WO2024048423A1 - Circulating reduction system, iron ore reduction method, and blast furnace operation method - Google Patents

Circulating reduction system, iron ore reduction method, and blast furnace operation method Download PDF

Info

Publication number
WO2024048423A1
WO2024048423A1 PCT/JP2023/030590 JP2023030590W WO2024048423A1 WO 2024048423 A1 WO2024048423 A1 WO 2024048423A1 JP 2023030590 W JP2023030590 W JP 2023030590W WO 2024048423 A1 WO2024048423 A1 WO 2024048423A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pipe
furnace
reduction
blast furnace
Prior art date
Application number
PCT/JP2023/030590
Other languages
French (fr)
Japanese (ja)
Inventor
寿人 野呂
浩司 瀬川
貴哉 久保
Original Assignee
Jfeミネラル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeミネラル株式会社 filed Critical Jfeミネラル株式会社
Publication of WO2024048423A1 publication Critical patent/WO2024048423A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process

Definitions

  • the present invention relates to a circulating reduction system, a method for reducing iron ore, and a method for operating a blast furnace, which can drastically reduce CO 2 emissions that promote global warming.
  • the domestic steel industry emits around 15% of the domestic CO2 emissions, mainly through the use of the blast furnace-converter method, which uses coke to reduce iron ore. This is because they are producing.
  • Crude steel production methods are mainly classified into the blast furnace-converter method and the electric furnace method.
  • the blast furnace-converter method generates about 2 tons of CO 2 per ton of steel, and the electric furnace method generates about 0.5 t of CO 2 per ton of steel.
  • the electric furnace method is superior in that it can suppress the amount of CO 2 generated.
  • high-grade steel materials used in automobiles and the like are not mass-produced using the electric furnace method, which uses scrap as raw material, because impurities such as copper tend to adversely affect quality. For this reason, approximately 75% of domestic crude steel is produced using the blast furnace-converter method.
  • Patent Document 1 attempts to reduce the amount of coke used by replacing the high-temperature air blown in from the tuyere with a reducing gas such as hydrogen or methane.
  • a reducing gas such as hydrogen or methane.
  • coke also plays a role as a heating material that heats the inside of the furnace through a reaction with oxygen blown in from the hot stove, and as a ventilation material that ensures ventilation inside the furnace.
  • a new means other than coke
  • the amount of coke used must be drastically reduced. It is extremely difficult to do so.
  • the main obstacles are reducing agents and heating materials that can replace coke, and new means of ensuring air permeability without adversely affecting the quality of hot metal, and the amount of coke used can be reduced.
  • the direct reduction process which has lower CO2 emissions than the blast furnace-converter method, cannot use low-grade fine ore powder or ore, which can be used in blast furnaces at low cost and is easy to procure.
  • the disadvantage is that the refining equipment for the conventional pig steel integrated process cannot be used because it cannot be extracted as a metal.
  • Patent Document 3 proposes a technology that utilizes CO 2 contained in exhaust gas from a blast furnace. That is, it has been proposed to separate CO 2 from blast furnace exhaust gas, reform the recovered CO 2 into CO, and reuse this CO as a reducing agent for the blast furnace.
  • the present invention provides a circulating reduction system that is capable of efficiently recycling CO-rich gas obtained by reforming exhaust gas containing CO 2 generated from a reduction furnace as reducing gas.
  • the purpose is to
  • the present invention makes it possible to perform the reduction treatment of iron ore by efficiently circulating and using CO-rich gas obtained by reforming exhaust gas containing CO 2 generated from a reduction furnace as a reducing gas.
  • the purpose is to provide a method for reducing iron ore.
  • Another object of the present invention is to provide a method of operating a blast furnace that uses the above-mentioned circulating reduction system to maintain the temperature inside the furnace and ensure air permeability using materials other than coke. .
  • the present inventors have conducted extensive research into ways to realize an efficient reduction process in which exhaust gas from a reduction furnace can be recycled and used as a starting material for a reducing agent. We have discovered that it is possible to efficiently reuse exhaust gas in a circular manner.
  • the exhaust gas generated in the iron ore reduction process generally contains excess reducing agents such as CO and H 2 in addition to CO 2 and nitrogen derived from the atmosphere.
  • the exhaust gas of a blast furnace contains about 23% by volume of CO 2 , the same proportion of CO, about 4% by volume of H 2 , and about 50% by volume of nitrogen derived from air.
  • the present inventors added hydrogen to such exhaust gas and brought this gas into contact with a catalyst for reverse water gas shift reaction (RWGS: CO 2 + H 2 ⁇ CO + H 2 O).
  • RWGS reverse water gas shift reaction
  • the reason why CO is recycled as the main reducing agent is because the reduction reaction of iron ore with H2 is an endothermic reaction, whereas the reduction reaction of iron ore with CO is an exothermic reaction. This is because it is the most efficient reducing agent that can maintain the inside of the reduction furnace at a high temperature. Furthermore, in the reduction using CO, the lowering of the freezing point of iron due to the carbon that occurs when coke is used as a reducing agent can be utilized as is. As a result, reduced iron, which does not melt at temperatures above 1500° C. when reduced by H 2 , melts at about 1200° C. when reduced by CO. This temperature difference of about 300° C. greatly reduces the heat load on the heating furnace for the reducing gas when the reduced iron is taken out as hot metal.
  • the CO-rich reducing gas synthesized from the CO 2- rich exhaust gas is mainly supplied to the reduction furnace, the surplus can be discharged and recovered and used for various purposes.
  • CO is a starting material for the Fischer-Tropsch reaction (nCO+(2n+1)H 2 ⁇ C n H 2n+2 +nH 2 O), which is important in the synthesis of various organic substances. Therefore, the CO-rich reducing gas synthesized from the CO 2- rich exhaust gas is a synthesis gas that can be used not only as a reducing agent but also as a raw material for fuel gas and various organic compounds.
  • the coke fed into a typical blast furnace has the roles of a heating material and a ventilation material in addition to its role as a reducing agent. Therefore, when taking out reduced iron as hot metal, even if the temperature inside the furnace can be maintained by the reduction heat of CO in the reducing gas, if the amount of coke input is suppressed to the limit, ventilation cannot be ensured (a stable reducing environment cannot be maintained). (becomes unsustainable).
  • blast furnace mode which blows high-temperature air heated in a hot blast furnace.
  • the process is gradually switched to a ⁇ cokeless mode,'' in which slag is gradually mixed with coke and reducing gas is gradually added to the air blown into the blast furnace.
  • a reduction furnace that reduces the oxide contained therein; a first pipe that collects and passes exhaust gas generated in the reduction furnace and containing CO 2 from the reduction furnace; a hydrogen gas supply device that is connected to the middle of the first pipe and adds hydrogen gas to the exhaust gas to produce a hydrogenated gas; A terminal end of the first pipe is connected to a reaction chamber accommodating a catalyst for a reverse water gas shift reaction, and the hydrogenation gas introduced from the first pipe to the reaction chamber contacts the catalyst, a catalytic device in which CO 2 in the hydrogenated gas is converted to CO by a reverse water gas shift reaction to produce a CO-rich gas with an increased CO concentration; a second pipe extending from the catalyst device, connected to the reduction furnace, allowing the CO-rich gas to pass therethrough, and supplying the CO-rich gas into the reduction furnace as a reducing gas; has A circulating reduction system in which a separation device that separates, recovers or removes specific gas components
  • a third pipe is branched from a position upstream of the gas heating device in the middle of the second pipe and connected to the gas heating device, and the CO-rich gas is supplied via the third pipe.
  • a fourth pipe extends from the gas heating device and is connected to the middle of the first pipe, and directs the combustion exhaust gas generated from the gas heating device into the first pipe via the fourth pipe.
  • the circulation type reduction system according to [2] or [3] above, which is made to join the exhaust gas of.
  • the catalyst device has a heating device that heats the reaction chamber,
  • the above [1] has a fifth pipe branched from the second pipe and connected to the heating device, and supplies a part of the CO-rich gas to the heating device as a combustion gas via the fifth pipe. ] to [4].
  • the circulating reduction system according to any one of [4].
  • a sixth pipe extends from the heating device and is connected to the middle of the first pipe, and the combustion exhaust gas generated from the heating device is transferred to the first pipe through the sixth pipe.
  • a switching valve disposed in the middle of the second pipe, and a seventh pipe extending from the switching valve, The circulating reduction system according to any one of [1] to [8] above, wherein a part of the CO-rich gas is recovered via the seventh pipe.
  • [14] A method for operating a blast furnace using the circulating reduction system according to [11] or [12] above, From the top of the blast furnace, (I) at least one kind of iron ore selected from sintered ore, lump ore, iron ore pellets, and fine ore, and (II) molten slag discharged from the bottom of the blast furnace.
  • Crushed slag obtained by crushing solidified slag obtained by slowly cooling the slag, or a ventilation material made of a mixture of the crushed slag and coke, are charged into the blast furnace in alternating layers, and the reducing gas furnace A method of operating a blast furnace that ensures internal ventilation.
  • CO rich gas obtained by reforming the exhaust gas containing CO 2 generated from the reduction furnace can be efficiently recycled and used as reducing gas.
  • the CO-rich gas obtained by reforming the exhaust gas containing CO 2 generated from the reduction furnace is efficiently recycled as a reducing gas, and the reduction process of iron ore is carried out. It can be carried out.
  • the temperature inside the furnace can be maintained using the above-mentioned circulating reduction system, and ventilation can be ensured using materials other than coke.
  • FIG. 1 is a schematic diagram showing the configuration of a circulating reduction system 100 according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of a circulating reduction system 200 according to another embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing an equilibrium calculation model of a circulating reduction system according to Invention Example 1.
  • 4 is a graph showing the reduction situation in the model of FIG. 3 (invention example 1).
  • FIG. 7 is a schematic diagram showing an equilibrium calculation model of a circulating reduction system according to Invention Example 2.
  • 6 is a graph showing the reduction situation in the model of FIG. 5 (invention example 2).
  • FIG. 2 is a schematic diagram showing an equilibrium calculation model of a circulating reduction system according to a comparative example.
  • FIG. 8 is a graph showing the return situation in the model (comparative example) of FIG. 7. It is a graph showing the change in the amount of heat absorbed in the reduction furnace with respect to the number of cycles in Invention Examples 1 and 2 and Comparative Example. It is a graph showing the change in the amount of heat absorbed in the reduction furnace in the FeO reduction region with respect to the amount of hydrogen in the hydrogenation gas in Invention Examples 1 and 2 and Comparative Example.
  • FIG. 3 is a schematic diagram showing the configuration of an experimental circulating reduction system according to Invention Example 3.
  • FIG. 4 is a schematic diagram showing the configuration of an experimental circulating reduction system according to Invention Example 4.
  • the circulating reduction system 100 includes a reduction furnace 10, a first dehumidifier 20, a hydrogen gas supply device 30, a catalyst device 40, a second dehumidifier 50, and a gas heating device 60, and includes a first pipe 81 as piping equipment, It has a second pipe 82, a third pipe 83, a fourth pipe 84, a fifth pipe 85, a sixth pipe 86, a seventh pipe 87, and a switching valve 90.
  • the reduction furnace 10 may be, for example, a blast furnace such as a blast furnace.
  • a blast furnace When the reduction furnace 10 is a blast furnace, iron ore and coke are charged into the reduction furnace 10 from the furnace top 12, and high-temperature reducing gas is blown into the reduction furnace 10 from the tuyere 14 located at the bottom of the reduction furnace 10. In this manner, iron ore is reduced in the reduction furnace 10.
  • the first piping 81 is piping equipment that collects exhaust gas containing CO 2 generated in the reduction furnace 10 from the reduction furnace 10 and allows it to pass therethrough.
  • the first pipe 81 has a starting end connected to the reduction furnace 10 (in one example, the furnace top 12), and a terminal end connected to the catalyst device 40.
  • the hydrogen gas supply device 30 is connected to the middle of the first pipe 81 .
  • the first dehumidifier 20 is disposed in the middle of the first pipe 81 upstream of the portion to which the hydrogen gas supply device 30 is connected.
  • the first pipe 81 includes a pipe 81A that extends from the reduction furnace 10 and connects to the first dehumidifier 20, and a pipe 81B that extends from the first dehumidifier 20 and connects to the catalyst device 40.
  • a pipe 81A that extends from the reduction furnace 10 and connects to the first dehumidifier 20
  • a pipe 81B that extends from the first dehumidifier 20 and connects to the catalyst device 40.
  • Exhaust gas discharged from the furnace top 12 of the reduction furnace 10 is dehumidified by the first dehumidifier 20 while flowing through the first pipe 81, and then hydrogen (H 2 ) gas is supplied from the hydrogen gas supply device 30. is replenished and becomes hydrogenated gas.
  • the dehumidification treatment is preferably performed in order to suppress the water gas shift reaction and promote the reverse water gas shift reaction.
  • the composition of the exhaust gas is not particularly limited, but typically contains CO2 : 13 to 24% by volume, CO: 21 to 31% by volume, and H2 : 3 to 15% by volume, excluding water vapor.
  • the remainder has a composition of N2 derived from air.
  • the composition of the hydrogenation gas is not particularly limited, but typically contains 13 to 24% by volume of CO 2 , 21 to 31% by volume of H 2 , and 10 to 30% by volume of H 2 , excluding water vapor. , the remainder being N2 derived from air.
  • the hydrogen supplied from the hydrogen gas supply device 30 is preferably green hydrogen obtained by water electrolysis using renewable energy, but by applying the circulating reduction system of the present invention to blast furnace operation, it is possible to use coke. Until the amount reaches zero, it can be replaced with hydrogen purified from coke oven gas.
  • a dust removal device (not shown) is installed in the middle of the first piping 81 upstream of the first dehumidifier 20 or downstream of the first dehumidifier 20 and upstream of the part to which the hydrogen gas supply device 30 is connected. It is preferable to provide a filter (1) to perform dust removal treatment on the exhaust gas to remove dust originating from the raw materials from the exhaust gas.
  • the catalyst device (reverse shift type reformer) 40 has a reaction chamber 42 to which the terminal end of the first pipe 81 is connected and accommodates a catalyst for the reverse water gas shift reaction, and a heating device 44 that heats the reaction chamber 42. .
  • the hydrogenated gas introduced into the reaction chamber 42 from the first pipe 81 comes into contact with the catalyst, and CO2 in the hydrogenated gas is converted to CO by a reverse water gas shift reaction, increasing the CO concentration. It becomes a CO-rich gas.
  • the composition of the CO-rich gas after the reverse water gas shift reaction is not particularly limited, but typically, excluding water vapor, it contains CO 2 : 6-20% by volume, CO: 24-40% by volume, and H 2 : 5-24%. % by volume, with the remainder being N2 derived from air.
  • There are many known catalysts that can be used in the reverse water gas shift reaction including those based on nickel and noble metals, and any of them may be used in the present invention.
  • the temperature of the hydrogenation gas introduced should be kept as low as possible within a temperature range where the catalyst is unlikely to deteriorate. It is desirable to set it to a high temperature. Specifically, it is preferable that the inside of the reaction chamber 42 be heated by the heating device 44 so that the temperature of the reaction gas (hydrogenation gas) around the catalyst is 800° C. or higher and 1200° C. or lower.
  • the second pipe 82 extends from the catalyst device 40 and is connected to the reduction furnace 10 (in one example, the tuyere 14), and allows the CO-rich gas to pass through the reduction furnace using the CO-rich gas as a reducing gas (in one example, via the tuyere 14).
  • This is piping equipment that supplies the inside of 10.
  • a second dehumidifier 50 that removes water vapor from the CO-rich gas and a gas heating device 60 that heats the CO-rich gas are disposed in the middle of the second pipe 82. In this case, it is preferable that the gas heating device 60 is arranged downstream of the second dehumidifier 50.
  • the second pipe 82 includes a pipe 82A extending from the catalyst device 40 and connecting to the second dehumidifier 50, a pipe 82B extending from the second dehumidifier 50 and connecting to the gas heating device 60, and a pipe 82B extending from the gas heating device 60. It has a pipe 82C connected to the reduction furnace 10 (in one example, the tuyere 14).
  • the CO-rich gas that has passed through the catalyst device 40 is dehumidified by the second dehumidifier 50 while flowing through the second pipe 82, heated by the gas heating device 60, and then returned to the reduction furnace 10 as a reducing gas. is blown into.
  • the temperature of the CO-rich gas (reducing gas) blown into the reduction furnace 10 is desirable to adjust the temperature of the CO-rich gas (reducing gas) blown into the reduction furnace 10 using the gas heating device 60.
  • the amount of coke input must be maintained at 1650°C or higher. If the amount of coke input is less than 20% of that of a conventional blast furnace, the temperature of the reducing gas is heated to 1,500 degrees Celsius or higher. It is preferable to blow in at the top.
  • a preferred operation of the gas heating device 60 is as follows.
  • the circulation type reduction system 100 of this embodiment branches from a position upstream of the gas heating device 60 and downstream of the second dehumidifier 50 in the middle of the second piping 82, and is connected to the gas heating device 60. It is preferable to have three pipes 83. Then, it is preferable to supply a part of the CO-rich gas flowing through the second pipe 82 to the gas heating device 60 via the third pipe 83 as combustion gas. In this way, by burning part of the CO-rich gas as fuel gas in the gas heating device 60, the temperature of the reducing gas can be raised to the above-mentioned desired temperature.
  • the oxygen-containing gas supplied to the gas heating device 60 to combust the combustion gas is preferably oxygen gas (not containing unconsumed nitrogen).
  • the circulation type reduction system 100 has a fourth pipe 84 extending from the gas heating device 60 and connected to the middle of the first pipe 81.
  • the combustion exhaust gas generated from the gas heating device 60 is joined to the exhaust gas in the first pipe 81 via the fourth pipe 84 and reused.
  • the fourth pipe 84 is preferably connected to a position upstream of the first dehumidifier 20 in the middle of the first pipe 81 .
  • the combustion exhaust gas generated from the gas heating device 60 is transferred to (1) the reducing gas piping between the catalyst device 40 and the gas heating device 60, (2) the hydrogenation gas piping between the hydrogen gas supply device 30 and the catalyst device 40, and heat. If the exhaust gas is exchanged and then merged with the exhaust gas in the first pipe 81 upstream of the first dehumidifier 20, the reducing gas and the hydrogenation gas can be preheated.
  • the reducing gas cannot be raised to the desired temperature using the indirect heating type gas heating device 60 as illustrated in FIG. It is also possible to directly combust some of the CO and H 2 contained in the fuel. Furthermore, if oxygen-rich air is used in the hot air blown into the reduction furnace 10 when starting up in blast furnace mode, the heat load on the gas heating device 60 that is taken away by nitrogen heating will be reduced. It becomes easier to raise the temperature of the reducing gas.
  • the circulating reduction system 100 of the present embodiment preferably has a fifth pipe 85 branched from the second pipe 82 and connected to the heating device 44 of the catalyst device 40. It is preferable that the fifth pipe 85 branches off from a position upstream of the gas heating device 60 and downstream of the second dehumidifier 50 in the middle of the second pipe 82 . Then, it is preferable to supply part of the CO-rich gas to the heating device 44 as combustion gas via the fifth pipe 85.
  • the oxygen-containing gas supplied to the heating device 44 to combust the combustion gas is preferably oxygen gas (not containing unconsumed nitrogen).
  • the circulating reduction system 100 has a sixth pipe 86 extending from the heating device 44 and connected to the middle of the first pipe 81.
  • the combustion exhaust gas generated from the heating device 44 is joined to the exhaust gas in the first pipe 81 via the sixth pipe 86 and reused.
  • the downstream portion 86B of the sixth piping 86 also serves as the downstream portion 84 of the fourth pipe 84.
  • the present invention is not limited to this, and it goes without saying that the sixth pipe 86 may be directly connected to the first pipe 81 independently of the fourth pipe 84.
  • the combustion exhaust gas generated from the heating device 44 is heat exchanged with the hydrogenation gas piping between the hydrogen gas supply device 30 and the catalyst device 40, and then the exhaust gas in the first piping 81 is transferred upstream of the first dehumidifier 20.
  • the hydrogenation gas can also be preheated by merging it with the hydrogen gas.
  • a process of reducing iron ore by blowing reducing gas a process of recovering exhaust gas from a reduction furnace, a process of dust removal and dehumidification of exhaust gas (optional process), and a process of adding hydrogen gas to exhaust gas.
  • a step of generating CO-rich gas from hydrogenated gas by a reverse water gas shift reaction a step of dehumidifying the CO-rich gas (optional step), a step of heating the CO-rich gas (optional step), and a step of blowing the CO-rich gas as a reducing gas.
  • the unconverted CO 2 remaining in the CO-rich gas used as the reducing gas becomes a CO source in the course of the circulation process, so there is no need to separate it from the reducing gas. That is, in this embodiment, it is important that a separation device that separates, recovers, or removes specific gas components other than water vapor from the gas passing through them is not disposed in the middle of the first pipe 81 and the second pipe 82. be. In this embodiment, since no new separation and concentration process is required other than dust removal and dehumidification to which existing techniques can be applied, the circulation efficiency of the reducing gas is high.
  • a CO-based reducing gas modified from exhaust gas is supplied into the reduction furnace 10 at high temperature, and impurities in the iron ore can be separated from the hot metal as molten slag.
  • Low-grade fine ore or fine ore which is cost-effective and easy to procure, can be used in the form of pellets or sintered ore.
  • the circulation type reduction system 100 includes a switching valve 90 disposed in the middle of the second pipe 82 and a seventh pipe 87 extending from the switching valve 90. A portion of the rich gas can be recovered.
  • the recovered CO-rich gas can be used, for example, as synthesis gas, which is a raw material for organic compounds.
  • a system is realized in which the CO2 - rich exhaust gas discharged from the reduction furnace 10 is converted into CO-rich reducing gas and recycled, so the surplus CO2-rich gas is used as synthesis gas for the organic chemical industry, etc. By making effective use of CO2, it will be possible to suppress CO2 emissions into the atmosphere to zero levels.
  • the molten slag separated from the hot metal is slowly cooled in a mold to become solidified slag, and this solidified slag is crushed to become crushed slag, which can be reused as a ventilation material. If part of the pig iron discharged from the reduction furnace (blast furnace) is attached to this slag-derived ventilation material, the pig iron can be returned to the reduction furnace as an iron source through this ventilation material.
  • the molten slag is automatically discharged to the surface of the hot metal due to the difference in specific gravity, so even if it is recycled, it will have almost no negative effect on the quality of the hot metal.
  • the recycled molten slag since the recycled molten slag has the same quality as normal blast furnace slag, it can be used industrially as a raw material for blast furnace cement and the like.
  • the circulation type reduction system 200 has the same configuration as the circulation type reduction system 100 except that the second dehumidifier 50 is not provided and a third dehumidifier 70 is placed in the middle of the seventh pipe 87 instead. have That is, the second dehumidifier 50 is not an essential component in the present invention.
  • the third dehumidifier 70 removes water vapor from the CO-rich gas passing through the seventh pipe 87.
  • the reduction furnace 10 is a blast furnace such as a blast furnace and the object to be reduced is iron ore has been mainly described, but the present invention is not limited thereto.
  • the reduction furnace 10 may be a solid reduction furnace.
  • the object to be reduced is not limited to iron ore as long as it is an oxide, and may be, for example, manganese ore, which is a raw material for ferromanganese or silicomanganese.
  • a method for reducing iron ore according to an embodiment of the present invention uses the above-described circulating reduction system 100, 200 to circulate and utilize CO-rich gas obtained by reforming exhaust gas as a reducing gas, and convert it into oxides.
  • the company conducts reduction processing of iron ore. Thereby, the CO rich gas obtained by reforming the exhaust gas containing CO 2 generated from the reduction furnace 10 can be efficiently circulated and used as a reducing gas, and the iron ore can be reduced.
  • the amount of CO 2 generated can be significantly reduced. can be reduced. Furthermore, it becomes possible to drastically reduce the input amount of reducing agents derived from fossil fuels such as coke, which are conventionally used in the iron ore reduction process.
  • a method for operating a blast furnace according to an embodiment of the present invention is performed using the above-described circulating reduction system 100, 200.
  • the reduction furnace (blast furnace) 10
  • (II) the blast furnace From the top of the reduction furnace (blast furnace) 10, (I) at least one type of iron ore (iron source) selected from sintered ore, lump ore, iron ore pellets, and fine ore, and (II) the blast furnace.
  • Crushed slag obtained by crushing solidified slag obtained by slowly cooling the molten slag discharged from the bottom of the blast furnace, or a ventilation material made of a mixture of this crushed slag and coke, are charged into a blast furnace in alternating layers. Therefore, it is important to ensure ventilation of the reducing gas inside the furnace.
  • the above-mentioned circulating reduction systems 100, 200 it is possible to maintain the temperature
  • reducing gas and air are supplied from the tuyere 14 into the inside of the blast furnace as blowing gas. At this time, it is preferable to gradually increase the ratio of crushed slag to coke in the ventilation material and the ratio of reducing gas to air in the blown gas to gradually suppress the amount of coke used.
  • the method of operating a blast furnace it is possible to obtain reduced iron in the form of hot metal using low-cost and easily procured low-grade fine ore powder or powdered ore.
  • the conventional integrated pig steel process can be used as is.
  • the degree of ventilation in the blast furnace can be adjusted by the particle size of the crushed slag. For example, if the slowly cooled slag is cast with ventilation holes added, it will be easier to ensure ventilation. Note that there is no particular problem even if common blast furnace slag is used as the ventilation material.
  • the amount of molten slag generated in the circulating blast furnaces 100, 200 is larger than that in a normal blast furnace because the slag re-injected from the furnace top 12 is remelted after the cohesive zone. There will be more. Furthermore, as the amount of slag added increases, the amount of heat taken away as heat of fusion of the slag also increases. Therefore, when starting up operations in blast furnace mode, it is desirable to adjust the thickness ratio of the iron source layer and the aeration layer in advance so that the iron source layer is richer than in a typical blast furnace.
  • Example 1 As described below, equilibrium calculations were performed to confirm the effects of the reduction method of the present invention as Invention Examples 1 and 2 and a comparative example.
  • FIG. 1 An equilibrium calculation model of the circulating reduction system according to Invention Example 1 is shown in FIG.
  • the reduction furnace 10 containing 25 moles of iron (III) oxide (Fe 2 O 3 ) contains 22 moles of CO, 22.8 moles of CO 2 , 4.2 moles of H 2 , and 4.2 moles of N 2 :
  • a state is assumed in which a reverse shift type reformer (hereinafter simply referred to as "reformer 40") is connected as a catalyst device 40 containing a mixed gas of 51 moles equivalent to a total of 100 moles of blast furnace exhaust gas.
  • reformer 40 a reverse shift type reformer
  • a first dehumidifier 20 is installed on the inlet side of the reformer, a second dehumidifier 50 is installed on the outlet side of the reformer, and between the first dehumidifier and the reformer, the number of H2 moles in the reformer (blast furnace exhaust gas)
  • a hydrogen gas supply device 30 is installed to maintain the CO 2 concentration at 22.8 mol (corresponding to the CO 2 concentration in the tank). Assuming that no gas enters or exits the reduction furnace and reformer other than H 2 supplied from the hydrogen gas supply device and H 2 O removed by the first and second dehumidifiers, all H 2 O is consumed. It can be considered that the total number of moles of the mixed gas circulating through the reformer and the reduction furnace does not change because it is generated from the H 2 that was removed.
  • Example 1 of the present invention the temperatures inside the reduction furnace and the reformer are both maintained at 900° C. by the amount of heat supplied from the outside.
  • a gas transport system is required to actually circulate gas between the reduction furnace and the reformer, but since the purpose is to confirm the principle, the energy consumed by it will be ignored. Similarly, the energy consumed to drive the first dehumidifier, the second dehumidifier, and the hydrogen gas supply device is also ignored.
  • the reverse water gas shift reaction in the reformer may not reach an equilibrium state, so it is assumed that an equilibrium reaction has been reached, although it depends on the performance of the catalyst used.
  • reduction of the iron source proceeds with CO supplied from the reformer and surplus H 2 not consumed in the reverse water gas shift reaction.
  • the solid phase Fe 2 O 3 input as an iron source changes to twice the molar amount of FeO (solid phase) in the first cycle, and after the second cycle, FeO is gradually reduced to ⁇ -Fe (solid phase).
  • the reduction is completed in the 7th cycle.
  • the fact that the main reduction reaction is from FeO to ⁇ -Fe is consistent with the knowledge known in blast furnaces.
  • the amount of H2 consumed in reducing this iron source is 89 moles.
  • FIG. 5 shows an equilibrium calculation model of the circulating reduction system according to Invention Example 2. This is the same as the equilibrium calculation model of the circulating reduction system according to Invention Example 1 shown in FIG. 3, except that the second dehumidifier is not provided on the outlet side of the reformer.
  • the calculation conditions were also the same as in Invention Example 1, and the equilibrium state of the gas components and iron source in the reformer and reduction furnace was calculated. The results are shown in FIG.
  • the solid phase Fe 2 O 3 input as an iron source changes to twice the molar amount of FeO (solid phase) in the first cycle, and after the third cycle, FeO is gradually reduced to ⁇ -Fe (solid phase).
  • the reduction is completed in the 9th cycle.
  • the fact that the main reduction reaction is from FeO to ⁇ -Fe is consistent with the knowledge known in blast furnaces.
  • the amount of H2 consumed in the reduction of this iron source is 85 moles.
  • FIG. 7 shows an equilibrium calculation model of a circulating reduction system according to a comparative example. This is the same as the equilibrium calculation model of the circulating reduction system according to Invention Example 1 shown in FIG. 3, except that the reformer and the second dehumidifier are not provided. The calculation conditions were also the same as in Invention Example 1, and the equilibrium state of the gas components and iron source in the reformer and reduction furnace was calculated. The results are shown in FIG.
  • the amount of H 2 supplied to the reformer in order to maximize the calorific value in the FeO reduction region is expected to be approximately the same as the molar amount of CO 2 in the exhaust gas. If the amount of H 2 replenishment to the reformer is suppressed, it is thought that the reduction rate will also decrease, so in reality, the amount of H 2 replenishment is adjusted based on the balance between the temperature inside the reduction furnace and the reduction rate.
  • Example 2 As described below, as Invention Examples 3 and 4, iron ore was reduced using an experimental circulating reduction system.
  • FIG. 3 The configuration of an experimental circulating reduction system according to Invention Example 3 is shown in FIG.
  • coke 2 crushed to about 5 mm is placed on a tungsten mesh that partitions the bottom of the BF simulator (hereinafter referred to as "reduction furnace 10"), which is an experimental reduction furnace installed on a weight scale.
  • a raw material block A was formed by alternately stacking .2 kg of lump ore and 5.0 kg of lump ore crushed to around 3 mm.
  • a raw material block B was formed.
  • Exhaust gas discharged from the top of the furnace is passed through a dust removal device, a dehumidifier 20, a first electric tubular furnace 40, a dehumidifier, a second electric tubular furnace 40, a dehumidifier 50, and a regenerative gas heating furnace 60.
  • a dust removal device a dehumidifier 20
  • a first electric tubular furnace 40 a dehumidifier
  • a second electric tubular furnace 40 a dehumidifier 50
  • a regenerative gas heating furnace 60 After passing through, one side was connected to the exhaust gas treatment device and the other side was connected to a nozzle 92 at the lower part of the reduction furnace via a switching valve 91.
  • the two electric tube furnaces 40 are ceramic electric tube furnaces in which a quartz reaction tube holding 51 g of platinum catalyst is set in the center.
  • Sampling tubes for gas composition analysis are provided at two locations, immediately before the first electric tubular furnace 40 and between the second electric tubular furnace 40 and the dehumidifier 50. ) was connected. Further, a hydrogen pipe 30 was connected between the dehumidifier 20 and the first electric tubular furnace 40 via a switching valve 93 and a mass flow controller (MFC) 94.
  • MFC mass flow controller
  • a nozzle 96 was provided to feed 2.3% oxygen-enriched air via a regenerative gas heating furnace 95.
  • the flow rate of air introduced from the nozzle 96 was controlled by a mass flow controller (MFC) 97.
  • MFC mass flow controller
  • a purge nitrogen gas pipe was connected between the dehumidifier 20 and the switching valve 93 via the switching valve 98.
  • the switching valve 91 was set on the exhaust gas treatment device side to separate the exhaust gas from the reduction furnace 10. Then, air heated to 1200° C. by the MFC 97 was introduced into the reduction furnace 10 from the nozzle 96 of the reduction furnace 10 at a flow rate of 17 L/min. Both electric tubular furnaces 40 were set to have an internal temperature of 800° C. using a thermocouple (TC) provided around the catalyst.
  • TC thermocouple
  • Typical composition of exhaust gas generated by reduction of lump ore in raw material block A and mixed gas after passing through the second electric tubular furnace 40 are as described in Table 1.
  • CO increases by 2.7% due to a reverse water gas shift reaction due to excess H 2 in the exhaust gas, and CO 2 and H 2 each decrease by 2.7%.
  • FIG. 12 shows the configuration of an experimental circulating reduction system according to Invention Example 4. This is the same as the circulating reduction system of Invention Example 3 shown in FIG. 11, except that there is only one electric tubular furnace 40 and no dehumidifier is disposed downstream of the electric tubular furnace 40.
  • the electric tubular furnace 40 was set to have an internal temperature of 900° C. using a thermocouple (TC) provided around the catalyst. The test was conducted under the same conditions as in Invention Example 3 except for the above.
  • TC thermocouple
  • the typical composition of the exhaust gas generated by reducing the lump ore in raw material block A and the mixed gas after passing through the electric tubular furnace 40 (in the case of no hydrogen replenishment at the entrance side of the electric tubular furnace 40) is shown in Table 1. As described. It can be seen that after passing through the electric tubular furnace 40, CO increases by 1.8% due to a reverse water gas shift reaction due to excess H 2 in the exhaust gas, and CO 2 and H 2 each decrease by 1.8%.
  • Circulating reduction system 200 Circulating reducing system 10 Reduction furnace 12 Furnace top 14 Tuyere 20 First dehumidifier 30 Hydrogen gas supply device 40 Catalyst device 42 Reaction chamber 44 Heating device 50 Second dehumidifier 60 Gas heating device 70 Third Dehumidifier 81 First pipe 82 Second pipe 83 Third pipe 84 Fourth pipe 85 Fifth pipe 86 Sixth pipe 87 Seventh pipe 90 Switching valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

Provided is a circulating reduction system with which it is possible to efficiently circulate and utilize, as a reduction gas, a CO-rich gas obtained by reforming an exhaust gas that contains CO2 generated in a reduction furnace. In this circulating reduction system 100, an exhaust gas that contains CO2 generated in a reduction furnace 10 is recovered via first piping 81, and hydrogen gas is added to the exhaust gas from a hydrogen gas supply device 30 to produce a hydrogen-added gas. In a catalyst device 40, the CO2 in the hydrogen-added gas is converted to CO through a reverse water gas shift reaction, and a CO-rich gas in which the CO concentration is increased. The CO-rich gas is fed through second piping 82 into the reduction furnace 10 as a reduction gas. No separation device for separating, and recovering or removing, a specific gas component that is not water vapor from a gas passing through the first piping 81 and the second piping 82 is provided partway along the first piping 81 or the second piping 82.

Description

循環型還元システム、鉄鉱石の還元方法、及び溶鉱炉の操業方法Circulating reduction system, iron ore reduction method, and blast furnace operating method
 本発明は、地球温暖化を促進するCOの排出量を抜本的に削減することが可能な、循環型還元システム、鉄鉱石の還元方法、及び溶鉱炉の操業方法に関する。 The present invention relates to a circulating reduction system, a method for reducing iron ore, and a method for operating a blast furnace, which can drastically reduce CO 2 emissions that promote global warming.
 地球温暖化を促進するCOの排出量の削減が地球規模で叫ばれる中、日本国内のCO排出量の15%前後を占める同国内の鉄鋼業は、政府方針を受けて2050年カーボンニュートラルを宣言した。それを実現するためには、粗鋼を現状のレベルに近い低コストで製造するための、鉄鉱石の還元プロセス及び還元炉を開発する必要があるが、その技術的な目途は殆ど立っていないのが現状である。 Amid calls for reducing CO2 emissions, which promote global warming, on a global scale, Japan's steel industry, which accounts for around 15% of CO2 emissions in Japan, is aiming to become carbon neutral by 2050 in accordance with government policy. declared. In order to achieve this, it is necessary to develop an iron ore reduction process and a reduction furnace to produce crude steel at a low cost close to the current level, but there are almost no technical prospects for this. is the current situation.
 ここで、水素を鉄鉱石の還元剤とする水素還元プロセスは、COを発生しない理想的な粗鋼生産技術として世界的な注目を集めている。しかし、この方法で国内の年間約7500万トンの溶銑の生産量を維持しようとすると、およそ750億Nmもの水素が必要になる。これを代表的なグリーン水素製造法である水電解法で賄うには、水素の輸送・液化・貯蔵などに要する電力を全て無視したとしても、年間0.34兆kWhもの電力が必要になるとの試算もある。仮に電力コストの重い課題をクリアできたとしても、年間消費電力量が1兆kWh規模の我が国でこれだけの電力を国内の高炉メーカーのために調達することは極めて非現実的と言わざるを得ない。 Here, the hydrogen reduction process using hydrogen as a reducing agent for iron ore is attracting worldwide attention as an ideal crude steel production technology that does not generate CO2 . However, if this method were to maintain domestic production of hot metal of approximately 75 million tons per year, approximately 75 billion Nm3 of hydrogen would be required. It is estimated that in order to meet this demand using the water electrolysis method, which is a typical green hydrogen production method, 0.34 trillion kWh of electricity would be required annually, even if all electricity required for transportation, liquefaction, and storage of hydrogen is ignored. There is also. Even if we were able to overcome the heavy issue of electricity costs, it must be said that it is extremely unrealistic to procure this much electricity for domestic blast furnace manufacturers in Japan, where annual electricity consumption is on the order of 1 trillion kWh. .
 一方で、安価な再生可能エネルギーを使って製造した大量の水素を海外から調達する、様々な試みも進められている。しかし、輸送コストの重い課題をクリアできたとしても、爆発濃度範囲の広い水素を製鉄所の周辺に安全に大量貯蔵する技術的な目途は全く立っていない。 On the other hand, various attempts are underway to procure large amounts of hydrogen produced using cheap renewable energy from overseas. However, even if the heavy problem of transportation costs could be overcome, there is no technical prospect for safely storing large quantities of hydrogen, which has a wide explosive concentration range, around steelworks.
 ところで、国内の鉄鋼業が国内のCO排出量の15%前後のCOを排出しているのは、コークスを使って鉄鉱石を還元する高炉-転炉法を主に用いて、高級鋼材を生産しているためである。粗鋼の生産方法は、主に、高炉-転炉法と電炉法に分類され、高炉-転炉法では鋼材1t当たり約2t、電炉法では鋼材1t当たり約0.5tのCOが発生する。COの発生量を抑制できる点では電炉法の方が優れている。しかしながら、自動車等に使用される高級鋼材は、銅などの不純物が品質に悪影響を与えやすいことから、スクラップを原料とする電炉法では量産されていない。そのため、国内の粗鋼の約75%は高炉-転炉法で生産されている。 By the way , the domestic steel industry emits around 15% of the domestic CO2 emissions, mainly through the use of the blast furnace-converter method, which uses coke to reduce iron ore. This is because they are producing. Crude steel production methods are mainly classified into the blast furnace-converter method and the electric furnace method. The blast furnace-converter method generates about 2 tons of CO 2 per ton of steel, and the electric furnace method generates about 0.5 t of CO 2 per ton of steel. The electric furnace method is superior in that it can suppress the amount of CO 2 generated. However, high-grade steel materials used in automobiles and the like are not mass-produced using the electric furnace method, which uses scrap as raw material, because impurities such as copper tend to adversely affect quality. For this reason, approximately 75% of domestic crude steel is produced using the blast furnace-converter method.
 COの排出量が特に多い高炉に対して、例えば特許文献1では、羽口から吹き込む高温の空気を水素やメタンなどの還元ガスに置換することによってコークスの使用量を削減する試みがなされている。しかし、コークスには、還元剤としての役割に加え、熱風炉から吹き込まれる酸素との反応を介して炉内を加熱する加熱材としての役割と、炉内の通気を確保する通気材としての役割がある。従って、炉内温度を維持し、かつ、溶銑の品質に悪影響を与えないで通気性を確保するための、(コークス以外の)新たな手段が見つかるまでは、コークスの使用量を抜本的に抑制することは、極めて困難である。 For blast furnaces that emit a particularly large amount of CO2 , for example, Patent Document 1 attempts to reduce the amount of coke used by replacing the high-temperature air blown in from the tuyere with a reducing gas such as hydrogen or methane. There is. However, in addition to its role as a reducing agent, coke also plays a role as a heating material that heats the inside of the furnace through a reaction with oxygen blown in from the hot stove, and as a ventilation material that ensures ventilation inside the furnace. There is. Therefore, until a new means (other than coke) is found to maintain the furnace temperature and ensure ventilation without adversely affecting the quality of the hot metal, the amount of coke used must be drastically reduced. It is extremely difficult to do so.
 以上の背景から、我が国の鉄鋼メーカーは、高炉の操業台数を削減して電炉の比率を上げることで当座を凌ぐしかないのが現状である。そのため、電炉に使用するスクラップの需要は既に旺盛になっており、その調達を賭けた熾烈な争いが今後一層厳しさを増すと予想されている。 Given the above background, the current situation is that Japan's steel manufacturers have no choice but to reduce the number of blast furnaces in operation and increase the ratio of electric furnaces to overcome the current situation. For this reason, demand for scrap used in electric furnaces is already strong, and the fierce competition to procure it is expected to become even more intense in the future.
 このような状況下で、高炉-転炉法に比べてCO排出量の少ない直接還元プロセスが世界的に注目されている。代表的な直接還元プロセスである、いわゆるミドレックスプロセスでは、変性天然ガスによって鉄鉱石を固相のまま還元して直接還元鉄(DRI:Direct Reduced Iron)を得ることができる(引用文献2参照)。初期のミドレックスプロセスではスポンジ状のDRIしか製造できなかったため、酸化や発火の観点からその取り扱いや輸送は難しいとされてきた。しかし、ホットブリケット装置が開発・工業化されてからは、それらの問題はほぼ解消され、DRIをスクラップに混合して電炉に投入することで、投入スクラップ量を削減して鋼材の品質を高める動きが世界的に広がりつつある。さらに、天然ガスを、メタネーション反応(CO+4H→CH+2HO)を利用してCOと水素から合成したメタンで置換したり、あるいは水素そのものに置き換えたりすることも試みられている。 Under these circumstances, the direct reduction process, which produces less CO 2 emissions than the blast furnace-converter method, is attracting worldwide attention. In the so-called Midrex process, which is a typical direct reduction process, direct reduced iron (DRI) can be obtained by reducing iron ore in its solid phase using modified natural gas (see cited document 2). . The early Midrex process could only produce sponge-like DRI, making it difficult to handle and transport due to oxidation and ignition. However, after the development and industrialization of hot briquetting equipment, these problems have almost been resolved, and there is a movement to reduce the amount of scrap input and improve the quality of steel by mixing DRI with scrap and feeding it into the electric furnace. It is spreading worldwide. Furthermore, attempts have been made to replace natural gas with methane synthesized from CO 2 and hydrogen using the methanation reaction (CO 2 + 4H 2 → CH 4 + 2H 2 O), or with hydrogen itself. There is.
 一方、固相還元である直接還元プロセスでは、製造するDRIの品位を保とうとすると、コストと調達に制約のある高品位の鉄鉱石を原料に使用せざるを得ない。この点は、鉄鉱石原料の約85%を低品位の微粉鉱石や粉鉱石から製造したペレットや焼結鉱とすることができる、従来の高炉法に対する大きなデメリットとなる。 On the other hand, in the direct reduction process, which is solid phase reduction, in order to maintain the quality of the DRI produced, it is necessary to use high-grade iron ore as a raw material due to cost and procurement constraints. This is a major disadvantage over the conventional blast furnace method, in which about 85% of the iron ore raw material can be made into pellets or sintered ore made from low-grade fine ore.
 さらに、直接還元プロセスでは、粗鋼を溶銑の形で取り出すことができないため、予備処理炉や転炉などの従来の銑鋼一貫プロセスの精錬設備を流用できない。この点も、我が国の高炉メーカーが高炉プロセスに執着する一因になっている。なお、直接還元プロセスが固相還元に留まっているのは、上述したように、通気性と溶銑を得るための炉内温度の維持という課題を抜本的に解決できていないためと推測される。 Furthermore, in the direct reduction process, crude steel cannot be extracted in the form of hot metal, so conventional refining equipment for integrated pig steel processes such as pretreatment furnaces and converters cannot be used. This point is also one of the reasons why Japanese blast furnace manufacturers are obsessed with the blast furnace process. The reason why the direct reduction process is limited to solid-phase reduction is presumed to be because, as mentioned above, the problems of maintaining air permeability and the temperature inside the furnace to obtain hot metal have not been fundamentally solved.
 すなわち、高炉-転炉法では、コークスを代替可能な還元剤・加熱材と、溶銑の品質に悪影響を与えることなく通気性を確保する新たな手段が主な足枷になって、コークス使用量を抜本的に削減する目途が立っていない。また、高炉-転炉法に比べてCO排出量の少ない直接還元プロセスには、高炉で使用可能な低コストで調達が容易な低品位の微粉鉱石や粉鉱石を使用できず、粗鋼を溶銑として取り出せないために従来の銑鋼一貫プロセスの精錬設備も流用できないというデメリットがある。 In other words, in the blast furnace-converter process, the main obstacles are reducing agents and heating materials that can replace coke, and new means of ensuring air permeability without adversely affecting the quality of hot metal, and the amount of coke used can be reduced. There is no prospect of drastic reduction. In addition, the direct reduction process, which has lower CO2 emissions than the blast furnace-converter method, cannot use low-grade fine ore powder or ore, which can be used in blast furnaces at low cost and is easy to procure. The disadvantage is that the refining equipment for the conventional pig steel integrated process cannot be used because it cannot be extracted as a metal.
 このような背景から、特許文献3では、高炉からの排気ガスに含まれるCOを利用する技術が提案されている。すなわち、高炉の排気ガスからCOを分離し、回収したCOをCOに改質し、このCOを高炉の還元剤として再利用することが提案されている。 Against this background, Patent Document 3 proposes a technology that utilizes CO 2 contained in exhaust gas from a blast furnace. That is, it has been proposed to separate CO 2 from blast furnace exhaust gas, reform the recovered CO 2 into CO, and reuse this CO as a reducing agent for the blast furnace.
国際公開第2021/220555号International Publication No. 2021/220555 特開2017-88912号公報JP2017-88912A 特開2011-225968号公報JP2011-225968A
 上記の特許文献3に記載の技術では、高炉で発生した排気ガスから分離回収したCOをCOに改質して再利用する結果、COの発生量を抑制することができる。しかしながら、この技術では、排気ガスから一旦COを分離回収してCOの改質を行う、複数の工程を経るため、排気ガス中の還元成分の循環効率の低下と、各工程の設備・運転・維持に要するコストの負担を免れない。そのため、高炉などの還元炉の排気ガス中の還元成分をより効率的な手法を用いて循環利用することが希求されていた。 In the technique described in Patent Document 3, the amount of CO 2 generated can be suppressed as a result of reforming CO 2 separated and recovered from exhaust gas generated in a blast furnace into CO and reusing it . However, this technology involves multiple steps in which CO 2 is first separated and recovered from the exhaust gas and then reformed, resulting in a decrease in the circulation efficiency of the reducing components in the exhaust gas and a reduction in the equipment and equipment used in each process. The cost of operation and maintenance cannot be avoided. Therefore, there has been a desire to recycle and utilize reducing components in the exhaust gas of a reducing furnace such as a blast furnace using a more efficient method.
 上記課題に鑑み、本発明は、還元炉から発生するCOを含む排気ガスを改質して得たCOリッチガスを還元ガスとして効率的に循環利用することが可能な循環型還元システムを提供することを目的とする。 In view of the above-mentioned problems, the present invention provides a circulating reduction system that is capable of efficiently recycling CO-rich gas obtained by reforming exhaust gas containing CO 2 generated from a reduction furnace as reducing gas. The purpose is to
 また、本発明は、還元炉から発生するCOを含む排気ガスを改質して得たCOリッチガスを還元ガスとして効率的に循環利用して、鉄鉱石の還元処理を行うことが可能な、鉄鉱石の還元方法を提供することを目的とする。 In addition, the present invention makes it possible to perform the reduction treatment of iron ore by efficiently circulating and using CO-rich gas obtained by reforming exhaust gas containing CO 2 generated from a reduction furnace as a reducing gas. The purpose is to provide a method for reducing iron ore.
 また、本発明は、上記の循環型還元システムを用いて、炉内温度を維持し、かつ、コークス以外で通気性を確保することが可能な、溶鉱炉の操業方法を提供することを目的とする。 Another object of the present invention is to provide a method of operating a blast furnace that uses the above-mentioned circulating reduction system to maintain the temperature inside the furnace and ensure air permeability using materials other than coke. .
 本発明者らは、還元炉からの排気ガスを還元剤の出発原料として該排気ガスを循環利用できる効率的な還元プロセスを実現する方途について鋭意究明したところ、いわゆる逆水性ガスシフト反応を用いることによって排気ガスの循環型の再利用が効率的に実現できることを見出すに到った。 The present inventors have conducted extensive research into ways to realize an efficient reduction process in which exhaust gas from a reduction furnace can be recycled and used as a starting material for a reducing agent. We have discovered that it is possible to efficiently reuse exhaust gas in a circular manner.
 すなわち、鉄鉱石の還元プロセスで発生する排気ガスには、一般的に、COや大気由来の窒素に加え、COやHなどの余剰の還元剤が含まれる。例えば、高炉の排気ガスには、23体積%前後のCO、同割合のCO、4体積%前後のH、そして空気由来の窒素が50体積%前後含まれる。本発明者らは、かような排気ガスに水素を加え、このガスを逆水性ガスシフト反応(RWGS:Reverse Water Gas Shift反応:CO+H→CO+HO)用の触媒に接触させることによって、排気ガス中のCOとCOのバランスをCOリッチに大きく変換した後、排気ガス中に元々含まれるH及び窒素と共に、還元ガスとして循環利用することに想到した。この循環利用が可能になれば、従来使用されている、例えばコークスなどの化石燃料由来の還元剤の投入量を最小限に留められることを知見した。 That is, the exhaust gas generated in the iron ore reduction process generally contains excess reducing agents such as CO and H 2 in addition to CO 2 and nitrogen derived from the atmosphere. For example, the exhaust gas of a blast furnace contains about 23% by volume of CO 2 , the same proportion of CO, about 4% by volume of H 2 , and about 50% by volume of nitrogen derived from air. The present inventors added hydrogen to such exhaust gas and brought this gas into contact with a catalyst for reverse water gas shift reaction (RWGS: CO 2 + H 2 → CO + H 2 O). After significantly changing the balance of CO 2 and CO in the exhaust gas to a CO-rich one, we came up with the idea of recycling the exhaust gas together with H 2 and nitrogen as a reducing gas. It has been discovered that if this recycling becomes possible, the amount of conventionally used reducing agents derived from fossil fuels such as coke can be kept to a minimum.
 ここで、COを主要な還元剤として循環利用するのは、Hによる鉄鉱石の還元反応が吸熱反応であるのに対して、COによる鉄鉱石の還元反応が発熱反応であることから、COが還元炉内を高温に維持できる最も効率的な還元剤だからである。また、COによる還元では、コークスを還元剤とする際に発現する炭素による鉄の凝固点降下をそのまま利用できる。これにより、Hによる還元の場合に1500℃以上でないと溶融しない還元鉄が、COによる還元では1200℃程度で溶融するようになる。この約300℃の温度差があることは、還元鉄を溶銑として取り出す際の還元ガスの加熱炉の熱負荷を大きく軽減することになる。 Here, the reason why CO is recycled as the main reducing agent is because the reduction reaction of iron ore with H2 is an endothermic reaction, whereas the reduction reaction of iron ore with CO is an exothermic reaction. This is because it is the most efficient reducing agent that can maintain the inside of the reduction furnace at a high temperature. Furthermore, in the reduction using CO, the lowering of the freezing point of iron due to the carbon that occurs when coke is used as a reducing agent can be utilized as is. As a result, reduced iron, which does not melt at temperatures above 1500° C. when reduced by H 2 , melts at about 1200° C. when reduced by CO. This temperature difference of about 300° C. greatly reduces the heat load on the heating furnace for the reducing gas when the reduced iron is taken out as hot metal.
 また、COリッチな排気ガスから合成されるCOリッチな還元ガスは、主に還元炉に供給するものの、余剰分は排出・回収して種々の用途に転用可能である。COは、還元剤や燃料ガスとしての用途に加え、様々な有機物を合成する際に重要なフィッシャー・トロプシュ反応(nCO+(2n+1)H→C2n+2+nHO)の出発原料である。したがって、COリッチな排気ガスから合成されるCOリッチな還元ガスは、還元剤に留まらず、燃料ガスや様々な有機化合物の原料として余すことなく転用可能な合成ガスである。特に、地球温暖化防止のために化石燃料の使用量を大幅に削減することになれば、これを原料としてきた有機化学産業は、原料の調達先を新たに見つけなければならなくなる。これらの産業が、上記の合成ガスの受け皿になる意義は大きいものがある。 Further, although the CO-rich reducing gas synthesized from the CO 2- rich exhaust gas is mainly supplied to the reduction furnace, the surplus can be discharged and recovered and used for various purposes. In addition to its uses as a reducing agent and fuel gas, CO is a starting material for the Fischer-Tropsch reaction (nCO+(2n+1)H 2 →C n H 2n+2 +nH 2 O), which is important in the synthesis of various organic substances. Therefore, the CO-rich reducing gas synthesized from the CO 2- rich exhaust gas is a synthesis gas that can be used not only as a reducing agent but also as a raw material for fuel gas and various organic compounds. In particular, if the use of fossil fuels is drastically reduced to prevent global warming, the organic chemical industry that relies on fossil fuels as raw materials will have to find new sources of raw materials. There is great significance in these industries becoming the recipients of the above-mentioned synthesis gas.
 既に述べたとおり、一般的な高炉に投入されるコークスには、還元剤としての役割に加え、加熱材と通気材としての役割がある。したがって、還元鉄を溶銑として取り出す場合、還元ガス中のCOの還元熱で炉内温度を維持できたとしても、コークスの投入量を極限まで抑制すると通気性を確保できなくなる(安定な還元環境を維持できなくなる)。 As already mentioned, the coke fed into a typical blast furnace has the roles of a heating material and a ventilation material in addition to its role as a reducing agent. Therefore, when taking out reduced iron as hot metal, even if the temperature inside the furnace can be maintained by the reduction heat of CO in the reducing gas, if the amount of coke input is suppressed to the limit, ventilation cannot be ensured (a stable reducing environment cannot be maintained). (becomes unsustainable).
 この問題は、溶銑と共に発生し、炉底から排出される溶融スラグの一部を鋳型で徐冷・破砕し、これを通気材としてコークスに混ぜて炉頂から再投入することで解決できることも新たに知見された。すなわち、高炉スラグの融点は、約1400℃のため、高炉内でCによって凝固点降下した鉄が溶融し始めた時点でも、該スラグは固体状態を保って通気材としての役割を果たす。また、該スラグは元々溶鉱炉の中で生成した物質であるため、循環利用しても溶鉱炉内の物質環境を変えることがない。 It is newly discovered that this problem can be solved by slowly cooling and crushing a portion of the molten slag that is generated together with hot metal and discharged from the bottom of the furnace, and then mixing it with coke as a ventilation material and reinjecting it from the top of the furnace. was discovered. That is, since the melting point of blast furnace slag is approximately 1400° C., even when the iron whose freezing point has been lowered by carbon in the blast furnace begins to melt, the slag remains solid and serves as a ventilation material. Furthermore, since the slag is a substance originally produced in the blast furnace, the material environment within the blast furnace will not change even if it is recycled.
 なお、徐冷・破砕したスラグだけを通気材とし、還元ガスのみを還元剤として溶鉱炉の操業を立ち上げるのは容易なことではない。そこで、通常の高炉と同様に、高炉内に、還元剤兼通気材のコークスと鉄源とを交互に積層した上で、熱風炉で加熱した高温の空気を吹き込む「高炉モード」で溶鉱炉をまず立ち上げる。その上で、コークスにスラグを徐々に混ぜ、併せて、溶鉱炉に吹き込む空気に還元ガスを徐々に加える「コークスレスモード」に段階的に切り換える。溶鉱炉を休止させる場合は、この逆の手順でコークスレスモード後に高炉モードで操業を終了すれば、再立ち上げは容易になる。 Furthermore, it is not easy to start up operation of a blast furnace using only slowly cooled and crushed slag as a ventilation material and reducing gas as a reducing agent. Therefore, like a normal blast furnace, coke, which is a reducing agent and ventilation material, and iron source are alternately stacked inside the blast furnace, and then the blast furnace is first operated in "blast furnace mode," which blows high-temperature air heated in a hot blast furnace. Launch. Then, the process is gradually switched to a ``cokeless mode,'' in which slag is gradually mixed with coke and reducing gas is gradually added to the air blown into the blast furnace. When shutting down a blast furnace, re-starting it will be easier if the process is reversed and the operation is ended in blast furnace mode after the cokeless mode.
 本発明は、以上の知見に基づいてなされたものであり、その要旨は以下のとおりである。
 [1]内部に収容された酸化物を還元する還元炉と、
 前記還元炉にて発生し、COを含む排気ガスを前記還元炉から回収して通過させる第1配管と、
 前記第1配管の途中に接続され、前記排気ガスに水素ガスを添加して水素添加ガスとする水素ガス供給装置と、
 前記第1配管の終端が接続され、逆水性ガスシフト反応用の触媒を収容する反応室を有し、前記第1配管から前記反応室に導入された前記水素添加ガスが前記触媒と接触して、逆水性ガスシフト反応にて前記水素添加ガス中のCOがCOに変換され、CO濃度が高められたCOリッチガスとする触媒装置と、
 前記触媒装置から延び、前記還元炉に接続され、前記COリッチガスを通過させ、前記COリッチガスを還元ガスとして前記還元炉の内部に供給する第2配管と、
を有し、
 前記第1配管及び前記第2配管の途中に、内部を通過するガスから水蒸気以外の特定のガス成分を分離し、回収又は除去する分離装置が配置されない、循環型還元システム。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] A reduction furnace that reduces the oxide contained therein;
a first pipe that collects and passes exhaust gas generated in the reduction furnace and containing CO 2 from the reduction furnace;
a hydrogen gas supply device that is connected to the middle of the first pipe and adds hydrogen gas to the exhaust gas to produce a hydrogenated gas;
A terminal end of the first pipe is connected to a reaction chamber accommodating a catalyst for a reverse water gas shift reaction, and the hydrogenation gas introduced from the first pipe to the reaction chamber contacts the catalyst, a catalytic device in which CO 2 in the hydrogenated gas is converted to CO by a reverse water gas shift reaction to produce a CO-rich gas with an increased CO concentration;
a second pipe extending from the catalyst device, connected to the reduction furnace, allowing the CO-rich gas to pass therethrough, and supplying the CO-rich gas into the reduction furnace as a reducing gas;
has
A circulating reduction system in which a separation device that separates, recovers or removes specific gas components other than water vapor from the gas passing therethrough is not disposed in the middle of the first pipe and the second pipe.
 [2]前記第2配管の途中に配置された、前記COリッチガスを加熱するガス加熱装置を有する、上記[1]に記載の循環型還元システム。 [2] The circulating reduction system according to [1] above, including a gas heating device that heats the CO-rich gas, which is disposed in the middle of the second pipe.
 [3]前記第2配管の途中で前記ガス加熱装置よりも上流の位置から分岐し、前記ガス加熱装置に接続された第3配管を有し、前記第3配管を介して、前記COリッチガスの一部を燃焼ガスとして前記ガス加熱装置に供給する、上記[2]に記載の循環型還元システム。 [3] A third pipe is branched from a position upstream of the gas heating device in the middle of the second pipe and connected to the gas heating device, and the CO-rich gas is supplied via the third pipe. The circulating reduction system according to [2] above, wherein a part of the gas is supplied as combustion gas to the gas heating device.
 [4]前記ガス加熱装置から延び、前記第1配管の途中に接続された第4配管を有し、前記第4配管を介して、前記ガス加熱装置から発生する燃焼排ガスを前記第1配管内の前記排気ガスに合流させる、上記[2]又は[3]に記載の循環型還元システム。 [4] A fourth pipe extends from the gas heating device and is connected to the middle of the first pipe, and directs the combustion exhaust gas generated from the gas heating device into the first pipe via the fourth pipe. The circulation type reduction system according to [2] or [3] above, which is made to join the exhaust gas of.
 [5]前記触媒装置は、前記反応室を加熱する加熱装置を有し、
 前記第2配管から分岐し、前記加熱装置に接続された第5配管を有し、前記第5配管を介して、前記COリッチガスの一部を燃焼ガスとして前記加熱装置に供給する、上記[1]~[4]のいずれか一項に記載の循環型還元システム。
[5] The catalyst device has a heating device that heats the reaction chamber,
The above [1] has a fifth pipe branched from the second pipe and connected to the heating device, and supplies a part of the CO-rich gas to the heating device as a combustion gas via the fifth pipe. ] to [4]. The circulating reduction system according to any one of [4].
 [6]前記加熱装置から延び、前記第1配管の途中に接続された第6配管を有し、前記第6配管を介して、前記加熱装置から発生する燃焼排ガスを前記第1配管内の前記排気ガスに合流させる、上記[5]に記載の循環型還元システム。 [6] A sixth pipe extends from the heating device and is connected to the middle of the first pipe, and the combustion exhaust gas generated from the heating device is transferred to the first pipe through the sixth pipe. The circulation type reduction system according to the above [5], which is made to join the exhaust gas.
 [7]前記第1配管の途中で、前記水素ガス供給装置が接続される部位よりも上流に配置された、前記排気ガスから水蒸気を除去する第1除湿器を有する、上記[1]~[6]のいずれか一項に記載の循環型還元システム。 [7] The above-mentioned [1] to [2], which includes a first dehumidifier that removes water vapor from the exhaust gas and is disposed in the middle of the first piping upstream of a portion to which the hydrogen gas supply device is connected. 6]. The circulating reduction system according to any one of item 6].
 [8]前記第2配管の途中に配置された、前記COリッチガスから水蒸気を除去する第2除湿器を有する、上記[1]~[7]のいずれか一項に記載の循環型還元システム。 [8] The circulating reduction system according to any one of [1] to [7] above, including a second dehumidifier that is disposed in the middle of the second pipe and removes water vapor from the CO-rich gas.
 [9]前記第2配管の途中に配置された切替弁と、前記切替弁から延びる第7配管と、を有し、
 前記第7配管を介して、前記COリッチガスの一部を回収する、上記[1]~[8]のいずれか一項に記載の循環型還元システム。
[9] A switching valve disposed in the middle of the second pipe, and a seventh pipe extending from the switching valve,
The circulating reduction system according to any one of [1] to [8] above, wherein a part of the CO-rich gas is recovered via the seventh pipe.
 [10]前記第7配管の途中に配置された、前記第7配管を通過する前記COリッチガスから水蒸気を除去する第3除湿器を有する、上記[9]に記載の循環型還元システム。 [10] The circulating reduction system according to [9] above, including a third dehumidifier that is disposed in the middle of the seventh pipe and removes water vapor from the CO-rich gas passing through the seventh pipe.
 [11]前記還元炉が溶鉱炉であり、前記酸化物が鉄鉱石である、上記[1]~[10]のいずれか一項に記載の循環型還元システム。 [11] The circulating reduction system according to any one of [1] to [10] above, wherein the reduction furnace is a blast furnace and the oxide is iron ore.
 [12]前記溶鉱炉が高炉である、上記[11]に記載の循環型還元システム。 [12] The circulating reduction system according to [11] above, wherein the blast furnace is a blast furnace.
 [13]上記[1]~[12]のいずれか一項に記載の循環型還元システムを用いて、前記排気ガスを改質して得た前記COリッチガスを前記還元ガスとして循環利用して、前記酸化物としての鉄鉱石の還元処理を行う、鉄鉱石の還元方法。 [13] Using the circulating reduction system according to any one of [1] to [12] above, the CO-rich gas obtained by reforming the exhaust gas is recycled as the reducing gas, A method for reducing iron ore, comprising reducing iron ore as the oxide.
 [14]上記[11]又は[12]に記載の循環型還元システムを用いる溶鉱炉の操業方法であって、
 前記溶鉱炉の炉頂から、(I)前記鉄鉱石として、焼結鉱、塊鉱石、鉄鉱石ペレット、及び粉鉱石から選択される少なくとも一種と、(II)前記溶鉱炉の底部から排出された溶融スラグを徐冷して得た凝固スラグを破砕した破砕スラグ、又は、前記破砕スラグとコークスとの混合物からなる通気材と、を前記溶鉱炉内に交互に層状に装入して、前記還元ガスの炉内通気性を確保する、溶鉱炉の操業方法。
[14] A method for operating a blast furnace using the circulating reduction system according to [11] or [12] above,
From the top of the blast furnace, (I) at least one kind of iron ore selected from sintered ore, lump ore, iron ore pellets, and fine ore, and (II) molten slag discharged from the bottom of the blast furnace. Crushed slag obtained by crushing solidified slag obtained by slowly cooling the slag, or a ventilation material made of a mixture of the crushed slag and coke, are charged into the blast furnace in alternating layers, and the reducing gas furnace A method of operating a blast furnace that ensures internal ventilation.
 [15]前記溶鉱炉の下部に位置する羽口から前記還元ガスと空気とを吹込みガスとして前記溶鉱炉の内部に供給し、
 前記通気材における前記コークスに対する前記破砕スラグの割合と、前記吹込みガスにおける前記空気に対する前記還元ガスの割合と、を段階的に増加させて、前記コークスの使用量を段階的に抑制する、上記[14]に記載の溶鉱炉の操業方法。
[15] Supplying the reducing gas and air as blowing gas into the inside of the blast furnace from a tuyere located at a lower part of the blast furnace,
The amount of coke used is suppressed in stages by increasing in stages the ratio of the crushed slag to the coke in the ventilation material and the ratio of the reducing gas to the air in the blown gas. The method for operating a blast furnace according to [14].
 本発明の循環型還元システムによれば、還元炉から発生するCOを含む排気ガスを改質して得たCOリッチガスを還元ガスとして効率的に循環利用することができる。 According to the circulating reduction system of the present invention, CO rich gas obtained by reforming the exhaust gas containing CO 2 generated from the reduction furnace can be efficiently recycled and used as reducing gas.
 本発明の鉄鉱石の還元方法によれば、還元炉から発生するCOを含む排気ガスを改質して得たCOリッチガスを還元ガスとして効率的に循環利用して、鉄鉱石の還元処理を行うことができる。 According to the method for reducing iron ore of the present invention, the CO-rich gas obtained by reforming the exhaust gas containing CO 2 generated from the reduction furnace is efficiently recycled as a reducing gas, and the reduction process of iron ore is carried out. It can be carried out.
 本発明の溶鉱炉の操業方法によれば、上記の循環型還元システムを用いて、炉内温度を維持し、かつ、コークス以外で通気性を確保することができる。 According to the method of operating a blast furnace of the present invention, the temperature inside the furnace can be maintained using the above-mentioned circulating reduction system, and ventilation can be ensured using materials other than coke.
本発明の一実施形態による循環型還元システム100の構成を示す模式図である。1 is a schematic diagram showing the configuration of a circulating reduction system 100 according to an embodiment of the present invention. 本発明の他の実施形態による循環型還元システム200の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of a circulating reduction system 200 according to another embodiment of the present invention. 発明例1による循環型還元システムの平衡計算モデルを示す模式図である。FIG. 2 is a schematic diagram showing an equilibrium calculation model of a circulating reduction system according to Invention Example 1. 図3のモデル(発明例1)における還元状況を示すグラフである。4 is a graph showing the reduction situation in the model of FIG. 3 (invention example 1). 発明例2による循環型還元システムの平衡計算モデルを示す模式図である。FIG. 7 is a schematic diagram showing an equilibrium calculation model of a circulating reduction system according to Invention Example 2. 図5のモデル(発明例2)における還元状況を示すグラフである。6 is a graph showing the reduction situation in the model of FIG. 5 (invention example 2). 比較例による循環型還元システムの平衡計算モデルを示す模式図である。FIG. 2 is a schematic diagram showing an equilibrium calculation model of a circulating reduction system according to a comparative example. 図7のモデル(比較例)における還元状況を示すグラフである。8 is a graph showing the return situation in the model (comparative example) of FIG. 7. 発明例1,2及び比較例における、サイクル数に対する還元炉内での吸熱量の変化を示すグラフである。It is a graph showing the change in the amount of heat absorbed in the reduction furnace with respect to the number of cycles in Invention Examples 1 and 2 and Comparative Example. 発明例1,2及び比較例における、水素添加ガス中の水素量に対するFeO還元域での還元炉内吸熱量の変化を示すグラフである。It is a graph showing the change in the amount of heat absorbed in the reduction furnace in the FeO reduction region with respect to the amount of hydrogen in the hydrogenation gas in Invention Examples 1 and 2 and Comparative Example. 発明例3による実験用の循環型還元システムの構成を示す模式図である。FIG. 3 is a schematic diagram showing the configuration of an experimental circulating reduction system according to Invention Example 3. 発明例4による実験用の循環型還元システムの構成を示す模式図である。FIG. 4 is a schematic diagram showing the configuration of an experimental circulating reduction system according to Invention Example 4.
 [循環型還元システム]
 図1を参照して、本発明の一実施形態による循環型還元システム100を説明する。循環型還元システム100は、還元炉10、第1除湿器20、水素ガス供給装置30、触媒装置40、第2除湿器50、及びガス加熱装置60を有し、配管設備として第1配管81、第2配管82、第3配管83、第4配管84、第5配管85、第6配管86、第7配管87、及び切替弁90を有する。
[Circulating reduction system]
Referring to FIG. 1, a circulating reduction system 100 according to an embodiment of the present invention will be described. The circulating reduction system 100 includes a reduction furnace 10, a first dehumidifier 20, a hydrogen gas supply device 30, a catalyst device 40, a second dehumidifier 50, and a gas heating device 60, and includes a first pipe 81 as piping equipment, It has a second pipe 82, a third pipe 83, a fourth pipe 84, a fifth pipe 85, a sixth pipe 86, a seventh pipe 87, and a switching valve 90.
 還元炉10は、例えば高炉などの溶鉱炉であり得る。還元炉10が溶鉱炉の場合、炉頂12から還元炉10内に鉄鉱石及びコークスを装入し、還元炉10の下部に位置する羽口14から高温の還元ガスを還元炉10内に吹き込むことによって、還元炉10内において鉄鉱石の還元を行う。 The reduction furnace 10 may be, for example, a blast furnace such as a blast furnace. When the reduction furnace 10 is a blast furnace, iron ore and coke are charged into the reduction furnace 10 from the furnace top 12, and high-temperature reducing gas is blown into the reduction furnace 10 from the tuyere 14 located at the bottom of the reduction furnace 10. In this manner, iron ore is reduced in the reduction furnace 10.
 第1配管81は、還元炉10にて発生するCOを含む排気ガスを還元炉10から回収して通過させる配管設備である。第1配管81は、始端が還元炉10(一例では炉頂12)と接続され、終端が触媒装置40に接続される。第1配管81の途中には水素ガス供給装置30が接続される。また、第1配管81の途中で、水素ガス供給装置30が接続される部位よりも上流には第1除湿器20が配置される。第1配管81は、還元炉10から延び第1除湿器20に接続する配管81Aと、第1除湿器20から延び触媒装置40に接続する配管81Bと、を有する。なお、本明細書において、配管に関する「上流」又は「下流」とは、配管内のガス流通方向に関するものとする。 The first piping 81 is piping equipment that collects exhaust gas containing CO 2 generated in the reduction furnace 10 from the reduction furnace 10 and allows it to pass therethrough. The first pipe 81 has a starting end connected to the reduction furnace 10 (in one example, the furnace top 12), and a terminal end connected to the catalyst device 40. The hydrogen gas supply device 30 is connected to the middle of the first pipe 81 . Further, the first dehumidifier 20 is disposed in the middle of the first pipe 81 upstream of the portion to which the hydrogen gas supply device 30 is connected. The first pipe 81 includes a pipe 81A that extends from the reduction furnace 10 and connects to the first dehumidifier 20, and a pipe 81B that extends from the first dehumidifier 20 and connects to the catalyst device 40. Note that in this specification, "upstream" or "downstream" with respect to piping refers to the direction of gas flow within the piping.
 還元炉10の炉頂12から排出される排気ガスは、第1配管81を流れる過程で、第1除湿器20により除湿処理が施された後、水素ガス供給装置30から水素(H)ガスが補給され、水素添加ガスとなる。除湿処理は、水性ガスシフト反応を抑えて逆水性ガスシフト反応を促進するために、行うことが好ましい。排気ガスの組成は特に限定されないが、典型的には、水蒸気を除いて、CO:13~24体積%、CO:21~31体積%、及びH:3~15体積%を含有し、残部が空気由来のNからなる組成を有する。水素添加ガスの組成は特に限定されないが、典型的には、水蒸気を除いて、CO:13~24体積%、CO:21~31体積%、及びH:10~30体積%を含有し、残部が空気由来のNからなる組成を有する。水素ガス供給装置30から供給される水素は、再生可能エネルギーを利用した水電解法で得られるグリーン水素であることが望ましいが、高炉操業に本発明の循環型還元システムを適用することによってコークスの使用量がゼロになるまでは、コークス炉ガスから精製した水素で代替することができる。 Exhaust gas discharged from the furnace top 12 of the reduction furnace 10 is dehumidified by the first dehumidifier 20 while flowing through the first pipe 81, and then hydrogen (H 2 ) gas is supplied from the hydrogen gas supply device 30. is replenished and becomes hydrogenated gas. The dehumidification treatment is preferably performed in order to suppress the water gas shift reaction and promote the reverse water gas shift reaction. The composition of the exhaust gas is not particularly limited, but typically contains CO2 : 13 to 24% by volume, CO: 21 to 31% by volume, and H2 : 3 to 15% by volume, excluding water vapor. The remainder has a composition of N2 derived from air. The composition of the hydrogenation gas is not particularly limited, but typically contains 13 to 24% by volume of CO 2 , 21 to 31% by volume of H 2 , and 10 to 30% by volume of H 2 , excluding water vapor. , the remainder being N2 derived from air. The hydrogen supplied from the hydrogen gas supply device 30 is preferably green hydrogen obtained by water electrolysis using renewable energy, but by applying the circulating reduction system of the present invention to blast furnace operation, it is possible to use coke. Until the amount reaches zero, it can be replaced with hydrogen purified from coke oven gas.
 なお、第1配管81の途中で、第1除湿器20よりも上流に、又は、第1除湿器20よりも下流かつ水素ガス供給装置30が接続される部位よりも上流に除塵装置(図示せず)を設けて、排気ガスに除塵処理を施して、原料由来の粉塵を排気ガスから取り除くことが好ましい。 In addition, a dust removal device (not shown) is installed in the middle of the first piping 81 upstream of the first dehumidifier 20 or downstream of the first dehumidifier 20 and upstream of the part to which the hydrogen gas supply device 30 is connected. It is preferable to provide a filter (1) to perform dust removal treatment on the exhaust gas to remove dust originating from the raw materials from the exhaust gas.
 触媒装置(逆シフト型リフォーマー)40は、第1配管81の終端が接続され、逆水性ガスシフト反応用の触媒を収容する反応室42と、この反応室42を加熱する加熱装置44と、を有する。触媒装置40では、第1配管81から反応室42に導入された水素添加ガスが触媒と接触して、逆水性ガスシフト反応にて水素添加ガス中のCOがCOに変換され、CO濃度が高められたCOリッチガスとなる。逆水性ガスシフト反応後のCOリッチガスの組成は特に限定されないが、典型的には、水蒸気を除いて、CO:6~20体積%、CO:24~40体積%、及びH:5~24体積%を含有し、残部が空気由来のNからなる組成を有する。逆水性ガスシフト反応に使用可能な触媒は、ニッケルベースや貴金属ベースのものなど多数知られているが、本発明に使用する触媒はそのいずれでも構わない。 The catalyst device (reverse shift type reformer) 40 has a reaction chamber 42 to which the terminal end of the first pipe 81 is connected and accommodates a catalyst for the reverse water gas shift reaction, and a heating device 44 that heats the reaction chamber 42. . In the catalyst device 40, the hydrogenated gas introduced into the reaction chamber 42 from the first pipe 81 comes into contact with the catalyst, and CO2 in the hydrogenated gas is converted to CO by a reverse water gas shift reaction, increasing the CO concentration. It becomes a CO-rich gas. The composition of the CO-rich gas after the reverse water gas shift reaction is not particularly limited, but typically, excluding water vapor, it contains CO 2 : 6-20% by volume, CO: 24-40% by volume, and H 2 : 5-24%. % by volume, with the remainder being N2 derived from air. There are many known catalysts that can be used in the reverse water gas shift reaction, including those based on nickel and noble metals, and any of them may be used in the present invention.
 水素添加ガスを触媒装置40内の触媒に接触させる際は、吸熱反応である逆水性ガスシフト反応の変換効率の観点から、触媒が劣化しにくい温度範囲にて、導入する水素添加ガスの温度をできるだけ高温に設定することが望ましい。具体的には、触媒周辺の反応ガス(水素添加ガス)の温度が800℃以上1200℃以下になるように、加熱装置44によって反応室42内を加熱しておくことが好ましい。 When bringing the hydrogenation gas into contact with the catalyst in the catalyst device 40, from the viewpoint of conversion efficiency of the reverse water gas shift reaction, which is an endothermic reaction, the temperature of the hydrogenation gas introduced should be kept as low as possible within a temperature range where the catalyst is unlikely to deteriorate. It is desirable to set it to a high temperature. Specifically, it is preferable that the inside of the reaction chamber 42 be heated by the heating device 44 so that the temperature of the reaction gas (hydrogenation gas) around the catalyst is 800° C. or higher and 1200° C. or lower.
 第2配管82は、触媒装置40から延び、還元炉10(一例では羽口14)に接続され、COリッチガスを通過させ、COリッチガスを還元ガスとして(一例では羽口14を介して)還元炉10の内部に供給する配管設備である。第2配管82の途中には、COリッチガスから水蒸気を除去する第2除湿器50と、COリッチガスを加熱するガス加熱装置60と、が配置されることが好ましい。この場合、第2除湿器50の下流にガス加熱装置60が配置されることが好ましい。この場合、第2配管82は、触媒装置40から延び第2除湿器50に接続する配管82Aと、第2除湿器50から延びガス加熱装置60に接続する配管82Bと、ガス加熱装置60から延び還元炉10(一例では羽口14)に接続される配管82Cと、を有する。 The second pipe 82 extends from the catalyst device 40 and is connected to the reduction furnace 10 (in one example, the tuyere 14), and allows the CO-rich gas to pass through the reduction furnace using the CO-rich gas as a reducing gas (in one example, via the tuyere 14). This is piping equipment that supplies the inside of 10. Preferably, a second dehumidifier 50 that removes water vapor from the CO-rich gas and a gas heating device 60 that heats the CO-rich gas are disposed in the middle of the second pipe 82. In this case, it is preferable that the gas heating device 60 is arranged downstream of the second dehumidifier 50. In this case, the second pipe 82 includes a pipe 82A extending from the catalyst device 40 and connecting to the second dehumidifier 50, a pipe 82B extending from the second dehumidifier 50 and connecting to the gas heating device 60, and a pipe 82B extending from the gas heating device 60. It has a pipe 82C connected to the reduction furnace 10 (in one example, the tuyere 14).
 触媒装置40を通過したCOリッチガスは、第2配管82を流れる過程で、第2除湿器50により除湿処理が施された後、ガス加熱装置60により加熱され、その後、還元ガスとして還元炉10内に吹き込まれる。 The CO-rich gas that has passed through the catalyst device 40 is dehumidified by the second dehumidifier 50 while flowing through the second pipe 82, heated by the gas heating device 60, and then returned to the reduction furnace 10 as a reducing gas. is blown into.
 すなわち、上記触媒での反応後に、還元炉10に吹き込むCOリッチガス(還元ガス)の温度をガス加熱装置60で調整することが望ましい。還元炉10における鉄鉱石の還元効率は、還元ガスが高温であるほど優位だが、鉄鉱石の固相還元を行う場合、還元炉10内に吹き込む還元ガスの温度を900℃以上とすることが望ましい。また、還元鉄を1500℃の溶銑として取り出す際には、還元炉10の下方域に形成される鉄源とスラグの溶融領域の温度を1650℃以上に維持する必要があるため、コークスの投入量が従来の高炉の50%程度までなら還元ガスの温度は1200℃以上、コークスの投入量が従来の高炉の20%未満なら還元ガスの温度は1500℃以上となるように、還元ガスを加熱した上で吹き込むことが望ましい。 That is, after the reaction with the catalyst, it is desirable to adjust the temperature of the CO-rich gas (reducing gas) blown into the reduction furnace 10 using the gas heating device 60. The higher the temperature of the reducing gas, the better the reduction efficiency of iron ore in the reduction furnace 10, but when performing solid-phase reduction of iron ore, it is desirable that the temperature of the reducing gas blown into the reduction furnace 10 be 900 ° C. or higher. . In addition, when taking out reduced iron as hot metal at 1500°C, it is necessary to maintain the temperature of the melting region of the iron source and slag formed in the lower area of the reduction furnace 10 at 1650°C or higher, so the amount of coke input must be maintained at 1650°C or higher. If the amount of coke input is less than 20% of that of a conventional blast furnace, the temperature of the reducing gas is heated to 1,500 degrees Celsius or higher. It is preferable to blow in at the top.
 ガス加熱装置60の好適な操業は以下のとおりである。本実施形態の循環型還元システム100は、第2配管82の途中で、ガス加熱装置60よりも上流かつ第2除湿器50よりも下流の位置から分岐し、ガス加熱装置60に接続された第3配管83を有することが好ましい。そして、第3配管83を介して、第2配管82を流れるCOリッチガスの一部を燃焼ガスとしてガス加熱装置60に供給することが好ましい。このように、ガス加熱装置60においてCOリッチガスの一部を燃料ガスとして燃焼させることにより、還元ガスの温度を上記の所望温度に引き上げることができる。図1では省略したが、燃焼ガスを燃焼させるためにガス加熱装置60に供給する酸素含有ガスは(消費されない窒素を含まない)酸素ガスであることが好ましい。 A preferred operation of the gas heating device 60 is as follows. The circulation type reduction system 100 of this embodiment branches from a position upstream of the gas heating device 60 and downstream of the second dehumidifier 50 in the middle of the second piping 82, and is connected to the gas heating device 60. It is preferable to have three pipes 83. Then, it is preferable to supply a part of the CO-rich gas flowing through the second pipe 82 to the gas heating device 60 via the third pipe 83 as combustion gas. In this way, by burning part of the CO-rich gas as fuel gas in the gas heating device 60, the temperature of the reducing gas can be raised to the above-mentioned desired temperature. Although omitted in FIG. 1, the oxygen-containing gas supplied to the gas heating device 60 to combust the combustion gas is preferably oxygen gas (not containing unconsumed nitrogen).
 循環型還元システム100は、ガス加熱装置60から延び、第1配管81の途中に接続された第4配管84を有することが好ましい。そして、第4配管84を介して、ガス加熱装置60から発生する燃焼排ガスを第1配管81内の排気ガスに合流させ、再利用することが好ましい。第4配管84は、第1配管81の途中で第1除湿器20よりも上流の位置に接続されることが好ましい。ガス加熱装置60から発生する燃焼排ガスを、(1)触媒装置40とガス加熱装置60の間の還元ガス配管、(2)水素ガス供給装置30と触媒装置40の間の水素添加ガス配管と熱交換させた上で、第1除湿器20の上流で第1配管81内の排気ガスに合流させると、還元ガスと水素添加ガスを予熱することもできる。 It is preferable that the circulation type reduction system 100 has a fourth pipe 84 extending from the gas heating device 60 and connected to the middle of the first pipe 81. Preferably, the combustion exhaust gas generated from the gas heating device 60 is joined to the exhaust gas in the first pipe 81 via the fourth pipe 84 and reused. The fourth pipe 84 is preferably connected to a position upstream of the first dehumidifier 20 in the middle of the first pipe 81 . The combustion exhaust gas generated from the gas heating device 60 is transferred to (1) the reducing gas piping between the catalyst device 40 and the gas heating device 60, (2) the hydrogenation gas piping between the hydrogen gas supply device 30 and the catalyst device 40, and heat. If the exhaust gas is exchanged and then merged with the exhaust gas in the first pipe 81 upstream of the first dehumidifier 20, the reducing gas and the hydrogenation gas can be preheated.
 なお、図1に例示するような、間接加熱式のガス加熱装置60で還元ガスを所望の温度まで上げきれない場合には、ガス加熱装置60の先端付近から酸素を加えるなどして、還元ガスに含まれるCOやHの一部を直接燃焼させても構わない。また、高炉モードで立ち上げる際に還元炉10内に吹き込む熱風に深冷分離法等で酸素リッチにした空気を用いれば、窒素の加熱に奪われるガス加熱装置60の熱負荷が下がるために、還元ガスの温度を引き上げやすくなる。 Note that if the reducing gas cannot be raised to the desired temperature using the indirect heating type gas heating device 60 as illustrated in FIG. It is also possible to directly combust some of the CO and H 2 contained in the fuel. Furthermore, if oxygen-rich air is used in the hot air blown into the reduction furnace 10 when starting up in blast furnace mode, the heat load on the gas heating device 60 that is taken away by nitrogen heating will be reduced. It becomes easier to raise the temperature of the reducing gas.
 次に、触媒装置40の好適な操業についても、同様にCOリッチガスの一部を燃焼ガスとして用いることが好ましい。すなわち、本実施形態の循環型還元システム100は、第2配管82から分岐し、触媒装置40の加熱装置44に接続された第5配管85を有することが好ましい。第5配管85は、第2配管82の途中で、ガス加熱装置60よりも上流かつ第2除湿器50よりも下流の位置から分岐することが好ましい。そして、第5配管85を介して、COリッチガスの一部を燃焼ガスとして加熱装置44に供給することが好ましい。図1では省略したが、燃焼ガスを燃焼させるために加熱装置44に供給する酸素含有ガスは(消費されない窒素を含まない)酸素ガスであることが好ましい。 Next, regarding suitable operation of the catalyst device 40, it is also preferable to use a portion of the CO-rich gas as the combustion gas. That is, the circulating reduction system 100 of the present embodiment preferably has a fifth pipe 85 branched from the second pipe 82 and connected to the heating device 44 of the catalyst device 40. It is preferable that the fifth pipe 85 branches off from a position upstream of the gas heating device 60 and downstream of the second dehumidifier 50 in the middle of the second pipe 82 . Then, it is preferable to supply part of the CO-rich gas to the heating device 44 as combustion gas via the fifth pipe 85. Although omitted in FIG. 1, the oxygen-containing gas supplied to the heating device 44 to combust the combustion gas is preferably oxygen gas (not containing unconsumed nitrogen).
 循環型還元システム100は、加熱装置44から延び、第1配管81の途中に接続された第6配管86を有することが好ましい。そして、第6配管86を介して、加熱装置44から発生する燃焼排ガスを第1配管81内の排気ガスに合流させ、再利用することが好ましい。なお、本実施形態では、第6配管86の上流部分86Aを、ガス加熱装置60からの燃料排ガス流路である第4配管84の途中に接続しているため、第6配管86の下流部分86Bは、第4配管84の下流部分84を兼ねている。ただし、本発明はこれに限定されず、第4配管84とは独立して第6配管86を第1配管81に直接接続してもよいことは勿論である。加熱装置44から発生する燃焼排ガスを、水素ガス供給装置30と触媒装置40の間の水素添加ガス配管と熱交換させた上で、第1除湿器20の上流で第1配管81内の排気ガスに合流させると水素添加ガスを予熱することもできる。 It is preferable that the circulating reduction system 100 has a sixth pipe 86 extending from the heating device 44 and connected to the middle of the first pipe 81. Preferably, the combustion exhaust gas generated from the heating device 44 is joined to the exhaust gas in the first pipe 81 via the sixth pipe 86 and reused. Note that in this embodiment, since the upstream portion 86A of the sixth piping 86 is connected to the middle of the fourth piping 84, which is the fuel exhaust gas passage from the gas heating device 60, the downstream portion 86B of the sixth piping 86 also serves as the downstream portion 84 of the fourth pipe 84. However, the present invention is not limited to this, and it goes without saying that the sixth pipe 86 may be directly connected to the first pipe 81 independently of the fourth pipe 84. The combustion exhaust gas generated from the heating device 44 is heat exchanged with the hydrogenation gas piping between the hydrogen gas supply device 30 and the catalyst device 40, and then the exhaust gas in the first piping 81 is transferred upstream of the first dehumidifier 20. The hydrogenation gas can also be preheated by merging it with the hydrogen gas.
 以上説明した本実施形態では、還元ガスの吹込みによる鉄鉱石の還元工程、還元炉からの排気ガスの回収工程、排気ガスの除塵及び除湿工程(任意工程)、排気ガスへの水素ガス添加工程、水素添加ガスから逆水性ガスシフト反応によりCOリッチガスを生成する工程、COリッチガスの除湿工程(任意工程)、COリッチガスの加熱工程(任意工程)、及びCOリッチガスの還元ガスとしての吹込み工程がくり返されることによって、還元炉10からの排気ガスを閉じた循環系で再利用する循環プロセスが実現する。 In the present embodiment described above, a process of reducing iron ore by blowing reducing gas, a process of recovering exhaust gas from a reduction furnace, a process of dust removal and dehumidification of exhaust gas (optional process), and a process of adding hydrogen gas to exhaust gas. , a step of generating CO-rich gas from hydrogenated gas by a reverse water gas shift reaction, a step of dehumidifying the CO-rich gas (optional step), a step of heating the CO-rich gas (optional step), and a step of blowing the CO-rich gas as a reducing gas. By returning the exhaust gas, a circulation process is realized in which the exhaust gas from the reduction furnace 10 is reused in a closed circulation system.
 還元ガスとするCOリッチガス中に残る未変換のCOは、循環プロセスの過程でいずれCO源になるので、還元ガスから分離する必要はない。すなわち、本実施形態では、第1配管81及び第2配管82の途中に、内部を通過するガスから水蒸気以外の特定のガス成分を分離し、回収又は除去する分離装置が配置されないことが重要である。本実施形態では、既存技術を適用できる除塵及び除湿以外に新たな分離濃縮過程を必要としないため、還元ガスの循環効率が高い。 The unconverted CO 2 remaining in the CO-rich gas used as the reducing gas becomes a CO source in the course of the circulation process, so there is no need to separate it from the reducing gas. That is, in this embodiment, it is important that a separation device that separates, recovers, or removes specific gas components other than water vapor from the gas passing through them is not disposed in the middle of the first pipe 81 and the second pipe 82. be. In this embodiment, since no new separation and concentration process is required other than dust removal and dehumidification to which existing techniques can be applied, the circulation efficiency of the reducing gas is high.
 本実施形態では、COを等モルの水素でCOに変換する逆水性ガスシフト反応を利用するため、COの4倍モルの水素を必要とするメタネーション反応で生成したメタンを還元剤とする上述の従来還元法に比べて、CO当たりの水素の調達量を約1/4に抑制できる。 In this embodiment, in order to utilize a reverse water gas shift reaction that converts CO2 into CO with an equimolar amount of hydrogen, methane produced by a methanation reaction that requires four times the mole of hydrogen as CO2 is used as a reducing agent. Compared to the conventional reduction method described above, the amount of hydrogen procured per CO 2 can be reduced to about 1/4.
 本実施形態では、排気ガスから変性されたCO主体の還元ガスを高温で還元炉10内に供給して、鉄鉱石中の不純物を溶融スラグとして溶銑から分離できるため、一般的な高炉と同様、コスト的に有利で調達も容易な低品位の微粉鉱石や粉鉱石をペレットや焼結鉱にして使用することができる。 In this embodiment, a CO-based reducing gas modified from exhaust gas is supplied into the reduction furnace 10 at high temperature, and impurities in the iron ore can be separated from the hot metal as molten slag. Low-grade fine ore or fine ore, which is cost-effective and easy to procure, can be used in the form of pellets or sintered ore.
 なお、COリッチガスの余剰分(本実施形態では、還元ガス、ガス加熱装置60の燃焼ガス、及び加熱装置44の燃焼ガスとして使用したCOリッチガスの残部)は回収することができる。すなわち、循環型還元システム100は、第2配管82の途中に配置された切替弁90と、この切替弁90から延びる第7配管87と、を有し、この第7配管87を介して、COリッチガスの一部を回収することができる。回収したCOリッチガスは、例えば有機化合物の原料となる合成ガスとして利用することができる。本実施形態では、還元炉10から排出されるCOリッチな排気ガスをCOリッチな還元ガスに変換して循環利用するシステムが実現するため、COリッチガスの余剰分を合成ガスとして有機化学産業などで有効活用することにより、大気へのCO排出量をゼロレベルまで抑制することが可能になる。 Note that the surplus of the CO-rich gas (in this embodiment, the remainder of the CO-rich gas used as the reducing gas, the combustion gas of the gas heating device 60, and the combustion gas of the heating device 44) can be recovered. That is, the circulation type reduction system 100 includes a switching valve 90 disposed in the middle of the second pipe 82 and a seventh pipe 87 extending from the switching valve 90. A portion of the rich gas can be recovered. The recovered CO-rich gas can be used, for example, as synthesis gas, which is a raw material for organic compounds. In this embodiment, a system is realized in which the CO2 - rich exhaust gas discharged from the reduction furnace 10 is converted into CO-rich reducing gas and recycled, so the surplus CO2-rich gas is used as synthesis gas for the organic chemical industry, etc. By making effective use of CO2, it will be possible to suppress CO2 emissions into the atmosphere to zero levels.
 また、溶銑から分離された溶融スラグを鋳型で徐冷して凝固スラグとし、この凝固スラグを破砕して破砕スラグとし、これを通気材として再利用することができる。このスラグ由来の通気材に還元炉(溶鉱炉)から排出される銑鉄の一部が付着している場合、この通気材を介して鉄源として銑鉄を還元炉に戻すことができる。 In addition, the molten slag separated from the hot metal is slowly cooled in a mold to become solidified slag, and this solidified slag is crushed to become crushed slag, which can be reused as a ventilation material. If part of the pig iron discharged from the reduction furnace (blast furnace) is attached to this slag-derived ventilation material, the pig iron can be returned to the reduction furnace as an iron source through this ventilation material.
 なお、溶融スラグは、比重差によって溶銑の表面に自動的に排出されるため、循環利用しても溶銑の品質には殆ど悪影響を及ぼさない。また、循環利用した溶融スラグは、通常の高炉スラグと同等の品質を有するため、高炉セメントなどの原料として工業利用できる。 Note that the molten slag is automatically discharged to the surface of the hot metal due to the difference in specific gravity, so even if it is recycled, it will have almost no negative effect on the quality of the hot metal. In addition, since the recycled molten slag has the same quality as normal blast furnace slag, it can be used industrially as a raw material for blast furnace cement and the like.
 図2を参照して、本発明の他の実施形態による循環型還元システム200を説明する。循環型還元システム200は、第2除湿器50を有さず、代わりに、第7配管87の途中に第3除湿器70が配置されていること以外は、循環型還元システム100と同じ構成を有する。すなわち、本発明において第2除湿器50は必須の構成ではない。第2除湿器50を配置しない場合、第3除湿器70によって、第7配管87を通過するCOリッチガスから水蒸気を除去することが好ましい。 With reference to FIG. 2, a circulating reduction system 200 according to another embodiment of the present invention will be described. The circulation type reduction system 200 has the same configuration as the circulation type reduction system 100 except that the second dehumidifier 50 is not provided and a third dehumidifier 70 is placed in the middle of the seventh pipe 87 instead. have That is, the second dehumidifier 50 is not an essential component in the present invention. When the second dehumidifier 50 is not disposed, it is preferable that the third dehumidifier 70 removes water vapor from the CO-rich gas passing through the seventh pipe 87.
 上記では還元炉10が高炉などの溶鉱炉であり、還元対象物が鉄鉱石である場合を主に説明したが、本発明はこれに限定されない。還元炉10は固体還元炉でもよい。また、還元対象物は酸化物であれば鉄鉱石に限定されることはなく、例えば、フェロマンガンやシリコマンガンの原料であるマンガン鉱石であってもよい。 In the above description, the case where the reduction furnace 10 is a blast furnace such as a blast furnace and the object to be reduced is iron ore has been mainly described, but the present invention is not limited thereto. The reduction furnace 10 may be a solid reduction furnace. Further, the object to be reduced is not limited to iron ore as long as it is an oxide, and may be, for example, manganese ore, which is a raw material for ferromanganese or silicomanganese.
 [鉄鉱石の還元方法]
 本発明の一実施形態による鉄鉱石の還元方法は、上記の循環型還元システム100,200を用いて、排気ガスを改質して得たCOリッチガスを還元ガスとして循環利用して、酸化物としての鉄鉱石の還元処理を行う。これにより、還元炉10から発生するCOを含む排気ガスを改質して得たCOリッチガスを還元ガスとして効率的に循環利用して、鉄鉱石の還元処理を行うことができる。
[Iron ore reduction method]
A method for reducing iron ore according to an embodiment of the present invention uses the above-described circulating reduction system 100, 200 to circulate and utilize CO-rich gas obtained by reforming exhaust gas as a reducing gas, and convert it into oxides. The company conducts reduction processing of iron ore. Thereby, the CO rich gas obtained by reforming the exhaust gas containing CO 2 generated from the reduction furnace 10 can be efficiently circulated and used as a reducing gas, and the iron ore can be reduced.
 また、本実施形態の還元方法によれば、還元炉10からの排気ガスを還元剤の出発原料として該排気ガスを循環利用できる効率的な還元プロセスを実現するため、CO発生量を格段に低減することができる。さらに、鉄鉱石の還元プロセスで従来使用されているコークスなどの化石燃料由来の還元剤の投入量を抜本的に抑制することが可能になる。 Further, according to the reduction method of this embodiment, in order to realize an efficient reduction process in which the exhaust gas from the reduction furnace 10 can be recycled and used as a starting material for the reducing agent, the amount of CO 2 generated can be significantly reduced. can be reduced. Furthermore, it becomes possible to drastically reduce the input amount of reducing agents derived from fossil fuels such as coke, which are conventionally used in the iron ore reduction process.
 [溶鉱炉の操業方法]
 本発明の一実施形態による溶鉱炉の操業方法は、上記の循環型還元システム100,200を用いて行う。そして、還元炉(溶鉱炉)10の炉頂から、(I)鉄鉱石として、焼結鉱、塊鉱石、鉄鉱石ペレット、及び粉鉱石から選択される少なくとも一種(鉄源)と、(II)溶鉱炉の底部から排出された溶融スラグを徐冷して得た凝固スラグを破砕した破砕スラグ、又は、この破砕スラグとコークスとの混合物からなる通気材と、を溶鉱炉内に交互に層状に装入して、還元ガスの炉内通気性を確保することが肝要である。これにより、上記の循環型還元システム100,200を用いて、炉内温度を維持し、かつ、コークス以外で通気性を確保することができる。
[How to operate a blast furnace]
A method for operating a blast furnace according to an embodiment of the present invention is performed using the above-described circulating reduction system 100, 200. From the top of the reduction furnace (blast furnace) 10, (I) at least one type of iron ore (iron source) selected from sintered ore, lump ore, iron ore pellets, and fine ore, and (II) the blast furnace. Crushed slag obtained by crushing solidified slag obtained by slowly cooling the molten slag discharged from the bottom of the blast furnace, or a ventilation material made of a mixture of this crushed slag and coke, are charged into a blast furnace in alternating layers. Therefore, it is important to ensure ventilation of the reducing gas inside the furnace. Thereby, using the above-mentioned circulating reduction systems 100, 200, it is possible to maintain the temperature inside the furnace and ensure ventilation with materials other than coke.
 本実施形態による操業では、羽口14から還元ガスと空気とを吹込みガスとして溶鉱炉の内部に供給する。このとき、通気材におけるコークスに対する破砕スラグの割合と、吹込みガスにおける空気に対する還元ガスの割合と、を段階的に増加させて、コークスの使用量を段階的に抑制することが好ましい。 In the operation according to this embodiment, reducing gas and air are supplied from the tuyere 14 into the inside of the blast furnace as blowing gas. At this time, it is preferable to gradually increase the ratio of crushed slag to coke in the ventilation material and the ratio of reducing gas to air in the blown gas to gradually suppress the amount of coke used.
 本実施形態による溶鉱炉の操業方法によれば、低コストで調達が容易な低品位の微粉鉱石や粉鉱石を使用して還元鉄を溶銑の形で得ることが可能になるため、次工程以降に従来の銑鋼一貫プロセスをそのまま転用できる。 According to the method of operating a blast furnace according to the present embodiment, it is possible to obtain reduced iron in the form of hot metal using low-cost and easily procured low-grade fine ore powder or powdered ore. The conventional integrated pig steel process can be used as is.
 溶鉱炉の通気の程度は、破砕スラグの粒度で調整可能であり、例えば徐冷スラグに通気口を加える形に鋳込めば、通気の確保はさらに容易になる。なお、通気材に一般的な高炉スラグを使用しても特に問題ない。 The degree of ventilation in the blast furnace can be adjusted by the particle size of the crushed slag. For example, if the slowly cooled slag is cast with ventilation holes added, it will be easier to ensure ventilation. Note that there is no particular problem even if common blast furnace slag is used as the ventilation material.
 本実施形態による溶鉱炉の操業方法において、循環型溶鉱炉100,200で発生する溶融スラグの量は、炉頂12から再投入するスラグが融着帯以降で再溶融する分だけ、通常の高炉よりも多くなる。また、投入するスラグが多くなるとスラグの融解熱として奪われる熱量も増える。そのため、高炉モードで操業を立ち上げる際は、鉄源層と通気層の層厚比を一般的な高炉よりも鉄源層がリッチになるようにあらかじめ調整しておくことが望ましい。 In the blast furnace operating method according to the present embodiment, the amount of molten slag generated in the circulating blast furnaces 100, 200 is larger than that in a normal blast furnace because the slag re-injected from the furnace top 12 is remelted after the cohesive zone. There will be more. Furthermore, as the amount of slag added increases, the amount of heat taken away as heat of fusion of the slag also increases. Therefore, when starting up operations in blast furnace mode, it is desirable to adjust the thickness ratio of the iron source layer and the aeration layer in advance so that the iron source layer is richer than in a typical blast furnace.
 [実施例1]
 以下のとおり、発明例1,2及び比較例として、本発明の還元方法の効果を確認するための平衡計算を行った。
[Example 1]
As described below, equilibrium calculations were performed to confirm the effects of the reduction method of the present invention as Invention Examples 1 and 2 and a comparative example.
 (発明例1)
 発明例1による循環型還元システムの平衡計算モデルを図3に示す。初期状態として、25モルの酸化鉄(III)(Fe)が入った還元炉10が、CO:22モル、CO:22.8モル、H:4.2モル、N:51モルから成るトータル100モルの高炉排気ガス相当の混合ガスが入った触媒装置40としての逆シフト型リフォーマー(以下、単に「リフォーマー40」と称する。)と接続された状態を想定する。リフォーマーの入側には第1除湿器20を、リフォーマーの出側には第2除湿器50を、第1除湿器とリフォーマーとの間には、リフォーマー内のHモル数を(高炉排気ガス中のCO濃度に相当する)22.8モルに維持する水素ガス供給装置30を置く。還元炉とリフォーマーには、水素ガス供給装置から供給されるHと第1除湿器及び第2除湿器で除かれるHO以外のガスの出入りはないとすると、全てのHOは消費されたHから生成するため、リフォーマーと還元炉を循環する混合ガスのトータルモル数は変化しないと考えることができる。
(Invention example 1)
An equilibrium calculation model of the circulating reduction system according to Invention Example 1 is shown in FIG. In the initial state, the reduction furnace 10 containing 25 moles of iron (III) oxide (Fe 2 O 3 ) contains 22 moles of CO, 22.8 moles of CO 2 , 4.2 moles of H 2 , and 4.2 moles of N 2 : A state is assumed in which a reverse shift type reformer (hereinafter simply referred to as "reformer 40") is connected as a catalyst device 40 containing a mixed gas of 51 moles equivalent to a total of 100 moles of blast furnace exhaust gas. A first dehumidifier 20 is installed on the inlet side of the reformer, a second dehumidifier 50 is installed on the outlet side of the reformer, and between the first dehumidifier and the reformer, the number of H2 moles in the reformer (blast furnace exhaust gas A hydrogen gas supply device 30 is installed to maintain the CO 2 concentration at 22.8 mol (corresponding to the CO 2 concentration in the tank). Assuming that no gas enters or exits the reduction furnace and reformer other than H 2 supplied from the hydrogen gas supply device and H 2 O removed by the first and second dehumidifiers, all H 2 O is consumed. It can be considered that the total number of moles of the mixed gas circulating through the reformer and the reduction furnace does not change because it is generated from the H 2 that was removed.
 本発明例1では、還元炉とリフォーマー内の温度が、いずれも外部から供給する熱量によって900℃に保持された状態とする。実際に還元炉とリフォーマーの間をガス循環させるには、ガス輸送システムが必要だが、原理確認が目的のため、それに消費されるエネルギーは無視する。同じく、第1除湿器、第2除湿器、及び水素ガス供給装置の駆動に消費されるエネルギーも無視する。リフォーマーでの逆水性ガスシフト反応は、平衡状態に達しない場合があるため、使用する触媒性能によって左右されるが、平衡反応に達していると仮定する。 In Example 1 of the present invention, the temperatures inside the reduction furnace and the reformer are both maintained at 900° C. by the amount of heat supplied from the outside. A gas transport system is required to actually circulate gas between the reduction furnace and the reformer, but since the purpose is to confirm the principle, the energy consumed by it will be ignored. Similarly, the energy consumed to drive the first dehumidifier, the second dehumidifier, and the hydrogen gas supply device is also ignored. The reverse water gas shift reaction in the reformer may not reach an equilibrium state, so it is assumed that an equilibrium reaction has been reached, although it depends on the performance of the catalyst used.
 ここで、水素添加ガスがリフォーマー内で定常状態を迎えた際に生成される還元ガスを還元炉に全量送り出し、還元反応が定常状態を迎えた際の還元炉内ガスを排ガスとして取り出して、これに一定レベルまでの水素を添加して再び水素添加ガスとするまでを1サイクルとして、それをくり返す循環プロセスを考える。リフォーマーから還元ガスを還元炉に送り出すサイクル毎に起こる、リフォーマー内及び還元炉内のガス成分及び鉄源の平衡状態を、株式会社計算力学研究センター製の熱力学平衡計算ソフトウェア&熱力学データベースFact Sage 8.1で算出した。その結果を図4に示す。なお、リフォーマーと還元炉で生成される化合物にはメタンなども含まれるが、0.005モル以下の微量成分は無視した。 Here, the entire reducing gas generated when the hydrogenation gas reaches a steady state in the reformer is sent to the reducing furnace, and the gas in the reducing furnace when the reduction reaction reaches a steady state is taken out as exhaust gas. Let us consider a circulation process in which one cycle is defined as adding hydrogen up to a certain level to hydrogen and turning it into hydrogenated gas again, and repeating this cycle. The equilibrium state of gas components and iron sources inside the reformer and the reduction furnace that occurs in each cycle of sending reducing gas from the reformer to the reduction furnace is calculated using thermodynamic equilibrium calculation software and thermodynamics database Fact Sage manufactured by Computational Mechanics Research Center Co., Ltd. Calculated in 8.1. The results are shown in FIG. Although methane and the like are included in the compounds produced in the reformer and reduction furnace, trace components of 0.005 mol or less were ignored.
 上記の還元炉内では、リフォーマーから供給されるCOと逆水性ガスシフト反応に消費されなかった余剰のHによって鉄源の還元が進行する。鉄源として投入した固相のFeは、1サイクル目に2倍モルのFeO(固相)に変化し、2サイクル目以後はFeOが徐々に還元されてα-Fe(固相)に変化しながら、7サイクル目に還元が完了する。主な還元反応がFeOからα-Feへの反応になっている点は、高炉で知られた知見と符合している。この鉄源の還元に消費されるH量は89モルである。 In the above-mentioned reduction furnace, reduction of the iron source proceeds with CO supplied from the reformer and surplus H 2 not consumed in the reverse water gas shift reaction. The solid phase Fe 2 O 3 input as an iron source changes to twice the molar amount of FeO (solid phase) in the first cycle, and after the second cycle, FeO is gradually reduced to α-Fe (solid phase). The reduction is completed in the 7th cycle. The fact that the main reduction reaction is from FeO to α-Fe is consistent with the knowledge known in blast furnaces. The amount of H2 consumed in reducing this iron source is 89 moles.
 (発明例2)
 発明例2による循環型還元システムの平衡計算モデルを図5に示す。これは、リフォーマーの出側には第2除湿器を設けない点を除いて、図3に示す発明例1による循環型還元システムの平衡計算モデルと同じである。計算条件も発明例1と同様にして、リフォーマー内及び還元炉内のガス成分及び鉄源の平衡状態を算出した。その結果を図6に示す。
(Invention example 2)
FIG. 5 shows an equilibrium calculation model of the circulating reduction system according to Invention Example 2. This is the same as the equilibrium calculation model of the circulating reduction system according to Invention Example 1 shown in FIG. 3, except that the second dehumidifier is not provided on the outlet side of the reformer. The calculation conditions were also the same as in Invention Example 1, and the equilibrium state of the gas components and iron source in the reformer and reduction furnace was calculated. The results are shown in FIG.
 鉄源として投入した固相のFeは、1サイクル目に2倍モルのFeO(固相)に変化し、3サイクル目以後はFeOが徐々に還元されてα-Fe(固相)に変化しながら、9サイクル目に還元が完了する。主な還元反応がFeOからα-Feへの反応になっている点は、高炉で知られた知見と符合している。この鉄源の還元に消費されるH量は85モルである。 The solid phase Fe 2 O 3 input as an iron source changes to twice the molar amount of FeO (solid phase) in the first cycle, and after the third cycle, FeO is gradually reduced to α-Fe (solid phase). The reduction is completed in the 9th cycle. The fact that the main reduction reaction is from FeO to α-Fe is consistent with the knowledge known in blast furnaces. The amount of H2 consumed in the reduction of this iron source is 85 moles.
 (比較例)
 比較例による循環型還元システムの平衡計算モデルを図7に示す。これは、リフォーマー及び第2除湿器を設けない点を除いて、図3に示す発明例1による循環型還元システムの平衡計算モデルと同じである。計算条件も発明例1と同様にして、リフォーマー内及び還元炉内のガス成分及び鉄源の平衡状態を算出した。その結果を図8に示す。
(Comparative example)
FIG. 7 shows an equilibrium calculation model of a circulating reduction system according to a comparative example. This is the same as the equilibrium calculation model of the circulating reduction system according to Invention Example 1 shown in FIG. 3, except that the reformer and the second dehumidifier are not provided. The calculation conditions were also the same as in Invention Example 1, and the equilibrium state of the gas components and iron source in the reformer and reduction furnace was calculated. The results are shown in FIG.
 比較例の還元炉内では、水素ガス供給装置から還元炉に直接投入されるHのみで鉄源の還元が進行する。鉄源として投入した25モルのFe(固相)は、1サイクル目に8.2モルのFe(固相)と22.5モルのFeO(固相)に変化し、2サイクル目以後はFeOが徐々に還元されてα-Fe(固相)に変化しながら、発明例2と同じ9サイクル目に還元が完了する。主な還元反応がFeOからα-Feへの反応になっている点は、発明例1,2と同様である。この鉄源の還元に消費されるH量は、発明例2よりも10モル少ない75モルである。 In the reduction furnace of the comparative example, reduction of the iron source progresses only with H 2 directly introduced into the reduction furnace from the hydrogen gas supply device. 25 mol of Fe 2 O 3 (solid phase) input as an iron source changes into 8.2 mol of Fe 3 O 4 (solid phase) and 22.5 mol of FeO (solid phase) in the first cycle. After the second cycle, FeO is gradually reduced and changed to α-Fe (solid phase), and the reduction is completed at the ninth cycle, which is the same as in Invention Example 2. This is the same as Invention Examples 1 and 2 in that the main reduction reaction is the reaction from FeO to α-Fe. The amount of H 2 consumed in reducing this iron source was 75 mol, which was 10 mol less than that in Invention Example 2.
 (還元炉内での吸熱量)
 発明例1,2と比較例との大きな違いは、還元炉内での吸熱量である。Fact Sage 8.1で算出した各反応の反応熱から計算した還元炉内での反応熱(吸熱量)を図9及び図10に示す。
(Amount of heat absorbed in the reduction furnace)
The major difference between Invention Examples 1 and 2 and Comparative Example is the amount of heat absorbed in the reduction furnace. The reaction heat (endothermic amount) in the reduction furnace calculated from the reaction heat of each reaction calculated using Fact Sage 8.1 is shown in FIGS. 9 and 10.
 Hによる鉄源の直接還元は、初期に完了するFeからFeへの反応を除けば、いずれも吸熱反応である。それに対して、発明例1のCOと余剰Hによる鉄源の還元では、H還元による吸熱量をCO還元による発熱量が補うため、トータルの吸熱量を大幅に抑えることができる(図9参照)。また、発明例2では、FeOの還元域でCO還元による発熱量がH還元による吸熱量を上回るため、FeOの還元温度は自発的に高温に維持される(図9参照)。鉄源の投入量が増えれば、FeOの還元段階はさらに長くなる。通常、内部を高温に維持する必要がある還元炉には、羽口と炉頂以外から熱を供給することが極めて困難である。そのため、還元炉に投入するコークスの燃焼熱でこの吸収熱を補う必要があることを考えると、本発明例の優位性は明らかである。 All direct reductions of iron sources with H 2 are endothermic reactions, except for the reaction of Fe 2 O 3 to Fe 3 O 4 which is completed initially. On the other hand, in the reduction of the iron source using CO and surplus H 2 in Invention Example 1, the amount of heat absorbed by the reduction of H 2 is supplemented by the amount of heat absorbed by the reduction of CO, so the total amount of heat absorbed can be significantly suppressed (Fig. 9 reference). Furthermore, in Inventive Example 2, since the calorific value due to CO reduction exceeds the endothermic amount due to H 2 reduction in the FeO reduction region, the FeO reduction temperature is spontaneously maintained at a high temperature (see FIG. 9). If the input amount of iron source increases, the FeO reduction stage will become longer. Normally, it is extremely difficult to supply heat from other than the tuyere and furnace top to a reduction furnace, which needs to maintain its interior at a high temperature. Therefore, considering that it is necessary to supplement this absorption heat with the combustion heat of coke introduced into the reduction furnace, the superiority of the example of the present invention is obvious.
 なお、図10から、FeOの還元域での発熱量を最大にするためのリフォーマーへのH補給量は、排気ガス中のCOのモル量と同程度と予想される。リフォーマーへのHの補給量を抑制すれば、還元速度も下がると考えられるため、実際には、還元炉内の温度と還元速度のバランスからH補給量を調整することになる。 Note that from FIG. 10, the amount of H 2 supplied to the reformer in order to maximize the calorific value in the FeO reduction region is expected to be approximately the same as the molar amount of CO 2 in the exhaust gas. If the amount of H 2 replenishment to the reformer is suppressed, it is thought that the reduction rate will also decrease, so in reality, the amount of H 2 replenishment is adjusted based on the balance between the temperature inside the reduction furnace and the reduction rate.
 [実施例2]
 以下のとおり、発明例3,4として、実験用の循環型還元システムを用いた鉄鉱石の還元を行った。
[Example 2]
As described below, as Invention Examples 3 and 4, iron ore was reduced using an experimental circulating reduction system.
 (発明例3)
 発明例3による実験用の循環型還元システムの構成を図11に示す。図11において、重量計の上に設置された実験用還元炉であるBFシミュレータ(以下、「還元炉10」と称する。)の炉底部を仕切るタングステンメッシュの上に、5mm前後に粉砕したコークス2.2kgと、3mm前後に粉砕した塊鉱石5.0kgと、を交互に積層させた原料ブロックAを形成した。
(Invention example 3)
The configuration of an experimental circulating reduction system according to Invention Example 3 is shown in FIG. In FIG. 11, coke 2 crushed to about 5 mm is placed on a tungsten mesh that partitions the bottom of the BF simulator (hereinafter referred to as "reduction furnace 10"), which is an experimental reduction furnace installed on a weight scale. A raw material block A was formed by alternately stacking .2 kg of lump ore and 5.0 kg of lump ore crushed to around 3 mm.
 さらに、原料ブロックAの上に、上記コークス1.1kgに5mm前後に粉砕した高炉徐冷スラグ2.8kgを均一混合したものと、3mm前後に粉砕した塊鉱石5.0kgと、を交互に積層させた原料ブロックBを形成した。 Furthermore, on top of the raw material block A, a mixture of 1.1 kg of the coke and 2.8 kg of slowly cooled blast furnace slag crushed to around 5 mm, and 5.0 kg of lump ore crushed to around 3 mm are alternately stacked. A raw material block B was formed.
 炉頂部から排出される排気ガスは、除塵装置、除湿器20、1機目の電気管状炉40、除湿器、2機目の電気管状炉40、除湿器50、及び蓄熱型のガス加熱炉60を経由後、切替弁91を介して、一方は排ガス処理装置、他方は還元炉下部のノズル92に接続した。2機の電気管状炉40は、中心部に白金触媒51gを保持した石英製反応管をセットしたセラミック電気管状炉である。 Exhaust gas discharged from the top of the furnace is passed through a dust removal device, a dehumidifier 20, a first electric tubular furnace 40, a dehumidifier, a second electric tubular furnace 40, a dehumidifier 50, and a regenerative gas heating furnace 60. After passing through, one side was connected to the exhaust gas treatment device and the other side was connected to a nozzle 92 at the lower part of the reduction furnace via a switching valve 91. The two electric tube furnaces 40 are ceramic electric tube furnaces in which a quartz reaction tube holding 51 g of platinum catalyst is set in the center.
 1機目の電気管状炉40の直前、及び、2機目の電気管状炉40と除湿器50との間の2箇所にガス組成分析用のサンプリング管を設けてマイクロガスクロマト分析装置(マイクロGC)と接続した。また、除湿器20と1機目の電気管状炉40との間には、切替弁93とマスフローコントローラー(MFC)94を介して水素配管30を接続した。 Sampling tubes for gas composition analysis are provided at two locations, immediately before the first electric tubular furnace 40 and between the second electric tubular furnace 40 and the dehumidifier 50. ) was connected. Further, a hydrogen pipe 30 was connected between the dehumidifier 20 and the first electric tubular furnace 40 via a switching valve 93 and a mass flow controller (MFC) 94.
 還元炉10下部のノズル92の反対側には、蓄熱型のガス加熱炉95を経由して2.3%酸素富化空気を送り込むノズル96を設けた。ノズル96から導入する空気の流量はマスフローコントローラー(MFC)97で制御した。 On the opposite side of the nozzle 92 at the bottom of the reduction furnace 10, a nozzle 96 was provided to feed 2.3% oxygen-enriched air via a regenerative gas heating furnace 95. The flow rate of air introduced from the nozzle 96 was controlled by a mass flow controller (MFC) 97.
 還元実験終了後に還元炉10内に残留する排気ガスを完全に排気処理するため、除湿器20と切替弁93との間には、切替弁98を介してパージ用窒素ガス配管を接続した。 In order to completely exhaust the exhaust gas remaining in the reduction furnace 10 after the completion of the reduction experiment, a purge nitrogen gas pipe was connected between the dehumidifier 20 and the switching valve 93 via the switching valve 98.
 まず、切替弁91を排ガス処理装置側に設定して排気ガスを還元炉10から分離した。その上で、還元炉10のノズル96からMFC97で1200℃に加熱した空気を17L/分の流速で還元炉10内に導入した。2機の電気管状炉40はいずれも触媒周辺に設けた熱電対(TC)を利用して、内部温度が800℃になるように設定した。 First, the switching valve 91 was set on the exhaust gas treatment device side to separate the exhaust gas from the reduction furnace 10. Then, air heated to 1200° C. by the MFC 97 was introduced into the reduction furnace 10 from the nozzle 96 of the reduction furnace 10 at a flow rate of 17 L/min. Both electric tubular furnaces 40 were set to have an internal temperature of 800° C. using a thermocouple (TC) provided around the catalyst.
 原料ブロックAで塊鉱石が還元されて生じた排気ガスと、2機目の電気管状炉40を通過後の混合ガスの代表組成(1機目の電気管状炉40の入側での水素補充なしの場合)は、表1に記載のとおりである。2機目の電気管状炉40を通過後は、排気ガス中の余剰Hによる逆水性ガスシフト反応でCOが2.7%増加し、COとHがそれぞれ2.7%減少していることがわかる。 Typical composition of exhaust gas generated by reduction of lump ore in raw material block A and mixed gas after passing through the second electric tubular furnace 40 (no hydrogen replenishment at the entrance side of the first electric tubular furnace 40) ) are as described in Table 1. After passing through the second electric tubular furnace 40, CO increases by 2.7% due to a reverse water gas shift reaction due to excess H 2 in the exhaust gas, and CO 2 and H 2 each decrease by 2.7%. I understand that.
 原料ブロックA中のコークス2.2kgが排気ガスとして全量消費された時点でノズル96から導入する空気の流量をMFC97で8.5L/分に変更した。それと同時に、切替弁93を水素配管30側に切り替えて水素ガスを導入し、1機目の電気管状炉40に入る前の混合ガス中のH濃度が(初期排気ガス中のCO濃度と同じ)22.8%になるようにMFC94で調整した。その上で、切替弁91を還元炉10側に切り替えて還元ガスをノズル92から導入した。なお、原料ブロックA中のコークスが全量消費されたことは還元炉10の重量変化から判断した。 When 2.2 kg of coke in raw material block A was completely consumed as exhaust gas, the flow rate of air introduced from nozzle 96 was changed to 8.5 L/min by MFC 97. At the same time, the switching valve 93 is switched to the hydrogen pipe 30 side to introduce hydrogen gas, so that the H 2 concentration in the mixed gas before entering the first electric tubular furnace 40 (the CO 2 concentration in the initial exhaust gas) Same) Adjusted with MFC94 to 22.8%. Then, the switching valve 91 was switched to the reducing furnace 10 side, and the reducing gas was introduced from the nozzle 92. In addition, it was judged from the weight change of the reduction furnace 10 that the coke in the raw material block A was completely consumed.
 この状態で原料ブロックB中のコークス1.1kgが全量消費されるのを待って、ノズル96から導入する空気を停止し、2機の電気管状炉と2機のガス加熱炉を停止した。その上で、水冷ジャケット内の水温が30℃になるのを待って、切替弁93で水素ガスを遮断し、切替弁91を排ガス処理装置側に、切替弁98を窒素ガス導入側に切り替えて還元炉10内に残留する排気ガスを全て排ガス処理装置に排出した。その後、還元炉10を解体して炉内の状況を確認した。 In this state, after 1.1 kg of coke in the raw material block B was completely consumed, the air introduced from the nozzle 96 was stopped, and the two electric tube furnaces and the two gas heating furnaces were stopped. Then, wait until the water temperature in the water cooling jacket reaches 30°C, then cut off the hydrogen gas with the switching valve 93, switch the switching valve 91 to the exhaust gas treatment device side, and switch the switching valve 98 to the nitrogen gas introduction side. All of the exhaust gas remaining in the reduction furnace 10 was discharged to the exhaust gas treatment device. Thereafter, the reduction furnace 10 was disassembled and the situation inside the furnace was confirmed.
 原料ブロックA、B中の合計10kgの塊鉱石、コークス3.3kg、高炉徐冷スラグ2.8kgは、いずれもタングステンメッシュ上に殆ど認められなかった。タングステンメッシュで仕切られた炉底には、フェライト(α-Fe)とセメンタイト(FeC)の混合物、及び、その上に堆積したスラグが確認された。混合物がフェライトとセメンタイトから構成されることは、X線回折で確認した。なお、燃焼型の炭素-硫黄分析装置で測定した同混合物中の炭素は概ね4.3質量%前後で、混合物の上部と下部で比較した場合、下部で炭素が0.3質量%程度高めの傾向を示した。 A total of 10 kg of lump ore, 3.3 kg of coke, and 2.8 kg of slowly cooled blast furnace slag in raw material blocks A and B were hardly recognized on the tungsten mesh. A mixture of ferrite (α-Fe) and cementite (Fe 3 C) and slag deposited thereon were confirmed at the bottom of the furnace, which was partitioned with a tungsten mesh. It was confirmed by X-ray diffraction that the mixture was composed of ferrite and cementite. The carbon content of the mixture measured with a combustion-type carbon-sulfur analyzer was approximately 4.3% by mass, and when comparing the upper and lower parts of the mixture, the carbon content in the lower part was about 0.3% higher by mass. showed a trend.
 以上の実験により、高炉モードに相当する原料ブロックAの全量が還元されて以降の、スラグを通気材とする50%カーボンレス操業に相当する原料ブロックBの還元工程でも、原料として投入した塊鉱石を全量還元できることを確認した。 Through the above experiments, it was found that after the entire amount of raw material block A, which corresponds to blast furnace mode, has been reduced, even in the reduction process of raw material block B, which corresponds to 50% carbonless operation using slag as an aeration material, the lump ore input as a raw material It has been confirmed that the entire amount can be returned.
 (発明例4)
 発明例4による実験用の循環型還元システムの構成を図12に示す。これは、電気管状炉40を1機とし、電気管状炉40の下流に除湿器を配置しないこと以外は、図11に示す発明例3の循環型還元システムと同じである。電気管状炉40は、触媒周辺に設けた熱電対(TC)を利用して、内部温度が900℃になるように設定した。それ以外の条件は発明例3と同じとして、試験を行った。
(Invention example 4)
FIG. 12 shows the configuration of an experimental circulating reduction system according to Invention Example 4. This is the same as the circulating reduction system of Invention Example 3 shown in FIG. 11, except that there is only one electric tubular furnace 40 and no dehumidifier is disposed downstream of the electric tubular furnace 40. The electric tubular furnace 40 was set to have an internal temperature of 900° C. using a thermocouple (TC) provided around the catalyst. The test was conducted under the same conditions as in Invention Example 3 except for the above.
 原料ブロックAで塊鉱石が還元されて生じた排気ガスと、電気管状炉40を通過後の混合ガスの代表組成(電気管状炉40の入側での水素補充なしの場合)は、表1に記載のとおりである。電気管状炉40を通過後は、排気ガス中の余剰Hによる逆水性ガスシフト反応でCOが1.8%増加し、COとHがそれぞれ1.8%減少していることがわかる。 The typical composition of the exhaust gas generated by reducing the lump ore in raw material block A and the mixed gas after passing through the electric tubular furnace 40 (in the case of no hydrogen replenishment at the entrance side of the electric tubular furnace 40) is shown in Table 1. As described. It can be seen that after passing through the electric tubular furnace 40, CO increases by 1.8% due to a reverse water gas shift reaction due to excess H 2 in the exhaust gas, and CO 2 and H 2 each decrease by 1.8%.
 試験終了後、発明例3と同様に、塊鉱石、コークス、及び高炉徐冷スラグは、いずれもタングステンメッシュ上に殆ど認められなかった。タングステンメッシュで仕切られた炉底には、フェライト(α-Fe)とセメンタイト(FeC)の混合物、及び、その上に堆積したスラグが確認された。混合物がフェライトとセメンタイトから構成されることは、X線回折で確認した。なお、燃焼型の炭素-硫黄分析装置で測定した同混合物中の炭素は概ね4.3質量%前後で、混合物の上部と下部で比較した場合、下部で炭素が0.3質量%程度高めの傾向を示した。 After the test, as in Invention Example 3, hardly any lump ore, coke, or slow-cooled blast furnace slag was observed on the tungsten mesh. A mixture of ferrite (α-Fe) and cementite (Fe 3 C) and slag deposited thereon were confirmed at the bottom of the furnace, which was partitioned with a tungsten mesh. It was confirmed by X-ray diffraction that the mixture was composed of ferrite and cementite. The carbon content of the mixture measured with a combustion-type carbon-sulfur analyzer is approximately 4.3% by mass, and when comparing the upper and lower parts of the mixture, the carbon content in the lower part is about 0.3% higher by mass. showed a trend.
 以上の実験により、高炉モードに相当する原料ブロックAの全量が還元されて以降の、スラグを通気材とする50%カーボンレス操業に相当する原料ブロックBの還元工程でも、原料として投入した塊鉱石を全量還元できることを確認した。 Through the above experiments, it was found that after the entire amount of raw material block A, which corresponds to blast furnace mode, has been reduced, even in the reduction process of raw material block B, which corresponds to 50% carbonless operation using slag as an aeration material, the lump ore input as a raw material It has been confirmed that the entire amount can be returned.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 100 循環型還元システム
 200 循環型還元システム
  10 還元炉
  12  炉頂
  14  羽口
  20 第1除湿器
  30 水素ガス供給装置
  40 触媒装置
  42  反応室
  44  加熱装置
  50 第2除湿器
  60 ガス加熱装置
  70 第3除湿器
  81 第1配管
  82 第2配管
  83 第3配管
  84 第4配管
  85 第5配管
  86 第6配管
  87 第7配管
  90 切替弁
 
100 Circulating reduction system 200 Circulating reducing system 10 Reduction furnace 12 Furnace top 14 Tuyere 20 First dehumidifier 30 Hydrogen gas supply device 40 Catalyst device 42 Reaction chamber 44 Heating device 50 Second dehumidifier 60 Gas heating device 70 Third Dehumidifier 81 First pipe 82 Second pipe 83 Third pipe 84 Fourth pipe 85 Fifth pipe 86 Sixth pipe 87 Seventh pipe 90 Switching valve

Claims (15)

  1.  内部に収容された酸化物を還元する還元炉と、
     前記還元炉にて発生し、COを含む排気ガスを前記還元炉から回収して通過させる第1配管と、
     前記第1配管の途中に接続され、前記排気ガスに水素ガスを添加して水素添加ガスとする水素ガス供給装置と、
     前記第1配管の終端が接続され、逆水性ガスシフト反応用の触媒を収容する反応室を有し、前記第1配管から前記反応室に導入された前記水素添加ガスが前記触媒と接触して、逆水性ガスシフト反応にて前記水素添加ガス中のCOがCOに変換され、CO濃度が高められたCOリッチガスとする触媒装置と、
     前記触媒装置から延び、前記還元炉に接続され、前記COリッチガスを通過させ、前記COリッチガスを還元ガスとして前記還元炉の内部に供給する第2配管と、
    を有し、
     前記第1配管及び前記第2配管の途中に、内部を通過するガスから水蒸気以外の特定のガス成分を分離し、回収又は除去する分離装置が配置されない、循環型還元システム。
    a reduction furnace that reduces the oxide contained therein;
    a first pipe that collects and passes exhaust gas generated in the reduction furnace and containing CO 2 from the reduction furnace;
    a hydrogen gas supply device that is connected to the middle of the first pipe and adds hydrogen gas to the exhaust gas to produce a hydrogenated gas;
    The terminal end of the first pipe is connected to a reaction chamber accommodating a catalyst for a reverse water gas shift reaction, and the hydrogenation gas introduced from the first pipe to the reaction chamber comes into contact with the catalyst, A catalytic device in which CO 2 in the hydrogenated gas is converted to CO by a reverse water gas shift reaction to produce a CO-rich gas with an increased CO concentration;
    a second pipe extending from the catalyst device, connected to the reduction furnace, allowing the CO-rich gas to pass therethrough, and supplying the CO-rich gas into the reduction furnace as a reducing gas;
    has
    A circulating reduction system in which a separation device that separates, recovers or removes specific gas components other than water vapor from the gas passing through the first pipe and the second pipe is not disposed in the middle of the first pipe and the second pipe.
  2.  前記第2配管の途中に配置された、前記COリッチガスを加熱するガス加熱装置を有する、請求項1に記載の循環型還元システム。 The circulating reduction system according to claim 1, further comprising a gas heating device that heats the CO-rich gas and is placed in the middle of the second pipe.
  3.  前記第2配管の途中で前記ガス加熱装置よりも上流の位置から分岐し、前記ガス加熱装置に接続された第3配管を有し、前記第3配管を介して、前記COリッチガスの一部を燃焼ガスとして前記ガス加熱装置に供給する、請求項2に記載の循環型還元システム。 A third pipe is branched from a position upstream of the gas heating device in the middle of the second pipe and connected to the gas heating device, and a part of the CO-rich gas is supplied through the third pipe. The circulating reduction system according to claim 2, wherein the combustion gas is supplied to the gas heating device.
  4.  前記ガス加熱装置から延び、前記第1配管の途中に接続された第4配管を有し、前記第4配管を介して、前記ガス加熱装置から発生する燃焼排ガスを前記第1配管内の前記排気ガスに合流させる、請求項2又は3に記載の循環型還元システム。 A fourth pipe extends from the gas heating device and is connected to the middle of the first pipe, and the combustion exhaust gas generated from the gas heating device is transferred to the exhaust gas in the first pipe through the fourth pipe. The circulating reduction system according to claim 2 or 3, which is made to join the gas.
  5.  前記触媒装置は、前記反応室を加熱する加熱装置を有し、
     前記第2配管から分岐し、前記加熱装置に接続された第5配管を有し、前記第5配管を介して、前記COリッチガスの一部を燃焼ガスとして前記加熱装置に供給する、請求項1~3のいずれか一項に記載の循環型還元システム。
    The catalyst device includes a heating device that heats the reaction chamber,
    Claim 1, further comprising a fifth pipe branched from the second pipe and connected to the heating device, and supplying a portion of the CO-rich gas as combustion gas to the heating device via the fifth pipe. The circulating reduction system according to any one of 3 to 3.
  6.  前記加熱装置から延び、前記第1配管の途中に接続された第6配管を有し、前記第6配管を介して、前記加熱装置から発生する燃焼排ガスを前記第1配管内の前記排気ガスに合流させる、請求項5に記載の循環型還元システム。 A sixth pipe extends from the heating device and is connected to the middle of the first pipe, and the combustion exhaust gas generated from the heating device is transferred to the exhaust gas in the first pipe via the sixth pipe. The circulating reduction system according to claim 5, wherein the system is made to merge.
  7.  前記第1配管の途中で、前記水素ガス供給装置が接続される部位よりも上流に配置された、前記排気ガスから水蒸気を除去する第1除湿器を有する、請求項1~3のいずれか一項に記載の循環型還元システム。 Any one of claims 1 to 3, further comprising a first dehumidifier for removing water vapor from the exhaust gas, the first dehumidifier being disposed in the middle of the first piping upstream of a portion to which the hydrogen gas supply device is connected. Circulating reduction system as described in Section.
  8.  前記第2配管の途中に配置された、前記COリッチガスから水蒸気を除去する第2除湿器を有する、請求項1~3のいずれか一項に記載の循環型還元システム。 The circulating reduction system according to any one of claims 1 to 3, further comprising a second dehumidifier disposed in the middle of the second pipe to remove water vapor from the CO-rich gas.
  9.  前記第2配管の途中に配置された切替弁と、前記切替弁から延びる第7配管と、を有し、
     前記第7配管を介して、前記COリッチガスの一部を回収する、請求項1~3のいずれか一項に記載の循環型還元システム。
    comprising a switching valve disposed in the middle of the second pipe, and a seventh pipe extending from the switching valve,
    The circulating reduction system according to any one of claims 1 to 3, wherein a part of the CO-rich gas is recovered via the seventh pipe.
  10.  前記第7配管の途中に配置された、前記第7配管を通過する前記COリッチガスから水蒸気を除去する第3除湿器を有する、請求項9に記載の循環型還元システム。 The circulating reduction system according to claim 9, further comprising a third dehumidifier disposed in the middle of the seventh pipe to remove water vapor from the CO-rich gas passing through the seventh pipe.
  11.  前記還元炉が溶鉱炉であり、前記酸化物が鉄鉱石である、請求項1~3のいずれか一項に記載の循環型還元システム。 The circulating reduction system according to any one of claims 1 to 3, wherein the reduction furnace is a blast furnace and the oxide is iron ore.
  12.  前記溶鉱炉が高炉である、請求項11に記載の循環型還元システム。 The circulating reduction system according to claim 11, wherein the blast furnace is a blast furnace.
  13.  請求項1~3のいずれか一項に記載の循環型還元システムを用いて、前記排気ガスを改質して得た前記COリッチガスを前記還元ガスとして循環利用して、前記酸化物としての鉄鉱石の還元処理を行う、鉄鉱石の還元方法。 Using the circulating reduction system according to any one of claims 1 to 3, the CO-rich gas obtained by reforming the exhaust gas is recycled as the reducing gas, and the iron ore as the oxide is produced. A method for reducing iron ore by reducing stone.
  14.  請求項11に記載の循環型還元システムを用いる溶鉱炉の操業方法であって、
     前記溶鉱炉の炉頂から、(I)前記鉄鉱石として、焼結鉱、塊鉱石、鉄鉱石ペレット、及び粉鉱石から選択される少なくとも一種と、(II)前記溶鉱炉の底部から排出された溶融スラグを徐冷して得た凝固スラグを破砕した破砕スラグ、又は、前記破砕スラグとコークスとの混合物からなる通気材と、を前記溶鉱炉内に交互に層状に装入して、前記還元ガスの炉内通気性を確保する、溶鉱炉の操業方法。
    A method of operating a blast furnace using the circulating reduction system according to claim 11,
    From the top of the blast furnace, (I) at least one kind of iron ore selected from sintered ore, lump ore, iron ore pellets, and fine ore, and (II) molten slag discharged from the bottom of the blast furnace. Crushed slag obtained by crushing solidified slag obtained by slowly cooling the slag, or a ventilation material made of a mixture of the crushed slag and coke, are charged into the blast furnace in alternating layers, and the reducing gas furnace A method of operating a blast furnace that ensures internal ventilation.
  15.  前記溶鉱炉の下部に位置する羽口から前記還元ガスと空気とを吹込みガスとして前記溶鉱炉の内部に供給し、
     前記通気材における前記コークスに対する前記破砕スラグの割合と、前記吹込みガスにおける前記空気に対する前記還元ガスの割合と、を段階的に増加させて、前記コークスの使用量を段階的に抑制する、請求項14に記載の溶鉱炉の操業方法。
     
    Supplying the reducing gas and air as blowing gases into the inside of the blast furnace from a tuyere located at a lower part of the blast furnace,
    A ratio of the crushed slag to the coke in the ventilation material and a ratio of the reducing gas to the air in the blown gas are increased in stages to suppress the amount of coke used in stages. Item 15. The method for operating a blast furnace according to item 14.
PCT/JP2023/030590 2022-08-30 2023-08-24 Circulating reduction system, iron ore reduction method, and blast furnace operation method WO2024048423A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022137231 2022-08-30
JP2022-137231 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024048423A1 true WO2024048423A1 (en) 2024-03-07

Family

ID=90099760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030590 WO2024048423A1 (en) 2022-08-30 2023-08-24 Circulating reduction system, iron ore reduction method, and blast furnace operation method

Country Status (1)

Country Link
WO (1) WO2024048423A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4265868A (en) * 1978-02-08 1981-05-05 Koppers Company, Inc. Production of carbon monoxide by the gasification of carbonaceous materials
JPH09100108A (en) * 1995-10-05 1997-04-15 Cosmo Eng Kk Production of carbon monoxide gas
JP2012072473A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp Raw material for blast furnace, and method for manufacturing the same
JP2016524654A (en) * 2013-06-14 2016-08-18 ツェーツェーペー テヒノロジー ゲーエムベーハー Blast furnace and blast furnace operating method
CN106399617A (en) * 2016-12-16 2017-02-15 江苏省冶金设计院有限公司 Direct reduced iron making system and method for gas-based shaft furnace
JP6843490B1 (en) * 2020-08-04 2021-03-17 積水化学工業株式会社 Gas manufacturing equipment, gas manufacturing system, steel manufacturing system, chemical manufacturing system and gas manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4265868A (en) * 1978-02-08 1981-05-05 Koppers Company, Inc. Production of carbon monoxide by the gasification of carbonaceous materials
JPH09100108A (en) * 1995-10-05 1997-04-15 Cosmo Eng Kk Production of carbon monoxide gas
JP2012072473A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp Raw material for blast furnace, and method for manufacturing the same
JP2016524654A (en) * 2013-06-14 2016-08-18 ツェーツェーペー テヒノロジー ゲーエムベーハー Blast furnace and blast furnace operating method
CN106399617A (en) * 2016-12-16 2017-02-15 江苏省冶金设计院有限公司 Direct reduced iron making system and method for gas-based shaft furnace
JP6843490B1 (en) * 2020-08-04 2021-03-17 積水化学工業株式会社 Gas manufacturing equipment, gas manufacturing system, steel manufacturing system, chemical manufacturing system and gas manufacturing method

Similar Documents

Publication Publication Date Title
WO2015090900A1 (en) Method for operating a top gas recycling blast furnace installation
WO2021183022A1 (en) Process for the production of sponge iron
EP4263878A1 (en) Smart hydrogen production for dri making
EP4032991A1 (en) Smart hydrogen production for dri making
TW436522B (en) Process for the produciton of pig iron
JP2002161303A (en) Method and equipment for utilizing gas discharged from melting reduction furnace
WO2024048423A1 (en) Circulating reduction system, iron ore reduction method, and blast furnace operation method
JP2018104812A (en) Apparatus and method for producing molten iron
WO2013064870A1 (en) Process for producing direct reduced iron (dri) with less co2 emissions to the atmosphere
CA3222487A1 (en) Hydrogen gas recycling in a direct reduction process
JP2016536468A (en) Steel production in coke dry fire extinguishing system.
JP2023550359A (en) Process of producing carburized sponge iron
Cavaliere Hydrogen direct reduced iron
Cavaliere Hydrogen Ironmaking
WO2023036475A1 (en) Method for producing direct reduced iron for an iron and steelmaking plant
US20230340628A1 (en) Method for operating a blast furnace installation
KR20240068675A (en) Method for producing direct reduced iron in iron and steel plants
WO2022264904A1 (en) Method for producing reduced iron
JP7272312B2 (en) Method for producing reduced iron
KR20240068674A (en) Method for producing direct reduced iron for iron and steel plants
JP2024508605A (en) Extracted gas recovery in direct reduction process
KR20240018212A (en) Facility for manufacturing molten iron and method for manufacturing molten iron
AU708255B2 (en) Direct iron and steelmaking
KR20240041974A (en) How to make iron melt
CN117178064A (en) Method for operating an electric arc furnace, electric arc furnace and steel mill

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860186

Country of ref document: EP

Kind code of ref document: A1