JP7265158B2 - Method for producing non-fired coal-containing agglomerate ore for blast furnace - Google Patents

Method for producing non-fired coal-containing agglomerate ore for blast furnace Download PDF

Info

Publication number
JP7265158B2
JP7265158B2 JP2019106233A JP2019106233A JP7265158B2 JP 7265158 B2 JP7265158 B2 JP 7265158B2 JP 2019106233 A JP2019106233 A JP 2019106233A JP 2019106233 A JP2019106233 A JP 2019106233A JP 7265158 B2 JP7265158 B2 JP 7265158B2
Authority
JP
Japan
Prior art keywords
raw material
mass
ore
coal
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019106233A
Other languages
Japanese (ja)
Other versions
JP2020200489A (en
Inventor
武司 堤
亮太 岡島
務 岡田
真吾 石丸
広明 坂上
岳之 藤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019106233A priority Critical patent/JP7265158B2/en
Publication of JP2020200489A publication Critical patent/JP2020200489A/en
Application granted granted Critical
Publication of JP7265158B2 publication Critical patent/JP7265158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、高炉や堅型溶解炉などの製鉄炉の原料に用いられる、非焼成含炭塊成鉱を製造する技術に関する。 TECHNICAL FIELD The present invention relates to a technique for producing non-calcined coal-containing agglomerate ore, which is used as a raw material for ironmaking furnaces such as blast furnaces and rigid melting furnaces.

通常、高炉内では、炉上部から焼結鉱や塊状コークス等の原料を投入するとともに、炉下部から送風し、塊状コークスと送風エアから生成する還元ガスを、炉下部から炉上部へと通風させながら、原料中の酸化鉄を還元溶解させることにより、銑鉄を得る。高炉用原料は、高炉炉内で還元ガスの通風性を確保するため、炉内で粉化しない強度があることが要求される。また、高炉原料は炉下部で1500℃以上の高温にさらされるため、高温での強度も必要となる。このため高炉用原料は、焼結鉱や焼成ペレットのように、事前に1000℃以上の高温で焼成した原料が主流となっている。 Normally, in a blast furnace, raw materials such as sintered ore and lumped coke are charged from the upper part of the furnace, and air is blown from the lower part of the furnace, and the reducing gas generated from the lumped coke and blown air is circulated from the lower part of the furnace to the upper part of the furnace. Meanwhile, pig iron is obtained by reducing and dissolving the iron oxide in the raw material. Blast furnace raw materials are required to have strength so that they do not pulverize in the furnace in order to ensure the ventilation of the reducing gas in the furnace. In addition, since the blast furnace raw material is exposed to a high temperature of 1500° C. or more in the lower part of the furnace, strength at high temperature is also required. For this reason, raw materials for blast furnaces, such as sintered ore and fired pellets, are mainly fired at a high temperature of 1000° C. or higher in advance.

また、微粉状原料を水硬性バインダーとともに混合し水を加えて造粒した後、養生することにより造粒物の強度を高めた非焼成塊成鉱も古くから知られている。この非焼成塊成鉱は焼成することなくそのまま高炉へ装入することができるため、加熱・焼成に必要なエネルギー消費を抑えつつ、CO2排出量を抑制できる技術である。非焼成塊成鉱の原料には、焼結性が低く、塊状に焼成するのが難しいとされる低品位な鉄鉱石でも使用できる可能性があり、このように非焼成塊成鉱を高炉原料として利用することは、高炉で利用する鉄源の種類を拡大し、枯渇が懸念される良質鉄鉱石を温存し、地球資源全体の有効利用を図るという意義もある。 Further, non-calcined agglomerate ore, which is obtained by mixing a finely powdered raw material with a hydraulic binder, adding water to granulate the granules, and curing the granules to increase the strength of the granules, has also been known for a long time. Since this non-fired agglomerate ore can be charged into the blast furnace as it is without being fired, this technology can reduce the energy consumption required for heating and firing while also reducing CO2 emissions. As a raw material for unfired agglomerate ore, it is possible to use low-grade iron ore, which has low sinterability and is difficult to sinter into a lump. It is also significant to expand the types of iron sources used in blast furnaces, conserve high-quality iron ore, which is feared to be depleted, and effectively utilize the entire earth's resources.

これに対して近年、高炉のコークス使用量削減ニーズと、CO2削減ニーズを両立可能な技術として、「非焼成含炭塊成鉱」技術が提案されている(特許文献1,2、非特許文献1など)。上記非焼成塊成鉱の微粉原料に炭素含有原料を添加することで、すなわち塊成鉱に炭材を含有させると、還元ガス温度とガス組成との関係(ηCO=CO2/(CO+CO2))から、酸化鉄の還元反応の進行が制約される高炉シャフト部の熱保存帯と還元反応平衡帯においても、900~1100℃の温度領域で、非焼成塊成鉱中の内装カーボンにより還元反応を起こす結果、還元率が向上するため、高炉操業時の還元材比の低減効果が期待できる。 On the other hand, in recent years, as a technology that can achieve both the need to reduce the amount of coke used in blast furnaces and the need to reduce CO 2 , "unburned coal-bearing agglomerate" technology has been proposed (Patent Documents 1 and 2, non-patent Reference 1, etc.). By adding a carbon-containing raw material to the fine powder raw material of the non-fired agglomerate ore, that is, when the agglomerate ore contains carbon material, the relationship between the reducing gas temperature and the gas composition (ηCO = CO 2 /(CO + CO 2 ) ), even in the heat preservation zone and the reduction reaction equilibrium zone of the blast furnace shaft where the progress of the reduction reaction of iron oxide is restricted, the reduction reaction occurs due to the internal carbon in the unburned agglomerate ore in the temperature range of 900 to 1100 ° C. As a result, the reduction rate is improved, so the effect of reducing the reducing agent ratio during blast furnace operation can be expected.

以上のことにより、高炉用非焼成含炭塊成鉱は、炭素含有量が多く、かつ、高炉で粉化しないよう強度が高いものが望まれる。たとえば、従来の高炉用非焼成含炭塊成鉱技術の代表的な特許文献1では、非焼成含炭塊成鉱の炭素含有量は15質量%以上25質量%以下を適正値としている。ただし、非焼成含炭塊成鉱中の炭素含有量を増加し15質量%を超えると強度が低下するという課題に対し、最初に「微粉状鉄含有原料と微粉状コークスを混合し、更に水分の一部を添加して混練した後、該混練物に早強セメントを添加」することで、強度低下を防止する方法を提案している。これにより、従来、微粉状コークスの表面にある気孔に埋没して接着剤としての効果を発揮できなかった早強セメントに替えて、微粉状鉄含有原料でコークスの気孔を埋没させることで、早強セメントの強度発現効果を効率的に発揮させることができる。 For the above reasons, it is desired that the non-fired coal-containing agglomerate ore for blast furnace has a high carbon content and a high strength so as not to be pulverized in a blast furnace. For example, in Patent Literature 1, which is representative of conventional non-calcined coal-containing agglomerate ore technology for blast furnaces, the proper value of the carbon content of the non-calcined carbon-containing agglomerate ore is 15% by mass or more and 25% by mass or less. However, in response to the problem that the strength decreases when the carbon content in the non-calcined coal-containing agglomerate ore is increased to exceed 15% by mass, the first method is to mix the fine powder iron-containing raw material and fine powder coke, and then add moisture. is added and kneaded, and then high-early-strength cement is added to the kneaded product to prevent the strength from decreasing. As a result, in place of conventional high-early-strength cement, which was buried in the pores on the surface of fine coke and was unable to exert its effect as an adhesive, by filling the pores of the coke with a raw material containing finely powdered iron, It is possible to efficiently exhibit the strength development effect of strong cement.

しかしながらこの方法で、高炉に装入しても粉化しない非焼成含炭塊成鉱(圧潰強度>980N/個;個は非焼成塊成鉱1個当たりの圧潰強度を表す。尚Nはニュートンである)を製造するためには、早強セメントを10質量%以上配合することとなる。この非焼成含炭塊成鉱を高炉にて使用する量を増加させた場合、早強セメントは400~500℃で脱水反応(吸熱反応)が進行するため、早強セメント10質量%を添加した含炭塊成鉱の過剰使用は高炉内の温度が低下してしまい、高炉内装入物の還元遅れを生じて還元材比低減効果を得ることができない。また、早強セメント成分は高炉内でスラグとなるため、スラグ量が増加するという問題がある。 However, with this method, it was found that the non-calcined coal-bearing agglomerate ore (crushing strength>980N/piece) does not pulverize even when charged into the blast furnace. ), 10% by mass or more of high-early-strength cement is blended. When the amount of this non-calcined coal-containing agglomerate ore used in the blast furnace is increased, the dehydration reaction (endothermic reaction) of the high-early-strength cement proceeds at 400 to 500°C, so 10% by mass of the high-early-strength cement was added. Excessive use of coal-bearing agglomerate ore lowers the temperature in the blast furnace, causing a delay in the reduction of the blast furnace contents, making it impossible to obtain the effect of reducing the reducing agent ratio. In addition, since the high-early-strength cement component becomes slag in the blast furnace, there is a problem that the amount of slag increases.

また、非特許文献1では、炭素含有率(T.C.)が20質量%程度の含炭塊成鉱を、高炉原料として3質量%配合することで、高炉操業時の還元材比低減効果が最も高くなるが、6質量%配合すると、還元材比の低減効果が表れなかったと述べている。
この理由として、炭素含有率(T.C.)が20質量%程度の含炭塊成鉱に高炉装入に耐える圧潰強度を確保させるには、セメントを10~11質量%配合する必要が生じ、含炭塊成鉱に含まれるセメント由来の結晶水が増加して高炉内で脱水吸熱反応を起こして、高炉シャフト部が低温化してしまい、還元が遅延されるためであるとしている。
In addition, in Non-Patent Document 1, by blending 3% by mass of a carbon-containing agglomerate ore having a carbon content (TC) of about 20% by mass as a blast furnace raw material, the effect of reducing the reducing agent ratio during blast furnace operation is the highest, but when blended at 6% by mass, the effect of reducing the reducing agent ratio did not appear.
The reason for this is that 10 to 11% by mass of cement must be blended in order to ensure the crushing strength to withstand charging into a blast furnace in a carbon-containing agglomerate ore with a carbon content (TC) of about 20% by mass. It is said that the increase in water of crystallization derived from cement contained in the coal-bearing agglomerate ore causes dehydration endothermic reaction in the blast furnace, lowering the temperature of the blast furnace shaft and delaying the reduction.

従い、高炉の還元材比低減効果を最大享受するためには、高炉への含炭塊成鉱の装入比率を増加させる必要がある。ここで含炭塊成鉱の高炉装入量を3質量%以上とするためには、炭素含有率(T.C.)を上げる一方で、高炉内の温度低下回避、含炭塊成鉱の圧壊強度を向上させるには、セメントをはじめとする水硬性バインダーの配合率を9質量%以下でも、高炉装入時に粉化しないよう、含炭塊成鉱強度を高めるための製造方法の開発が必要となる。 Therefore, in order to maximize the effect of reducing the reducing agent ratio of the blast furnace, it is necessary to increase the charging ratio of the coal-containing agglomerate ore into the blast furnace. Here, in order to increase the amount of coal-containing agglomerate ore charged to the blast furnace at 3% by mass or more, the carbon content (T.C.) must be increased while avoiding a temperature drop in the blast furnace and increasing the amount of coal-containing agglomerate ore In order to improve the crushing strength, it is necessary to develop a manufacturing method to increase the strength of the coal-bearing agglomerate ore so that it does not pulverize when it is charged into the blast furnace even if the blending ratio of cement and other hydraulic binders is 9% by mass or less. necessary.

そこで特許文献2では、高炉用非焼成含炭ペレットの常温圧潰強度を上げる方法として、「結合剤」として、「水硬性バインダーと、澱粉バインダー又は粘土系バインダーの少なくともいずれか」を添加することで、炭材含有原料を10~30質量%配合しても、水硬性バインダー配合率が3~10質量%でも高炉に装入しても粉化しない強度(>1000N/個)の非焼成含炭塊成鉱を製造できるとしている。 Therefore, in Patent Document 2, as a method for increasing the room temperature crushing strength of non-fired carbon-containing pellets for blast furnaces, as a "binder", "at least one of a hydraulic binder and a starch binder or a clay binder" is added. , Even if 10 to 30% by mass of carbonaceous material-containing raw materials are blended, even if the blending ratio of hydraulic binder is 3 to 10% by mass, even if it is charged into a blast furnace, it will not powder even if it is charged into a blast furnace. It is said that it can produce agglomerate ore.

しかしながら、澱粉バインダー又は粘土系バインダーは両者とも非常に粘性が高く、この特許文献2に示されるような水分添加率(7質量%)では、非常に大きな圧縮力を持つロールブリケット方式が最適である。一般にロールブリケット方式で成型すると、粉や欠片が多く発生するため、製品歩留りが低い(一般的には70%以下)という難点がある。ディスクペレタイザー方式でも成型は可能であるが、ディスクペレタイザー装置は小型装置しかなく、工業的な大量生産には不向きである。 However, both the starch binder and the clay-based binder are very viscous, and at the water addition rate (7% by mass) as shown in Patent Document 2, the roll briquette method with a very large compressive force is optimal. . Molding by the roll briquette method generally generates a large amount of powder and fragments, and has the disadvantage of a low product yield (generally 70% or less). Molding is also possible by the disk pelletizer method, but the disk pelletizer device is only a small device and is not suitable for industrial mass production.

これに対して、原料へ水分を多く添加して原料の粘性を低下すれば他の成型方式(押出し成型方式、パンペレタイザー造粒方式など)でも成型可能となるが、非焼成含炭塊成鉱に内包された水分は乾燥すると空隙となって圧潰強度を低下させ、高炉装入時に多量の粉が発生したり、成型後の養生時に成型体同士が付着して大塊化してしまい、高炉装入前に破砕処理が必要となって成型体の歩留が低下するという点で、やはり生産性が悪いという課題がある。 On the other hand, if a large amount of water is added to the raw material to lower the viscosity of the raw material, it will be possible to use other molding methods (extrusion molding method, pan pelletizer granulation method, etc.). When the water contained in the granules dries, it forms voids that reduce the crushing strength, resulting in the generation of a large amount of powder when charged into the blast furnace, and the compacts sticking together during curing after molding to form large lumps. There is also a problem that the productivity is low in that the yield of the molded body is lowered because the crushing treatment is required before the molding.

また、特許文献3に示されるように、セメントを増やすことなく非焼成塊成鉱の冷間強度を向上させる方法として、塊成鉱原料及び水の混合物に振動を与えて混合物中の空気を分離除去することにより、塊成鉱の強度を向上させる非焼成塊成鉱の製造方法が提案されている。この製造方法によれば、混合原料中の空気が分離除去されるので、セメントを増量させなくても、塊成鉱の強度を向上させることが可能となる。 Further, as shown in Patent Document 3, as a method for improving the cold strength of non-fired agglomerate ore without increasing cement, a mixture of agglomerate raw material and water is vibrated to separate air in the mixture. A method for producing a non-fired agglomerate ore has been proposed in which the strength of the agglomerate ore is improved by removing it. According to this production method, since the air in the mixed raw material is separated and removed, it is possible to improve the strength of the agglomerate ore without increasing the amount of cement.

しかしながら、特許文献3に示される非焼成塊成鉱の製造方法は、バッチ式であるため、連続的に非焼成塊成鉱を製造することができず、生産性が悪いという問題がある。 However, the method for producing non-calcined agglomerate ore disclosed in Patent Document 3 is a batch type, and thus has a problem that it is not possible to continuously produce non-calcined agglomerate ore, resulting in poor productivity.

このように従来、非焼成塊成鉱中の水分を除いた原料中(含炭塊成鉱原料中)に含まれる炭素含有量の割合(T.C.)を15質量%以上とすべく、炭素含有原料等を配合することで、高い還元材比低減効果を有する含炭塊成鉱の製造方法が提案されてきた。しかしながら、炭素含有原料等の多量配合は成型体強度を低下させるため、これを回避すべく、従来の製造方法では水硬性バインダーを10質量%程度配合して、成型体の必要強度を確保していた。 In this way, conventionally, in order to set the carbon content ratio (TC) contained in the raw material (in the raw material of the carbon-containing agglomerate ore) after removing moisture in the non-fired agglomerate ore to 15% by mass or more, A method for producing a coal-containing agglomerate ore having a high reducing agent ratio reduction effect by blending a carbon-containing raw material or the like has been proposed. However, since the addition of a large amount of carbon-containing raw materials reduces the strength of the molded body, in order to avoid this, in the conventional manufacturing method, about 10% by mass of a hydraulic binder is added to ensure the required strength of the molded body. rice field.

水硬性バインダー由来の水和物は、高炉内で脱水反応(大きな吸熱分解反応)を起こすことから、水硬性バインダーを多く含む非焼成含炭塊成鉱を高炉内で多用すると、前述のように吸熱分解反応により、炉内で温度停滞を起こしてしまう。このため、水硬性バインダー10質量%程度配合の非焼成含炭塊成鉱は、高炉で3質量%以上使用するのが困難であった。 Hydrates derived from hydraulic binders undergo a dehydration reaction (large endothermic decomposition reaction) in the blast furnace. An endothermic decomposition reaction causes temperature stagnation in the furnace. For this reason, it was difficult to use 3% by mass or more of non-calcined coal-containing agglomerate ore containing about 10% by mass of hydraulic binder in a blast furnace.

また、上記水硬性バインダーの配合率低減対策として、複数の製造方法も提案されてきたが、大量生産には不向きであった。 In addition, although a plurality of production methods have been proposed as measures for reducing the blending ratio of the hydraulic binder, they are not suitable for mass production.

以上から、含炭塊成鉱原料中のT.C.が15質量%以上であって、かつ水硬性バインダーの配合率が9質量%以下でも高強度を達成可能な高炉用非焼成含炭塊成鉱を、安定かつ大量生産する製造方法を確立することで、高炉への非焼成含炭塊成鉱の使用拡大が望まれていた。 From the above, T. in the coal-bearing agglomerate ore raw material C. is 15% by mass or more, and high strength can be achieved even when the blending ratio of the hydraulic binder is 9% by mass or less. Therefore, it was desired to expand the use of unfired coal-bearing agglomerates in blast furnaces.

特開2012-82501号公報JP 2012-82501 A 特開2012-211363号公報JP 2012-211363 A 特開2014-136818号公報JP 2014-136818 A 特開昭60-187631号公報JP-A-60-187631

横山、樋口ら:鉄と鋼 (100)2014,601)Yokoyama, Higuchi et al.: Tetsu to Hagané (100) 2014, 601)

本発明は、含炭塊成鉱原料中のT.C.が15質量%以上であって、かつ水硬性バインダーの配合率が少なくても、高強度な高炉用非焼成含炭塊成鉱を安定かつ大量に生産できる製造方法を提供する。
本発明の高炉用非焼成含炭塊成鉱の製造方法は、含炭塊成鉱の原料に、
・還元材である炭素含有原料、
・鉄源である鉄含有原料、
・およびその他原料、
を用い、これら3つの原料に、
・セメントなどの水硬性バインダー(接着剤、以下、水硬性バインダーと称する)と、
・微粒シリカ源
を添加し、さらに
・水
を加えて混合した後、成型して含炭塊成鉱を製造することを前提とする。
The present invention provides a method for removing T. in a coal-bearing agglomerate ore raw material. C. is 15% by mass or more, and even when the mixing ratio of a hydraulic binder is small, a method for producing a high-strength non-calcined coal-containing agglomerate ore for a blast furnace can be stably and mass-produced.
In the method for producing a non-fired coal-containing agglomerate ore for blast furnace of the present invention, raw materials for the coal-containing agglomerate ore are
- A carbon-containing raw material that is a reducing agent,
・ Iron-containing raw materials that are iron sources,
・And other raw materials,
using these three raw materials,
- A hydraulic binder (adhesive, hereinafter referred to as a hydraulic binder) such as cement,
It is assumed that the coal-containing agglomerate ore is produced by adding a fine-grained silica source, and then adding water and mixing, followed by molding.

前述のように、含炭塊成鉱原料中のT.C.が15質量%以上であって、かつ水硬性バインダーの配合率が少なくても高強度な高炉用非焼成含炭塊成鉱を、安定かつ大量生産するため、発明者らが鋭意検討した結果、真空押出し成型方式を採用することで空隙率を低減し、加えて原料の粒度制御と添加剤として微粒シリカ源を添加することにより原料粒子の充填率を上げ、水硬性バインダーを減らしても高強度の非焼成含炭塊成鉱を製造することに成功した。即ち、
(1)製鉄における高炉の原料として使用される高炉用非焼成含炭塊成鉱を製造する方法であって、水分ゼロ換算の質量比率で、水硬性バインダーを2.0~9.0質量%、微粒シリカ源を0.5~4.0質量%、含炭塊成鉱原料中に含まれる炭素の割合(T.C.)を15~40質量%となるように、鉄含有原料、炭素含有原料、その他原料の配合率を調整して合わせて87.0~97.5質量%を配合した含炭塊成鉱原料に、当該原料と水の合計を100質量%としたときの水の質量比率を9.0~14.0質量%として加えて連続的に混合しながら移送し、その移送方向前方に設置された多孔板で形成された堰へ混合原料を押込むことで第一のマテリアルシールを形成する第一の押出部(混練部)と、前記堰の出側から連続的に供給される混合原料を真空脱気し、第二の押出部へ移送する接続部(真空室)と、当該接続部(真空室)から供給される真空脱気された混合原料を多数の孔を備えた成型部へ押し込むことで、第二のマテリアルシールを形成しながら連続的に押し出して成型体を製造する第二の押出部と、で構成される製造装置を用いて含炭塊成鉱を製造する方法であって、前記第二の押出部の混合原料による充填率が50~95体積%の範囲で連続成型することを特徴とする、高炉用非焼成含炭塊成鉱の製造方法である。
(2)また、高炉用非焼成含炭塊成鉱の製造装置の接続部(真空室)の圧力が-50kPaG以下であることを特徴とする、(1)に記載の高炉用非焼成含炭塊成鉱の製造方法である。
(3)また、前記微粒シリカ源の平均粒子径は、前記非焼成含炭塊鉱の混合原料から微粒シリカ源を除いたものの平均粒子径に対して15%以下のサイズの粒子であることを特徴とする、(1)または(2)に記載の高炉用非焼成含炭塊成鉱の製造方法である。
As mentioned above, T. C. is 15% by mass or more, and high strength even with a low hydraulic binder content is stably and mass-produced by the inventors. By adopting a vacuum extrusion molding method, the porosity is reduced.In addition, by controlling the particle size of the raw material and adding a fine silica source as an additive, the filling rate of the raw material particles is increased, and high strength is achieved even if the hydraulic binder is reduced. succeeded in producing non-calcined coal-bearing agglomerate ore. Namely
(1) A method for producing a non-calcined coal-containing agglomerate ore for blast furnace used as a raw material for a blast furnace in steelmaking, comprising a hydraulic binder content of 2.0 to 9.0% by mass in terms of zero water content. , an iron-containing raw material, a carbon The amount of water when the total of the raw material and water is 100% by mass to the coal-containing agglomerated ore raw material, which is blended with a total of 87.0 to 97.5% by mass by adjusting the blending ratio of the raw material and other raw materials. The mixed raw material is added at a mass ratio of 9.0 to 14.0% by mass and transferred while being continuously mixed, and the mixed raw material is pushed into a weir formed of a perforated plate installed in front of the transfer direction to the first A first extrusion section (kneading section) that forms a material seal, and a connection section (vacuum chamber) that deaerates the mixed raw material continuously supplied from the exit side of the weir and transfers it to the second extrusion section. Then, the vacuum degassed mixed raw material supplied from the connection portion (vacuum chamber) is pushed into the molding portion having a large number of holes, thereby forming a second material seal and continuously extruding to form a molded body. and a second extrusion section for producing a carbon-containing agglomerate ore, wherein the filling rate of the mixed raw material in the second extrusion section is 50 to 95% by volume. A method for producing a non-burning coal-containing agglomerate ore for a blast furnace characterized by continuous molding in the range of
(2) The non-calcined coal-containing agglomerate ore for blast furnace according to (1), characterized in that the pressure in the connecting portion (vacuum chamber) of the apparatus for producing non-calcined carbon-containing agglomerate ore for blast furnace is -50 kPaG or less. This is a method for producing an agglomerate ore.
(3) In addition, the average particle size of the fine silica source is 15% or less of the average particle size of the mixed raw material of the non-calcined coal-containing lump ore excluding the fine silica source. A method for producing a non-fired coal-containing agglomerate ore for blast furnace according to (1) or (2).

本発明による真空脱気しつつ押出し成型する高炉用非焼成含炭塊成鉱の製造方法を採用し、微粒シリカ源を混合原料に配合することにより、含炭塊成鉱原料のT.C.を15質量%以上になるように多量配合しても、セメント等水硬性バインダーの配合率を9.0質量%以下で、高い強度を持つ非焼成含炭塊成鉱を製造することが可能となった。これにより、従来、高炉には前記吸熱分解反応により3質量%までしか使用できなかった含炭塊成鉱を最大9質量%まで使用することが可能となり、低還元材比操業に寄与する。 By adopting the method for producing a non-calcined coal-containing agglomerate ore for blast furnace in which extrusion molding is performed while vacuum degassing according to the present invention, and by blending a fine silica source with a mixed raw material, T.E. C. It is possible to produce a non-calcined coal-containing agglomerate ore with high strength at a blending ratio of 9.0% by mass or less of a hydraulic binder such as cement even if it is blended in a large amount of 15% by mass or more. became. As a result, up to 9% by mass of coal-containing agglomerate ore, which could conventionally be used only up to 3% by mass due to the endothermic decomposition reaction, can be used in the blast furnace, contributing to operation with a low reducing agent ratio.

含炭塊成鉱中のT.C.と還元材比低減量の関係を示す図である。T. in coal-bearing agglomerates C. and a reduction amount of reducing agent ratio. 本発明に係る真空押出し成型機の例である。1 is an example of a vacuum extruder according to the present invention; 接続~成型部の間の真空圧と圧壊強度の関係を示すグラフである。4 is a graph showing the relationship between the vacuum pressure between the connection and the molded portion and the crushing strength. 原料の充填率の判定および充填率の上下限イメージを示す図である。It is a figure which shows determination of the filling rate of a raw material, and the upper-lower limit image of a filling rate.

前述のように、非焼成含炭塊成鉱の原料は、一般に、還元材である炭素含有原料と、鉄源である鉄含有原料、およびその他原料の3種で構成される。そしてこれら3種の原料に、水硬性バインダーと微粒シリカ源を配合し、含炭塊成鉱原料とし、さらに水を加えて混合した後、成型して含炭塊成鉱とする。 As described above, raw materials for non-calcined coal-containing agglomerate ore are generally composed of three types of raw materials: carbon-containing raw materials that are reducing agents, iron-containing raw materials that are iron sources, and other raw materials. These three kinds of raw materials are blended with a hydraulic binder and a fine silica source to obtain a raw material for carbon-containing agglomerate ore, which is further mixed with water and molded to obtain a carbon-containing agglomerate ore.

前記炭素含有原料とは、コークスを所定粒度に砕いた粉コークスや、コークス炉の集塵ダストなど、石炭を乾留したものの微粉が好ましいが、無煙炭や石炭、高炉から発生する炭素分を多く含有するダストなどを使用しても良い。 The carbon-containing raw material is preferably fine powder of carbonized coal such as coke fines obtained by crushing coke to a predetermined particle size, dust collected from coke ovens, etc., but contains a large amount of carbon content generated from anthracite, coal, and blast furnaces. Dust or the like may be used.

前記鉄含有原料とは、鉄鉱石を所定粒度に砕いたものや鉄鉱石微粉(ペレットフィード)、また、製鉄プロセスにおいて大量に発生する炭素分が比較的少なく鉄成分を多く含むダストやスラッジ、スケール等も使用することができる。また、圧延ロールの研削屑等や、特に製銑工程の搬送過程で落下した鉄鉱石や焼結鉱等の集積物を用いても良いし、含炭塊成鉱の成型の過程で発生する粉や欠片も鉄含有原料に含まれる。 The iron-containing raw materials include iron ore crushed to a predetermined particle size, iron ore fine powder (pellet feed), and dust, sludge, and scale containing relatively low carbon content and high iron content generated in large amounts in the iron manufacturing process. etc. can also be used. In addition, it is also possible to use grinding scraps of rolling rolls, and especially iron ore and sintered ore that have fallen during the transportation process of the ironmaking process. Iron-bearing raw materials also include iron-containing raw materials.

前記その他原料とは、特に製鉄工程において発生する鉄成分の少ない(鉄含有率として30質量%以下)、もしくは鉄成分が含まれないスラッジ、スラグなどを指す。鉄含有率が少ない分、炭素分が含まれる場合がある。 The above-mentioned other raw materials refer to sludge, slag, etc., which contain little iron component (30% by mass or less as iron content) or do not contain iron component, which are generated in the iron manufacturing process. Due to the low iron content, it may contain carbon.

尚、含炭塊成鉱には製鉄所のゼロエミッションに寄与するという一面もある。現在、製鉄所内で発生する副生産物は、その大半が製鉄所内でリサイクルされるか、副製品として製品化されて販売されているが、一部リサイクルも製品化も難しいものがある。これら自社内でリサイクルが難しいものの代表格として、スラッジや一部のスラグがある。前記その他原料とは、このような製鉄所内でリサイクルが難しい原料を指し、これを含炭塊成鉱の原料として積極的にリサイクルすることで、製鉄所のゼロエミッションに貢献することができる上に、その添加によって積極的に原料の粒度を調整し、水が添加された時の原料の流動性を制御することができるという利点(後述の押出し成型方式を利用するうえでの利点)がある。 In addition, coal-containing agglomerate ore also contributes to the zero emission of ironworks. Currently, most of the by-products generated in steelworks are either recycled within the steelworks or commercialized as by-products for sale, but some of them are difficult to recycle or commercialize. Sludge and some types of slag are typical examples of materials that are difficult to recycle in-house. The above-mentioned other raw materials refer to raw materials that are difficult to recycle in steelworks, and by actively recycling them as raw materials for coal-containing agglomerates, it is possible to contribute to zero emissions at steelworks. , the addition of which has the advantage of being able to actively adjust the particle size of the raw material and control the fluidity of the raw material when water is added (advantage in using the extrusion molding method described later).

なお、ダストやスラッジには、表1に記載あるように、多かれ少なかれ炭素分が含まれる場合がある。本発明では後述のように含炭塊成鉱原料中のT.C.で物性を決めることに特徴があるため、一般に用いられる炭素含有原料、鉄含有原料、その他原料としての配合比を区分せず、これらを含め含炭塊成鉱原料中のT.C.の範囲を規定する。尚、表1の質量%は一例であり、この範囲に限定されない。 As shown in Table 1, dust and sludge may contain more or less carbon content. In the present invention, as will be described later, the T. C. Because the physical properties are determined by the T.D. in the coal-containing agglomerated ore raw materials including these, without classifying the compounding ratios of generally used carbon-containing raw materials, iron-containing raw materials, and other raw materials. C. Define the range of In addition, the mass % of Table 1 is an example, and is not limited to this range.

Figure 0007265158000001
Figure 0007265158000001

前記水硬性バインダーとは、単にセメントとも呼ばれることがあり、原料中に含有する水分や添加水分との水和反応により硬化することにより造粒物の冷間圧潰強度を高める機能を有するバインダーを意味する。水硬性バインダーには、ケイ酸カルシウムを含有する、ポルトランドセメント(JIS R 5210で規定)、混合セメント(高炉セメント(JIS R 5211で規定))、シリカセメント(JIS R 5212で規定)、フライアッシュセメント(JIS R 5213で規定))、超速硬セメント、高炉スラグ等が用いられるが、これに限定されるものではない。 The hydraulic binder is sometimes simply called cement, and means a binder having a function of increasing the cold crushing strength of granules by hardening due to hydration reaction with water contained in the raw material or added water. do. Hydraulic binders include calcium silicate-containing Portland cement (defined by JIS R 5210), mixed cement (blast furnace cement (defined by JIS R 5211)), silica cement (defined by JIS R 5212), fly ash cement (defined in JIS R 5213)), ultra-rapid hardening cement, blast furnace slag, etc., but not limited thereto.

また前記微粒シリカ源とは、シリカフューム、マイクロシリカのみならず、フライアッシュも含まれる。 The fine silica source includes not only silica fume and microsilica but also fly ash.

尚、表1の様に、水硬性バインダーや微粒シリカ源にも、若干のT.C.が含まれるが、水硬性バインダーや微粒シリカ源の分率自体が小さく、影響が小さいと考えられることから、含炭塊成鉱原料のT.C.にはカウントしない。 As shown in Table 1, the hydraulic binder and the fine silica source also contain a small amount of T.I. C. However, since the fraction of the hydraulic binder and the fine silica source itself is small and the effect is considered to be small, the T.O. C. does not count to

含炭塊成鉱に求められる条件と、それを達成するための製造条件は次のとおりである。 The conditions required for the coal-containing agglomerate ore and the manufacturing conditions for achieving them are as follows.

含炭塊成鉱原料およびT.C.;
従来から、非焼成含炭塊成鉱中の酸化鉄を還元するのに必要な理論上の炭素量に対する、非焼成含炭塊成鉱中のT.C.を「炭素当量」と定義し、炭素による酸化鉄の還元度の目安にしている。
本発明で前提とするT.C.の下限値:15質量%は、炭素当量:1.2以上に相当する。高炉で使用する際に非焼成含炭塊成鉱中で酸化鉄粒子と炭素粒子が隣接すれば、高炉内部で徐々に昇温される途上で、含炭塊成鉱の内部での固体還元反応が進行する。さらに、酸化鉄粒子と隣接しない余剰炭素はソリューションロス反応によりガス化して、ガス還元によって非焼成含炭塊成鉱の周辺にある焼結鉱や鉄鉱石などの高炉用鉄含有原料の還元を促進することも期待できる。
coal-bearing agglomerate ore raw materials and T.I. C. ;
Conventionally, the T.C. C. is defined as the "carbon equivalent" and is used as a measure of the degree of reduction of iron oxide by carbon.
The T.C. C. The lower limit of 15% by mass corresponds to a carbon equivalent of 1.2 or more. When iron oxide particles and carbon particles are adjacent to each other in the non-fired coal-bearing agglomerate ore when used in a blast furnace, a solid reduction reaction occurs inside the coal-bearing agglomerate ore during the gradual temperature rise inside the blast furnace. progresses. Furthermore, surplus carbon that is not adjacent to iron oxide particles is gasified by a solution loss reaction, and gas reduction promotes the reduction of iron-containing raw materials for blast furnaces such as sintered ore and iron ore around the unburned coal-bearing agglomerate ore. You can also expect to

図1に含炭塊成鉱中のT.C.と還元材比低減量の関係を示す。これは、高炉内の還元反応を荷重下で模擬できる還元試験装置(BIS炉)を用い、非焼成含炭塊成鉱を、通常の焼結鉱の10質量%分と置き換えて高炉で使用した時の還元材比低減効果を評価した結果である。含炭塊成鉱中のT.C.が15質量未満では、還元材比の低減効果が0.2kg/kg-C以下であるが、T.C.が15質量%以上では還元材比低減効果が約0.4kg/kg-Cとなる。このことから、高炉に装入することで還元材比低減効果を最大限享受すべく、含炭塊成鉱原料のT.C.=15質量%以上含有することを本発明の前提条件とした。なお、前述の単位:kg/kg-Cについては、分子のkgは還元材の低減重量の総量を、分子のkg-Cは高炉に装入される含炭塊成鉱中に含まれる炭素量の総量を示すものであり、含炭塊成鉱中に含まれる炭素分がどれだけの還元材比低減効果を与えるかを示す指標である。 Fig. 1 shows T. C. and the reduction amount of the reducing agent ratio. A reduction test apparatus (BIS furnace) capable of simulating the reduction reaction in the blast furnace under load was used, and the unburned coal-containing agglomerate ore was used in the blast furnace by replacing 10% by mass of ordinary sintered ore. It is the result of evaluating the reducing agent ratio reduction effect at time. T. in coal-bearing agglomerates C. is less than 15 mass, the effect of reducing the reducing agent ratio is 0.2 kg/kg-C or less. C. is 15% by mass or more, the effect of reducing the reducing agent ratio is about 0.4 kg/kg-C. For this reason, in order to maximize the effect of reducing the reducing agent ratio by charging into the blast furnace, the T.C. C. = 15% by mass or more is a prerequisite of the present invention. Regarding the above-mentioned unit: kg/kg-C, the numerator kg is the total amount of reduced weight of the reducing material, and the numerator kg-C is the amount of carbon contained in the coal-containing agglomerate charged into the blast furnace. It is an index showing how much the carbon content contained in the coal-containing agglomerate ore has the effect of reducing the reducing agent ratio.

一方で、含炭塊成鉱原料の炭素含有原料をさらに増加していくと、非焼成含炭塊成鉱の高炉必要強度を維持できなくなるとされていた。本発明においてその上限値を検証した結果、T.C.=40質量%を超えると、成型が困難となった。 On the other hand, it has been believed that if the carbon-containing raw material of the coal-containing agglomerate ore raw material is further increased, the required blast furnace strength of the non-fired coal-containing agglomerate ore cannot be maintained. As a result of verifying the upper limit value in the present invention, T.I. C. = When it exceeded 40 mass %, molding became difficult.

以上の理由により、含炭塊成鉱原料のT.C.を15~40質量%となるように配合する。尚、炭素含有原料、鉄含有原料、その他原料の個々の上下限は特に規定しないが、含炭塊成鉱原料としては、T.C.以外に鉄成分の含有率も多い方が好ましい。なぜならば、T.C.と鉄成分以外はスラグになってしまうので、無用な投入熱量を増やしてしまうからである。 For the above reasons, the T.C. C. is blended so as to be 15 to 40% by mass. Although the upper and lower limits of each of the carbon-containing raw material, the iron-containing raw material, and other raw materials are not particularly defined, the carbon-containing agglomerated ore raw material includes T.I. C. In addition, it is preferable that the content of the iron component is large. Because T. C. This is because components other than iron and iron will become slag, which will increase the amount of unnecessary input heat.

従って、含炭塊成鉱原料の配合率は、後述するように水硬性バインダーが2.0~9.0質量%、微粒シリカ源が0.5~4.0質量%とすることから、含炭塊成鉱原料のT.C.=15~40%となるように炭素含有原料、鉄含有原料、その他原料の3つの原料を合わせて87.0~97.5質量%とする。 Therefore, the blending ratio of the coal-containing agglomerated ore raw material is 2.0 to 9.0% by mass for the hydraulic binder and 0.5 to 4.0% by mass for the fine silica source, as will be described later. Coal agglomeration raw material T. C. = 15 to 40%, the total of the carbon-containing raw material, the iron-containing raw material, and the other raw materials is made 87.0 to 97.5% by mass.

ここで、例えば、炭素含有原料として粉コークスを使用する場合には、粉コークスの炭素含有率が75~85質量%程度であるため、含炭塊成鉱原料のT.C.を15~40%にしようとすれば、最低=15÷0.85×0.87≒15.3質量%、最大=40÷0.75×0.975≒52.0質量%となり、炭素含有原料を15.3~52.0質量%なるように含炭塊成鉱に配合し、前述の3つの原料を合わせて87.0~97.5質量%との差分に炭素分を含まない鉄含有原料、その他原料を加える。 Here, for example, when coke breeze is used as the carbon-containing raw material, the carbon content of coke breeze is about 75 to 85% by mass. C. is 15 to 40%, the minimum = 15 ÷ 0.85 × 0.87 ≒ 15.3 mass%, the maximum = 40 ÷ 0.75 × 0.975 ≒ 52.0 mass%, carbon content The raw material is blended with the carbon-containing agglomerate ore so that the amount is 15.3 to 52.0% by mass, and the difference between the above three raw materials is 87.0 to 97.5% by mass, and iron that does not contain carbon. Add ingredients and other ingredients.

また例えば、炭素含有原料として炭素成分の高い高炉集塵ダスト(炭素成分=30~40%程度)を使用する場合、含炭塊成鉱中の炭素成分の最低含有率=15質量を満たすには15÷0.40×0.87≒32.6質量%、最大含有率=40質量%を満たすには40÷0.30×0.975>100%となるため、含炭塊成鉱における炭素含有原料の配合率は32.6~97.5質量%となる。 Also, for example, when using blast furnace dust with a high carbon content (carbon content = about 30 to 40%) as the carbon-containing raw material, in order to satisfy the minimum content of carbon content in the coal-containing agglomerate ore = 15 mass, 15 ÷ 0.40 × 0.87 ≈ 32.6% by mass, and 40 ÷ 0.30 × 0.975 > 100% to satisfy the maximum content = 40% by mass. The blending ratio of the contained raw material is 32.6 to 97.5% by mass.

水硬性バインダー;
含炭塊成鉱原料には、高炉へ装入しても粉化しない強度(>1100N/個)を発現するために、水硬性バインダーを添加する。含炭塊成鉱中の水硬性バインダーは、養生期間中にケイ酸カルシウム水和物等の結合組織に変化し、塊成鉱の強度を向上させる。しかしながら、この結合組織の一部は高炉内部で400~500℃以上になると吸熱反応により分解する。この吸熱反応により炉内が低温化し、400~500℃の温度帯が炉下部の方向に下降するとともに、それより上部でのガス還元反応を遅延させる。このため、高炉に一定量以上のセメントを装入すると、炉内還元不良が発生し、含炭塊成鉱の内部に十分な炭素分を配合させても、高炉で使用する塊状コークス量を削減できなくなる。このため、水硬性バインダーの量は少ない方が好ましい。
hydraulic binder;
A hydraulic binder is added to the coal-containing agglomerated ore raw material in order to develop strength (>1100 N/piece) that does not pulverize even when charged into a blast furnace. The hydraulic binder in the coal-bearing agglomerate ore changes into a connective tissue such as calcium silicate hydrate during the curing period, thereby improving the strength of the agglomerate ore. However, part of this connective tissue decomposes due to an endothermic reaction when the temperature rises above 400 to 500° C. inside the blast furnace. This endothermic reaction lowers the temperature in the furnace, lowers the temperature range of 400 to 500° C. toward the lower part of the furnace, and delays the gas reduction reaction in the upper part. For this reason, if more than a certain amount of cement is charged into the blast furnace, insufficient reduction occurs in the furnace. become unable. Therefore, the smaller the amount of the hydraulic binder, the better.

含炭塊成鉱原料中の炭素含有原料の割合が増加すると、反比例的に塊成鉱の強度が低下するため、含炭塊成鉱原料のT.C.=15~40質量%の非焼成含炭塊成鉱を製造する場合には、従来の製造法では水硬性バインダーの配合量を増加させる必要が生じる。これは、含炭塊成鉱の強度と、水硬性バインダーの配合量とは比例関係にあるからである。ここで水硬性バインダーが2.0質量%未満である場合は、バインダーとしての強度向上作用・効果が充分に発揮できない。また、9.0質量%を超えても強度向上効果は充分に発揮されるものの、9.0質量%以下ですでに、高炉への搬送過程および装入過程で粉化しない非焼成含炭塊成鉱の成型体圧壊強度1100N/個以上を大きくクリアできることと、それ以上の添加は高炉内で低温化して還元を阻害する可能性があること、コスト増大、高炉スラグの増量、および前述したケイ酸カルシウム水和物の分解に伴う高炉の冷え込み助長につながることから無益である。以上の理由により、水硬性バインダーの添加量は、2.0~9.0質量%とする。 When the ratio of the carbon-containing raw material in the coal-containing agglomerate ore raw material increases, the strength of the agglomerate ore decreases inversely. C. = 15 to 40% by mass of non-calcined coal-containing agglomerate ore, it is necessary to increase the blending amount of the hydraulic binder in the conventional production method. This is because there is a proportional relationship between the strength of the coal-containing agglomerate ore and the blending amount of the hydraulic binder. Here, if the hydraulic binder is less than 2.0% by mass, the strength-improving action and effect of the binder cannot be sufficiently exhibited. Even if the content exceeds 9.0% by mass, the effect of improving the strength is sufficiently exhibited. The crushing strength of compacts of 1100 N/piece or more can be greatly cleared, and the addition of more than that may cause the temperature in the blast furnace to decrease and hinder reduction, increase costs, increase the amount of blast furnace slag, and reduce the above-mentioned silicon It is useless because it leads to promotion of cooling of the blast furnace due to decomposition of calcium acid hydrate. For the above reasons, the amount of the hydraulic binder to be added is set to 2.0 to 9.0% by mass.

微粒シリカ源;
含炭塊成鉱の製造方式として、後述の真空脱気しつつ押出成型する方式を採用したので、成型後に空隙となるエアを成型機内で予め排出し、塊成化後の成型体の粒子間接点数を増やすことができ、成型体の強度を向上できる。一方で、押出成型方式に適した原料は、原料に力が加わらないときは静止しているが、小さな力が加わると流動(変形)するという性質を持つ、比較的流動性が高い可塑性原料(練土、ペースト等)と呼ばれる原料である。一般的に、原料の流動性を向上させる方法として水分を増添加する方法が用いられるが、含炭塊成鉱においては、混合原料中に含まれる水分は乾燥すると空隙になってしまうことから、粒子間接点を増やすことができず、製造された含炭塊成鉱の強度が低下してしまう。
particulate silica source;
As the production method of the coal-containing agglomerate ore, we adopted the method of extruding while vacuum degassing, which will be described later. The score can be increased, and the strength of the molded body can be improved. On the other hand, raw materials suitable for the extrusion molding method are relatively fluid plastic raw materials ( clay, paste, etc.). In general, a method of adding more water is used as a method for improving the fluidity of the raw material. The number of interparticle points cannot be increased, and the strength of the produced coal-bearing agglomerate ore is lowered.

そこで本発明では、水分を増やさずに流動性を上げる方法として、混合原料の平均粒子径より充分小さい微粒物質を添加することにした。微粒物質が混合原料に添加されると、原料粒子間に入り込み粒子を被覆することで粒子同士を潤滑させるベアリングのような効果を発揮し、混合原料の流動性が向上する。また、原料粒子表面を被覆する微粒物質は、一部は粒子と粒子との接点となって接点数を増加し、また一部は原料粒子間隙に入って(水と置換されることで)充填率を向上することで、含炭塊成鉱の強度を向上できる。微粒物質の主成分を微粒シリカとしたのは、常温で安定であること、シリカヒュームやフライアッシュなどに代表されるように、副産物として市販されており、比較的豊富な量を容易に獲得できること、また、成型後の養生時にセメントの硬化反応を促進し、成型体の強度向上に期待できること、という3つの利点があるからである。 Therefore, in the present invention, as a method of increasing the fluidity without increasing the water content, it was decided to add fine particles sufficiently smaller than the average particle size of the mixed raw material. When the fine-grained substance is added to the raw material mixture, it penetrates between the raw material particles and coats the particles, exerting an effect like a bearing that lubricates the particles to improve the fluidity of the mixed raw material. In addition, part of the fine-grained substances that coat the surface of the raw material particles increases the number of contact points by becoming contact points between particles, and partly enters the gaps between the raw material particles and fills them (by replacing with water). By improving the rate, the strength of the coal-bearing agglomerate ore can be improved. The main component of the fine-grained substance is fine-grained silica because it is stable at room temperature, and as typified by silica fume and fly ash, it is commercially available as a by-product and can be easily obtained in relatively abundant amounts. Also, it has the following three advantages: it accelerates the hardening reaction of cement during curing after molding, and can be expected to improve the strength of the molded product.

また、(幾何学的な計算から)粒子が最密充填構造を取るとき、その粒子間隙の最小径は粒子径の15%であることから、微粒シリカ源の平均粒径は、混合原料の平均粒径の15%以下であることが好ましい。この粒子径であれば、原料粒子間に抵抗なく入り込むことができ、非焼成含炭塊成鉱の高強度化に寄与する。現状、混合原料の平均粒子径は60~100μm程度であるが、微粒シリカ源の代表格であるシリカヒュームの平均粒子径は0.1-0.2μm、フライアッシュの平均粒子径は10~20μm程度であり、上記条件をほぼ満足することができる。このように混合原料の平均粒子径に合わせて、微粒シリカ源の種類を選択、または、粉砕によって粒度調整することで、強度向上効果を発揮させることができ、好ましい。 In addition, when the particles have a close-packed structure (from geometric calculations), the minimum diameter of the inter-particle gaps is 15% of the particle diameter. It is preferably 15% or less of the particle size. With this particle diameter, it can enter between the raw material particles without resistance, contributing to increasing the strength of the non-burned carbon-containing agglomerate ore. At present, the average particle size of mixed raw materials is about 60 to 100 μm, but the average particle size of silica fume, which is a representative fine silica source, is 0.1 to 0.2 μm, and the average particle size of fly ash is 10 to 20 μm. and the above conditions can be substantially satisfied. By selecting the type of the fine silica source or adjusting the particle size by pulverization in accordance with the average particle size of the mixed raw material in this way, the effect of improving the strength can be exhibited, which is preferable.

なお、本実施例において、適当な微粒シリカ源の添加率は0.5~4.0質量%程度であり、さらに最適な添加率は0.5~2.0質量%である。その理由として、0.5質量%以下では、原料粒子の表面を被覆する微粒シリカ源の量が少なすぎてベアリングの効果を充分発揮できないため、余剰水分の添加が必要となり、製造された含炭塊成鉱の強度が低下してしまう。逆に、4.0質量%を超えると流動性は増して水分増の必要はないが、微粒シリカ源のコストがかかりすぎて費用対効果がマイナスになってしまう。このことから、微粒シリカ源の添加率は少ない方がよく、0.5~4.0質量%が適当であり、さらには0.5~2.0質量%が最適である。適当な添加率が0.5~4.0質量%と範囲を持つのは、微粒シリカ源の種類により効果量に相違があること、及び市場の価格変動によって投資対効果が変動するためであり、将来的に大幅な価格変動があった場合の適当な添加率はこの限りではない。 In this example, the appropriate addition rate of the fine silica source is about 0.5 to 4.0% by mass, and the optimum addition rate is 0.5 to 2.0% by mass. The reason for this is that at 0.5% by mass or less, the amount of the fine silica source covering the surface of the raw material particles is too small, and the effect of the bearing cannot be sufficiently exhibited, so it is necessary to add excess moisture, and the produced carbon-containing The strength of the agglomerate ore decreases. Conversely, if it exceeds 4.0% by mass, the fluidity increases and there is no need to increase the water content, but the cost of the fine silica source becomes too high, resulting in a negative cost-effectiveness. For this reason, the smaller the addition rate of the fine silica source, the better, 0.5 to 4.0% by mass is appropriate, and 0.5 to 2.0% by mass is optimal. The appropriate addition rate has a range of 0.5 to 4.0% by mass because the amount of effect varies depending on the type of fine silica source, and the return on investment fluctuates due to market price fluctuations. However, this does not apply to the appropriate addition rate when there is a large price fluctuation in the future.

水分;
前記含炭塊成鉱原料の配合割合は水分ゼロ換算の質量比率(=原料が完全に乾燥=水分0%の原料固体だけの状態)であり、含炭塊成鉱とするには、これに水分が加わるが、水分は左記水分ゼロ換算の質量比率との合計100質量%に対する割合として9.0~14.0質量%に調整される。
moisture;
The blending ratio of the coal-containing agglomerate ore raw material is a mass ratio in terms of zero water content (=the raw material is completely dried = the state of only raw material solids with 0% moisture). Water is added, but the water content is adjusted to 9.0 to 14.0% by mass as a percentage of the total 100% by mass, including the mass ratio in terms of zero moisture.

製造方法;
<真空押出し成型方式の採用>
製造方法として、本発明では、真空押出し成型方式を採用することにより、原料粒子同士の接触点数を増やし、即ち空隙を減らし、成型体強度を増加させることができる。真空室内の圧力を変更して得られた成型体の品質を評価した結果、真空室の真空度(真空室内圧力)によって得られる成型体品質が変化することが分かった。
Production method;
<Adoption of vacuum extrusion molding method>
In the present invention, by adopting a vacuum extrusion molding method as a production method, the number of contact points between the raw material particles can be increased, that is, the voids can be reduced, and the strength of the molded body can be increased. As a result of evaluating the quality of the molded body obtained by changing the pressure in the vacuum chamber, it was found that the quality of the molded body obtained varies depending on the degree of vacuum in the vacuum chamber (vacuum chamber pressure).

<本発明で用いられる真空押出し成型機の例および押出し成型方法、並びにマテリアルシールの形成>
本発明で用いられる真空押出し成型機の例は図2にその構造を示す。当該真空押出し成型機を用いて、連続的かつ安定的に原料を供給・排出しつつ、真空室内を高負圧に安定維持する必要がある。このため真空室前後の装置構造物の隙間を原料(マテリアル)で埋めること、すなわちマテリアルシールを連続的に形成することで真空室内を高負圧(高い真空度)に安定維持することが重要となる。
<Example of vacuum extruder used in the present invention, extrusion molding method, and formation of material seal>
An example of a vacuum extruder used in the present invention is shown in FIG. Using the vacuum extruder, it is necessary to stably maintain a high negative pressure in the vacuum chamber while continuously and stably supplying and discharging raw materials. Therefore, it is important to stably maintain a high negative pressure (high degree of vacuum) in the vacuum chamber by filling the gaps in the equipment structure before and after the vacuum chamber with materials, that is, by continuously forming a material seal. Become.

含炭塊成鉱の製造装置10は、ミキサー1、投入口2、第一の押出部3、接続管4、第二の押出部5、成型部6、真空ポンプ7を有している。
第一の押出部3(混練部とも称する)は、円筒状のケーシング3aとこのケーシング3aの内部に回転自在に配設され縦長に連続形成されたスクリュー3bを有した、1軸式のスクリューフィーダである。スクリュー3bは、図示しない駆動手段により回転されるようになっている。ケーシング3aの基部の上部には、接続管8によって、投入口2と接続している。ケーシング3aの先端には多孔板で形成された堰3cが配設されている。本実施形態では、多孔板で形成された堰3cは厚板状の円板に多数の孔が開けられた構造となっている。
A coal-containing agglomerated ore manufacturing apparatus 10 has a mixer 1 , an inlet 2 , a first extrusion section 3 , a connecting pipe 4 , a second extrusion section 5 , a molding section 6 and a vacuum pump 7 .
The first extrusion section 3 (also referred to as a kneading section) is a uniaxial screw feeder having a cylindrical casing 3a and a screw 3b that is rotatably disposed inside the casing 3a and continuously formed vertically. is. The screw 3b is rotated by driving means (not shown). The upper portion of the base of the casing 3a is connected to the inlet 2 by a connecting pipe 8. As shown in FIG. A weir 3c formed of a perforated plate is disposed at the tip of the casing 3a. In this embodiment, the weir 3c formed of a perforated plate has a structure in which a large number of holes are opened in a thick circular plate.

第一の押出部3の下方には、第二の押出部5が配設されている。第一の押出部3の先端部と、第二の押出部5の基部は、接続管4(真空室とも称する)により接続されている。接続管4は、真空ポンプ接続管9により真空ポンプ7と接続している。
第二の押出部5(押出成型部とも称する)は、円筒状のケーシング5aと、このケーシング5aの内部に回転自在に配設され縦長に連続形成されたスクリュー5bを有した、1軸式のスクリューフィーダである。スクリュー5bは、図示しない駆動手段により回転されるようになっている。ケーシング5aの先端には、成型部6が取り付けられている。本実施形態では、成型部6は、厚板状の円板に多数の孔が開けられた構造となっている。
A second extrusion portion 5 is arranged below the first extrusion portion 3 . The tip of the first extruded portion 3 and the base of the second extruded portion 5 are connected by a connecting pipe 4 (also referred to as a vacuum chamber). The connection pipe 4 is connected to the vacuum pump 7 by a vacuum pump connection pipe 9 .
The second extrusion part 5 (also referred to as an extrusion molding part) is a uniaxial type having a cylindrical casing 5a and a screw 5b that is rotatably disposed inside the casing 5a and continuously formed vertically. It is a screw feeder. The screw 5b is rotated by driving means (not shown). A molded part 6 is attached to the tip of the casing 5a. In this embodiment, the molded portion 6 has a structure in which a large number of holes are formed in a thick disc.

含炭塊成鉱の原料は各々、所定の配合率になるようミキサー1に供給され、水を添加されて混合されて混合原料が生成される。混合原料は、投入口2に連続的又は断続的に投入される。投入口2に投入された混合原料は、接続管8を通って第一の押出部3内に供給され、スクリュー3bによって徐々に圧縮され、多孔板で形成された堰3cに到達する。この時、多孔板で形成された堰3cのすべての孔を混合原料で満たすように、スクリュー3bの回転速度および混合原料の供給速度を調整することで、多孔板で形成された堰3cにはマテリアルシールが形成される。スクリュー3bにより、混合原料は連続的に供給されるので、多孔板で形成された堰3cの裏面には常時マテリアルシールを形成しつつ、混合原料が連続的に排出され、接続管4内へ供給されることになる。なお、前記多孔板(堰c)の孔形状には特に決まりはないが、マテリアルシールが容易に形成できるよう、混合原料の物性に応じて、孔径や開口率を調整して決定することが重要である。 The raw materials of the coal-containing agglomerate ore are each supplied to the mixer 1 so as to have a predetermined mixing ratio, and water is added and mixed to produce a mixed raw material. The mixed raw material is continuously or intermittently charged into the charging port 2 . The mixed raw material introduced into the inlet 2 is supplied through the connecting pipe 8 into the first extruding section 3, is gradually compressed by the screw 3b, and reaches the weir 3c formed of a perforated plate. At this time, by adjusting the rotation speed of the screw 3b and the supply speed of the mixed raw material so that all the holes of the weir 3c formed of the perforated plate are filled with the mixed raw material, the weir 3c formed of the perforated plate A material seal is formed. Since the mixed raw material is continuously supplied by the screw 3b, the mixed raw material is continuously discharged and supplied into the connecting pipe 4 while always forming a material seal on the back surface of the weir 3c formed of a perforated plate. will be The shape of the holes in the perforated plate (weir c) is not particularly defined, but it is important to adjust and determine the hole diameter and opening ratio according to the physical properties of the mixed raw material so that the material seal can be easily formed. is.

接続管4内は、真空ポンプ接続管9で接続された真空ポンプ7の作動によって真空引きされるので、接続管4に供給された混合原料は脱気され、原料中の原料粒子同士が確実に接触して緻密化することで、製造された非焼成含炭塊成鉱の強度を増加させることができる。 Since the inside of the connection pipe 4 is evacuated by the operation of the vacuum pump 7 connected by the vacuum pump connection pipe 9, the mixed raw material supplied to the connection pipe 4 is degassed, and the raw material particles in the raw materials are reliably separated. Contacting and densifying can increase the strength of the produced non-calcined carbon-containing agglomerate ore.

接続管4内で緻密化した混合原料は、第二の押出部5に供給される。第二の押出部5に供給された混合原料は、スクリュー5bによって、成型部6に押し出される。
このように、本発明に係る含炭塊成鉱の製造装置の例では、マテリアルシールを利用して連続的に、真空脱気しつつ押出成型することにしたので、生産性を向上させることが可能となっている。なお本実施形態で、各原料の粒径を8mm以下(最大粒子径が8mm、平均粒子径は60~100μm程度)とすれば、スクリュー3b、5bで押し出す際に、混合原料がスクリュー3b、5b、ケーシング3a、5a、多孔板で形成された堰3c、成型部6それぞれの間隙を通過できるので、互いに噛み合うことが無く、好ましい。混合原料は、成型部6を通過する際に、成型部6の断面形状に成型される。成型部6から押し出された混合原料は、その自重により折れ、所定の長さの成型物に成型される。
The mixed raw material densified in the connecting pipe 4 is supplied to the second extrusion section 5 . The mixed raw material supplied to the second extrusion section 5 is extruded to the molding section 6 by the screw 5b.
As described above, in the example of the apparatus for producing a coal-containing agglomerate ore according to the present invention, the material seal is used to continuously perform extrusion molding while vacuum degassing, so that the productivity can be improved. It is possible. In this embodiment, if the particle size of each raw material is 8 mm or less (maximum particle size is 8 mm, average particle size is about 60 to 100 μm), the mixed raw material is extruded by the screws 3b and 5b. , the casings 3a and 5a, the weir 3c formed of a perforated plate, and the molded portion 6, so that they do not mesh with each other, which is preferable. The mixed raw material is molded into the cross-sectional shape of the molding section 6 when passing through the molding section 6 . The raw material mixture extruded from the molding section 6 is broken by its own weight and molded into a molding of a predetermined length.

成型物の形状は、成型部6の断面形状によって決定され、その孔は円柱の他、四角柱、六角柱等の角柱状にも形成可能であるが、円柱形状に形成することが最も望ましい。その理由を以下に記載する。 The shape of the molded product is determined by the cross-sectional shape of the molded part 6, and the hole can be formed in the shape of a prism such as a square prism, a hexagonal prism, etc. in addition to the shape of a cylinder. The reason is described below.

様々な傾向の含炭塊成鉱で、高炉の充填層通風圧損失を比較すると、円柱状が最も低い圧力損失を呈する。また、角柱と比較すると、円柱形状の含炭塊成鉱は、充填層内での壁や含炭塊成鉱同士の摺れや落下衝撃の際に、粉化し難いという特徴がある。直径が30mm~40mmの塊成鉱が最も圧壊強度が高くなる一方で、高炉への原料装入機構が、既存の焼結鉱に合わせて直径20mm以下の原料の輸送に適した構造となっているため、直径10~20mm程度の円柱状に成型するのが望ましい。 When comparing the pressure loss in blast furnace packed bed ventilation for various tendencies of coal-bearing agglomerates, the columnar shape exhibits the lowest pressure loss. In addition, as compared with a prism, the columnar carbon-containing agglomerate ore has the characteristic that it is less likely to pulverize when the walls of the packed bed or the coal-containing agglomerate ore rub against each other or drop impact. Agglomerates with a diameter of 30 mm to 40 mm have the highest crushing strength, while the raw material charging mechanism into the blast furnace has a structure suitable for transporting raw materials with a diameter of 20 mm or less in accordance with the existing sintered ore. Therefore, it is desirable to form a cylinder with a diameter of about 10 to 20 mm.

成型された成型物は、屋根付きの養生ヤードに積み上げられて、当該養生ヤードで所定期間養生される。養生期間中に成型物は、固化するとともに、自然乾燥によって徐々に水分が除去され含炭塊成鉱の製造が完了する。 The molded products are piled up in a curing yard with a roof and cured in the curing yard for a predetermined period. During the curing period, the molding is solidified, and water is gradually removed by natural drying to complete the production of the coal-containing agglomerate ore.

<連続安定製造のための条件>
本発明形態において、緻密で強固な成型体を安定的に製造し続けるには、接続管4内(真空室と呼ばれる減圧チャンバー)に原料を連続供給しながら、真空室内を高負圧に保持しつつ、真空室内に供給された混合原料を押出し成型部6へ押し出す必要がある。すなわち、空気が多孔板3cまたは成型部6の孔から侵入することが無いように、多孔板で形成された堰3cの全孔内および成型部6の全孔内を常時混合原料で充填し、マテリアルシールを維持し、接続管4~成型部6の間を高負圧に保持することが重要となる。このため、連続式真空押出成型装置を用いてマテリアルシールを維持できる条件を調査した。
<Conditions for continuous stable production>
In the embodiment of the present invention, in order to continue stably producing a dense and strong molded body, the inside of the vacuum chamber is maintained at a high negative pressure while continuously supplying raw materials into the connecting pipe 4 (a reduced pressure chamber called a vacuum chamber). At the same time, it is necessary to extrude the mixed raw material supplied into the vacuum chamber to the extruder 6 . That is, in order to prevent air from entering from the perforated plate 3c or the holes of the molding portion 6, all the holes of the weir 3c formed of the perforated plate and all the holes of the molding portion 6 are always filled with the raw material mixture, It is important to maintain a material seal and maintain a high negative pressure between the connecting pipe 4 and the molded portion 6 . Therefore, we investigated the conditions under which the material seal can be maintained using a continuous vacuum extrusion molding device.

試験条件として原料は、所定の配合になるように鉄含有原料、炭素含有原料、水硬性バインダー、微粒シリカ源を秤量し、1軸式のパドル型連続式混合機に投入し、所定量の水を加えて2分~2分30秒間、混合した。混合原料は、1軸のスクリュー式混練機と1軸のスクリュー式の押出し成型部で構成される押出成型装置に投入し、押出し速度(原料が成型部6の孔を通過する速度)を40~100mm/sとなるように調整して成型試験を実施した。 As the test conditions, the iron-containing raw material, the carbon-containing raw material, the hydraulic binder, and the fine-particle silica source are weighed so that the raw materials have a predetermined composition, and they are put into a single-shaft paddle type continuous mixer, and a predetermined amount of water is added. was added and mixed for 2 minutes to 2 minutes and 30 seconds. The mixed raw material is put into an extrusion molding device composed of a single-screw kneader and a single-screw extrusion molding unit, and the extrusion speed (the speed at which the raw material passes through the holes of the molding unit 6) is set to 40 to 40. A molding test was performed by adjusting the speed to 100 mm/s.

ここで、混練部への混合原料の供給量とスクリュー(3b、5b)の回転速度、各ケーシング内(3a、5a)への原料の充填率を変化させて、これら因子がマテリアルシールに与える影響を調査した。 Here, by changing the supply amount of the mixed raw material to the kneading unit, the rotation speed of the screws (3b, 5b), and the filling rate of the raw material in each casing (3a, 5a), the effects of these factors on the material seal investigated.

真空室入側に多孔板で形成された堰3cを設置し、多孔板で形成された堰3cに向けてスクリュー3bで混合原料を連続的に押し込むことで第一のマテリアルシールが形成される。この第一のマテリアルシールを連続的に形成するには、混合原料が多孔板で形成された堰3cに押し込まれて各孔内を通過する際の機械抵抗を調整すること、すなわち原料物性に合わせて多孔板の孔径・総開口率・厚みを調整することが有効であることを見出した。 A weir 3c formed of a perforated plate is installed on the inlet side of the vacuum chamber, and the mixed raw material is continuously pushed by the screw 3b toward the weir 3c formed of a perforated plate to form the first material seal. In order to continuously form this first material seal, the mixed raw material is pushed into the weir 3c formed of a perforated plate and the mechanical resistance when passing through each hole is adjusted. We found that it is effective to adjust the pore size, total aperture ratio, and thickness of the perforated plate.

押出し成型部5の先端に設置される成型部6は多孔の厚板であり、真空室入側の多孔板で形成された堰3cとよく似た構造であるが、成型部6で第二のマテリアルシールを形成するには、真空室入側と同様に、孔数と板厚みを調整することが有効と判明した。 The forming part 6 installed at the tip of the extruding part 5 is a porous thick plate, and has a structure very similar to the weir 3c formed of the porous plate on the side of the entrance of the vacuum chamber. In order to form a material seal, it was found to be effective to adjust the number of holes and plate thickness in the same way as the vacuum chamber entrance side.

<最適真空条件>
以下に、前述の押出成型方式にて、接続管4~成型部6の間の負圧を変えて塊成化した含炭塊成鉱の試験結果を示す。原料は所定の配合になるように鉄含有原料、炭素含有原料、水硬性バインダー、微粒シリカ源を秤量し、混合機に全量を投入して1分間混合した後、所定量の水を加えて3分間混合し混合原料とした。混合原料は、押出成型装置に投入し、押出し速度(原料が成型部6の孔を通過する速度)を10mm/sに設定して成型試験を実施した。
<Optimal vacuum conditions>
The test results of the coal-containing agglomerate ore agglomerated by changing the negative pressure between the connecting pipe 4 and the molding section 6 by the extrusion molding method described above are shown below. The iron-containing raw material, the carbon-containing raw material, the hydraulic binder, and the fine silica source are weighed so that the raw materials have a predetermined composition. The mixture was mixed for a minute to obtain a mixed raw material. The mixed raw material was put into an extrusion molding device, and a molding test was carried out by setting the extrusion speed (the speed at which the raw material passes through the holes of the molding section 6) to 10 mm/s.

塊成化した含炭塊成鉱は、室温で1日間大気養生し、続いて80℃で2日間恒温恒湿槽内に入れて養生したのち30℃まで空冷し、圧潰強度試験を実施した。圧潰強度の測定は、JIS M8718「鉄鉱石ペレット圧潰強度試験方法」に準じて、試料1個に対して、規定の加圧速度で荷重を掛け、試料が破壊した時の荷重を圧潰強度とした。 The agglomerated coal-containing agglomerate ore was air-cured at room temperature for 1 day, then placed in a thermo-hygrostat at 80°C for 2 days for curing, air-cooled to 30°C, and a crushing strength test was conducted. The crushing strength was measured according to JIS M8718 "Iron ore pellet crushing strength test method", a load was applied to one sample at a specified pressurization speed, and the load when the sample broke was taken as the crushing strength. .

表2に原料の配合条件を示す。 Table 2 shows the blending conditions of the raw materials.

Figure 0007265158000002
Figure 0007265158000002

成型時の接続管4~成型部6の間の圧力値が-50kPaGを境に、圧潰強度のバラつきが大きく変化する。特に図3に示すように、接続管4~成型部6の間の圧力が真空圧に近づくほど、品質が向上(高強度化)することがわかり、真空室圧力が-60kPaG以上-50kPaGの範囲では、成型体の常温圧潰強度が目標値である1100N/個以上であるものの、成型体の圧潰強度のバラつきが大きく、また低強度側にバラついている。この低強度側にバラついた圧潰強度は目標に到達していない。接続管4~成型部6の間の圧力が低位、即ち真空側にシフトしていくことで、嵩密度および圧潰強度のバラつきは軽減され、成型体の常温圧潰強度が目標値である1100N/個を超えることが確認できた。 When the pressure value between the connecting pipe 4 and the molding portion 6 during molding is -50 kPaG, the variation in crushing strength changes greatly. In particular, as shown in FIG. 3, it is found that the closer the pressure between the connecting pipe 4 and the molding section 6 is to the vacuum pressure, the higher the quality (higher strength), and the vacuum chamber pressure is in the range of -60 kPaG to -50 kPaG. Although the room-temperature crushing strength of the molded bodies is 1100 N/unit or more, which is the target value, the crushing strength of the molded bodies varies greatly and is on the low strength side. The crushing strength that varies toward the low strength side has not reached the target. By shifting the pressure between the connecting pipe 4 and the molding section 6 to a lower level, that is, to the vacuum side, the variation in bulk density and crushing strength is reduced, and the crushing strength at room temperature of the molded body is the target value of 1100 N/piece. was confirmed to exceed

尚、高炉原料は、高炉炉内で還元ガスの通風性を確保するため、高炉までの搬送および炉内への装入時において粉化しない強度が必要である。非焼成含炭塊成鉱の高炉操業試験の結果、成型体1個当たりの常温圧潰強度が1100N/個以上あれば、高炉炉内での粉化を抑えることができ、還元ガスの通風性を確保できると判明、これを含炭塊成鉱の目標強度としている。 In order to ensure ventilation of the reducing gas in the blast furnace, the blast furnace raw material must be strong enough not to pulverize during transportation to the blast furnace and charging into the furnace. As a result of a blast furnace operation test of non-fired coal-containing agglomerate ore, if the room-temperature crushing strength per molded body is 1100 N/piece or more, pulverization in the blast furnace can be suppressed and reducing gas permeability can be improved. It turns out that it can be secured, and this is the target strength of the coal-bearing agglomerate ore.

この理由は以下の様に推定した。接続管4~成型部6の間の圧力が高位であると成型原料中のエアが充分に排出されないため、混合原料中にエアを多く巻き込んだまま成型されてしまう。この成型体は嵩密度が小さくなって低強度となる。一方で、エアをあまり巻き込まない部分も成型体となり、この成型体は嵩密度が大きくなり高強度となる。このように成型体に巻き込まれるエア量の差が強度のバラつきを生じることとなり、接続管4~成型部6の間の圧力が高いほど、このバラつきが大きくなると考えられる。逆に接続管4~成型部6の間の圧力が低位になると混合材料中に残存するエアの量が少なくなることで、強度バラつきが小さくなると考えられる。 The reason for this is presumed as follows. If the pressure between the connecting pipe 4 and the molding section 6 is high, the air in the raw material to be molded cannot be discharged sufficiently, so that the mixed raw material is molded with a large amount of air trapped therein. This molding has a low bulk density and low strength. On the other hand, the portion that does not entrain much air also becomes a molded body, and this molded body has a high bulk density and high strength. The difference in the amount of air entrained in the molded body causes variations in strength. Conversely, when the pressure between the connecting pipe 4 and the molding section 6 is lowered, the amount of air remaining in the mixed material is reduced, which is considered to reduce the strength variation.

このように、本発明で用いられる真空押出し成型機の特徴は、真空室と呼ばれる減圧チャンバーに原料を連続供給しながら、接続管4~成型部6の間を上記の―50kPaG以下という高負圧(高い真空度)に保持しつつ、接続管4~成型部6の間に供給された原料を押出し成型部へ押し出して成型する。 As described above, the feature of the vacuum extruder used in the present invention is that a high negative pressure of -50 kPaG or less is applied between the connection pipe 4 and the molding section 6 while continuously supplying the raw material to a decompression chamber called a vacuum chamber. While maintaining (high degree of vacuum), the raw material supplied between the connecting pipe 4 and the molding section 6 is extruded to the extrusion molding section and molded.

次に、安定的な押出し成型に必要な他の条件を調査した。この調査内容と結果を表3に示す。 Next, other conditions necessary for stable extrusion were investigated. Table 3 shows the contents and results of this investigation.

Figure 0007265158000003
Figure 0007265158000003

上記のとおり押出し成型部5に調整された多孔板の成型部6を設置することで第二のマテリアルシールは形成できる。しかしながら、実際の生産においては原料の流動抵抗が変化(操業変動)したり、スクリュー回転数を変化させる(操業アクション)ことで、成型部6への原料供給速度が変化する。 The second material seal can be formed by installing the molded portion 6 of the perforated plate adjusted to the extruded portion 5 as described above. However, in actual production, the raw material supply speed to the molding unit 6 changes due to changes in raw material flow resistance (operational fluctuations) or changes in the screw rotation speed (operational actions).

たとえば、原料水分が過剰になると原料の流動抵抗が低下し、第二のマテリアルシールが形成される前に原料が排出されることになり真空室の圧力が安定保持できなくなる。スクリュー5bの回転数UPについても同様の変化が起きる。これらの現象を調査した結果、第二の押出部5の混合原料充填率が50体積%未満になると、成型部6への供給速度が増加した時に第二のマテリアルシールが崩壊しやすくなることが分かった。 For example, if the moisture content of the raw material becomes excessive, the flow resistance of the raw material is lowered, the raw material is discharged before the second material seal is formed, and the pressure in the vacuum chamber cannot be stably maintained. A similar change occurs with respect to the rotational speed UP of the screw 5b. As a result of investigating these phenomena, it was found that when the mixed raw material filling rate of the second extruding section 5 is less than 50% by volume, the second material seal tends to collapse when the supply speed to the molding section 6 increases. Do you get it.

一方、原料の流動抵抗が増加したり、スクリュー5bの回転数を低下させたりすると、成型部6への原料供給速度が低下して、第二の押出部5から接続管4(真空室)にかけて原料が過剰に堆積してしまい、第二の押出部5内のスクリュー5bが過負荷となって停止し易くなることが分かった。調査の結果、第二の押出部5の充填率が95体積%を超えると、成型部への供給速度が低下した際に成型体排出不良が発生し易くなることが分かった。 On the other hand, if the flow resistance of the raw material increases or the rotation speed of the screw 5b is reduced, the raw material supply speed to the molding unit 6 decreases, and from the second extrusion unit 5 to the connecting pipe 4 (vacuum chamber) It was found that the raw material accumulated excessively and the screw 5b in the second extruder 5 was overloaded and easily stopped. As a result of the investigation, it was found that when the filling rate of the second extruding section 5 exceeds 95% by volume, the discharge failure of the molded body tends to occur when the supply speed to the molding section is lowered.

従い、第二の押出部5のスクリュー5bの回転速度と接続管4(真空室)上流の第一の押出部3のスクリュー3bの回転速度および原料物性を随時調整し、第二の押出部5の原料充填率を50体積%以上95体積%以下(必須条件)に制御し続けることで、操業変動があっても安定的かつ連続的な成型体の製造が可能となることを見出した。 Therefore, the rotation speed of the screw 5b of the second extrusion section 5 and the rotation speed of the screw 3b of the first extrusion section 3 upstream of the connection pipe 4 (vacuum chamber) and the raw material properties are adjusted as needed, and the second extrusion section 5 By continuing to control the raw material filling rate of 50% by volume or more and 95% by volume or less (essential condition), it was found that stable and continuous production of molded bodies is possible even if there are fluctuations in operation.

なお、第二の押出部5の原料充填率とは、第二の押出部5のスクリュー5bが回転している円筒状空間の体積(スクリューの体積を除く)に対して、原料が占める割合をいう。第二の押出部5のスクリュー5bの回転数増減と原料供給量の増減により、原料充填率を50体積%以上95体積%以下に制御することで安定的かつ連続的な成型が可能となる。 The raw material filling rate of the second extrusion section 5 is the ratio of the raw material to the volume of the cylindrical space in which the screw 5b of the second extrusion section 5 rotates (excluding the volume of the screw). say. Stable and continuous molding is possible by controlling the raw material filling rate to 50% by volume or more and 95% by volume or less by increasing or decreasing the number of revolutions of the screw 5b of the second extruder 5 and by increasing or decreasing the amount of raw material supplied.

原料充填率の判定は、例えば図4の様に、真空室上部に取り付けられた観察窓から押出し成型部を目視する目視判定が一般的である。今回は観察窓から見えるスクリューの範囲から原料充填率が判定できるように、例えば予め、原料でスクリュー羽根が隠れる範囲と原料充填率の関係を調査しておき、観察窓からスクリューを見るだけで充填率が判定できるようにしたが、例えば、押出し成型部の各部にレベル計(マイクロ波式レベル計、近接センサー、各種レベルスイッチなど)を設置して、レベル計測値から充填率を算出しても良い。 The determination of the raw material filling rate is generally made by visual determination, for example, by observing the extruded part through an observation window attached to the upper part of the vacuum chamber, as shown in FIG. This time, in order to determine the raw material filling rate from the range of the screw that can be seen through the observation window, for example, the relationship between the range where the screw blades are hidden by the raw material and the raw material filling rate is investigated in advance. However, for example, you can install a level meter (microwave level meter, proximity sensor, various level switches, etc.) at each part of the extrusion molding section and calculate the filling rate from the level measurement value. good.

この様に原料充填率の制御範囲については、50体積%以上95体積%以下であれば連続安定成型が可能となるが、50体積%以上70体積%以下であればなお良く、さらに50体積%以上60体積%以下であれば最適である。その理由は、充填率を一定に制御することで、押出し成型部のスクリューが多孔板へ押し付ける力が安定するため、排出される成型体のバラつきが小さくなるためである。 As described above, regarding the control range of the raw material filling rate, if it is 50% by volume or more and 95% by volume or less, continuous stable molding is possible. A content of 60% by volume or more is optimal. The reason for this is that by controlling the filling rate to be constant, the force with which the screw of the extrusion molding unit presses against the perforated plate is stabilized, so that variations in the ejected moldings are reduced.

以上のように、高炉用の非焼成含炭塊成鉱の製造方法として、酸化鉄を含む鉄含有原料と炭素含有原料および水硬性バインダーと少量の微粒シリカ源を混合し、水を添加して混合した後、真空室圧力を-50kPaG以下にして真空脱気しつつ押出成型することで、原料中の水硬性バインダーの配合量が2~9質量%であっても、高炉に装入する際に必要な1100N/個以上の圧壊強度を有する含炭塊成鉱を製造することが可能となる。 As described above, as a method for producing a non-calcined carbon-containing agglomerate ore for a blast furnace, an iron-containing raw material containing iron oxide, a carbon-containing raw material, a hydraulic binder, and a small amount of a fine silica source are mixed, and water is added. After mixing, the vacuum chamber pressure is set to -50 kPaG or less and extrusion molding is performed while vacuum degassing, so that even if the amount of hydraulic binder in the raw material is 2 to 9% by mass, when charging into the blast furnace It is possible to produce a coal-containing agglomerate ore having a crushing strength of 1100 N/piece or more required for.

なお、本実施形態では、スクリュー3bは1軸式であり、スクリュー5bは1軸式であるが、スクリュー3bを2軸式とし、或いは、スクリュー5bを2軸式としても差し支えない。 In the present embodiment, the screw 3b is of a uniaxial type and the screw 5b is of a uniaxial type, but the screw 3b may be of a biaxial type, or the screw 5b may be of a biaxial type.

以上、現時点において、もっとも実践的であり、かつ好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う含炭塊成鉱の製造方法及び含炭塊成鉱もまた技術的範囲に包含されるものとして理解されなければならない。 While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, the invention is not limited to the embodiments disclosed herein. , can be appropriately changed within the scope not contrary to the gist or idea of the invention that can be read from the scope of claims and the entire specification, and the method for producing the coal-containing agglomerate ore and the coal-containing agglomerate ore that involve such changes are also technically should be understood as being included in the scope.

次に、本発明の実施例について説明するが、本発明はこれに限られるものではない。含炭塊成鉱原料は、炭素含有原料、鉄含有原料、その他原料を用いて、T.C.=15~40%となるように調整した。炭素含有原料として、粉コークス(T.C.=84%)と、炭素含有率の高い製銑系ダスト(T.C.=23%)を5mmの篩で篩い、その篩下を用いた。鉄含有原料として鉱石M(豪州系粉鉱石)と鉱石C(カナダ系粉鉱石)を混合し、ボールミルで粉砕したもの5mmの篩で篩って、その篩下を用いた。また、水硬性バインダーとしては、早強セメントおよび超速硬セメントを用いた。
微粒シリカ源としては、シリカヒュームとフライアッシュを用いた。
EXAMPLES Next, examples of the present invention will be described, but the present invention is not limited to these. The coal-containing agglomerate ore raw material is obtained by using a carbon-containing raw material, an iron-containing raw material and other raw materials, C. = 15 to 40%. As carbon-containing raw materials, coke fine (TC=84%) and ironmaking dust (TC=23%) with a high carbon content were sieved through a 5 mm sieve, and the under-sieves were used. Ore M (Australian ore fine) and ore C (Canadian ore fine) were mixed as iron-containing raw materials, pulverized in a ball mill, sieved through a 5 mm sieve, and the under-sieves were used. Also, as the hydraulic binder, high-speed cement and ultra-rapid-hardening cement were used.
Silica fume and fly ash were used as fine silica sources.

含炭塊成鉱の配合条件は、表4に示す配合となるように、炭素含有原料、鉄含有原料、水硬性バインダー、微粒シリカ源を秤量し、その全量を1軸式のパドル型連続式混合機に投入し1分間混合した後、所定量の水を加えて3分間混合し、混合原料とした。混合原料は、1軸のスクリュー式混練機と1軸のスクリュー式の押出し成型部で構成される押出成型装置に投入し、押出し速度(原料が成型部6の孔を通過する速度)を10mm/sとなるように調整して成型試験を実施した。なお、押出成型部の孔(多孔)の径はφ16mmとした。
塊成化した含炭塊成鉱は、室温で1日間大気養生し、続いて80℃で2日間恒温恒湿槽内に入れて養生したのち30℃まで空冷し、圧潰強度試験を実施した。圧潰強度の測定は、JIS M8718「鉄鉱石ペレット圧潰強度試験方法」に準じて、試料1個に対して、規定の加圧速度で荷重を掛け、試料が破壊した時の荷重を圧潰強度とした。尚、合格は目標圧壊強度である1100N/個以上であり、かつ成型時に真空抜けや押出不可、成型物中に粉の発生がないこと、成型物が大塊化しないこと、高炉使用時の還元材低減効果が悪くない場合とした。なお、表4は実施例、表5は比較例である。
As for the blending conditions of the coal-containing agglomerate ore, the carbon-containing raw material, the iron-containing raw material, the hydraulic binder, and the fine-grained silica source were weighed so as to obtain the composition shown in Table 4, and the entire amount was added to the uniaxial paddle-type continuous type. After being put into a mixer and mixed for 1 minute, a predetermined amount of water was added and mixed for 3 minutes to obtain a mixed raw material. The mixed raw material is put into an extrusion molding device composed of a uniaxial screw type kneader and a uniaxial screw type extrusion molding unit, and the extrusion speed (the speed at which the raw material passes through the holes of the molding unit 6) is 10 mm / A molding test was carried out by adjusting to s. The diameter of the holes (multiple holes) of the extruded portion was φ16 mm.
The agglomerated coal-containing agglomerate ore was air-cured at room temperature for 1 day, then placed in a thermo-hygrostat at 80°C for 2 days for curing, air-cooled to 30°C, and a crushing strength test was conducted. The crushing strength was measured according to JIS M8718 "Iron ore pellet crushing strength test method", a load was applied to one sample at a specified pressurization speed, and the load when the sample broke was taken as the crushing strength. . In addition, passing is 1100 N / piece or more, which is the target crushing strength, and it is impossible to release the vacuum or extrude during molding, there is no powder generation in the molded product, the molded product does not become large, and reduction when using a blast furnace. It was assumed that the material reduction effect was not bad. Table 4 shows examples, and Table 5 shows comparative examples.

Figure 0007265158000004
Figure 0007265158000004
Figure 0007265158000005
Figure 0007265158000005

表4で、実施例1~実施例17は、T.C.=20~40質量%の条件で、水硬性バインダー=2.0~9.0質量%、微粒シリカ源=0.5~4.0質量%、成型物水分=9.0~14.0質量%とし、真空押出し成型機の第二の押出し部の充填率を50~95体積%として成型した場合であり、すべて目標強度である1100N/個を超えている。 In Table 4, Examples 1 to 17 are T.I. C. = 20 to 40% by mass, hydraulic binder = 2.0 to 9.0% by mass, fine silica source = 0.5 to 4.0% by mass, molded product moisture = 9.0 to 14.0% by mass %, and molded with a filling rate of 50 to 95% by volume in the second extrusion part of the vacuum extruder.

比較例1は、T.C.が上限外れの例である。T.C.を高めていき40質量%を超えると、混合原料の流動性が低下して真空抜けも発生し始め、最終的には真空押出成型自体が不可能になった。比較例2は、水硬性バインダーの配合率が下限外れの例であり、比較例3は、微粒シリカ源の配合率が下限外れの例である。水硬性バインダーは水との化学反応による硬化、微粒シリカ源は原料粒子との接点数増加により強度を向上させる役割をもち、どちらも配合条件を満たさないと目標強度を確保できない。比較例4は、真空を掛けずに押出成型した例である。成型体の強度が目標値に達しなかった。 Comparative Example 1 is T.I. C. is an example of being outside the upper limit. T. C. was increased to more than 40% by mass, the fluidity of the mixed raw material was lowered and vacuum escape began to occur, and finally the vacuum extrusion molding itself became impossible. Comparative Example 2 is an example in which the blending ratio of the hydraulic binder is off the lower limit, and Comparative Example 3 is an example in which the blending ratio of the particulate silica source is off the lower limit. The hydraulic binder hardens through a chemical reaction with water, and the fine silica source increases the strength by increasing the number of contact points with the raw material particles. Comparative Example 4 is an example of extruding without applying a vacuum. The strength of the molding did not reach the target value.

比較例5および比較例6はそれぞれ、成型物の水分の下限外れの例および上限外れの例である。水分が過小になると、原料の流動性が著しく低下し、スクリューの押出し抵抗が上がって押出し(成型)が出来なくなる。逆に水分が過剰になると押出しは問題なくできるが、目標強度に到達しないのと、表5に示すように成型後に成型物を山積みして養生する際、成型体同士が付着して大塊化し、高炉で使用する際には事前に破砕する問題が発生してしまう。 Comparative Example 5 and Comparative Example 6 are examples of the moisture content of the molding being out of the lower limit and out of the upper limit, respectively. If the water content is too low, the fluidity of the raw material will be significantly reduced, and the extrusion resistance of the screw will increase, making extrusion (molding) impossible. Conversely, if the water content is excessive, extrusion can be performed without problems, but the target strength is not reached, and as shown in Table 5, when the molded products are piled up after molding and cured, the molded products adhere to each other and form large lumps. , there is a problem of pre-crushing when used in a blast furnace.

比較例7および比較例8はそれぞれ、真空押出し成型時に第二の押出し部の充填率が下限外れの例および上限外れの例である。充填率が下限を外れると、押出し成型部の先端にマテリアルシールを連続的に形成するのが困難となって、断続的に真空抜けが発生してしまい、成型物の原料が粉状のまま排出される現象が発生して成型物の歩留りが低下する。また、充填率が過剰になると押出し負荷が増大して原料が押出し成型部に滞留してしまうため、継続的な成型が困難となる。 Comparative Examples 7 and 8 are examples in which the filling rate of the second extruded portion during vacuum extrusion molding is outside the lower limit and the upper limit, respectively. If the filling rate falls below the lower limit, it becomes difficult to continuously form a material seal at the tip of the extruded part, and vacuum breaks occur intermittently, and the raw material of the molded product is discharged in the form of powder. This causes a phenomenon that causes a decrease in the yield of molded products. Further, if the filling rate is excessive, the extrusion load increases and the raw material stays in the extrusion molding section, making continuous molding difficult.

実施例16は、微粒シリカ源の平均粒子径が非焼成含炭塊鉱の混合原料から微粒シリカ源を除いたものの平均粒子径に対して15%を超えた例である。実施例17は、押出し成型機の真空度が-50kPaGを超えた例である。どちらも強度の目標値に達しているが下限に近く、好ましい例とは言えない。 Example 16 is an example in which the average particle size of the fine silica source exceeded 15% of the average particle size of the mixed raw material of non-calcined coal-containing lump ore excluding the fine silica source. Example 17 is an example in which the degree of vacuum of the extruder exceeded -50 kPaG. Although both reached the target value of strength, they were close to the lower limit and cannot be said to be a favorable example.

表5で成形物水分の上下限外れの比較例を示したが、さらに詳細に説明する。表6に示すように、真空押出成型方式にて上記条件で含炭塊成鉱を製造する場合、成型体水分が9質量%未満になると成型が困難となり、14%を超えると成型体同士が付着して大塊化する問題が明らかとなった。従い、適正水分値を9~14質量%とする。 Table 5 shows comparative examples of deviations from the upper and lower limits of the water content of the molded product. As shown in Table 6, when the carbon-containing agglomerate ore is produced under the above conditions by the vacuum extrusion molding method, molding becomes difficult when the moisture content of the molded body is less than 9% by mass, and when it exceeds 14%, the molded bodies separate from each other. The problem of sticking and clumping was revealed. Therefore, the appropriate moisture content is set to 9 to 14% by mass.

Figure 0007265158000006
Figure 0007265158000006

1 ミキサー
2 投入口
3 第一の押出部(混練部)
3a ケーシング
3b スクリュー
3c 多孔板で形成された堰
4 接続管(真空室)
5 第二の押出部(押出成型部)
5a ケーシング
5b スクリュー
6 成型部
7 真空ポンプ
8 接続管
9 真空ポンプ接続管
10 含炭塊成鉱の製造装置
1 mixer 2 inlet 3 first extrusion section (kneading section)
3a casing 3b screw 3c weir formed of perforated plate 4 connecting pipe (vacuum chamber)
5 Second extruded part (extruded part)
5a Casing 5b Screw 6 Molding Unit 7 Vacuum Pump 8 Connection Pipe 9 Vacuum Pump Connection Pipe 10 Production Apparatus for Carbon-containing Agglomerate Ore

Claims (3)

製鉄における高炉の原料として使用される、炭素含有割合(T.C.)が15質量%以上の高炉用非焼成含炭塊成鉱を製造する方法であって、
水分ゼロ換算の質量比率で、水硬性バインダーを2.0~9.0質量%、微粒シリカ源を0.5~4.0質量%、含炭塊成鉱原料中に含まれる炭素の割合(T.C.)を15~40質量%となるように、鉄含有原料、炭素含有原料、その他原料の配合率を調整して合わせて87.0~97.5質量%を配合した含炭塊成鉱原料に、
当該原料と水の合計を100質量%としたときの水の質量比率を9.0~14.0質量%として加えて連続的に混合しながら移送し、その移送方向前方に設置された多孔板で形成された堰へ混合原料を押込むことで第一のマテリアルシールを形成する第一の押出部(混練部)と、
前記堰の出側から連続的に供給される混合原料を真空脱気し、第二の押出部へ移送する接続部(真空室)と、
当該接続部(真空室)から供給される真空脱気された混合原料を多数の孔を備えた成型部へ押し込むことで、第二のマテリアルシールを形成しながら連続的に押し出して成型体を製造する第二の押出部と、
で構成される製造装置を用いて含炭塊成鉱を製造する方法であって、
前記第二の押出部の混合原料による充填率が50~95体積%の範囲で連続成型することを特徴とする、高炉用非焼成含炭塊成鉱の製造方法。
A method for producing a non-calcined carbon-containing agglomerate ore for blast furnace having a carbon content (T.C.) of 15% by mass or more, which is used as a raw material for a blast furnace in steelmaking, comprising:
In terms of the mass ratio of zero water content, the hydraulic binder is 2.0 to 9.0% by mass, the fine silica source is 0.5 to 4.0% by mass, and the ratio of carbon contained in the carbon-containing agglomerate ore raw material ( A coal-containing mass containing 87.0 to 97.5% by mass of iron-containing raw material, carbon-containing raw material, and other raw materials by adjusting the blending ratio of the iron-containing raw material, the carbon-containing raw material, and other raw materials so that the T.C.) is 15 to 40% by mass. For ore raw materials,
Water is added at a mass ratio of 9.0 to 14.0% by mass when the total of the raw material and water is 100% by mass, and is continuously mixed and transferred, and a perforated plate installed in front of the transfer direction. A first extrusion section (kneading section) that forms a first material seal by pushing the mixed raw material into the weir formed by
A connecting portion (vacuum chamber) for vacuum degassing the mixed raw material continuously supplied from the exit side of the weir and transferring it to the second extruding portion;
By pushing the vacuum degassed mixed raw material supplied from the connection part (vacuum chamber) into the molding part equipped with a large number of holes, it is continuously extruded while forming the second material seal to manufacture the molded body. a second extruded portion to
A method for producing a coal-containing agglomerate ore using a production apparatus comprising
A method for producing a non-calcined coal-containing agglomerate ore for a blast furnace, characterized in that the second extruded portion is continuously molded so that the filling rate of the mixed raw material is in the range of 50 to 95% by volume.
高炉用非焼成含炭塊成鉱の製造装置の接続部(真空室)の圧力が-50kPaG以下であることを特徴とする、請求項1に記載の高炉用非焼成含炭塊成鉱の製造方法。 2. Production of non-fired coal-containing agglomerate ore for blast furnace according to claim 1, characterized in that the pressure in the connecting part (vacuum chamber) of the manufacturing apparatus for non-fired coal-containing agglomerate ore for blast furnace is -50 kPaG or less. Method. 前記微粒シリカ源の平均粒子径は、前記非焼成含炭塊鉱の混合原料から微粒シリカ源を除いたものの平均粒子径に対して15%以下のサイズの粒子であることを特徴とする、請求項1または2に記載の高炉用非焼成含炭塊成鉱の製造方法。 The average particle size of the fine silica source is 15% or less of the average particle size of the mixed raw material of the non-calcined coal-containing lump ore excluding the fine silica source. Item 3. A method for producing a non-fired coal-containing agglomerate ore for blast furnace according to item 1 or 2.
JP2019106233A 2019-06-06 2019-06-06 Method for producing non-fired coal-containing agglomerate ore for blast furnace Active JP7265158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019106233A JP7265158B2 (en) 2019-06-06 2019-06-06 Method for producing non-fired coal-containing agglomerate ore for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019106233A JP7265158B2 (en) 2019-06-06 2019-06-06 Method for producing non-fired coal-containing agglomerate ore for blast furnace

Publications (2)

Publication Number Publication Date
JP2020200489A JP2020200489A (en) 2020-12-17
JP7265158B2 true JP7265158B2 (en) 2023-04-26

Family

ID=73741908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019106233A Active JP7265158B2 (en) 2019-06-06 2019-06-06 Method for producing non-fired coal-containing agglomerate ore for blast furnace

Country Status (1)

Country Link
JP (1) JP7265158B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7389355B2 (en) * 2020-04-07 2023-11-30 日本製鉄株式会社 Method for producing unfired coal-containing agglomerated ore for blast furnaces

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238022A (en) 1999-02-22 2000-09-05 Denso Corp Extrusion molding device for ceramic molded body
JP2007191748A (en) 2006-01-18 2007-08-02 Nippon Steel Corp Method for manufacturing carbonaceous-material-containing pellet
JP2015044402A (en) 2013-07-31 2015-03-12 ケイミュー株式会社 Extrusion molding machine
JP2016077965A (en) 2014-10-16 2016-05-16 新日鐵住金株式会社 Fly ash recycle method and non-fired agglomerated ore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238022A (en) 1999-02-22 2000-09-05 Denso Corp Extrusion molding device for ceramic molded body
JP2007191748A (en) 2006-01-18 2007-08-02 Nippon Steel Corp Method for manufacturing carbonaceous-material-containing pellet
JP2015044402A (en) 2013-07-31 2015-03-12 ケイミュー株式会社 Extrusion molding machine
JP2016077965A (en) 2014-10-16 2016-05-16 新日鐵住金株式会社 Fly ash recycle method and non-fired agglomerated ore

Also Published As

Publication number Publication date
JP2020200489A (en) 2020-12-17

Similar Documents

Publication Publication Date Title
KR101171455B1 (en) Method for production of carbon composite metal oxide briquette
KR100797839B1 (en) Briquettes and method for manufacturing the same
JP6056492B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
US6921427B2 (en) Process for cold briquetting and pelletization of ferrous or non-ferrous ores or mineral fines by iron bearing hydraulic mineral binder
JP7265158B2 (en) Method for producing non-fired coal-containing agglomerate ore for blast furnace
JP4589875B2 (en) Reduction method of metal oxide in rotary hearth type reduction furnace
BR0215975B1 (en) process for briquetting and cold pelletizing of ferrous or non-ferrous or fine ore, briquette and pellet ore produced in accordance with it.
BR102019023195A2 (en) iron ore fines agglomerate production process and the agglomerate product
JP5803540B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP5114742B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP2011063835A (en) Method for improving strength of agglomerated raw material for blast furnace
JP6273983B2 (en) Blast furnace operation method using reduced iron
JPH1112624A (en) Formation of reduced iron-producing raw material
JP4600102B2 (en) Method for producing reduced iron
KR101187063B1 (en) Process for producing cement-bonded ore agglomerates
JP7389355B2 (en) Method for producing unfired coal-containing agglomerated ore for blast furnaces
JP5835144B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
Borowski An overview of particle agglomeration techniques to waste utilization
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP7188033B2 (en) Method for producing coal-bearing agglomerate ore
JP5825180B2 (en) Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char
JP2005097665A (en) Reduced metal raw material agglomerate and its producing method, and method for producing reduced metal
JP7368726B2 (en) Method for producing unfired coal-containing agglomerated ore for blast furnaces
JP2008013797A (en) Method for reducing oxidized metal in rotary hearth type reducing furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230327

R151 Written notification of patent or utility model registration

Ref document number: 7265158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151