JP2020200489A - Manufacturing method of non-calcined coal-containing mass ore for blast furnace and manufacturing apparatus - Google Patents

Manufacturing method of non-calcined coal-containing mass ore for blast furnace and manufacturing apparatus Download PDF

Info

Publication number
JP2020200489A
JP2020200489A JP2019106233A JP2019106233A JP2020200489A JP 2020200489 A JP2020200489 A JP 2020200489A JP 2019106233 A JP2019106233 A JP 2019106233A JP 2019106233 A JP2019106233 A JP 2019106233A JP 2020200489 A JP2020200489 A JP 2020200489A
Authority
JP
Japan
Prior art keywords
raw material
mass
coal
blast furnace
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019106233A
Other languages
Japanese (ja)
Other versions
JP7265158B2 (en
Inventor
武司 堤
Takeshi Tsutsumi
武司 堤
亮太 岡島
Ryota Okajima
亮太 岡島
岡田 務
Tsutomu Okada
務 岡田
真吾 石丸
Shingo Ishimaru
真吾 石丸
広明 坂上
Hiroaki Sakagami
広明 坂上
岳之 藤坂
Takeyuki Fujisaka
岳之 藤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019106233A priority Critical patent/JP7265158B2/en
Publication of JP2020200489A publication Critical patent/JP2020200489A/en
Application granted granted Critical
Publication of JP7265158B2 publication Critical patent/JP7265158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide technique capable of stably and in a large amount manufacturing non-calcined coal-containing mass ore for blast furnaces having high strength, even when T.C. is 15 mass% or larger and a blending ratio of a hydraulic binder is slight.SOLUTION: Into a coal-containing mass ore raw material in which, 87.0 to 97.5% in total of an iron-containing raw material, a carbon-containing raw material, and other raw material are blended by adjusting a blending ratio, such that, by mass ratio, a hydraulic binder is 2.0 to 9.0%, a fine particle silica source is 0.5 to 4.0% and a ratio (T.C) of carbon contained in the coal-containing mass ore is 15 to 40%, 9.0 to 14.0% of water is added and transferred, while continuously mixing, a connection part for transferring to a second extrusion part by vacuum deaerating the first extrusion part and the mixed raw material continuously supplied therefrom, the mixed raw material supplied from the connection part and vacuum deaerated is extruded in a molding part provided with a many holes to continuously extrude to produce a molded body, the continuous molding is performed in the range of the packing density of 50 to 95 vol% due to the mixed raw material of the second extrusion part.SELECTED DRAWING: Figure 1

Description

本発明は、高炉や堅型溶解炉などの製鉄炉の原料に用いられる、非焼成含炭塊成鉱を製造する技術に関する。 The present invention relates to a technique for producing a non-calcined coal-containing agglomerate ore used as a raw material for a steelmaking furnace such as a blast furnace or a rigid melting furnace.

通常、高炉内では、炉上部から焼結鉱や塊状コークス等の原料を投入するとともに、炉下部から送風し、塊状コークスと送風エアから生成する還元ガスを、炉下部から炉上部へと通風させながら、原料中の酸化鉄を還元溶解させることにより、銑鉄を得る。高炉用原料は、高炉炉内で還元ガスの通風性を確保するため、炉内で粉化しない強度があることが要求される。また、高炉原料は炉下部で1500℃以上の高温にさらされるため、高温での強度も必要となる。このため高炉用原料は、焼結鉱や焼成ペレットのように、事前に1000℃以上の高温で焼成した原料が主流となっている。 Normally, in a blast furnace, raw materials such as sintered ore and massive coke are charged from the upper part of the furnace, and air is blown from the lower part of the furnace to ventilate the reducing gas generated from the massive coke and blown air from the lower part of the furnace to the upper part of the furnace. However, pig iron is obtained by reducing and dissolving iron oxide in the raw material. The raw material for a blast furnace is required to have a strength that does not pulverize in the furnace in order to ensure the ventilation of the reducing gas in the blast furnace. Further, since the blast furnace raw material is exposed to a high temperature of 1500 ° C. or higher in the lower part of the furnace, strength at a high temperature is also required. For this reason, the mainstream raw materials for blast furnaces are raw materials that have been fired in advance at a high temperature of 1000 ° C. or higher, such as sinter and calcined pellets.

また、微粉状原料を水硬性バインダーとともに混合し水を加えて造粒した後、養生することにより造粒物の強度を高めた非焼成塊成鉱も古くから知られている。この非焼成塊成鉱は焼成することなくそのまま高炉へ装入することができるため、加熱・焼成に必要なエネルギー消費を抑えつつ、CO2排出量を抑制できる技術である。非焼成塊成鉱の原料には、焼結性が低く、塊状に焼成するのが難しいとされる低品位な鉄鉱石でも使用できる可能性があり、このように非焼成塊成鉱を高炉原料として利用することは、高炉で利用する鉄源の種類を拡大し、枯渇が懸念される良質鉄鉱石を温存し、地球資源全体の有効利用を図るという意義もある。 Further, a non-calcined agglomerate ore in which a fine powdery raw material is mixed with a hydraulic binder, granulated by adding water, and then cured to increase the strength of the granulated product has been known for a long time. Since this uncalcined agglomerate can be charged into the blast furnace as it is without calcination, it is a technology that can suppress CO 2 emissions while suppressing the energy consumption required for heating and calcination. As a raw material for non-fired agglomerates, there is a possibility that even low-grade iron ore, which has low sinterability and is difficult to bake in chunks, can be used. It also has the meaning of expanding the types of iron sources used in blast furnaces, preserving high-quality iron ore that is feared to be depleted, and making effective use of the entire earth's resources.

これに対して近年、高炉のコークス使用量削減ニーズと、CO2削減ニーズを両立可能な技術として、「非焼成含炭塊成鉱」技術が提案されている(特許文献1,2、非特許文献1など)。上記非焼成塊成鉱の微粉原料に炭素含有原料を添加することで、すなわち塊成鉱に炭材を含有させると、還元ガス温度とガス組成との関係(ηCO=CO2/(CO+CO2))から、酸化鉄の還元反応の進行が制約される高炉シャフト部の熱保存帯と還元反応平衡帯においても、900〜1100℃の温度領域で、非焼成塊成鉱中の内装カーボンにより還元反応を起こす結果、還元率が向上するため、高炉操業時の還元材比の低減効果が期待できる。 On the other hand, in recent years, "non-calcination coal-containing agglomerate ore" technology has been proposed as a technology that can achieve both the need for reducing coke consumption in a blast furnace and the need for reducing CO 2 (Patent Documents 1 and 2, non-patent). Reference 1 etc.). By adding a carbon-containing raw material to the fine powder raw material of the above-mentioned non-fired blast furnace, that is, when the blast furnace contains a carbonaceous material, the relationship between the reduced gas temperature and the gas composition (ηCO = CO 2 / (CO + CO 2 )). ), Even in the heat storage zone and reduction reaction equilibrium zone of the blast furnace shaft where the progress of the reduction reaction of iron oxide is restricted, the reduction reaction is carried out by the internal carbon in the unfired agglomerate in the temperature range of 900 to 1100 ° C. As a result, the reduction rate is improved, and the effect of reducing the ratio of reducing materials during blast furnace operation can be expected.

以上のことにより、高炉用非焼成含炭塊成鉱は、炭素含有量が多く、かつ、高炉で粉化しないよう強度が高いものが望まれる。たとえば、従来の高炉用非焼成含炭塊成鉱技術の代表的な特許文献1では、非焼成含炭塊成鉱の炭素含有量は15質量%以上25質量%以下を適正値としている。ただし、非焼成含炭塊成鉱中の炭素含有量を増加し15質量%を超えると強度が低下するという課題に対し、最初に「微粉状鉄含有原料と微粉状コークスを混合し、更に水分の一部を添加して混練した後、該混練物に早強セメントを添加」することで、強度低下を防止する方法を提案している。これにより、従来、微粉状コークスの表面にある気孔に埋没して接着剤としての効果を発揮できなかった早強セメントに替えて、微粉状鉄含有原料でコークスの気孔を埋没させることで、早強セメントの強度発現効果を効率的に発揮させることができる。 From the above, it is desired that the non-calcined coal-containing agglomerate for blast furnace has a high carbon content and high strength so as not to be pulverized in the blast furnace. For example, in Patent Document 1 which is typical of the conventional non-calcination coal-containing agglomerate ore technology for a blast furnace, the carbon content of the non-calcination carbon-containing agglomerate is set to an appropriate value of 15% by mass or more and 25% by mass or less. However, in response to the problem that the carbon content in the non-calcined carbon-containing agglomerate increases and the strength decreases when it exceeds 15% by mass, first, "a fine powder iron-containing raw material and a fine powder coke are mixed, and then water content is further increased. After adding a part of the above and kneading, a method of preventing a decrease in strength is proposed by adding early-strength cement to the kneaded product. As a result, instead of the early-strength cement, which was conventionally buried in the pores on the surface of the fine powdered coke and could not exert its effect as an adhesive, the pores of the coke were buried with the fine powdered iron-containing raw material. The strength development effect of strong cement can be efficiently exhibited.

しかしながらこの方法で、高炉に装入しても粉化しない非焼成含炭塊成鉱(圧潰強度>980N/個;個は非焼成塊成鉱1個当たりの圧潰強度を表す。尚Nはニュートンである)を製造するためには、早強セメントを10質量%以上配合することとなる。この非焼成含炭塊成鉱を高炉にて使用する量を増加させた場合、早強セメントは400〜500℃で脱水反応(吸熱反応)が進行するため、早強セメント10質量%を添加した含炭塊成鉱の過剰使用は高炉内の温度が低下してしまい、高炉内装入物の還元遅れを生じて還元材比低減効果を得ることができない。また、早強セメント成分は高炉内でスラグとなるため、スラグ量が増加するという問題がある。 However, in this method, non-calcined coal-containing agglomerates that do not pulverize even when charged into a blast furnace (crushing strength> 980 N / piece; each represents the crushing strength per uncalcined agglomerated ore; N is Newton. In order to produce (), 10% by mass or more of early-strength cement is blended. When the amount of this non-calcined coal-containing lump ore used in the blast furnace was increased, the early-strength cement proceeded with a dehydration reaction (endothermic reaction) at 400 to 500 ° C., so 10% by mass of the early-strength cement was added. Excessive use of coal-containing lump ore lowers the temperature inside the blast furnace, causing a delay in the reduction of the blast furnace interior container, and the effect of reducing the ratio of reducing agents cannot be obtained. In addition, since the early-strength cement component becomes slag in the blast furnace, there is a problem that the amount of slag increases.

また、非特許文献1では、炭素含有率(T.C.)が20質量%程度の含炭塊成鉱を、高炉原料として3質量%配合することで、高炉操業時の還元材比低減効果が最も高くなるが、6質量%配合すると、還元材比の低減効果が表れなかったと述べている。
この理由として、炭素含有率(T.C.)が20質量%程度の含炭塊成鉱に高炉装入に耐える圧潰強度を確保させるには、セメントを10〜11質量%配合する必要が生じ、含炭塊成鉱に含まれるセメント由来の結晶水が増加して高炉内で脱水吸熱反応を起こして、高炉シャフト部が低温化してしまい、還元が遅延されるためであるとしている。
Further, in Non-Patent Document 1, by blending 3% by mass of a carbon-containing agglomerate ore having a carbon content (TC) of about 20% by mass as a raw material for a blast furnace, the effect of reducing the ratio of reducing agents during blast furnace operation is achieved. However, it is stated that the effect of reducing the reducing agent ratio did not appear when 6% by mass was added.
The reason for this is that it is necessary to add 10 to 11% by mass of cement in order to secure the crushing strength of the carbon-containing agglomerate ore having a carbon content (TC) of about 20% by mass to withstand blast furnace charging. It is said that this is because the water of crystallization derived from cement contained in the carbon-containing lump ore increases and causes a dehydration endothermic reaction in the blast furnace, which lowers the temperature of the blast furnace shaft and delays the reduction.

従い、高炉の還元材比低減効果を最大享受するためには、高炉への含炭塊成鉱の装入比率を増加させる必要がある。ここで含炭塊成鉱の高炉装入量を3質量%以上とするためには、炭素含有率(T.C.)を上げる一方で、高炉内の温度低下回避、含炭塊成鉱の圧壊強度を向上させるには、セメントをはじめとする水硬性バインダーの配合率を9質量%以下でも、高炉装入時に粉化しないよう、含炭塊成鉱強度を高めるための製造方法の開発が必要となる。 Therefore, in order to maximize the effect of reducing the reducing agent ratio of the blast furnace, it is necessary to increase the charging ratio of the coal-containing agglomerate ore into the blast furnace. Here, in order to increase the charge of the coal-containing lump ore into the blast furnace to 3% by mass or more, the carbon content (TC) is increased, while the temperature drop in the blast furnace is avoided and the coal-containing lump ore is charged. In order to improve the crushing strength, even if the compounding ratio of hydraulic binder such as cement is 9% by mass or less, the development of a manufacturing method to increase the strength of carbon-containing agglomerate ore so that it will not be pulverized during blast furnace loading is required. You will need it.

そこで特許文献2では、高炉用非焼成含炭ペレットの常温圧潰強度を上げる方法として、「結合剤」として、「水硬性バインダーと、澱粉バインダー又は粘土系バインダーの少なくともいずれか」を添加することで、炭材含有原料を10〜30質量%配合しても、水硬性バインダー配合率が3〜10質量%でも高炉に装入しても粉化しない強度(>1000N/個)の非焼成含炭塊成鉱を製造できるとしている。 Therefore, in Patent Document 2, as a method for increasing the room temperature crushing strength of the non-fired carbon-containing pellets for blast furnace, "a water-hard binder and at least one of a starch binder or a clay-based binder" is added as a "binder". Non-firing carbon-containing material with strength (> 1000N / piece) that does not pulverize even if the water-hard binder content is 3 to 10% by mass even if the carbonaceous material-containing raw material is mixed in 10 to 30% by mass or charged into a blast furnace. It is said that it can produce blast furnace.

しかしながら、澱粉バインダー又は粘土系バインダーは両者とも非常に粘性が高く、この特許文献2に示されるような水分添加率(7質量%)では、非常に大きな圧縮力を持つロールブリケット方式が最適である。一般にロールブリケット方式で成型すると、粉や欠片が多く発生するため、製品歩留りが低い(一般的には70%以下)という難点がある。ディスクペレタイザー方式でも成型は可能であるが、ディスクペレタイザー装置は小型装置しかなく、工業的な大量生産には不向きである。 However, both the starch binder and the clay-based binder have very high viscosities, and at the water addition rate (7% by mass) as shown in Patent Document 2, the roll briquette method having a very large compressive force is optimal. .. Generally, when molded by the roll briquette method, a large amount of powder and fragments are generated, so that there is a drawback that the product yield is low (generally 70% or less). Molding is possible with the disc pelletizer method, but the disc pelletizer device is only a small device and is not suitable for industrial mass production.

これに対して、原料へ水分を多く添加して原料の粘性を低下すれば他の成型方式(押出し成型方式、パンペレタイザー造粒方式など)でも成型可能となるが、非焼成含炭塊成鉱に内包された水分は乾燥すると空隙となって圧潰強度を低下させ、高炉装入時に多量の粉が発生したり、成型後の養生時に成型体同士が付着して大塊化してしまい、高炉装入前に破砕処理が必要となって成型体の歩留が低下するという点で、やはり生産性が悪いという課題がある。 On the other hand, if a large amount of water is added to the raw material to reduce the viscosity of the raw material, it can be molded by other molding methods (extrusion molding method, pan pelletizer granulation method, etc.). When the water contained in the blast furnace dries, it becomes voids and reduces the crushing strength, and a large amount of powder is generated when the blast furnace is loaded, or the molded bodies adhere to each other during curing after molding and become large lumps. There is also a problem that productivity is poor in that the yield of the molded product is lowered because the crushing treatment is required before loading.

また、特許文献3に示されるように、セメントを増やすことなく非焼成塊成鉱の冷間強度を向上させる方法として、塊成鉱原料及び水の混合物に振動を与えて混合物中の空気を分離除去することにより、塊成鉱の強度を向上させる非焼成塊成鉱の製造方法が提案されている。この製造方法によれば、混合原料中の空気が分離除去されるので、セメントを増量させなくても、塊成鉱の強度を向上させることが可能となる。 Further, as shown in Patent Document 3, as a method of improving the cold strength of the non-calcined agglomerate without increasing the cement, the mixture of the agglomerate raw material and water is vibrated to separate the air in the mixture. A method for producing non-calcined agglomerates has been proposed in which the strength of the agglomerates is improved by removing them. According to this production method, since the air in the mixed raw material is separated and removed, it is possible to improve the strength of the agglomerate ore without increasing the amount of cement.

しかしながら、特許文献3に示される非焼成塊成鉱の製造方法は、バッチ式であるため、連続的に非焼成塊成鉱を製造することができず、生産性が悪いという問題がある。 However, since the method for producing a non-calcined agglomerate ore shown in Patent Document 3 is a batch method, there is a problem that the non-calcined agglomerate cannot be continuously produced and the productivity is poor.

このように従来、非焼成塊成鉱中の水分を除いた原料中(含炭塊成鉱原料中)に含まれる炭素含有量の割合(T.C.)を15質量%以上とすべく、炭素含有原料等を配合することで、高い還元材比低減効果を有する含炭塊成鉱の製造方法が提案されてきた。しかしながら、炭素含有原料等の多量配合は成型体強度を低下させるため、これを回避すべく、従来の製造方法では水硬性バインダーを10質量%程度配合して、成型体の必要強度を確保していた。 As described above, conventionally, in order to set the ratio (TC) of the carbon content contained in the raw material (in the coal-containing agglomerate ore raw material) excluding the water content in the non-calcined agglomerate ore to 15% by mass or more. A method for producing a coal-containing agglomerate ore having a high reducing agent ratio reduction effect by blending a carbon-containing raw material or the like has been proposed. However, since a large amount of carbon-containing raw materials and the like lowers the strength of the molded body, in order to avoid this, a hydraulic binder is blended in an amount of about 10% by mass in the conventional manufacturing method to secure the required strength of the molded body. It was.

水硬性バインダー由来の水和物は、高炉内で脱水反応(大きな吸熱分解反応)を起こすことから、水硬性バインダーを多く含む非焼成含炭塊成鉱を高炉内で多用すると、前述のように吸熱分解反応により、炉内で温度停滞を起こしてしまう。このため、水硬性バインダー10質量%程度配合の非焼成含炭塊成鉱は、高炉で3質量%以上使用するのが困難であった。 Hydrate derived from a water-hard binder causes a dehydration reaction (a large endothermic decomposition reaction) in the blast furnace. Therefore, if a large amount of uncalcined coal-containing agglomerate ore containing a large amount of the water-hard binder is used in the blast furnace, as described above. The endothermic decomposition reaction causes temperature stagnation in the furnace. Therefore, it is difficult to use 3% by mass or more of the non-calcined coal-containing agglomerate ore containing about 10% by mass of a hydraulic binder in a blast furnace.

また、上記水硬性バインダーの配合率低減対策として、複数の製造方法も提案されてきたが、大量生産には不向きであった。 Further, as a measure for reducing the blending ratio of the hydraulic binder, a plurality of production methods have been proposed, but they are not suitable for mass production.

以上から、含炭塊成鉱原料中のT.C.が15質量%以上であって、かつ水硬性バインダーの配合率が9質量%以下でも高強度を達成可能な高炉用非焼成含炭塊成鉱を、安定かつ大量生産する製造方法を確立することで、高炉への非焼成含炭塊成鉱の使用拡大が望まれていた。 From the above, T.I. C. To establish a stable and mass-produced production method for blast furnace non-calcination coal-bearing agglomerates that can achieve high strength even when the content is 15% by mass or more and the content of the water-hard binder is 9% by mass or less. Therefore, it has been desired to expand the use of uncalcined coal-containing agglomerates in blast furnaces.

特開2012−82501号公報Japanese Unexamined Patent Publication No. 2012-82501 特開2012−211363号公報Japanese Unexamined Patent Publication No. 2012-21163 特開2014−136818号公報Japanese Unexamined Patent Publication No. 2014-136818 特開昭60−187631号公報Japanese Unexamined Patent Publication No. 60-187631

横山、樋口ら:鉄と鋼 (100)2014,601)Yokoyama, Higuchi et al .: Iron and Steel (100) 2014,601)

本発明は、含炭塊成鉱原料中のT.C.が15質量%以上であって、かつ水硬性バインダーの配合率が少なくても、高強度な高炉用非焼成含炭塊成鉱を安定かつ大量に生産できる製造方法・製造装置を提供する。
本発明の高炉用非焼成含炭塊成鉱の製造方法は、含炭塊成鉱の原料に、
・還元材である炭素含有原料、
・鉄源である鉄含有原料、
・およびその他原料、
を用い、これら3つの原料に、
・セメントなどの水硬性バインダー(接着剤、以下、水硬性バインダーと称する)と、
・微粒シリカ源
を添加し、さらに
・水
を加えて混合した後、成型して含炭塊成鉱を製造することを前提とする。
The present invention relates to T.I. C. Provided is a manufacturing method / manufacturing apparatus capable of stably and mass-producing high-strength uncalcined coal-containing agglomerate ore for a blast furnace even if the content is 15% by mass or more and the compounding ratio of the hydraulic binder is small.
The method for producing a non-calcined coal-containing lump ore for a blast furnace of the present invention uses a raw material for a coal-containing lump ore.
・ Carbon-containing raw materials that are reducing agents,
・ Iron-containing raw materials that are iron sources,
・ And other raw materials,
For these three raw materials,
-Hydraulic binders such as cement (adhesives, hereinafter referred to as hydraulic binders) and
・ It is premised that a fine silica source is added, and then water is added and mixed, and then molded to produce a coal-containing agglomerate ore.

前述のように、含炭塊成鉱原料中のT.C.が15質量%以上であって、かつ水硬性バインダーの配合率が少なくても高強度な高炉用非焼成含炭塊成鉱を、安定かつ大量生産するため、発明者らが鋭意検討した結果、真空押出し成型方式を採用することで空隙率を低減し、加えて原料の粒度制御と添加剤として微粒シリカ源を添加することにより原料粒子の充填率を上げ、水硬性バインダーを減らしても高強度の非焼成含炭塊成鉱を製造することに成功した。即ち、
(1)製鉄における高炉の原料として使用される高炉用非焼成含炭塊成鉱を製造する方法であって、水分ゼロ換算の質量比率で、水硬性バインダーを2.0〜9.0質量%、微粒シリカ源を0.5〜4.0質量%、含炭塊成鉱原料中に含まれる炭素の割合(T.C.)を15〜40質量%となるように、鉄含有原料、炭素含有原料、その他原料の配合率を調整して合わせて87.0〜97.5質量%を配合した含炭塊成鉱原料に、当該原料と水の合計を100質量%としたときの水の質量比率を9.0〜14.0質量%として加えて連続的に混合しながら移送し、その移送方向前方に設置された多孔板で形成された堰へ混合原料を押込むことで第一のマテリアルシールを形成する第一の押出部(混練部)と、前記堰の出側から連続的に供給される混合原料を真空脱気し、第二の押出部へ移送する接続部(真空室)と、当該接続部(真空室)から供給される真空脱気された混合原料を多数の孔を備えた成型部へ押し込むことで、第二のマテリアルシールを形成しながら連続的に押し出して成型体を製造する第二の押出部と、で構成される製造装置を用いて含炭塊成鉱を製造する方法であって、前記第二の押出部の混合原料による充填率が50〜95体積%の範囲で連続成型することを特徴とする、高炉用非焼成含炭塊成鉱の製造方法である。
(2)また、高炉用非焼成含炭塊成鉱の製造装置の接続部(真空室)の圧力が−50kPaG以下であることを特徴とする、(1)に記載の高炉用非焼成含炭塊成鉱の製造方法である。
(3)また、前記微粒シリカ源の平均粒子径は、前記非焼成含炭塊鉱の混合原料から微粒シリカ源を除いたものの平均粒子径に対して15%以下のサイズの粒子であることを特徴とする、(1)または(2)に記載の高炉用非焼成含炭塊成鉱の製造方法である。
(4)さらに、製鉄における高炉の原料として使用される、T.C.が15質量%以上の高炉用非焼成含炭塊成鉱の製造装置であって、炭素含有原料、水硬性バインダー、微粒シリカ源、鉄含有原料から成る原料に水を加えて連続的に混合し移送する手段を備え、その移送方向前方に設置された多孔板で形成された堰へ混合原料が押込まれることで第一のマテリアルシールが形成される第一の押出部(混練部)と、前記堰の出側から連続的に供給される混合原料を真空脱気させ、第二の押出部へ移送させる接続部(真空室)と、当該接続部(真空室)から供給される真空脱気された混合原料が多数の孔を備えた成型部へ押し込まれることで、第二のマテリアルシールが形成されながら連続的に押し出されて成型体を製造する第二の押出部と、で構成された高炉用非焼成含炭塊成鉱の製造装置である。
As described above, T.I. C. As a result of diligent studies by the inventors in order to stably and mass-produce a high-strength non-calcined coal-containing agglomerate ore for blast furnaces with a content of 15% by mass or more and a small proportion of water-hard binder. By adopting the vacuum extrusion molding method, the porosity is reduced, and in addition, the particle size control of the raw material and the addition of a fine silica source as an additive increase the filling rate of the raw material particles, and the strength is high even if the water-hard binder is reduced. Succeeded in producing a non-calcined coal-containing agglomerate ore. That is,
(1) A method for producing a non-calcined carbon-containing agglomerate for a blast furnace used as a raw material for a blast furnace in steelmaking, in which a water-hard binder is added in an amount of 2.0 to 9.0% by mass in terms of zero water content. , The iron-containing raw material, carbon so that the fine silica source is 0.5 to 4.0% by mass and the ratio of carbon contained in the coal-containing blast furnace raw material (TC) is 15 to 40% by mass. Water when the total of the raw material and water is 100% by mass in the carbon-containing blast furnace raw material containing 87.0 to 97.5% by mass in total by adjusting the mixing ratio of the contained raw material and other raw materials. The first method is to add a mass ratio of 9.0 to 14.0 mass%, transfer the mixture while continuously mixing, and push the mixed raw material into a dam formed of a perforated plate installed in front of the transfer direction. The first extrusion section (kneading section) that forms the material seal and the connection section (vacuum chamber) that vacuum degass the mixed raw material continuously supplied from the outlet side of the dam and transfers it to the second extrusion section. By pushing the vacuum degassed mixed raw material supplied from the connection part (vacuum chamber) into the molding part having a large number of holes, the molded body is continuously extruded while forming a second material seal. A method for producing a carbon-containing lump ore using a production apparatus composed of a second extrusion section for producing the above, wherein the filling ratio of the second extrusion section with the mixed raw material is 50 to 95% by mass. This is a method for producing a non-calcined carbon-containing agglomerate ore for a blast furnace, which is characterized by continuous molding within the above range.
(2) The non-calcination coal-containing for blast furnace according to (1), wherein the pressure at the connection portion (vacuum chamber) of the production apparatus for the non-calcination coal-containing agglomerate for blast furnace is -50 kPaG or less. This is a method for producing agglomerate ore.
(3) Further, the average particle size of the fine particle silica source is 15% or less of the average particle size of the mixed raw material of the non-calcined coal-containing agglomerate excluding the fine particle silica source. The method for producing a non-calcined coal-containing agglomerate ore for a blast furnace according to (1) or (2), which is characteristic.
(4) Further, T.I., which is used as a raw material for a blast furnace in steelmaking. C. Is an apparatus for producing a non-calcined carbon-containing agglomerate ore for a blast furnace in an amount of 15% by mass or more. A first extruded portion (kneading portion) in which a first material seal is formed by pushing a mixed raw material into a dam formed of a perforated plate installed in front of the transfer direction and provided with a means for transferring. A connecting portion (vacuum chamber) that vacuum degass the mixed raw material continuously supplied from the outlet side of the dam and transfers it to the second extrusion portion, and a vacuum degassing unit that is supplied from the connecting portion (vacuum chamber). The mixed raw material was pushed into a molding section having a large number of holes, so that a second material seal was formed and continuously extruded to produce a molded body. This is an equipment for producing uncalcined coal-containing agglomerates for blast furnaces.

本発明による真空脱気しつつ押出し成型する高炉用非焼成含炭塊成鉱の製造方法、およびその装置を採用し、微粒シリカ源を混合原料に配合することにより、含炭塊成鉱原料のT.C.を15質量%以上になるように多量配合しても、セメント等水硬性バインダーの配合率を9.0質量%以下で、高い強度を持つ非焼成含炭塊成鉱を製造することが可能となった。これにより、従来、高炉には前記吸熱分解反応により3質量%までしか使用できなかった含炭塊成鉱を最大9質量%まで使用することが可能となり、低還元材比操業に寄与する。 By adopting the method for producing a non-calcined coal-containing agglomerate ore for a blast furnace, which is extruded while vacuum degassing according to the present invention, and its apparatus, and blending a fine silica source into a mixed raw material, a coal-containing agglomerate raw material can be produced. T. C. It is possible to produce a non-calcined coal-containing agglomerate ore with high strength with a hydraulic binder such as cement at a blending ratio of 9.0 mass% or less, even if a large amount is blended so as to be 15% by mass or more. became. This makes it possible to use up to 9% by mass of coal-containing agglomerates, which could only be used up to 3% by mass due to the endothermic decomposition reaction, in the blast furnace, which contributes to low-reducing agent ratio operation.

含炭塊成鉱中のT.C.と還元材比低減量の関係を示す図である。T.I. in coal-containing lump ore. C. It is a figure which shows the relationship between the reduction material ratio reduction amount. 本発明に係る真空押出し成型機の例である。This is an example of a vacuum extruding machine according to the present invention. 接続〜成型部の間の真空圧と圧壊強度の関係を示すグラフである。It is a graph which shows the relationship between the vacuum pressure and the crushing strength between a connection | molding part. 原料の充填率の判定および充填率の上下限イメージを示す図である。It is a figure which shows the determination of the filling rate of a raw material, and the upper and lower limit image of the filling rate.

前述のように、非焼成含炭塊成鉱の原料は、一般に、還元材である炭素含有原料と、鉄源である鉄含有原料、およびその他原料の3種で構成される。そしてこれら3種の原料に、水硬性バインダーと微粒シリカ源を配合し、含炭塊成鉱原料とし、さらに水を加えて混合した後、成型して含炭塊成鉱とする。 As described above, the raw material of the non-calcined carbon-containing agglomerate is generally composed of three kinds of a carbon-containing raw material as a reducing agent, an iron-containing raw material as an iron source, and other raw materials. Then, a hydraulic binder and a fine silica source are mixed with these three kinds of raw materials to prepare a coal-containing agglomerate ore raw material, and water is further added and mixed, and then molded to obtain a coal-containing agglomerate ore.

前記炭素含有原料とは、コークスを所定粒度に砕いた粉コークスや、コークス炉の集塵ダストなど、石炭を乾留したものの微粉が好ましいが、無煙炭や石炭、高炉から発生する炭素分を多く含有するダストなどを使用しても良い。 The carbon-containing raw material is preferably fine powder obtained by carbonizing coal, such as powdered coke obtained by crushing coke to a predetermined particle size or dust collected from a coke oven, but contains a large amount of carbon content generated from anthracite, coal, or a blast furnace. Dust or the like may be used.

前記鉄含有原料とは、鉄鉱石を所定粒度に砕いたものや鉄鉱石微粉(ペレットフィード)、また、製鉄プロセスにおいて大量に発生する炭素分が比較的少なく鉄成分を多く含むダストやスラッジ、スケール等も使用することができる。また、圧延ロールの研削屑等や、特に製銑工程の搬送過程で落下した鉄鉱石や焼結鉱等の集積物を用いても良いし、含炭塊成鉱の成型の過程で発生する粉や欠片も鉄含有原料に含まれる。 The iron-containing raw materials include iron ore crushed to a predetermined particle size, iron ore fine powder (pellet feed), and dust, sludge, and scale containing a relatively small amount of carbon and a large amount of iron components generated in the iron-making process. Etc. can also be used. Further, grinding debris from a rolling roll or an aggregate such as iron ore or sinter that has fallen during the transportation process of the ironmaking process may be used, or powder generated during the molding process of the coal-containing agglomerate ore. And fragments are also included in the iron-containing raw materials.

前記その他原料とは、特に製鉄工程において発生する鉄成分の少ない(鉄含有率として30質量%以下)、もしくは鉄成分が含まれないスラッジ、スラグなどを指す。鉄含有率が少ない分、炭素分が含まれる場合がある。 The other raw materials refer to sludge, slag, etc., which generate a small amount of iron component (iron content is 30% by mass or less) or do not contain iron component, particularly in the iron making process. Carbon may be contained due to the low iron content.

尚、含炭塊成鉱には製鉄所のゼロエミッションに寄与するという一面もある。現在、製鉄所内で発生する副生産物は、その大半が製鉄所内でリサイクルされるか、副製品として製品化されて販売されているが、一部リサイクルも製品化も難しいものがある。これら自社内でリサイクルが難しいものの代表格として、スラッジや一部のスラグがある。前記その他原料とは、このような製鉄所内でリサイクルが難しい原料を指し、これを含炭塊成鉱の原料として積極的にリサイクルすることで、製鉄所のゼロエミッションに貢献することができる上に、その添加によって積極的に原料の粒度を調整し、水が添加された時の原料の流動性を制御することができるという利点(後述の押出し成型方式を利用するうえでの利点)がある。 The coal-containing lump ore also contributes to zero emissions of steelworks. Currently, most of the by-products generated in steelworks are recycled in the steelworks or commercialized and sold as by-products, but some of them are difficult to recycle or commercialize. Sludge and some slag are typical examples of these items that are difficult to recycle within the company. The other raw materials refer to raw materials that are difficult to recycle in such steelworks, and by actively recycling them as raw materials for coal-containing agglomerates, it is possible to contribute to zero emissions of steelworks. There is an advantage that the particle size of the raw material can be positively adjusted by the addition thereof and the fluidity of the raw material when water is added can be controlled (advantage in using the extrusion molding method described later).

なお、ダストやスラッジには、表1に記載あるように、多かれ少なかれ炭素分が含まれる場合がある。本発明では後述のように含炭塊成鉱原料中のT.C.で物性を決めることに特徴があるため、一般に用いられる炭素含有原料、鉄含有原料、その他原料としての配合比を区分せず、これらを含め含炭塊成鉱原料中のT.C.の範囲を規定する。尚、表1の質量%は一例であり、この範囲に限定されない。 As shown in Table 1, dust and sludge may contain more or less carbon. In the present invention, as will be described later, T.I. C. Since it is characterized by determining the physical properties of the carbon-containing raw material, the iron-containing raw material, and other raw materials that are generally used, the compounding ratio as the raw material is not classified. C. Define the range of. The mass% in Table 1 is an example and is not limited to this range.

前記水硬性バインダーとは、単にセメントとも呼ばれることがあり、原料中に含有する水分や添加水分との水和反応により硬化することにより造粒物の冷間圧潰強度を高める機能を有するバインダーを意味する。水硬性バインダーには、ケイ酸カルシウムを含有する、ポルトランドセメント(JIS R 5210で規定)、混合セメント(高炉セメント(JIS R 5211で規定))、シリカセメント(JIS R 5212で規定)、フライアッシュセメント(JIS R 5213で規定))、超速硬セメント、高炉スラグ等が用いられるが、これに限定されるものではない。 The hydraulic binder is sometimes referred to simply as cement, and means a binder having a function of increasing the cold crushing strength of the granulated product by hardening by a hydration reaction with water contained in the raw material or added water. To do. Water-hard binders include Portland cement (specified by JIS R 5210), mixed cement (blast furnace cement (specified by JIS R 5211)), silica cement (specified by JIS R 5212), and fly ash cement containing calcium silicate. (Specified in JIS R 5213)), ultrafast hard cement, blast furnace slag, etc. are used, but the present invention is not limited thereto.

また前記微粒シリカ源とは、シリカフューム、マイクロシリカのみならず、フライアッシュも含まれる。 Further, the fine silica source includes not only silica fume and microsilica but also fly ash.

尚、表1の様に、水硬性バインダーや微粒シリカ源にも、若干のT.C.が含まれるが、水硬性バインダーや微粒シリカ源の分率自体が小さく、影響が小さいと考えられることから、含炭塊成鉱原料のT.C.にはカウントしない。 In addition, as shown in Table 1, some T.I. C. However, since the fraction itself of the hydraulic binder and the fine silica source is small and the influence is considered to be small, T.I. C. Does not count.

含炭塊成鉱に求められる条件と、それを達成するための製造条件は次のとおりである。 The conditions required for coal-containing agglomerates and the manufacturing conditions for achieving them are as follows.

含炭塊成鉱原料およびT.C.;
従来から、非焼成含炭塊成鉱中の酸化鉄を還元するのに必要な理論上の炭素量に対する、非焼成含炭塊成鉱中のT.C.を「炭素当量」と定義し、炭素による酸化鉄の還元度の目安にしている。
本発明で前提とするT.C.の下限値:15質量%は、炭素当量:1.2以上に相当する。高炉で使用する際に非焼成含炭塊成鉱中で酸化鉄粒子と炭素粒子が隣接すれば、高炉内部で徐々に昇温される途上で、含炭塊成鉱の内部での固体還元反応が進行する。さらに、酸化鉄粒子と隣接しない余剰炭素はソリューションロス反応によりガス化して、ガス還元によって非焼成含炭塊成鉱の周辺にある焼結鉱や鉄鉱石などの高炉用鉄含有原料の還元を促進することも期待できる。
Coal-containing lump ore raw material and T.I. C. ;
Conventionally, T.I., in a non-calcined coal-containing agglomerate ore, has a theoretical carbon content required to reduce iron oxide in a non-calcined coal-bearing agglomerate. C. Is defined as "carbon equivalent" and is used as a guideline for the degree of reduction of iron oxide by carbon.
The T.I. C. The lower limit of 15% by mass corresponds to carbon equivalent: 1.2 or more. If iron oxide particles and carbon particles are adjacent to each other in a non-calcined coal-containing agglomerate when used in a blast furnace, a solid reduction reaction inside the coal-containing agglomerate while the temperature is gradually rising inside the blast furnace. Progresses. Furthermore, surplus carbon that is not adjacent to iron oxide particles is gasified by the solution loss reaction, and gas reduction promotes the reduction of iron-containing raw materials for blast furnaces such as sinter and iron ore around unfired coal-containing agglomerates. You can also expect to do it.

図1に含炭塊成鉱中のT.C.と還元材比低減量の関係を示す。これは、高炉内の還元反応を荷重下で模擬できる還元試験装置(BIS炉)を用い、非焼成含炭塊成鉱を、通常の焼結鉱の10質量%分と置き換えて高炉で使用した時の還元材比低減効果を評価した結果である。含炭塊成鉱中のT.C.が15質量未満では、還元材比の低減効果が0.2kg/kg−C以下であるが、T.C.が15質量%以上では還元材比低減効果が約0.4kg/kg−Cとなる。このことから、高炉に装入することで還元材比低減効果を最大限享受すべく、含炭塊成鉱原料のT.C.=15質量%以上含有することを本発明の前提条件とした。なお、前述の単位:kg/kg−Cについては、分子のkgは還元材の低減重量の総量を、分子のkg−Cは高炉に装入される含炭塊成鉱中に含まれる炭素量の総量を示すものであり、含炭塊成鉱中に含まれる炭素分がどれだけの還元材比低減効果を与えるかを示す指標である。 FIG. 1 shows T.I. C. The relationship between and the amount of reduction in the reducing agent ratio is shown. This was used in a blast furnace by using a reduction test device (BIS furnace) that can simulate the reduction reaction in the blast furnace under load, and replacing the unfired coal-containing agglomerate ore with 10% by mass of ordinary sintered ore. This is the result of evaluating the effect of reducing the ratio of reducing agents at the time. T.I. in coal-containing lump ore. C. When the amount is less than 15 mass, the effect of reducing the reducing agent ratio is 0.2 kg / kg-C or less, but T.I. C. However, when the content is 15% by mass or more, the reducing agent ratio reducing effect is about 0.4 kg / kg-C. For this reason, in order to maximize the effect of reducing the ratio of reducing agents by charging the blast furnace, T.I. C. It was a prerequisite of the present invention that the content was 15% by mass or more. Regarding the above-mentioned unit: kg / kg-C, kg of the molecule is the total amount of reduced weight of the reducing material, and kg-C of the molecule is the amount of carbon contained in the carbon-containing agglomerate ore charged in the blast furnace. It is an index showing how much the carbon content contained in the coal-containing agglomerate ore gives the effect of reducing the ratio of the reducing material.

一方で、含炭塊成鉱原料の炭素含有原料をさらに増加していくと、非焼成含炭塊成鉱の高炉必要強度を維持できなくなるとされていた。本発明においてその上限値を検証した結果、T.C.=40質量%を超えると、成型が困難となった。 On the other hand, if the carbon-containing raw material of the coal-containing agglomerate ore raw material is further increased, it is said that the required strength of the uncalcined coal-containing agglomerate ore cannot be maintained in the blast furnace. As a result of verifying the upper limit value in the present invention, T.I. C. When it exceeds = 40% by mass, molding becomes difficult.

以上の理由により、含炭塊成鉱原料のT.C.を15〜40質量%となるように配合する。尚、炭素含有原料、鉄含有原料、その他原料の個々の上下限は特に規定しないが、含炭塊成鉱原料としては、T.C.以外に鉄成分の含有率も多い方が好ましい。なぜならば、T.C.と鉄成分以外はスラグになってしまうので、無用な投入熱量を増やしてしまうからである。 For the above reasons, T.I. C. Is blended so as to be 15 to 40% by mass. The upper and lower limits of the carbon-containing raw material, the iron-containing raw material, and other raw materials are not particularly specified, but the carbon-containing lump ore raw material includes T. C. In addition, it is preferable that the iron component content is high. Because, T.I. C. This is because other than the iron component becomes slag, which increases the amount of unnecessary heat input.

従って、含炭塊成鉱原料の配合率は、後述するように水硬性バインダーが2.0〜9.0質量%、微粒シリカ源が0.5〜4.0質量%とすることから、含炭塊成鉱原料のT.C.=15〜40%となるように炭素含有原料、鉄含有原料、その他原料の3つの原料を合わせて87.0〜97.5質量%とする。 Therefore, the blending ratio of the coal-containing agglomerate ore raw material is 2.0 to 9.0% by mass for the hydraulic binder and 0.5 to 4.0% by mass for the fine silica source, as will be described later. T.I. C. The total of the three raw materials of the carbon-containing raw material, the iron-containing raw material, and the other raw materials is 87.0 to 97.5% by mass so that the ratio is 15 to 40%.

ここで、例えば、炭素含有原料として粉コークスを使用する場合には、粉コークスの炭素含有率が75〜85質量%程度であるため、含炭塊成鉱原料のT.C.を15〜40%にしようとすれば、最低=15÷0.85×0.87≒15.3質量%、最大=40÷0.75×0.975≒52.0質量%となり、炭素含有原料を15.3〜52.0質量%なるように含炭塊成鉱に配合し、前述の3つの原料を合わせて87.0〜97.5質量%との差分に炭素分を含まない鉄含有原料、その他原料を加える。 Here, for example, when powdered coke is used as the carbon-containing raw material, the carbon content of the powdered coke is about 75 to 85% by mass, so that T.I. C. If we try to make 15-40%, the minimum = 15 ÷ 0.85 × 0.87 ≒ 15.3% by mass, the maximum = 40 ÷ 0.75 × 0.975 ≈ 52.0% by mass, and the carbon content The raw material is blended into the coal-containing agglomerate ore so as to be 15.3 to 52.0% by mass, and the above three raw materials are combined and the difference from 87.0 to 97.5% by mass is carbon-free iron. Add the contained raw materials and other raw materials.

また例えば、炭素含有原料として炭素成分の高い高炉集塵ダスト(炭素成分=30〜40%程度)を使用する場合、含炭塊成鉱中の炭素成分の最低含有率=15質量を満たすには15÷0.40×0.87≒32.6質量%、最大含有率=40質量%を満たすには40÷0.30×0.975>100%となるため、含炭塊成鉱における炭素含有原料の配合率は32.6〜97.5質量%となる。 Further, for example, when blast furnace dust collection dust having a high carbon component (carbon component = about 30 to 40%) is used as a carbon-containing raw material, the minimum content of carbon component in the carbon-containing agglomerate ore = 15 mass is satisfied. Since 15 ÷ 0.40 × 0.87 ≈ 32.6 mass% and 40 ÷ 0.30 × 0.975> 100% to satisfy the maximum content = 40 mass%, carbon in the carbon-containing agglomerate ore The blending ratio of the contained raw materials is 32.6 to 97.5% by mass.

水硬性バインダー;
含炭塊成鉱原料には、高炉へ装入しても粉化しない強度(>1100N/個)を発現するために、水硬性バインダーを添加する。含炭塊成鉱中の水硬性バインダーは、養生期間中にケイ酸カルシウム水和物等の結合組織に変化し、塊成鉱の強度を向上させる。しかしながら、この結合組織の一部は高炉内部で400〜500℃以上になると吸熱反応により分解する。この吸熱反応により炉内が低温化し、400〜500℃の温度帯が炉下部の方向に下降するとともに、それより上部でのガス還元反応を遅延させる。このため、高炉に一定量以上のセメントを装入すると、炉内還元不良が発生し、含炭塊成鉱の内部に十分な炭素分を配合させても、高炉で使用する塊状コークス量を削減できなくなる。このため、水硬性バインダーの量は少ない方が好ましい。
Hydraulic binder;
A hydraulic binder is added to the coal-containing lump ore raw material in order to develop a strength (> 1100 N / piece) that does not pulverize even when charged into a blast furnace. The hydraulic binder in the coal-containing agglomerate ore changes to connective tissue such as calcium silicate hydrate during the curing period, and improves the strength of the agglomerate ore. However, a part of this connective tissue is decomposed by an endothermic reaction at 400 to 500 ° C. or higher inside the blast furnace. Due to this endothermic reaction, the temperature inside the furnace is lowered, the temperature range of 400 to 500 ° C. is lowered toward the lower part of the furnace, and the gas reduction reaction at the upper part is delayed. For this reason, if a certain amount or more of cement is charged into the blast furnace, poor reduction in the furnace will occur, and even if a sufficient amount of carbon is mixed inside the coal-containing lump ore, the amount of lump coke used in the blast furnace will be reduced. become unable. Therefore, it is preferable that the amount of the hydraulic binder is small.

含炭塊成鉱原料中の炭素含有原料の割合が増加すると、反比例的に塊成鉱の強度が低下するため、含炭塊成鉱原料のT.C.=15〜40質量%の非焼成含炭塊成鉱を製造する場合には、従来の製造法では水硬性バインダーの配合量を増加させる必要が生じる。これは、含炭塊成鉱の強度と、水硬性バインダーの配合量とは比例関係にあるからである。ここで水硬性バインダーが2.0質量%未満である場合は、バインダーとしての強度向上作用・効果が充分に発揮できない。また、9.0質量%を超えても強度向上効果は充分に発揮されるものの、9.0質量%以下ですでに、高炉への搬送過程および装入過程で粉化しない非焼成含炭塊成鉱の成型体圧壊強度1100N/個以上を大きくクリアできることと、それ以上の添加は高炉内で低温化して還元を阻害する可能性があること、コスト増大、高炉スラグの増量、および前述したケイ酸カルシウム水和物の分解に伴う高炉の冷え込み助長につながることから無益である。以上の理由により、水硬性バインダーの添加量は、2.0〜9.0質量%とする。 When the ratio of the carbon-containing raw material in the coal-containing agglomerate raw material increases, the strength of the agglomerate ore decreases in inverse proportion. C. = When producing a non-calcined coal-containing agglomerate of 15 to 40% by mass, it is necessary to increase the blending amount of the hydraulic binder in the conventional production method. This is because the strength of the coal-containing agglomerate ore is proportional to the amount of the hydraulic binder compounded. Here, when the hydraulic binder is less than 2.0% by mass, the strength improving action / effect as a binder cannot be sufficiently exhibited. Further, although the strength improving effect is sufficiently exhibited even if it exceeds 9.0% by mass, the non-firing carbon-containing lump that is not pulverized in the process of transporting to the blast furnace and the process of charging is already at 9.0% by mass or less. It is possible to greatly clear the crushing strength of the sinter of 1100 N / piece or more, and the addition of more than that may lower the temperature in the blast furnace and hinder the reduction, increase the cost, increase the amount of blast furnace slag, and the above-mentioned Kay. It is useless because it promotes the cooling of the blast furnace due to the decomposition of calcium silicate hydrate. For the above reasons, the amount of the hydraulic binder added is 2.0 to 9.0% by mass.

微粒シリカ源;
含炭塊成鉱の製造方式として、後述の真空脱気しつつ押出成型する方式を採用したので、成型後に空隙となるエアを成型機内で予め排出し、塊成化後の成型体の粒子間接点数を増やすことができ、成型体の強度を向上できる。一方で、押出成型方式に適した原料は、原料に力が加わらないときは静止しているが、小さな力が加わると流動(変形)するという性質を持つ、比較的流動性が高い可塑性原料(練土、ペースト等)と呼ばれる原料である。一般的に、原料の流動性を向上させる方法として水分を増添加する方法が用いられるが、含炭塊成鉱においては、混合原料中に含まれる水分は乾燥すると空隙になってしまうことから、粒子間接点を増やすことができず、製造された含炭塊成鉱の強度が低下してしまう。
Fine silica source;
As a method for producing the coal-containing agglomerate ore, a method of extrusion molding while vacuum degassing, which will be described later, is adopted. Therefore, air that becomes a void after molding is discharged in advance in the molding machine, and the particles of the molded body after agglomeration are indirectly discharged. The number of points can be increased, and the strength of the molded body can be improved. On the other hand, a raw material suitable for the extrusion molding method is a relatively highly fluid plastic raw material (which is stationary when no force is applied to the raw material, but flows (deforms) when a small force is applied). It is a raw material called kneaded soil, paste, etc.). Generally, a method of increasing the amount of water is used as a method of improving the fluidity of the raw material. However, in the coal-containing agglomerate ore, the water contained in the mixed raw material becomes void when dried. The particle indirect points cannot be increased, and the strength of the produced coal-containing agglomerate ore decreases.

そこで本発明では、水分を増やさずに流動性を上げる方法として、混合原料の平均粒子径より充分小さい微粒物質を添加することにした。微粒物質が混合原料に添加されると、原料粒子間に入り込み粒子を被覆することで粒子同士を潤滑させるベアリングのような効果を発揮し、混合原料の流動性が向上する。また、原料粒子表面を被覆する微粒物質は、一部は粒子と粒子との接点となって接点数を増加し、また一部は原料粒子間隙に入って(水と置換されることで)充填率を向上することで、含炭塊成鉱の強度を向上できる。微粒物質の主成分を微粒シリカとしたのは、常温で安定であること、シリカヒュームやフライアッシュなどに代表されるように、副産物として市販されており、比較的豊富な量を容易に獲得できること、また、成型後の養生時にセメントの硬化反応を促進し、成型体の強度向上に期待できること、という3つの利点があるからである。 Therefore, in the present invention, as a method for increasing the fluidity without increasing the water content, it is decided to add a fine particulate matter sufficiently smaller than the average particle size of the mixed raw material. When fine particulate matter is added to the mixed raw material, it penetrates between the raw material particles and coats the particles to exert an effect like a bearing that lubricates the particles, and the fluidity of the mixed raw material is improved. In addition, the fine particulate matter that coats the surface of the raw material particles is partially filled with contact points between the particles to increase the number of contacts, and partly enters the gaps between the raw material particles (by being replaced with water). By increasing the rate, the strength of the coal-containing agglomerate can be improved. The main component of the fine particulate matter is fine silica, which is stable at room temperature and is commercially available as a by-product, as represented by silica fume and fly ash, and a relatively abundant amount can be easily obtained. In addition, there are three advantages that the hardening reaction of cement is promoted during curing after molding, and the strength of the molded product can be expected to be improved.

また、(幾何学的な計算から)粒子が最密充填構造を取るとき、その粒子間隙の最小径は粒子径の15%であることから、微粒シリカ源の平均粒径は、混合原料の平均粒径の15%以下であることが好ましい。この粒子径であれば、原料粒子間に抵抗なく入り込むことができ、非焼成含炭塊成鉱の高強度化に寄与する。現状、混合原料の平均粒子径は60〜100μm程度であるが、微粒シリカ源の代表格であるシリカヒュームの平均粒子径は0.1−0.2μm、フライアッシュの平均粒子径は10〜20μm程度であり、上記条件をほぼ満足することができる。このように混合原料の平均粒子径に合わせて、微粒シリカ源の種類を選択、または、粉砕によって粒度調整することで、強度向上効果を発揮させることができ、好ましい。 Also, when the particles have a close-packed structure (from a geometric calculation), the minimum diameter of the particle gaps is 15% of the particle diameter, so the average particle size of the fine particle silica source is the average of the mixed raw materials. It is preferably 15% or less of the particle size. With this particle size, it is possible to penetrate between the raw material particles without resistance, which contributes to increasing the strength of the non-calcined coal-containing agglomerate ore. At present, the average particle size of the mixed raw material is about 60 to 100 μm, but the average particle size of silica fume, which is a typical fine particle silica source, is 0.1-0.2 μm, and the average particle size of fly ash is 10 to 20 μm. The above conditions can be almost satisfied. In this way, by selecting the type of fine silica source according to the average particle size of the mixed raw material or adjusting the particle size by pulverization, the effect of improving the strength can be exhibited, which is preferable.

なお、本実施例において、適当な微粒シリカ源の添加率は0.5〜4.0質量%程度であり、さらに最適な添加率は0.5〜2.0質量%である。その理由として、0.5質量%以下では、原料粒子の表面を被覆する微粒シリカ源の量が少なすぎてベアリングの効果を充分発揮できないため、余剰水分の添加が必要となり、製造された含炭塊成鉱の強度が低下してしまう。逆に、4.0質量%を超えると流動性は増して水分増の必要はないが、微粒シリカ源のコストがかかりすぎて費用対効果がマイナスになってしまう。このことから、微粒シリカ源の添加率は少ない方がよく、0.5〜4.0質量%が適当であり、さらには0.5〜2.0質量%が最適である。適当な添加率が0.5〜4.0質量%と範囲を持つのは、微粒シリカ源の種類により効果量に相違があること、及び市場の価格変動によって投資対効果が変動するためであり、将来的に大幅な価格変動があった場合の適当な添加率はこの限りではない。 In this example, the addition rate of an appropriate fine silica source is about 0.5 to 4.0% by mass, and the optimum addition rate is 0.5 to 2.0% by mass. The reason is that if the amount is 0.5% by mass or less, the amount of the fine silica source that covers the surface of the raw material particles is too small to sufficiently exert the effect of the bearing, so that it is necessary to add excess water, and the produced carbon-containing carbon is produced. The strength of the agglomerate is reduced. On the contrary, if it exceeds 4.0% by mass, the fluidity increases and it is not necessary to increase the water content, but the cost of the fine silica source becomes too high and the cost effectiveness becomes negative. From this, it is preferable that the addition rate of the fine silica source is small, 0.5 to 4.0% by mass is appropriate, and 0.5 to 2.0% by mass is optimal. The appropriate addition rate ranges from 0.5 to 4.0% by mass because the effect size differs depending on the type of fine silica source and the return on investment fluctuates due to market price fluctuations. However, the appropriate addition rate in the event of significant price fluctuations in the future is not limited to this.

水分;
前記含炭塊成鉱原料の配合割合は水分ゼロ換算の質量比率(=原料が完全に乾燥=水分0%の原料固体だけの状態)であり、含炭塊成鉱とするには、これに水分が加わるが、水分は左記水分ゼロ換算の質量比率との合計100質量%に対する割合として9.0〜14.0質量%に調整される。
moisture;
The blending ratio of the coal-containing agglomerate ore raw material is a mass ratio in terms of zero water content (= the raw material is completely dry = only the raw material solid with 0% water content). Moisture is added, but the water content is adjusted to 9.0 to 14.0 mass% as a ratio to the total 100 mass% with the mass ratio converted to zero moisture on the left.

製造方法;
<真空押出し成型方式の採用>
製造方法として、本発明では、真空押出し成型方式を採用することにより、原料粒子同士の接触点数を増やし、即ち空隙を減らし、成型体強度を増加させることができる。真空室内の圧力を変更して得られた成型体の品質を評価した結果、真空室の真空度(真空室内圧力)によって得られる成型体品質が変化することが分かった。
Production method;
<Adoption of vacuum extrusion molding method>
In the present invention, by adopting the vacuum extrusion molding method as the manufacturing method, the number of contact points between the raw material particles can be increased, that is, the voids can be reduced and the strength of the molded body can be increased. As a result of evaluating the quality of the molded product obtained by changing the pressure in the vacuum chamber, it was found that the quality of the molded product obtained changes depending on the degree of vacuum in the vacuum chamber (vacuum chamber pressure).

<本発明に係る真空押出し成型機の例および押出し成型方法、並びにマテリアルシールの形成>
本発明に係る真空押出し成型機の例は図2にその構造を示す。当該真空押出し成型機を用いて、連続的かつ安定的に原料を供給・排出しつつ、真空室内を高負圧に安定維持する必要がある。このため真空室前後の装置構造物の隙間を原料(マテリアル)で埋めること、すなわちマテリアルシールを連続的に形成することで真空室内を高負圧(高い真空度)に安定維持することが重要となる。
<Example of vacuum extrusion molding machine according to the present invention, extrusion molding method, and formation of material seal>
An example of the vacuum extruding machine according to the present invention shows its structure in FIG. It is necessary to stably maintain the vacuum chamber at a high negative pressure while continuously and stably supplying and discharging raw materials using the vacuum extruding machine. For this reason, it is important to stably maintain the vacuum chamber at a high negative pressure (high degree of vacuum) by filling the gaps in the equipment structure before and after the vacuum chamber with raw materials, that is, by continuously forming material seals. Become.

含炭塊成鉱の製造装置10は、ミキサー1、投入口2、第一の押出部3、接続管4、第二の押出部5、成型部6、真空ポンプ7を有している。
第一の押出部3(混練部とも称する)は、円筒状のケーシング3aとこのケーシング3aの内部に回転自在に配設され縦長に連続形成されたスクリュー3bを有した、1軸式のスクリューフィーダである。スクリュー3bは、図示しない駆動手段により回転されるようになっている。ケーシング3aの基部の上部には、接続管8によって、投入口2と接続している。ケーシング3aの先端には多孔板で形成された堰3cが配設されている。本実施形態では、多孔板で形成された堰3cは厚板状の円板に多数の孔が開けられた構造となっている。
The coal-containing lump ore manufacturing apparatus 10 includes a mixer 1, a charging port 2, a first extrusion section 3, a connecting pipe 4, a second extrusion section 5, a molding section 6, and a vacuum pump 7.
The first extruded portion 3 (also referred to as a kneaded portion) is a uniaxial screw feeder having a cylindrical casing 3a and a screw 3b rotatably arranged inside the casing 3a and continuously formed vertically. Is. The screw 3b is rotated by a driving means (not shown). The upper part of the base of the casing 3a is connected to the inlet 2 by a connecting pipe 8. A weir 3c formed of a perforated plate is arranged at the tip of the casing 3a. In the present embodiment, the weir 3c formed of the perforated plate has a structure in which a large number of holes are formed in a thick plate-shaped disk.

第一の押出部3の下方には、第二の押出部5が配設されている。第一の押出部3の先端部と、第二の押出部5の基部は、接続管4(真空室とも称する)により接続されている。接続管4は、真空ポンプ接続管9により真空ポンプ7と接続している。
第二の押出部5(押出成型部とも称する)は、円筒状のケーシング5aと、このケーシング5aの内部に回転自在に配設され縦長に連続形成されたスクリュー5bを有した、1軸式のスクリューフィーダである。スクリュー5bは、図示しない駆動手段により回転されるようになっている。ケーシング5aの先端には、成型部6が取り付けられている。本実施形態では、成型部6は、厚板状の円板に多数の孔が開けられた構造となっている。
A second extrusion portion 5 is arranged below the first extrusion portion 3. The tip of the first extrusion 3 and the base of the second extrusion 5 are connected by a connecting pipe 4 (also referred to as a vacuum chamber). The connecting pipe 4 is connected to the vacuum pump 7 by a vacuum pump connecting pipe 9.
The second extrusion portion 5 (also referred to as an extrusion molding portion) is a uniaxial type having a cylindrical casing 5a and a screw 5b rotatably arranged inside the casing 5a and continuously formed vertically. It is a screw feeder. The screw 5b is rotated by a driving means (not shown). A molding portion 6 is attached to the tip of the casing 5a. In the present embodiment, the molded portion 6 has a structure in which a large number of holes are formed in a thick disk-shaped disk.

含炭塊成鉱の原料は各々、所定の配合率になるようミキサー1に供給され、水を添加されて混合されて混合原料が生成される。混合原料は、投入口2に連続的又は断続的に投入される。投入口2に投入された混合原料は、接続管8を通って第一の押出部3内に供給され、スクリュー3bによって徐々に圧縮され、多孔板で形成された堰3cに到達する。この時、多孔板で形成された堰3cのすべての孔を混合原料で満たすように、スクリュー3bの回転速度および混合原料の供給速度を調整することで、多孔板で形成された堰3cにはマテリアルシールが形成される。スクリュー3bにより、混合原料は連続的に供給されるので、多孔板で形成された堰3cの裏面には常時マテリアルシールを形成しつつ、混合原料が連続的に排出され、接続管4内へ供給されることになる。なお、前記多孔板(堰c)の孔形状には特に決まりはないが、マテリアルシールが容易に形成できるよう、混合原料の物性に応じて、孔径や開口率を調整して決定することが重要である。 Each of the raw materials of the coal-containing lump ore is supplied to the mixer 1 so as to have a predetermined blending ratio, and water is added and mixed to produce a mixed raw material. The mixed raw material is continuously or intermittently charged into the inlet 2. The mixed raw material charged into the charging port 2 is supplied into the first extrusion section 3 through the connecting pipe 8 and is gradually compressed by the screw 3b to reach the weir 3c formed of the perforated plate. At this time, by adjusting the rotation speed of the screw 3b and the supply speed of the mixed raw material so that all the holes of the weir 3c formed of the perforated plate are filled with the mixed raw material, the weir 3c formed of the perforated plate is formed. A material seal is formed. Since the mixed raw material is continuously supplied by the screw 3b, the mixed raw material is continuously discharged and supplied into the connecting pipe 4 while always forming a material seal on the back surface of the weir 3c formed of the perforated plate. Will be done. The hole shape of the perforated plate (weir c) is not particularly limited, but it is important to adjust the hole diameter and aperture ratio according to the physical properties of the mixed raw material so that the material seal can be easily formed. Is.

接続管4内は、真空ポンプ接続管9で接続された真空ポンプ7の作動によって真空引きされるので、接続管4に供給された混合原料は脱気され、原料中の原料粒子同士が確実に接触して緻密化することで、製造された非焼成含炭塊成鉱の強度を増加させることができる。 Since the inside of the connecting pipe 4 is evacuated by the operation of the vacuum pump 7 connected by the vacuum pump connecting pipe 9, the mixed raw material supplied to the connecting pipe 4 is degassed, and the raw material particles in the raw material are surely separated from each other. By contacting and densifying, the strength of the produced unfired coal-containing agglomerate can be increased.

接続管4内で緻密化した混合原料は、第二の押出部5に供給される。第二の押出部5に供給された混合原料は、スクリュー5bによって、成型部6に押し出される。
このように、本発明に係る含炭塊成鉱の製造装置の例では、マテリアルシールを利用して連続的に、真空脱気しつつ押出成型することにしたので、生産性を向上させることが可能となっている。なお本実施形態で、各原料の粒径を8mm以下(最大粒子径が8mm、平均粒子径は60〜100μm程度)とすれば、スクリュー3b、5bで押し出す際に、混合原料がスクリュー3b、5b、ケーシング3a、5a、多孔板で形成された堰3c、成型部6それぞれの間隙を通過できるので、互いに噛み合うことが無く、好ましい。混合原料は、成型部6を通過する際に、成型部6の断面形状に成型される。成型部6から押し出された混合原料は、その自重により折れ、所定の長さの成型物に成型される。
The mixed raw material densified in the connecting pipe 4 is supplied to the second extrusion section 5. The mixed raw material supplied to the second extrusion section 5 is extruded into the molding section 6 by the screw 5b.
As described above, in the example of the coal-containing agglomerate ore manufacturing apparatus according to the present invention, the material seal is used to continuously extrude while vacuum degassing, so that the productivity can be improved. It is possible. In the present embodiment, if the particle size of each raw material is 8 mm or less (maximum particle size is 8 mm, average particle size is about 60 to 100 μm), when extruding with the screws 3b and 5b, the mixed raw materials are the screws 3b and 5b. , Casing 3a, 5a, weir 3c formed of perforated plate, and molded portion 6 can pass through the gaps of each, so that they do not mesh with each other, which is preferable. When the mixed raw material passes through the molding portion 6, it is molded into the cross-sectional shape of the molding portion 6. The mixed raw material extruded from the molding portion 6 is broken by its own weight and molded into a molded product having a predetermined length.

成型物の形状は、成型部6の断面形状によって決定され、その孔は円柱の他、四角柱、六角柱等の角柱状にも形成可能であるが、円柱形状に形成することが最も望ましい。その理由を以下に記載する。 The shape of the molded product is determined by the cross-sectional shape of the molded portion 6, and the holes can be formed not only in a cylinder but also in a prism such as a quadrangular prism or a hexagonal prism, but it is most desirable to form the molded product in a cylindrical shape. The reason is described below.

様々な傾向の含炭塊成鉱で、高炉の充填層通風圧損失を比較すると、円柱状が最も低い圧力損失を呈する。また、角柱と比較すると、円柱形状の含炭塊成鉱は、充填層内での壁や含炭塊成鉱同士の摺れや落下衝撃の際に、粉化し難いという特徴がある。直径が30mm〜40mmの塊成鉱が最も圧壊強度が高くなる一方で、高炉への原料装入機構が、既存の焼結鉱に合わせて直径20mm以下の原料の輸送に適した構造となっているため、直径10〜20mm程度の円柱状に成型するのが望ましい。 When comparing the ventilation pressure drop of the packed bed of the blast furnace in the coal-containing agglomerates of various tendencies, the columnar shape shows the lowest pressure drop. Further, as compared with prisms, columnar coal-containing agglomerates are characterized in that they are less likely to be pulverized when the walls in the packed bed or the coal-bearing agglomerates rub against each other or when a drop impact occurs. While agglomerates with a diameter of 30 mm to 40 mm have the highest crushing strength, the raw material charging mechanism into the blast furnace has a structure suitable for transporting raw materials with a diameter of 20 mm or less in accordance with the existing sintered ore. Therefore, it is desirable to mold it into a cylinder with a diameter of about 10 to 20 mm.

成型された成型物は、屋根付きの養生ヤードに積み上げられて、当該養生ヤードで所定期間養生される。養生期間中に成型物は、固化するとともに、自然乾燥によって徐々に水分が除去され含炭塊成鉱の製造が完了する。 The molded products are piled up in a covered curing yard and cured in the curing yard for a predetermined period of time. During the curing period, the molded product solidifies and is gradually dehydrated by natural drying to complete the production of a coal-containing agglomerate ore.

<連続安定製造のための条件>
本発明形態において、緻密で強固な成型体を安定的に製造し続けるには、接続管4内(真空室と呼ばれる減圧チャンバー)に原料を連続供給しながら、真空室内を高負圧に保持しつつ、真空室内に供給された混合原料を押出し成型部6へ押し出す必要がある。すなわち、空気が多孔板3cまたは成型部6の孔から侵入することが無いように、多孔板で形成された堰3cの全孔内および成型部6の全孔内を常時混合原料で充填し、マテリアルシールを維持し、接続管4〜成型部6の間を高負圧に保持することが重要となる。このため、連続式真空押出成型装置を用いてマテリアルシールを維持できる条件を調査した。
<Conditions for continuous stable manufacturing>
In the embodiment of the present invention, in order to continue stably producing a dense and strong molded body, the vacuum chamber is maintained at a high negative pressure while continuously supplying the raw material into the connecting pipe 4 (a vacuum chamber called a vacuum chamber). At the same time, it is necessary to extrude the mixed raw material supplied into the vacuum chamber into the extrusion molding section 6. That is, in order to prevent air from entering through the holes of the perforated plate 3c or the molded portion 6, the inside of all the holes of the weir 3c formed of the perforated plate and the inside of all the holes of the molded portion 6 are constantly filled with the mixed raw material. It is important to maintain the material seal and maintain a high negative pressure between the connecting pipe 4 and the molded portion 6. Therefore, the conditions under which the material seal can be maintained using a continuous vacuum extrusion molding device were investigated.

試験条件として原料は、所定の配合になるように鉄含有原料、炭素含有原料、水硬性バインダー、微粒シリカ源を秤量し、1軸式のパドル型連続式混合機に投入し、所定量の水を加えて2分〜2分30秒間、混合した。混合原料は、1軸のスクリュー式混練機と1軸のスクリュー式の押出し成型部で構成される押出成型装置に投入し、押出し速度(原料が成型部6の孔を通過する速度)を40〜100mm/sとなるように調整して成型試験を実施した。 As a test condition, the iron-containing raw material, the carbon-containing raw material, the water-hard binder, and the fine silica source are weighed so as to have a predetermined composition, and put into a uniaxial paddle type continuous mixer, and a predetermined amount of water is used. Was added and mixed for 2 minutes to 2 minutes and 30 seconds. The mixed raw material is put into an extrusion molding apparatus composed of a uniaxial screw type kneader and a uniaxial screw type extrusion molding unit, and the extrusion speed (the speed at which the raw material passes through the hole of the molding unit 6) is 40 to 40 to. The molding test was carried out after adjusting the speed to 100 mm / s.

ここで、混練部への混合原料の供給量とスクリュー(3b、5b)の回転速度、各ケーシング内(3a、5a)への原料の充填率を変化させて、これら因子がマテリアルシールに与える影響を調査した。 Here, the effect of these factors on the material seal by changing the supply amount of the mixed raw material to the kneading portion, the rotation speed of the screws (3b, 5b), and the filling rate of the raw material in each casing (3a, 5a). investigated.

真空室入側に多孔板で形成された堰3cを設置し、多孔板で形成された堰3cに向けてスクリュー3bで混合原料を連続的に押し込むことで第一のマテリアルシールが形成される。この第一のマテリアルシールを連続的に形成するには、混合原料が多孔板で形成された堰3cに押し込まれて各孔内を通過する際の機械抵抗を調整すること、すなわち原料物性に合わせて多孔板の孔径・総開口率・厚みを調整することが有効であることを見出した。 A weir 3c formed of a perforated plate is installed on the entrance side of the vacuum chamber, and the mixed raw material is continuously pushed by the screw 3b toward the weir 3c formed of the perforated plate to form the first material seal. In order to continuously form this first material seal, the mechanical resistance when the mixed raw material is pushed into the weir 3c formed of the perforated plate and passes through each hole is adjusted, that is, according to the physical properties of the raw material. It was found that it is effective to adjust the pore diameter, total aperture ratio, and thickness of the perforated plate.

押出し成型部5の先端に設置される成型部6は多孔の厚板であり、真空室入側の多孔板で形成された堰3cとよく似た構造であるが、成型部6で第二のマテリアルシールを形成するには、真空室入側と同様に、孔数と板厚みを調整することが有効と判明した。 The molding portion 6 installed at the tip of the extruded molding portion 5 is a perforated thick plate, and has a structure similar to that of the weir 3c formed by the perforated plate on the vacuum chamber entry side. It was found that it is effective to adjust the number of holes and the plate thickness in order to form the material seal, as in the case of the vacuum chamber entry side.

<最適真空条件>
以下に、前述の押出成型方式にて、接続管4〜成型部6の間の負圧を変えて塊成化した含炭塊成鉱の試験結果を示す。原料は所定の配合になるように鉄含有原料、炭素含有原料、水硬性バインダー、微粒シリカ源を秤量し、混合機に全量を投入して1分間混合した後、所定量の水を加えて3分間混合し混合原料とした。混合原料は、押出成型装置に投入し、押出し速度(原料が成型部6の孔を通過する速度)を10mm/sに設定して成型試験を実施した。
<Optimal vacuum conditions>
The test results of the coal-containing agglomerate ore agglomerated by changing the negative pressure between the connecting pipe 4 and the molding portion 6 by the extrusion molding method described above are shown below. Weigh the iron-containing raw material, carbon-containing raw material, water-hard binder, and fine silica source so that the raw materials have a predetermined composition, add the entire amount to the mixer, mix for 1 minute, and then add the predetermined amount of water to 3 It was mixed for 1 minute to prepare a mixed raw material. The mixed raw material was put into an extrusion molding apparatus, and a molding test was carried out by setting the extrusion speed (the speed at which the raw material passes through the holes of the molding portion 6) to 10 mm / s.

塊成化した含炭塊成鉱は、室温で1日間大気養生し、続いて80℃で2日間恒温恒湿槽内に入れて養生したのち30℃まで空冷し、圧潰強度試験を実施した。圧潰強度の測定は、JIS M8718「鉄鉱石ペレット圧潰強度試験方法」に準じて、試料1個に対して、規定の加圧速度で荷重を掛け、試料が破壊した時の荷重を圧潰強度とした。 The agglomerated coal-containing agglomerate ore was air-cured at room temperature for 1 day, then placed in a constant temperature and humidity chamber at 80 ° C. for 2 days to be cured, and then air-cooled to 30 ° C. to carry out a crushing strength test. The crushing strength was measured in accordance with JIS M8718 "Iron ore pellet crushing strength test method", and a load was applied to one sample at a specified pressurizing rate, and the load when the sample broke was defined as the crushing strength. ..

表2に原料の配合条件を示す。 Table 2 shows the compounding conditions of the raw materials.

成型時の接続管4〜成型部6の間の圧力値が−50kPaGを境に、圧潰強度のバラつきが大きく変化する。特に図3に示すように、接続管4〜成型部6の間の圧力が真空圧に近づくほど、品質が向上(高強度化)することがわかり、真空室圧力が−60kPaG以上−50kPaGの範囲では、成型体の常温圧潰強度が目標値である1100N/個以上であるものの、成型体の圧潰強度のバラつきが大きく、また低強度側にバラついている。この低強度側にバラついた圧潰強度は目標に到達していない。接続管4〜成型部6の間の圧力が低位、即ち真空側にシフトしていくことで、嵩密度および圧潰強度のバラつきは軽減され、成型体の常温圧潰強度が目標値である1100N/個を超えることが確認できた。 When the pressure value between the connecting pipe 4 and the molded portion 6 at the time of molding is −50 kPaG, the variation in crushing strength changes greatly. In particular, as shown in FIG. 3, it was found that the closer the pressure between the connecting pipe 4 to the molded portion 6 is to the vacuum pressure, the higher the quality (higher strength), and the vacuum chamber pressure is in the range of -60 kPaG or more and -50 kPaG. Although the normal temperature crushing strength of the molded body is 1100 N / piece or more, which is the target value, the crushing strength of the molded body varies greatly and varies toward the low strength side. The crushing strength that varies on the low strength side has not reached the target. By shifting the pressure between the connecting pipe 4 to the molded portion 6 to a lower level, that is, to the vacuum side, variations in bulk density and crushing strength are reduced, and the normal temperature crushing strength of the molded body is 1100 N / piece, which is the target value. It was confirmed that it exceeded.

尚、高炉原料は、高炉炉内で還元ガスの通風性を確保するため、高炉までの搬送および炉内への装入時において粉化しない強度が必要である。非焼成含炭塊成鉱の高炉操業試験の結果、成型体1個当たりの常温圧潰強度が1100N/個以上あれば、高炉炉内での粉化を抑えることができ、還元ガスの通風性を確保できると判明、これを含炭塊成鉱の目標強度としている。 The raw material for the blast furnace needs to have a strength that does not pulverize when it is transported to the blast furnace and charged into the furnace in order to ensure the ventilation of the reducing gas in the blast furnace. As a result of the blast furnace operation test of the non-calcined coal-containing lump ore, if the room temperature crushing strength per molded body is 1100 N / piece or more, pulverization in the blast furnace can be suppressed and the ventilation of the reducing gas can be improved. It was found that it could be secured, and this is the target strength of the coal-containing lump ore.

この理由は以下の様に推定した。接続管4〜成型部6の間の圧力が高位であると成型原料中のエアが充分に排出されないため、混合原料中にエアを多く巻き込んだまま成型されてしまう。この成型体は嵩密度が小さくなって低強度となる。一方で、エアをあまり巻き込まない部分も成型体となり、この成型体は嵩密度が大きくなり高強度となる。このように成型体に巻き込まれるエア量の差が強度のバラつきを生じることとなり、接続管4〜成型部6の間の圧力が高いほど、このバラつきが大きくなると考えられる。逆に接続管4〜成型部6の間の圧力が低位になると混合材料中に残存するエアの量が少なくなることで、強度バラつきが小さくなると考えられる。 The reason for this was estimated as follows. If the pressure between the connecting pipe 4 and the molding portion 6 is high, the air in the molding raw material is not sufficiently discharged, so that the molding is performed with a large amount of air entrained in the mixed raw material. This molded body has a low bulk density and low strength. On the other hand, a portion that does not involve much air also becomes a molded body, and this molded body has a large bulk density and high strength. It is considered that the difference in the amount of air entrained in the molded body causes a variation in strength, and the higher the pressure between the connecting pipe 4 and the molded portion 6, the greater the variation. On the contrary, when the pressure between the connecting pipe 4 and the molded portion 6 becomes low, the amount of air remaining in the mixed material is reduced, and it is considered that the strength variation is reduced.

このように、本発明に係る真空押出し成型機の特徴は、真空室と呼ばれる減圧チャンバーに原料を連続供給しながら、接続管4〜成型部6の間を上記の―50kPaG以下という高負圧(高い真空度)に保持しつつ、接続管4〜成型部6の間に供給された原料を押出し成型部へ押し出して成型する。 As described above, the feature of the vacuum extrusion molding machine according to the present invention is the high negative pressure of -50 kPaG or less between the connecting pipe 4 and the molding portion 6 while continuously supplying the raw material to the vacuum chamber called the vacuum chamber. While maintaining a high degree of vacuum), the raw material supplied between the connecting pipe 4 and the molding portion 6 is extruded into the molding portion for molding.

次に、安定的な押出し成型に必要な他の条件を調査した。この調査内容と結果を表3に示す。 Next, other conditions required for stable extrusion molding were investigated. Table 3 shows the contents and results of this survey.

上記のとおり押出し成型部5に調整された多孔板の成型部6を設置することで第二のマテリアルシールは形成できる。しかしながら、実際の生産においては原料の流動抵抗が変化(操業変動)したり、スクリュー回転数を変化させる(操業アクション)ことで、成型部6への原料供給速度が変化する。 The second material seal can be formed by installing the molded portion 6 of the perforated plate adjusted to the extruded molding portion 5 as described above. However, in actual production, the flow resistance of the raw material changes (operation fluctuation) or the screw rotation speed changes (operation action), so that the raw material supply speed to the molding unit 6 changes.

たとえば、原料水分が過剰になると原料の流動抵抗が低下し、第二のマテリアルシールが形成される前に原料が排出されることになり真空室の圧力が安定保持できなくなる。スクリュー5bの回転数UPについても同様の変化が起きる。これらの現象を調査した結果、第二の押出部5の混合原料充填率が50体積%未満になると、成型部6への供給速度が増加した時に第二のマテリアルシールが崩壊しやすくなることが分かった。 For example, if the water content of the raw material becomes excessive, the flow resistance of the raw material decreases, and the raw material is discharged before the second material seal is formed, so that the pressure in the vacuum chamber cannot be stably maintained. The same change occurs in the rotation speed UP of the screw 5b. As a result of investigating these phenomena, if the mixed raw material filling rate of the second extrusion portion 5 is less than 50% by volume, the second material seal is likely to collapse when the supply speed to the molding portion 6 increases. Do you get it.

一方、原料の流動抵抗が増加したり、スクリュー5bの回転数を低下させたりすると、成型部6への原料供給速度が低下して、第二の押出部5から接続管4(真空室)にかけて原料が過剰に堆積してしまい、第二の押出部5内のスクリュー5bが過負荷となって停止し易くなることが分かった。調査の結果、第二の押出部5の充填率が95体積%を超えると、成型部への供給速度が低下した際に成型体排出不良が発生し易くなることが分かった。 On the other hand, when the flow resistance of the raw material increases or the rotation speed of the screw 5b is decreased, the raw material supply speed to the molding portion 6 decreases, and the second extrusion portion 5 extends to the connecting pipe 4 (vacuum chamber). It was found that the raw material was excessively deposited, and the screw 5b in the second extrusion portion 5 was overloaded and easily stopped. As a result of the investigation, it was found that when the filling rate of the second extruded portion 5 exceeds 95% by volume, poor discharge of the molded product is likely to occur when the supply speed to the molded portion is reduced.

従い、第二の押出部5のスクリュー5bの回転速度と接続管4(真空室)上流の第一の押出部3のスクリュー3bの回転速度および原料物性を随時調整し、第二の押出部5の原料充填率を50体積%以上95体積%以下(必須条件)に制御し続けることで、操業変動があっても安定的かつ連続的な成型体の製造が可能となることを見出した。 Therefore, the rotation speed of the screw 5b of the second extrusion portion 5, the rotation speed of the screw 3b of the first extrusion portion 3 upstream of the connecting pipe 4 (vacuum chamber), and the physical properties of the raw material are adjusted as needed, and the second extrusion portion 5 is used. It has been found that by continuously controlling the raw material filling rate of 50% by volume or more and 95% by volume or less (essential condition), stable and continuous production of a molded product is possible even if there is a change in operation.

なお、第二の押出部5の原料充填率とは、第二の押出部5のスクリュー5bが回転している円筒状空間の体積(スクリューの体積を除く)に対して、原料が占める割合をいう。第二の押出部5のスクリュー5bの回転数増減と原料供給量の増減により、原料充填率を50体積%以上95体積%以下に制御することで安定的かつ連続的な成型が可能となる。 The raw material filling rate of the second extrusion section 5 is the ratio of the raw material to the volume of the cylindrical space (excluding the volume of the screw) in which the screw 5b of the second extrusion section 5 is rotating. Say. By controlling the raw material filling rate to 50% by volume or more and 95% by volume or less by increasing or decreasing the rotation speed of the screw 5b of the second extrusion portion 5 and increasing or decreasing the amount of raw material supplied, stable and continuous molding becomes possible.

原料充填率の判定は、例えば図4の様に、真空室上部に取り付けられた観察窓から押出し成型部を目視する目視判定が一般的である。今回は観察窓から見えるスクリューの範囲から原料充填率が判定できるように、例えば予め、原料でスクリュー羽根が隠れる範囲と原料充填率の関係を調査しておき、観察窓からスクリューを見るだけで充填率が判定できるようにしたが、例えば、押出し成型部の各部にレベル計(マイクロ波式レベル計、近接センサー、各種レベルスイッチなど)を設置して、レベル計測値から充填率を算出しても良い。 As for the determination of the raw material filling rate, for example, as shown in FIG. 4, a visual determination is generally performed by visually observing the extruded molded portion from an observation window attached to the upper part of the vacuum chamber. This time, in order to determine the raw material filling rate from the screw range that can be seen from the observation window, for example, the relationship between the range where the screw blades are hidden by the raw material and the raw material filling rate is investigated in advance, and filling is performed simply by looking at the screw from the observation window. Although the rate can be determined, for example, even if a level meter (microwave type level meter, proximity sensor, various level switches, etc.) is installed in each part of the extrusion molding part and the filling rate is calculated from the level measurement value. good.

この様に原料充填率の制御範囲については、50体積%以上95体積%以下であれば連続安定成型が可能となるが、50体積%以上70体積%以下であればなお良く、さらに50体積%以上60体積%以下であれば最適である。その理由は、充填率を一定に制御することで、押出し成型部のスクリューが多孔板へ押し付ける力が安定するため、排出される成型体のバラつきが小さくなるためである。 As described above, regarding the control range of the raw material filling rate, continuous stable molding is possible if it is 50% by volume or more and 95% by volume or less, but it is even better if it is 50% by volume or more and 70% by volume or less, and further 50% by volume. It is optimal if it is 60% by volume or more. The reason is that by controlling the filling rate to be constant, the force with which the screw of the extrusion molding portion presses against the perforated plate is stabilized, so that the variation of the discharged molded body is reduced.

以上のように、高炉用の非焼成含炭塊成鉱の製造方法として、酸化鉄を含む鉄含有原料と炭素含有原料および水硬性バインダーと少量の微粒シリカ源を混合し、水を添加して混合した後、真空室圧力を−50kPaG以下にして真空脱気しつつ押出成型することで、原料中の水硬性バインダーの配合量が2〜9質量%であっても、高炉に装入する際に必要な1100N/個以上の圧壊強度を有する含炭塊成鉱を製造することが可能となる。 As described above, as a method for producing a non-calcined carbon-containing agglomerate for a blast furnace, an iron-containing raw material containing iron oxide, a carbon-containing raw material, a water-hard binder, and a small amount of fine silica source are mixed, and water is added. After mixing, the vacuum chamber pressure is set to -50 kPaG or less and extrusion molding is performed while vacuum degassing, so that even if the amount of the water-hard binder in the raw material is 2 to 9% by mass, it is charged into the blast furnace. It is possible to produce a coal-containing agglomerate ore having a crushing strength of 1100 N / piece or more required for the above.

なお、本実施形態では、スクリュー3bは1軸式であり、スクリュー5bは1軸式であるが、スクリュー3bを2軸式とし、或いは、スクリュー5bを2軸式としても差し支えない。 In the present embodiment, the screw 3b is a uniaxial type and the screw 5b is a uniaxial type, but the screw 3b may be a biaxial type or the screw 5b may be a biaxial type.

以上、現時点において、もっとも実践的であり、かつ好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う含炭塊成鉱の製造方法及び含炭塊成鉱もまた技術的範囲に包含されるものとして理解されなければならない。 Although the present invention has been described above in relation to the most practical and preferred embodiments at the present time, the present invention is not limited to the embodiments disclosed in the present specification. , The method of producing a coal-containing agglomerate ore and the coal-containing agglomerate with such a change can be appropriately changed as long as it does not contradict the gist or idea of the invention that can be read from the claims and the entire specification. Must be understood as being included in the scope.

次に、本発明の実施例について説明するが、本発明はこれに限られるものではない。含炭塊成鉱原料は、炭素含有原料、鉄含有原料、その他原料を用いて、T.C.=15〜40%となるように調整した。炭素含有原料として、粉コークス(T.C.=84%)と、炭素含有率の高い製銑系ダスト(T.C.=23%)を5mmの篩で篩い、その篩下を用いた。鉄含有原料として鉱石M(豪州系粉鉱石)と鉱石C(カナダ系粉鉱石)を混合し、ボールミルで粉砕したもの5mmの篩で篩って、その篩下を用いた。また、水硬性バインダーとしては、早強セメントおよび超速硬セメントを用いた。
微粒シリカ源としては、シリカヒュームとフライアッシュを用いた。
Next, examples of the present invention will be described, but the present invention is not limited thereto. As the coal-containing agglomerate ore raw material, a carbon-containing raw material, an iron-containing raw material, and other raw materials are used, and T. C. It was adjusted to be 15 to 40%. As the carbon-containing raw material, coke breeze (TC = 84%) and iron-making dust (TC = 23%) having a high carbon content were sieved with a 5 mm sieve, and the sieve was used. As an iron-containing raw material, ore M (Australian powder ore) and ore C (Canada powder ore) were mixed, crushed with a ball mill, sieved with a 5 mm sieve, and used under the sieve. As the hydraulic binder, early-strength cement and ultra-fast-hardening cement were used.
Silica fume and fly ash were used as the fine silica source.

含炭塊成鉱の配合条件は、表4に示す配合となるように、炭素含有原料、鉄含有原料、水硬性バインダー、微粒シリカ源を秤量し、その全量を1軸式のパドル型連続式混合機に投入し1分間混合した後、所定量の水を加えて3分間混合し、混合原料とした。混合原料は、1軸のスクリュー式混練機と1軸のスクリュー式の押出し成型部で構成される押出成型装置に投入し、押出し速度(原料が成型部6の孔を通過する速度)を10mm/sとなるように調整して成型試験を実施した。なお、押出成型部の孔(多孔)の径はφ16mmとした。
塊成化した含炭塊成鉱は、室温で1日間大気養生し、続いて80℃で2日間恒温恒湿槽内に入れて養生したのち30℃まで空冷し、圧潰強度試験を実施した。圧潰強度の測定は、JIS M8718「鉄鉱石ペレット圧潰強度試験方法」に準じて、試料1個に対して、規定の加圧速度で荷重を掛け、試料が破壊した時の荷重を圧潰強度とした。尚、合格は目標圧壊強度である1100N/個以上であり、かつ成型時に真空抜けや押出不可、成型物中に粉の発生がないこと、成型物が大塊化しないこと、高炉使用時の還元材低減効果が悪くない場合とした。なお、表4は実施例、表5は比較例である。
As for the compounding conditions of the coal-containing agglomerate ore, the carbon-containing raw material, the iron-containing raw material, the hydraulic binder, and the fine silica source are weighed so as to be the compounding shown in Table 4, and the total amount is a uniaxial paddle type continuous type. After being put into a mixer and mixed for 1 minute, a predetermined amount of water was added and mixed for 3 minutes to prepare a mixing raw material. The mixed raw material is put into an extrusion molding apparatus composed of a uniaxial screw type kneader and a uniaxial screw type extrusion molding unit, and the extrusion speed (the speed at which the raw material passes through the hole of the molding unit 6) is 10 mm /. The molding test was carried out after adjusting so as to be s. The diameter of the holes (perforated) in the extruded portion was set to φ16 mm.
The agglomerated coal-containing agglomerate ore was air-cured at room temperature for 1 day, then placed in a constant temperature and humidity chamber at 80 ° C. for 2 days to be cured, and then air-cooled to 30 ° C. to carry out a crushing strength test. The crushing strength was measured in accordance with JIS M8718 "Iron ore pellet crushing strength test method", and a load was applied to one sample at a specified pressurizing rate, and the load when the sample broke was defined as the crushing strength. .. In addition, the pass is 1100 N / piece or more, which is the target crushing strength, vacuum release or extrusion is not possible during molding, powder is not generated in the molded product, the molded product does not become large lumps, and reduction when using a blast furnace. It was assumed that the material reduction effect was not bad. Table 4 is an example, and Table 5 is a comparative example.

表4で、実施例1〜実施例17は、T.C.=20〜40質量%の条件で、水硬性バインダー=2.0〜9.0質量%、微粒シリカ源=0.5〜4.0質量%、成型物水分=9.0〜14.0質量%とし、真空押出し成型機の第二の押出し部の充填率を50〜95体積%として成型した場合であり、すべて目標強度である1100N/個を超えている。 In Table 4, Examples 1 to 17 are described in T.I. C. Under the condition of = 20-40% by mass, water-hard binder = 2.0-9.0% by mass, fine silica source = 0.5-4.0% by mass, molded product moisture = 9.0-14.0% by mass. %, And the filling rate of the second extrusion portion of the vacuum extrusion molding machine was 50 to 95% by mass, and all of them exceeded the target strength of 1100 N / piece.

比較例1は、T.C.が上限外れの例である。T.C.を高めていき40質量%を超えると、混合原料の流動性が低下して真空抜けも発生し始め、最終的には真空押出成型自体が不可能になった。比較例2は、水硬性バインダーの配合率が下限外れの例であり、比較例3は、微粒シリカ源の配合率が下限外れの例である。水硬性バインダーは水との化学反応による硬化、微粒シリカ源は原料粒子との接点数増加により強度を向上させる役割をもち、どちらも配合条件を満たさないと目標強度を確保できない。比較例4は、真空を掛けずに押出成型した例である。成型体の強度が目標値に達しなかった。 Comparative Example 1 is based on T.I. C. Is an example of out of the upper limit. T. C. When it exceeds 40% by mass, the fluidity of the mixed raw material decreases and vacuum release begins to occur, and finally vacuum extrusion molding itself becomes impossible. Comparative Example 2 is an example in which the blending ratio of the hydraulic binder is out of the lower limit, and Comparative Example 3 is an example in which the blending ratio of the fine silica source is out of the lower limit. The hydraulic binder has a role of hardening by a chemical reaction with water, and the fine silica source has a role of improving the strength by increasing the number of contacts with the raw material particles, and neither of them can secure the target strength unless the compounding conditions are satisfied. Comparative Example 4 is an example of extrusion molding without applying a vacuum. The strength of the molded body did not reach the target value.

比較例5および比較例6はそれぞれ、成型物の水分の下限外れの例および上限外れの例である。水分が過小になると、原料の流動性が著しく低下し、スクリューの押出し抵抗が上がって押出し(成型)が出来なくなる。逆に水分が過剰になると押出しは問題なくできるが、目標強度に到達しないのと、表5に示すように成型後に成型物を山積みして養生する際、成型体同士が付着して大塊化し、高炉で使用する際には事前に破砕する問題が発生してしまう。 Comparative Example 5 and Comparative Example 6 are examples of the water content of the molded product exceeding the lower limit and the upper limit, respectively. If the water content is too small, the fluidity of the raw material will be significantly reduced, the extrusion resistance of the screw will increase, and extrusion (molding) will not be possible. On the contrary, if the water content becomes excessive, extrusion can be performed without any problem, but the target strength is not reached, and as shown in Table 5, when the molded products are piled up and cured after molding, the molded bodies adhere to each other and become large lumps. , When used in a blast furnace, the problem of crushing occurs in advance.

比較例7および比較例8はそれぞれ、真空押出し成型時に第二の押出し部の充填率が下限外れの例および上限外れの例である。充填率が下限を外れると、押出し成型部の先端にマテリアルシールを連続的に形成するのが困難となって、断続的に真空抜けが発生してしまい、成型物の原料が粉状のまま排出される現象が発生して成型物の歩留りが低下する。また、充填率が過剰になると押出し負荷が増大して原料が押出し成型部に滞留してしまうため、継続的な成型が困難となる。 Comparative Example 7 and Comparative Example 8 are examples in which the filling rate of the second extruded portion is out of the lower limit and out of the upper limit during vacuum extrusion molding, respectively. If the filling rate deviates from the lower limit, it becomes difficult to continuously form a material seal at the tip of the extruded portion, vacuum is released intermittently, and the raw material of the molded product is discharged as a powder. This phenomenon occurs and the yield of the molded product decreases. Further, if the filling rate becomes excessive, the extrusion load increases and the raw material stays in the extrusion molding portion, which makes continuous molding difficult.

実施例16は、微粒シリカ源の平均粒子径が非焼成含炭塊鉱の混合原料から微粒シリカ源を除いたものの平均粒子径に対して15%を超えた例である。実施例17は、押出し成型機の真空度が−50kPaGを超えた例である。どちらも強度の目標値に達しているが下限に近く、好ましい例とは言えない。 Example 16 is an example in which the average particle size of the fine silica source exceeds 15% of the average particle size of the mixed raw material of the non-calcined coal-containing lump ore excluding the fine silica source. Example 17 is an example in which the degree of vacuum of the extrusion molding machine exceeds −50 kPaG. Both have reached the target value of strength but are close to the lower limit, which is not a preferable example.

表5で成形物水分の上下限外れの比較例を示したが、さらに詳細に説明する。表6に示すように、真空押出成型方式にて上記条件で含炭塊成鉱を製造する場合、成型体水分が9質量%未満になると成型が困難となり、14%を超えると成型体同士が付着して大塊化する問題が明らかとなった。従い、適正水分値を9〜14質量%とする。 Table 5 shows a comparative example of the moisture content of the molded product exceeding the upper and lower limits, and will be described in more detail. As shown in Table 6, when a coal-containing agglomerate ore is produced by the vacuum extrusion molding method under the above conditions, molding becomes difficult when the water content of the molded bodies is less than 9% by mass, and when the water content of the molded bodies exceeds 14%, the molded bodies are separated from each other. The problem of adhesion and agglomeration became clear. Therefore, the appropriate moisture value is set to 9 to 14% by mass.

1 ミキサー
2 投入口
3 第一の押出部(混練部)
3a ケーシング
3b スクリュー
3c 多孔板で形成された堰
4 接続管(真空室)
5 第二の押出部(押出成型部)
5a ケーシング
5b スクリュー
6 成型部
7 真空ポンプ
8 接続管
9 真空ポンプ接続管
10 含炭塊成鉱の製造装置
1 Mixer 2 Input port 3 First extrusion section (kneading section)
3a Casing 3b Screw 3c Weir formed of perforated plate 4 Connection pipe (vacuum chamber)
5 Second extrusion section (extrusion molding section)
5a Casing 5b Screw 6 Molding part 7 Vacuum pump 8 Connection pipe 9 Vacuum pump connection pipe 10 Coal-containing agglomerate production equipment

Claims (4)

製鉄における高炉の原料として使用される、炭素含有割合(T.C.)が15質量%以上の高炉用非焼成含炭塊成鉱を製造する方法であって、
水分ゼロ換算の質量比率で、水硬性バインダーを2.0〜9.0質量%、微粒シリカ源を0.5〜4.0質量%、含炭塊成鉱原料中に含まれる炭素の割合(T.C.)を15〜40質量%となるように、鉄含有原料、炭素含有原料、その他原料の配合率を調整して合わせて87.0〜97.5質量%を配合した含炭塊成鉱原料に、
当該原料と水の合計を100質量%としたときの水の質量比率を9.0〜14.0質量%として加えて連続的に混合しながら移送し、その移送方向前方に設置された多孔板で形成された堰へ混合原料を押込むことで第一のマテリアルシールを形成する第一の押出部(混練部)と、
前記堰の出側から連続的に供給される混合原料を真空脱気し、第二の押出部へ移送する接続部(真空室)と、
当該接続部(真空室)から供給される真空脱気された混合原料を多数の孔を備えた成型部へ押し込むことで、第二のマテリアルシールを形成しながら連続的に押し出して成型体を製造する第二の押出部と、
で構成される製造装置を用いて含炭塊成鉱を製造する方法であって、
前記第二の押出部の混合原料による充填率が50〜95体積%の範囲で連続成型することを特徴とする、高炉用非焼成含炭塊成鉱の製造方法。
A method for producing a non-calcined carbon-containing agglomerate ore for a blast furnace having a carbon content (TC) of 15% by mass or more, which is used as a raw material for a blast furnace in steelmaking.
2.0 to 9.0% by mass of hydraulic binder, 0.5 to 4.0% by mass of fine silica source, and the ratio of carbon contained in the coal-containing agglomerate ore raw material in terms of mass ratio converted to zero water content ( A coal-containing lump containing 87.0 to 97.5% by mass by adjusting the blending ratio of iron-containing raw material, carbon-containing raw material, and other raw materials so that TC) is 15 to 40% by mass. For raw materials for mineral ore
When the total of the raw material and water is 100% by mass, the mass ratio of water is 9.0 to 14.0% by mass, and the mixture is continuously mixed and transferred, and a perforated plate installed in front of the transfer direction. The first extrusion part (kneading part) that forms the first material seal by pushing the mixed raw material into the weir formed by
A connection part (vacuum chamber) that vacuum degass the mixed raw material continuously supplied from the outlet side of the weir and transfers it to the second extrusion part.
By pushing the vacuum degassed mixed raw material supplied from the connection part (vacuum chamber) into the molding part having a large number of holes, it is continuously extruded while forming a second material seal to manufacture a molded body. With the second extrusion part
It is a method of manufacturing a coal-containing agglomerate ore using a manufacturing apparatus composed of
A method for producing a non-calcined coal-containing agglomerate ore for a blast furnace, which comprises continuously molding the second extrusion portion with a mixed raw material in a filling rate of 50 to 95% by volume.
高炉用非焼成含炭塊成鉱の製造装置の接続部(真空室)の圧力が−50kPaG以下であることを特徴とする、請求項1に記載の高炉用非焼成含炭塊成鉱の製造方法。 The production of the non-calcined coal-containing agglomerate for a blast furnace according to claim 1, wherein the pressure of the connection portion (vacuum chamber) of the production apparatus for the non-calcined coal-containing agglomerate for a blast furnace is −50 kPaG or less. Method. 前記微粒シリカ源の平均粒子径は、前記非焼成含炭塊鉱の混合原料から微粒シリカ源を除いたものの平均粒子径に対して15%以下のサイズの粒子であることを特徴とする、請求項1または2に記載の高炉用非焼成含炭塊成鉱の製造方法。 The average particle size of the fine-grained silica source is 15% or less of the average particle size of the mixed raw material of the non-calcined coal-containing agglomerate excluding the fine-grained silica source. Item 3. The method for producing a non-calcined coal-containing agglomerate for a blast furnace according to Item 1 or 2. 製鉄における高炉の原料として使用される、T.C.が15質量%以上の高炉用非焼成含炭塊成鉱の製造装置であって、
炭素含有原料、水硬性バインダー、微粒シリカ源、鉄含有原料から成る原料に水を加えて連続的に混合し移送する手段を備え、その移送方向前方に設置された多孔板で形成された堰へ混合原料が押込まれることで第一のマテリアルシールが形成される第一の押出部(混練部)と、
前記堰の出側から連続的に供給される混合原料を真空脱気させ、第二の押出部へ移送させる接続部(真空室)と、
当該接続部(真空室)から供給される真空脱気された混合原料が多数の孔を備えた成型部へ押し込まれることで、第二のマテリアルシールが形成されながら連続的に押し出されて成型体を製造する第二の押出部と、
で構成された高炉用非焼成含炭塊成鉱の製造装置。
T.I., which is used as a raw material for blast furnaces in steelmaking. C. Is a production device for uncalcined coal-containing agglomerates for blast furnaces with a mass of 15% by mass or more.
A weir provided with means for continuously mixing and transferring water to a raw material consisting of a carbon-containing raw material, a water-hard binder, a fine silica source, and an iron-containing raw material, and a weir formed of a perforated plate installed in front of the transfer direction. The first extrusion part (kneading part) where the first material seal is formed by pushing the mixed raw material, and
A connection part (vacuum chamber) that vacuum degass the mixed raw material continuously supplied from the outlet side of the weir and transfers it to the second extrusion part.
The vacuum degassed mixed raw material supplied from the connection portion (vacuum chamber) is pushed into the molding portion having a large number of holes, so that the molded body is continuously extruded while forming the second material seal. With a second extrusion to manufacture
Equipment for manufacturing non-calcined coal-bearing agglomerates for blast furnaces.
JP2019106233A 2019-06-06 2019-06-06 Method for producing non-fired coal-containing agglomerate ore for blast furnace Active JP7265158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019106233A JP7265158B2 (en) 2019-06-06 2019-06-06 Method for producing non-fired coal-containing agglomerate ore for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019106233A JP7265158B2 (en) 2019-06-06 2019-06-06 Method for producing non-fired coal-containing agglomerate ore for blast furnace

Publications (2)

Publication Number Publication Date
JP2020200489A true JP2020200489A (en) 2020-12-17
JP7265158B2 JP7265158B2 (en) 2023-04-26

Family

ID=73741908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019106233A Active JP7265158B2 (en) 2019-06-06 2019-06-06 Method for producing non-fired coal-containing agglomerate ore for blast furnace

Country Status (1)

Country Link
JP (1) JP7265158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7389355B2 (en) 2020-04-07 2023-11-30 日本製鉄株式会社 Method for producing unfired coal-containing agglomerated ore for blast furnaces

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238022A (en) * 1999-02-22 2000-09-05 Denso Corp Extrusion molding device for ceramic molded body
JP2007191748A (en) * 2006-01-18 2007-08-02 Nippon Steel Corp Method for manufacturing carbonaceous-material-containing pellet
JP2015044402A (en) * 2013-07-31 2015-03-12 ケイミュー株式会社 Extrusion molding machine
JP2016077965A (en) * 2014-10-16 2016-05-16 新日鐵住金株式会社 Fly ash recycle method and non-fired agglomerated ore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238022A (en) * 1999-02-22 2000-09-05 Denso Corp Extrusion molding device for ceramic molded body
JP2007191748A (en) * 2006-01-18 2007-08-02 Nippon Steel Corp Method for manufacturing carbonaceous-material-containing pellet
JP2015044402A (en) * 2013-07-31 2015-03-12 ケイミュー株式会社 Extrusion molding machine
JP2016077965A (en) * 2014-10-16 2016-05-16 新日鐵住金株式会社 Fly ash recycle method and non-fired agglomerated ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7389355B2 (en) 2020-04-07 2023-11-30 日本製鉄株式会社 Method for producing unfired coal-containing agglomerated ore for blast furnaces

Also Published As

Publication number Publication date
JP7265158B2 (en) 2023-04-26

Similar Documents

Publication Publication Date Title
KR101171455B1 (en) Method for production of carbon composite metal oxide briquette
KR100797839B1 (en) Briquettes and method for manufacturing the same
JP6056492B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
US6921427B2 (en) Process for cold briquetting and pelletization of ferrous or non-ferrous ores or mineral fines by iron bearing hydraulic mineral binder
JPS61163152A (en) Manufacture of artificial lightweight aggregate
KR101211302B1 (en) Blast furnace operating method using carbon-containing unfired pellets
JP5803540B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP7265158B2 (en) Method for producing non-fired coal-containing agglomerate ore for blast furnace
BR102019023195A2 (en) iron ore fines agglomerate production process and the agglomerate product
CN105714110A (en) Coal briquettes, a method and an apparatus for manufacturing the same
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP2011063835A (en) Method for improving strength of agglomerated raw material for blast furnace
JP6273983B2 (en) Blast furnace operation method using reduced iron
JPH1112624A (en) Formation of reduced iron-producing raw material
JP6680167B2 (en) Method for producing coal-free uncalcined agglomerated ore for blast furnace
JP7389355B2 (en) Method for producing unfired coal-containing agglomerated ore for blast furnaces
KR101187063B1 (en) Process for producing cement-bonded ore agglomerates
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
Borowski An overview of particle agglomeration techniques to waste utilization
JP5835144B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP3837845B2 (en) Method for producing reduced iron
JP5825180B2 (en) Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char
JP7188033B2 (en) Method for producing coal-bearing agglomerate ore
JP7368726B2 (en) Method for producing unfired coal-containing agglomerated ore for blast furnaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230327

R151 Written notification of patent or utility model registration

Ref document number: 7265158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151