用いて粒径5mm以下の脱珪スラグ磁着粒を分級し、その配合量を調整することによって、粒径5mm以下の配合比を5質量%以下に調整することができる。
ここでは粒度分布を調整しない脱珪スラグ磁着粒と区別するために、粒径5mm以下の配合比が5質量%以下になるように調整したものを脱珪スラグ粗精鉱と記す。この脱珪スラグ粗精鉱を鉄源として鉄鉱石とともに高炉に装入すれば、原料コストの削減,資源の有効利用,エネルギーの有効利用,CO2排出量の削減を達成できる。
A method for classifying the desiliconized slag magnetically-adhered grains is not particularly limited, and a conventionally known method such as a method using a sieving net is adopted. For example, desiliconized slag magnetized particles having a particle size of 5 mm or less are classified using a sieve screen having a mesh opening of 5 mm, and the blending ratio is adjusted to 5 mass% or less by adjusting the blending amount. be able to.
Here, in order to distinguish it from desiliconized slag magnetically-adhered grains whose particle size distribution is not adjusted, what is adjusted so that the blending ratio with a particle size of 5 mm or less is 5 mass% or less is referred to as desiliconized slag coarse concentrate. If this desiliconized slag coarse concentrate is used as an iron source and charged into a blast furnace together with iron ore, reduction of raw material costs, effective use of resources, effective use of energy, and reduction of CO 2 emissions can be achieved.
ただし、粒径が50mmを超える脱珪スラグ磁着粒を高炉に装入すると、高炉内の通気性に悪影響を及ぼす惧れがある。したがって粒径が50mmを超える脱珪スラグ磁着粒は、破砕して粒径を50mm以下にすることが好ましい。つまり脱珪スラグ粗精鉱は、粒径5mm以下の配合比を5質量%以下とし、かつ粒径5mm超え50mm以下の配合比を90質量%以上とすることが好ましい。 However, if desiliconized slag magnetized particles having a particle size exceeding 50 mm are charged into the blast furnace, the air permeability in the blast furnace may be adversely affected. Accordingly, it is preferable that the desiliconized slag magnetically-adhered particles having a particle size exceeding 50 mm are crushed to a particle size of 50 mm or less. That is, it is preferable that the desiliconized slag crude concentrate has a blending ratio of 5 mm or less in particle size of 5% by mass or less and a blending ratio of 5 mm or more in particle size of 50 mm or less is 90% by mass or more.
なお、脱珪スラグ磁着粒の破砕,磁力選別,分級を2回以上(すなわち脱珪スラグ凝固物の破砕,磁力選別,分級を加えると合計3回以上)繰り返して得られた脱珪スラグ粗精鉱には、金属Feが70質量%以上含有される。このような金属Feを多量に含有する脱珪スラグ粗精鉱は、高炉に装入する鉄源として好適である。 In addition, desiliconized slag coarsely obtained by repeatedly crushing, magnetic separation and classification of desiliconized slag magnetically-adhered grains (that is, 3 times or more by adding crushing, magnetic selection and classification of desiliconized slag coagulum) The concentrate contains 70 mass% or more of metallic Fe. Such a desiliconized slag crude concentrate containing a large amount of metallic Fe is suitable as an iron source charged in a blast furnace.
高炉から出銑した溶銑に鋳床で脱珪剤を添加して混銑車に収容した後、脱燐処理を行なう前に脱珪スラグを混銑車から排出した。この脱珪スラグをスラグヤードに堆積し、冷却水を散布して脱珪スラグ凝固物とした。
次いで天日乾燥を行ない、脱珪スラグ凝固物の水分含有量を3質量%に低減した。天日乾燥した後、脱珪スラグ凝固物を破砕して脱珪スラグ粒とした。さらに脱珪スラグ粒の磁力選別を行ない、磁石に吸着する脱珪スラグ磁着粒を回収した。
The desiliconization slag was discharged from the kneading car before dephosphorization treatment was performed after adding the desiliconizing agent to the hot metal discharged from the blast furnace and adding it to the kneading car. This desiliconized slag was deposited in a slag yard and sprayed with cooling water to obtain a desiliconized slag solidified product.
Subsequently, sun drying was performed, and the water content of the desiliconized slag coagulated product was reduced to 3% by mass. After drying in the sun, the desiliconized slag coagulum was crushed into desiliconized slag granules. Further, magnetic separation of desiliconized slag grains was performed, and desiliconized slag magnetically adhered grains adsorbed on the magnet were collected.
次に脱珪スラグ磁着粒を分級して、粒径が50mmを超えるものを再度破砕し、磁力選別および分級を行なった。
このようにして脱珪スラグ磁着粒の粒径5mm以下の配合比を4質量%かつ粒径5mm超え50mm以下の配合比を3質量%に調整し、脱珪スラグ粗精鉱として保管した。この脱珪スラグ粗精鉱を、鉄鉱石100質量部に対して、1質量部の割合で高炉に装入して操業した。これを発明例とする。
Next, the desiliconized slag magnetized particles were classified, and those having a particle size exceeding 50 mm were crushed again, and magnetic separation and classification were performed.
In this way, the blending ratio of the desiliconized slag magnetically-adhered grains having a particle size of 5 mm or less was adjusted to 4 mass% and the blending ratio of the particle diameter exceeding 5 mm to 50 mm or less was adjusted to 3 mass%, and stored as desiliconized slag coarse concentrate. This desiliconized slag crude concentrate was charged into a blast furnace and operated at a ratio of 1 part by mass with respect to 100 parts by mass of iron ore. This is an invention example.
一方、従来は、脱珪スラグを産業廃棄物として廃棄処分しており、脱珪スラグ粗精鉱を製造していなかった。これを従来例とする。つまり従来例の高炉操業では脱珪スラグ粗精鉱を使用していない。
発明例の操業を2ケ月継続して高炉操業におけるコークス原単位を調査した。従来例については操業実績から12ケ間の平均値を算出した。コークス原単位は溶銑1tonあたりのコークス使用量を表わす指標であり、コークス原単位が小さいほどエネルギー消費量が少ないことを示す。
On the other hand, conventionally, desiliconized slag has been disposed of as industrial waste, and no desiliconized slag coarse concentrate has been produced. This is a conventional example. That is, the conventional blast furnace operation does not use desiliconized slag coarse concentrate.
The operation of the invention example was continued for 2 months, and the basic unit of coke in the blast furnace operation was investigated. For the conventional example, an average value of 12 months was calculated from the operation results. The coke basic unit is an index representing the amount of coke used per ton of hot metal, and the smaller the coke basic unit, the smaller the energy consumption.
その結果、発明例のコークス原単位は、従来例に比べて3kg/ton削減された。
なお発明例では、炉頂ホッパーにおける棚吊りは皆無であった。
以上に述べた通り本発明によれば、コークス原単位(すなわち溶銑1tonあたりのコークス使用量)が削減されたので、エネルギーの有効利用,CO2排出量の削減を達成できた。しかも、従来は産業廃棄物として廃棄処分していた脱珪スラグから金属Feを回収し、鉄源として高炉に装入することによって、原料コストの削減,資源の有効利用を達成できることは言うまでもない。
As a result, the basic unit of coke in the inventive example was reduced by 3 kg / ton compared to the conventional example.
In the inventive examples, there was no shelf hanging in the furnace top hopper.
As described above, according to the present invention, since the basic unit of coke (that is, the amount of coke used per 1 ton of hot metal) has been reduced, effective use of energy and reduction of CO 2 emissions can be achieved. Moreover, it goes without saying that reduction of raw material costs and effective use of resources can be achieved by recovering metallic Fe from desiliconized slag, which has been disposed of as industrial waste, and charging it into a blast furnace as an iron source.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006200451A JP2008025934A (en) | 2006-07-24 | 2006-07-24 | Method for producing desiliconized slag rough concentrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006200451A JP2008025934A (en) | 2006-07-24 | 2006-07-24 | Method for producing desiliconized slag rough concentrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008025934A true JP2008025934A (en) | 2008-02-07 |
Family
ID=39116739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006200451A Pending JP2008025934A (en) | 2006-07-24 | 2006-07-24 | Method for producing desiliconized slag rough concentrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008025934A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6093550A (en) * | 1983-09-29 | 1985-05-25 | シーメンス、アクチエンゲゼルシヤフト | Multiplication mechanism and operation thereof |
JP2012072424A (en) * | 2010-09-28 | 2012-04-12 | Jfe Steel Corp | Method for manufacturing raw material for blast furnace |
EP2873743A1 (en) * | 2013-11-13 | 2015-05-20 | TARTECH eco industries AG | Method for mechanical separation of metals from slags which contain metals |
JP2015147711A (en) * | 2014-02-07 | 2015-08-20 | 株式会社日向製錬所 | Production method of slag, production system of slag and slag |
JP2017133074A (en) * | 2016-01-28 | 2017-08-03 | Jfeスチール株式会社 | Method for screening iron steel slag, method for recycling iron steel slag and method for manufacturing raw material for iron making |
-
2006
- 2006-07-24 JP JP2006200451A patent/JP2008025934A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6093550A (en) * | 1983-09-29 | 1985-05-25 | シーメンス、アクチエンゲゼルシヤフト | Multiplication mechanism and operation thereof |
JP2012072424A (en) * | 2010-09-28 | 2012-04-12 | Jfe Steel Corp | Method for manufacturing raw material for blast furnace |
EP2873743A1 (en) * | 2013-11-13 | 2015-05-20 | TARTECH eco industries AG | Method for mechanical separation of metals from slags which contain metals |
JP2015147711A (en) * | 2014-02-07 | 2015-08-20 | 株式会社日向製錬所 | Production method of slag, production system of slag and slag |
JP2017133074A (en) * | 2016-01-28 | 2017-08-03 | Jfeスチール株式会社 | Method for screening iron steel slag, method for recycling iron steel slag and method for manufacturing raw material for iron making |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006290461B2 (en) | Processing metallurgical slag | |
JP5321845B2 (en) | Wet classification equipment for steel slag | |
JP2008025934A (en) | Method for producing desiliconized slag rough concentrate | |
CN107614710B (en) | The manufacturing method of reduced iron | |
CN100591781C (en) | Agglomeration of titania | |
JP2009006273A (en) | Wet type magnetic separation method for separating mixture of microparticles | |
JP5332806B2 (en) | Electric furnace dust recycling method | |
JP2011236115A (en) | Treatment method of steel slag | |
JP3617488B2 (en) | How to use recovered slag | |
JP6235439B2 (en) | Manufacturing method of granular metallic iron | |
KR100431499B1 (en) | Method for recovering and recycling ladle slag | |
KR101726135B1 (en) | METHOD FOR COMPACTING Fe-CONTAINING BY-PRODUCTS IN MOLTEN IRONS MAKING PROCESS | |
JP5085836B2 (en) | Sludge treatment method | |
Zhuchkov et al. | The waste of the ferroalloy production in Russia | |
JPH11264011A (en) | Method for effective use of slag | |
JP2007009240A (en) | Method for reusing converter dust | |
JP2015101740A (en) | Method for manufacturing reduced iron | |
WO2014065240A1 (en) | Process for manufacturing reduced iron | |
RU2621533C2 (en) | Reduced iron obtaining method | |
JPH09310128A (en) | Treatment of sludge containing oil | |
JP5200422B2 (en) | Hot metal production method using vertical scrap melting furnace | |
JP2964074B2 (en) | How to treat granulated magnetic particles | |
JP2010008030A (en) | Molten-metal production method using vertical melting furnace | |
JP2005307327A (en) | Method for treating particulate aluminum oxide | |
RU2307178C2 (en) | Manganese-containing raw material agglomeration method |