JP2021151276A - 内視鏡システム及びモータ制御システム - Google Patents

内視鏡システム及びモータ制御システム Download PDF

Info

Publication number
JP2021151276A
JP2021151276A JP2018076033A JP2018076033A JP2021151276A JP 2021151276 A JP2021151276 A JP 2021151276A JP 2018076033 A JP2018076033 A JP 2018076033A JP 2018076033 A JP2018076033 A JP 2018076033A JP 2021151276 A JP2021151276 A JP 2021151276A
Authority
JP
Japan
Prior art keywords
endoscope
motor
unit
gear
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018076033A
Other languages
English (en)
Inventor
豊 正木
Yutaka Masaki
豊 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2018076033A priority Critical patent/JP2021151276A/ja
Priority to PCT/JP2019/007913 priority patent/WO2019198373A1/ja
Publication of JP2021151276A publication Critical patent/JP2021151276A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

【課題】内視鏡の回転駆動系の劣化などの状態の診断を簡易にできる内視鏡システムを提供する。【解決手段】内視鏡システム1は、内視鏡11と、コントローラ12dと、モータ71と、内視鏡11に設けられかつモータ71により駆動される、複数の歯車を有する歯車列72と、コントローラ12dに設けられた、モータ71による歯車列72の駆動時にモータ71に流れる電流を検出する電流センサ103と、モータ71に流れる電流の時間経過に伴う変化を示す波形をフーリエ変換し、周波数に応じた振幅の変化を分析する高速フーリエ変換部111と、高速フーリエ変換部111により得られた振幅の変化に基づいて、歯車列72の状態を判定する判定部112と、を有する。【選択図】図4

Description

本発明は、内視鏡システム及びモータ制御システムに関し、特に、内視鏡本体に設けられたモータにより被駆動機構が駆動される内視鏡システム及びモータ制御システムに関する。
従来、複数の歯車からなる回転駆動系の異常の有無を診断する場合、回転駆動系を内蔵するケースなどに、例えば加速度センサを固定し、その加速度センサの出力信号を、高速フーリエ変換(以下、FFTという)アナライザーにより解析して、回転駆動系の状態を診断することが行われている。
また、例えば特開2015−227889号公報に開示のように、加速度センサなどを用いないで、モータ等の駆動源に流れる電流信号をFFTにより得られたスペクトル信号に基づいて、回転駆動系の異常診断をする方法も提案されている。
ところで、従来から内視鏡は医療分野や工業分野において広く利用されている。内視鏡には、モータなどの駆動源の回転駆動力を利用する内視鏡もある。このような内視鏡では、モータなどの駆動源を、例えば管腔内を挿入部が推し進めるための挿入補助動作や、挿入部に設けられた湾曲部の湾曲動作等のために用いている。
内視鏡に用いられる回転駆動系の状態の診断のために、上述したような加速度センサを用いて、加速度センサの出力信号を解析したり、駆動源に流れる電流信号を解析したりすることはされていなかった。
特開2015−227889号公報
しかし、上述したような方法により内視鏡の回転駆動系の状態を診断するためには、診断設備を有する会社に内視鏡を送って診断を依頼しなければならず、時間が掛かってしまう。あるいは、内視鏡が使用される病院などの場所に診断設備を設置すれば、直ぐに診断をできるが、コストが掛かってしまう。
内視鏡の挿入補助機能のための挿入補助具の場合、挿入速度に応じて、回転駆動系の回転数が変化する場合がある。また、挿入部と管腔内壁との抵抗が大きくなるとき、内視鏡の挿入補助具に用いられるモータに大きな負荷が掛かる場合がある。
従来の技術では、このような場合も考慮して、内視鏡検査中に実際にモータに負荷が掛かったときの回転駆動系の状態を診断することはできない。
内視鏡の使用中に回転駆動系が故障すると、内視鏡検査のやり直しとなってしまうため、回転駆動系の劣化などの診断を頻繁に行う方が好ましいが、従来は、内視鏡の使用中の回転駆動系の状態を診断することは出来なかった。
そこで、本発明は、内視鏡の回転駆動系の劣化などの状態の診断を簡易にできる内視鏡システム及びモータ制御システムを提供することを目的とする。
本発明の一態様の内視鏡システムは、内視鏡本体と、前記内視鏡本体が使用されるときに接続される機器と、前記内視鏡本体に設けられたモータと、前記内視鏡本体に設けられかつ前記モータにより駆動される、複数の歯車を有する被駆動機構と、前記内視鏡本体と前記機器のいずれかに配置された若しくは前記内視鏡本体と前記機器との接続部に設けられた、前記モータによる前記被駆動機構の駆動時に前記モータに流れる電流を検出する電流検出部と、前記機器に設けられ、前記電流検出部により得られる前記モータに流れる電流の時間経過に伴う変化を示す波形をフーリエ変換し、周波数に応じた振幅の変化を分析する周波数分析部と、前記周波数分析部により得られた前記振幅の変化に基づいて、前記被駆動機構の状態を判定する判定部と、を有する。
本発明の一態様の内視鏡のモータ制御システムは、内視鏡本体に設けられたモータにより被駆動機構を駆動する内視鏡のモータ制御システムであって、前記内視鏡本体または前記内視鏡本体が使用時に接続される機器に配置された若しくは前記内視鏡本体と前記機器との接続部に設けられた、前記モータによる前記被駆動機構の駆動時に前記モータに流れる電流を検出する電流検出部と、前記機器に設けられ、前記電流検出部により得られる前記モータに流れる電流の時間経過に伴う変化を示す波形をフーリエ変換し、周波数に応じた振幅の変化を分析する周波数分析部と、を有する。
本発明によれば、内視鏡の回転駆動系の劣化などの状態の診断を簡易にできる内視鏡システム及びモータ制御システムを提供することができる。
本発明の実施形態に係わる内視鏡システムの構成を示す構成図である。 本発明の実施形態に係わる、操作部の長手軸方向に沿ったモータユニットの概略的な縦断面図である。 本発明の実施形態に係わるコントローラの構成を示すブロック図である。 本発明の実施形態に係わる回転駆動系診断部の構成を示すブロック図である。 本発明の実施形態に係わる、モータがフルで回転した時における各歯車の回転数を示す表である。 本発明の実施形態に係わる、ある回転数でモータが回転しているときの電流センサの出力する電流値のグラフである。 本発明の実施形態に係わる、劣化した歯車がないときの高速フーリエ変換部の出力するスペクトルデータである。 本発明の実施形態に係わる、劣化した歯車があるときの高速フーリエ変換部の出力するスペクトルデータである。
以下、図面を参照して本発明の実施形態を説明する。
(構成)
図1は、本実施形態に係わる内視鏡システムの構成を示す構成図である。図1に示すように、本実施形態の内視鏡システム1は、被検体の管腔内に挿入される内視鏡本体(以下、内視鏡ともいう)11と、内視鏡11に接続される複数のユニットからなるコントロールシステム12とを有する。
内視鏡11は、細長の挿入部21と、挿入部21の基端側に設けられた操作部22と、操作部22から延出するユニバーサルケーブル23とを有する。コントロールシステム12と内視鏡11とは、操作部22から延出されたユニバーサルケーブル23により接続される。
挿入部21は、長手軸方向に沿って延設される細長い挿入部本体31と、回転部材32とを有する。挿入部本体31は、先端から順に、先端硬質部31aと、湾曲部31bと、可撓管部31cを有している。
可撓管部31cは、被検体の管腔の曲がり形状に従う可撓性を有している。湾曲部31bは、複数の湾曲駒を有する公知の構造で形成されている。湾曲部31bは、操作部22の操作に応じて、上下左右方向の4方向に湾曲可能である。
挿入部21の先端硬質部31aには、図示しない観察窓と、図示しない照明窓が設けられている。先端硬質部31aの観察窓の後ろ側には、図示しない撮像部が設けられている。撮像部は、観察光学系と撮像素子を有する。
複数の光ファイバ束からなるライトガイド41と撮像信号用の信号ケーブル42が、内視鏡11の挿入部21、操作部22及びユニバーサルケーブル23に挿通されている。モータ駆動用ケーブル43は、操作部22及びユニバーサルケーブル23に挿通されている。
ユニバーサルケーブル23の先端には、コネクタ23aが設けられている。コネクタ23aは、ライトガイドコネクタ41a、プロセッサ用ケーブル41b及びコントローラ用ケーブル41cが設けられている。
コネクタ23aは、内部に基板を有し、その基板にはメモリ23bが搭載されている。メモリ23bは、書き換え可能な不揮発性メモリである。後述するように、コントロールシステム12のコントローラ12dは、コントローラ用ケーブル41cを介してメモリ23bにアクセス可能であり、図示しない信号線を介してデータを書き込むことができる。コントローラ12dは、内視鏡のモータ制御システムを構成する。
信号ケーブル42は、プロセッサ用ケーブル41b内に挿通され、プロセッサ12bに接続可能となっている。モータ駆動用ケーブル43は、コントローラ用ケーブル41cに挿通され、コントローラ12dに接続可能となっている。
操作部22は、把持部51と、挿入部21の可撓管31cの基端部を支持する折れ止め部52と、把持部51に設けられた2つのノブ51a,51bと、各種の指示が割り当てられる複数のボタンを有する操作部材部53とを有する。操作部材部53は、レリーズボタン、吸引ボタン、送気/送水ボタン等を含む。
折れ止め部52は、挿入部21の可撓管31cが折れ曲がるのを防止する。内視鏡11のユーザである、例えば術者は、ノブ51aを回動操作することにより、図1に示す挿入部21の湾曲部31bを上下方向に湾曲させることができる。ユーザは、ノブ51bを回動操作することにより、湾曲部31bを左右方向に湾曲させることができる。
図1に示すように、回転部材32は、内視鏡11の挿入部21に配置されている。より具体的には、回転部材32は、湾曲部31bの基端側であって、可撓管31cの例えば先端部近傍の外周面に、挿入部本体31の先端側から着脱可能に取り付けられている。回転部材32は、外周部に、螺旋状に突出したフィン32aを有する。回転部材32は、挿入部本体31の先端硬質部31a及び湾曲部31bを通して可撓管31cの所定の位置に着脱可能である。回転部材32は、モータ71の駆動力によって挿入部21の長手軸周りに回動する被駆動部材を構成する。
挿入部21と操作部22との境界付近から可撓管31cの例えば先端部にかけての部位には、回転部材32を駆動するための駆動ユニット61が設けられている。回転部材32は、駆動ユニット61の駆動力により回転可能である。回転部材32の回転方向は、挿入部本体31の中心軸COの軸周りの両方向である。そして、回転部材32は、挿入部本体31の管腔内への挿入を補助するとともに、挿入した状態から抜去するのを補助する、管路に対する挿抜用の補助具として用いられる。
駆動ユニット61は、挿入部21と操作部22との境界付近に配設されるモータユニット62と、可撓管31cの例えば先端部に配設される歯車63と、モータユニット62と歯車63との間に配設されるドライブシャフト64とを有する。モータユニット62は、回転駆動力発生部である。歯車63は、回転駆動力出力部である。
図1に示すように、ドライブシャフト64は、可撓管31c内に挿通されている。回転駆動力伝達部であるドライブシャフト64は、その基端部に支持部65を有する。支持部65は、モータユニット62の出力端62aを貫通して支持される。支持部65は、出力端62aの軸方向の長さに対して長く形成されている。
ドライブシャフト64の外側には チャンネル66が配設されている。チャンネル66は、チューブ本体66aと固定部66bとを有する。チューブ本体66aには、ドライブシャフト64が挿通され、チューブ本体66aは、ドライブシャフト64の外側を略全長にわたって保護する。固定部66bは、チューブ本体66aの基端に固定されるとともに、硬質管84(図2参照)に固定される。
硬質管84(図2参照)は、折れ止め部52内において、可撓管31cの基端に固定された口金31c4(図2参照)に対して固定されている。ドライブシャフト64は、チューブ本体66aだけでなく、円筒状の固定部66b内にも挿通されている。チューブ本体66aは電気絶縁性を有するとともに、耐摩耗性を有するフレキシブル性を有する樹脂材で形成されている。
支持部65は、その横断面が例えばD形状に形成されている。ドライブシャフト64のうち、出力端62aにより支持された部分よりも先端側は、適宜のコシを有するとともに可撓性を有する。ドライブシャフト64の先端に、歯車63が固定されている。
支持部65には、歯車90(図2)が固定されている。支持部65は、歯車90に形成されたD形状の孔に挿通されて歯車90に固定されている。モータユニット62内のモータが回転すると、歯車90が回転し、その結果、ドライブシャフト64が、ドライブシャフト64の軸周りに回転する。
回転部材32は、円筒形状を有しており、内周面に歯部(以下、内周歯部という)32bを有している。内周歯部32bは、回転部材32の内周面に形成されていてもよいし、回転部材32の内周面に固定された円筒部材の内周面に形成されていてもよい。
回転部材32が可撓管31cの所定位置に配置されたときに、歯車63は、内周歯部63bと噛み合う。よって、ドライブシャフト64が軸周りに回転すると、歯車63の回転に伴い、回転部材32は、可撓管31cの長手軸周りに回転する。
図2は、実施形態に係る、操作部の長手軸方向に沿ったモータユニット62の概略的な縦断面図である。
図1及び図2に示すように、モータユニット62は、駆動源としてのモータ71と、歯車列72とを有する。モータ71及び歯車列72は、挿入部21の基端側に配置されている。
モータユニット62は、挿入部21と操作部22との境界付近から挿入部21の長手方向に対して直交する方向に突出した状態で、歯車支持フレームであるギアボックス73内に収納されている。ギアボックス73内には、回路基板74も配設されている。
図1及び図2に示すように、モータ71は、内視鏡本体である内視鏡11に内蔵されて設けられている。歯車列72は、内視鏡11に内蔵されたモータ71からの回転駆動力を伝達する、複数の歯車を有している。歯車列72の複数の歯車の歯車比の調整により、モータ71の駆動軸71aの回転速度は、出力端62aにおけるドライブシャフト64の適宜のトルク及び適宜の回転速度に変換される。
すなわち、歯車列72は、内視鏡11に設けられかつモータ71により駆動される、複数の歯車を有する被駆動機構を構成する。
ギアボックス73は、ベースプレート81、支持体82及び外装ケース83を有する。外装ケース83は、ケース本体83aとキャップ83bにより構成されている。支持体82は、ネジによりベースプレート81に固定されている。ベースプレート81及び支持体82は、協働して、歯車列72の各歯車及びモータ71を支持する。支持体82は、折れ止め部52内の硬質管84に固定される。
なお、モータ71は、後述する絶縁プレート85により支持体82に固定される。
モータ71の駆動軸71aに取り付けられたピニオンギア91には、被駆動機構である歯車列72の第1ギアアッセンブリ92の大歯車92aが噛み合わせられる。第1ギアアッセンブリ92は、大歯車92aと小歯車92bとを有する。第1ギアアッセンブリ92は、ベースプレート81及び支持体82の両者に支持されている。
第1ギアアッセンブリ92の大歯車92aと一緒に回転する小歯車92bには歯車列72の第2ギアアッセンブリ93の大歯車93aが噛み合わせられる。第2ギアアッセンブリ93は、大歯車93aと小歯車93bとを有する。第2ギアアッセンブリ93は、ベースプレート81及び支持体82の両者に支持されている。
第2ギアアッセンブリ93の大歯車93aと一緒に回転する小歯車93bには、歯車列72の第3ギアアッセンブリ94が噛み合わせられる。第3ギアアッセンブリ94は、支持体82に支持されている。
第3ギアアッセンブリ94には歯車列72の第4ギアアッセンブリとしての筒状の歯車90が噛み合わせられる。歯車90は、支持体82に支持されている。
なお、第1ギアアッセンブリ92の大歯車92aは、電気絶縁性を有する、例えば硬質の樹脂材等で形成されている。モータ71は電気絶縁性を有する絶縁プレート85を介して支持体82に支持されている。 このため、モータ71及び内視鏡11は電気的に絶縁されている。そして、内視鏡11の撮像部のグランド(GND)とモータ71のグランド(GND)とを電気的に絶縁し、分離している。
第1ギアアッセンブリ92の回転軸の一端及び第2ギアアッセンブリ93の回転軸の一端は、ベースプレート81に対してボールベアリングにより支持されている。このため、第1ギアアッセンブリ92の回転軸の中心軸と第2ギアアッセンブリ93の回転軸の中心軸とが平行となる。
なお、第1ギアアッセンブリ92の回転軸の他端及び第2ギアアッセンブリ93の回転軸の他端は、支持体82に対してボールベアリングで支持されている。
第3ギアアッセンブリ94の回転軸の一端及び他端は、支持体82に対してボールベアリングで支持されている。歯車90の一端及び他端は、支持体82に対して セラミック材の滑り軸受で支持されている。
なお、第2ギアアッセンブリ93から回転駆動力が伝達される第3ギアアッセンブリ94の回転軸の中心軸も、第1ギアアッセンブリ92の回転軸の中心軸と第2ギアアッセンブリ93の回転軸の中心軸と平行となる。
以上のように、モータ71の回転駆動力は、歯車列72によりドライブシャフト64を回転させる。歯車63は、回転部材32の内周歯部32bと噛み合っている。回転するドライブシャフト64は、歯車63により回転部材32を回転させる。
すなわち、被駆動機構である歯車列72は、内視鏡11に設けられた回転部材32とモータ71との間に介在し、モータ71の回転駆動力を回転部材32に伝達する。
コントロールシステム12は、光源ユニット12aと、プロセッサ12bと、モニタ12cと、コントローラ12dと、入力ユニット12eとを有する。光源ユニット12aとプロセッサ12bは接続されている。プロセッサ12bとモニタ12cも接続されている。光源ユニット12aとコントローラ12dも接続されている。コントローラ12dと入力ユニット12eも接続されている。
光源ユニット12aは、観察対象を照明するための照明光を出射する。光源ユニット12aの照明光は、ライトガイドコネクタ41aに入射する。
プロセッサ12bは、観察光学系の撮像部により撮像された画像を処理して内視鏡画像を生成する画像処理ユニットを有する。プロセッサ12bは、プロセッサ用ケーブル41bを介して内視鏡11の撮像部と接続される。
モニタ12cは、生成された内視鏡画像を表示する表示部である。
コントローラ12dは、内視鏡システム1全体を制御する。コントローラ12dは、内視鏡本体である内視鏡11が使用されるときに接続される周辺機器である。
入力ユニット12eは、コントローラ12dに指示等を入力する装置である。入力ユニット12eは、例えば図示しないキーボードやフットスイッチ等である。入力ユニット12eは、上述したモータ71を制御し、挿入部21の体腔内に対する進退動作を指示する、前進スイッチFS及び後退スイッチBSを有する。
コントローラ12dは、専用装置だけではなく、例えば、任意のプログラムを搭載するパーソナルコンピュータ等の汎用的な処理装置であってもよい。
モータユニット62の回路基板74の回路は、コントローラ12dからのコマンドに応じて、モータ71の回転速度をサーボ制御などにより制御する。コントローラ12dは、モータ71の回転方向及び回転方向を制御する。術者が、前進スイッチFSあるいは後退スイッチBSを押下することにより、挿入部21は、被検体の管腔内を前進あるいは後退する。
図3は、コントローラ12dの構成を示すブロック図である。
コントローラ12dは、制御部101と、モータ駆動制御回路102と、電流センサ103と、メモリ104と、3つのインターフェース回路(以下、I/Fと略す)105,106,107を有する。制御部101と、3つのI/F105,106,107は、バス108により信号の送受信が可能に接続されている。
制御部101は、中央処理装置(以下、CPUという)、ROM、ROMなどを含むプロセッサである。
なお、制御部101は、FPGA(Field Programmable Gate Array)などのハードウエア回路により構成してもよい。
モータ駆動制御回路102は、入力ユニット12eからの前進スイッチFS又は後退スイッチBSの押下に応じた指示信号を受信して、その指示信号に応じた駆動信号を生成して、モータ駆動用ケーブル43へ出力するハードウエア回路である。モータ駆動制御回路102により生成された駆動信号は、電流センサ103を介してモータ71へ供給される。
電流センサ103は、モータ駆動用ケーブル43の途中に配置され、モータ駆動用ケーブル43に流れる電流を検出する。電流センサ103の検出信号は、モータ駆動制御回路102にフィードバックされると共に、I/F105を介して制御部101に供給される。
なお、ここでは、電流センサ103は、コントローラ12d内に設けられているが、図1において一点鎖線で示すように、電流センサ103aとして内視鏡11内に設けてもよく、あるいは図1において二点鎖線で示すように、電流センサ103bとして内視鏡11とコントローラ12dの間に設けられた接続装置12f内に設けてもよい。
よって、電流センサ103は、内視鏡11とコントローラ12dのいずれかに配置された若しくは内視鏡11とコントローラ12dとの接続部である接続装置12fに設けられた、モータ71による歯車列72の駆動時にモータ71に流れる電流を検出する電流検出部を構成する。
制御部101は、I/F105及びバス108を介して、電流センサ103の検出値を受信する。制御部101は、メモリ104に記憶された各種処理プログラムを実行し、内視鏡システム1全体の制御を行うと共に、後述する回転駆動系診断プログラムを実行する。なお、後述する閾値THのデータもメモリ104に記憶されている。
制御部101で生成された各種コマンドは、I/F106を通して光源ユニット12aへ供給される。後述するように、制御部101で生成された画像信号などは、光源ユニット12aからプロセッサ12bへ供給され、プロセッサ12bからモニタ12cへ供給される。プロセッサ12bは、光源ユニット12aを介してコントローラ12dと接続されているので、制御部101で生成された画像信号は、コントローラ12dを介してモニタ12cに表示可能となっている。
さらに、制御部101は、後述するように、I/F107を通して内視鏡11のメモリ23bにデータを書き込むことができる。
(作用)
次に、コントローラ12dの制御部101における回転駆動系診断処理について説明する。
図4は、回転駆動系診断部の構成を示すブロック図である。
回転駆動系診断部Pは、FFT部111、判定部112、告知部113及び書き込み部114を有する回転駆動系診断プログラムである。回転駆動系診断部Pは、メモリ104に格納される。FFT部111、判定部112、告知部113及び書き込み部114の各々は、制御部101のCPUにより読み込まれて、各部の機能が実現される。
電流センサ103の電流値Iのデータは、FFT部111及び判定部112に供給される。上述したように、電流センサ103は、モータ71に流れる電流の大きさを検出する。
FFT部111は、電流値Iのデータに対して高速フーリエ変換処理を行い、スペクトルデータを出力する。
ここでは、FFT部111は、コントローラ12dに設けられ、モータ71に流れる電流の時間経過に伴う変化を示す波形をフーリエ変換し、周波数に応じた振幅の変化を分析する周波数分析部を構成する。FFT部111は、波形をフーリエ変換して周波数分析する機能はソフトウエアで構築されている。
判定部112は、FFT部111により得られたスペクトルデータの振幅の変化に基づいて、歯車列72の状態を判定する。ここでは、判定部112は、FFT部111の出力から、所定の閾値THを超える周波数があるか否かを判定すると共に、劣化状態を示す歯車を特定する。判定部112には、メモリ104から読み出された閾値THが入力される。
各歯車は、入力ユニット12eからの動作指示に応じた回転数となる。
図5は、モータ71がフルで回転した時における各歯車の回転数を示す表である。ここでは、回転数は、1秒間の回転数である。図5において、歯車Aは、上述した歯車90に対応する。歯車Bは、上述したギアアッセンブリ94に対応する。歯車Cは、上述した小歯車93bに対応する。歯車Dは、上述した大歯車93aに対応する。歯車Eは、上述した小歯車92bに対応する。歯車Fは、上述した大歯車92aに対応する。歯車Gは、上述したピニオンギア91に対応する。
よって、ユーザが、入力ユニット12eの前進スイッチFSあるいは後退スイッチBSを最も深く押下したときモータ71はフルで回転する。モータ71はフルで回転するとき、歯車Aの回転数はf1であり、歯車Bの回転数はf2であり、歯車Cの回転数はf3であり、歯車Dの回転数はf4であり、歯車Eの回転数はf5であり、歯車Fの回転数はf6であり、歯車Gの回転数はf7である。
図6は、ある回転数でモータ71が回転しているときの電流センサの出力する電流値のグラフである。図6において、横軸は、時間であり、縦軸は、電流値である。図6では、時間は、秒(s)であり、電流値は、ミリアンペア(mA)である。図6に示すように、電流センサ103の検出したモータ71へ供給される電流の電流値は、時間経過と共に変化する。
図7は、劣化した歯車がないときのFFT部111の出力するスペクトルピークデータである。図7において、横軸は、周波数であり、縦軸は、スペクトルピークデータの正規化された振幅値(A)である。図7に示すように、閾値THを超えているスペクトルピークデータはない。
内視鏡11の場合、挿入部21と管腔内壁との抵抗が大きくなったり、小さくなったりするため、モータ71に掛かる負荷は変化する。しかし、ある回転数でモータ71が回転しているとき、回転駆動系に劣化がなければ、モータに掛かる負荷が変化しても、閾値THを超えるスペクトルピークデータは、現れない。
図8は、劣化した歯車があるときのFFT部111の出力するスペクトルピークデータである。図8において、横軸は、周波数であり、縦軸は、スペクトルピークデータの正規化された振幅値(A)である。図8に示すように、特定の周波数のスペクトルピークデータの振幅が大きく、閾値THを超えている。
なお、上述したように、ユーザは、例えば前進スイッチFSあるいは後退スイッチBSの押下量に応じて、回転部材32の回転量を変化させることができる。
入力ユニット12eからの動作指示に応じた回転数でモータ71が回転しているとき、歯車列72中のある歯車が劣化すると、その歯車の現時点の回転数に対応するスペクトルデータの振幅が大きくなる。各歯車の現時点の回転数は、図5に示すモータ71がフルで回転した時の回転数以下である。
判定部112は、電流センサ103の検出信号から、モータ71の回転数を検出することができる。よって、判定部112は、電流センサ103の検出信号に基づいて、各歯車の現時点の回転数fを算出することができる。
例えば、図5は、モータ71のフル出力時の各歯車の回転数のパラメータデータを示しているので、判定部112は、電流センサ103により検出された現時点の検出信号と、モータ71のフル出力時おける電流センサ103の検出信号とに基づいて、各歯車の現時点の回転数を決定することができる。
すなわち、入力ユニット12eからの指示信号に応じて各歯車の回転数は変わるので、判定部112は、電流センサ103の検出信号に基づいて、各歯車の現時点の回転数を算出し、そのスペクトルデータ中の閾値THを超えた周波数に対応する歯車を特定することができる。
よって、FFT部111は、図5に示す、複数の歯車の各々のパラメータデータを用いて、周波数に応じた振幅を算出する。
図8においては、周波数f1とf2において、振幅が大きく、閾値THを超えている。f1は、算出された歯車Aすなわち歯車90の現時点の回転数であり、f2は、算出された歯車Bすなわちギアアッセンブリ94の現時点の回転数である。
よって、判定部112は、歯車AとBが劣化していると判定することができる。すなわち、判定部112は、複数の歯車の各々の回転周波数と、振幅の変化が起こっている周波数とを比較することによって、劣化している歯車を判定することができる。判定部112は、複数の歯車の各々の回転周波数における振幅の変化の大きさに基づいて、歯車列72の各歯車の劣化を判定する。特に、判定部112は、振幅と所定の閾値THとを比較することにより、歯車列71の状態が、劣化状態であるかを判定する。
判定部112が、歯車AとBが劣化していると判定すると、告知部113へ劣化歯車が歯車AとBであることを通知する。
告知部113は、判定部112の判定結果において劣化を示す歯車が判定されたときに、劣化を示す歯車をユーザに告知するためのメッセージデータを生成し、プロセッサ12bへ出力する。
書き込み部114は、判定部112の判定結果において劣化を示す歯車があることを、内視鏡11のメモリ23bに記録する処理を行う。よって、書き込み部114は、判定部112において判定された歯車列72の状態についての情報を、内視鏡11に設けられたメモリ23bに書き込む書き込み部を構成する。例えば、メモリ23bには、劣化した歯車を特定する情報を格納してもよい。
告知部113は、歯車AとBが劣化しているとのデータを受けると、例えば、モニタ12cに表示するメッセージを生成する。そのメッセージは、例えば「歯車AとBが劣化しています。点検して下さい。」のテキストである。なお、テキストは、劣化及びその箇所を示すコードでもよい。
よって、告知部113は、判定部112において判定された歯車列72の状態を表示するための表示情報を生成する表示情報生成部を構成する。
そのメッセージデータは、光源ユニット12aを介してプロセッサ12dへ供給され、プロセッサ12dは、そのメッセージを表示する画像信号を生成して、あるいはそのメッセージを重畳した画像信号を生成して、モニタ12cに出力する。
その結果、ユーザは、内視鏡システム1の動作中に歯車の劣化があることを知って、関連する者に点検などを指示することができる。
歯車の故障まで至っていない、歯車が劣化している状態が検出されるので、ユーザが内視鏡検査中に、回転駆動系が故障して内視鏡検査ができなくなる確率は低下する。
例えば、ユーザは、内視鏡システム1の動作を開始した直後に、回転駆動系を試しに動作させることで、動作直後における劣化の有無を知ることができる場合がある。
よって、ユーザは、内視鏡システム1の動作を開始した直後に、回転駆動系の劣化の有無を知ることができる。その場合、ユーザは、内視鏡を交換して別の内視鏡を用いて検査を行うという選択手段をとることもできる。
また、メモリ23bには、劣化の有無のデータが書き込まれているので、内視鏡システム1の動作を開始した直後に、プロセッサ12bがメモリ23bからデータを読み出して、過去の動作時において劣化があれば、所定のメッセージを表示することができる。所定のメッセージは、例えば、「本内視鏡の回転駆動系に劣化がみられるので、メーカのサービスを依頼して下さい。」である。
あるいは、劣化の有無のデータ等がメモリ23bにログデータとして書き込まれているので、内視鏡11のメーカのサービスマンが、内視鏡11のメンテナンスを行うときに、劣化の進行具合を確認することもできる。
以上のように、上述した実施形態によれば、内視鏡の回転駆動系の劣化などの状態の診断を簡易にできる内視鏡システム及びモータ制御システムを提供することができる。
本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。
1 内視鏡システム、11 内視鏡、12 コントロールシステム、12a 光源ユニット、12b プロセッサ、12c モニタ、12d コントローラ、12d プロセッサ、12e 入力ユニット、12f 接続装置、21 挿入部、22 操作部、23 ユニバーサルケーブル、23a コネクタ、23b メモリ、31 挿入部本体、31a 先端硬質部、31b 湾曲部、31c 可撓管部、31c 可撓管、31c4 口金、32 回転部材、32a フィン、32b 内周歯部、41 ライトガイド、41a ライトガイドコネクタ、41b プロセッサ用ケーブル、41c コントローラ用ケーブル、42 信号ケーブル、43 モータ駆動用ケーブル、51 把持部、51a,51b ノブ、52 折れ止め部、53 操作部材部、61 駆動ユニット、62 モータユニット、62a 出力端、63 歯車、63b 内周歯部、64 ドライブシャフト、65 支持部、66 チャンネル、66a チューブ本体、66b 固定部、71 モータ、71a 駆動軸、72 歯車列、73 ギアボックス、74 回路基板、81 ベースプレート、82 支持体、83 外装ケース、83a ケース本体、83b キャップ、84 硬質管、85 絶縁プレート、90 歯車、91 ピニオンギア、92 ギアアッセンブリ、92a 大歯車、92b 小歯車、93 ギアアッセンブリ、93a 大歯車、93b 小歯車、94 ギアアッセンブリ、101 制御部、102 モータ駆動制御回路、103、103a、103b 電流センサ、104 メモリ、108 バス、111 FFT部、112 判定部、113 告知部、114 書き込み部。

Claims (16)

  1. 内視鏡本体と、
    前記内視鏡本体が使用されるときに接続される機器と、
    前記内視鏡本体に設けられたモータと、
    前記内視鏡本体に設けられかつ前記モータにより駆動される、複数の歯車を有する被駆動機構と、
    前記内視鏡本体と前記機器のいずれかに配置された若しくは前記内視鏡本体と前記機器との接続部に設けられた、前記モータによる前記被駆動機構の駆動時に前記モータに流れる電流を検出する電流検出部と、
    前記機器に設けられ、前記電流検出部により得られる前記モータに流れる電流の時間経過に伴う変化を示す波形をフーリエ変換し、周波数に応じた振幅の変化を分析する周波数分析部と、
    前記周波数分析部により得られた前記振幅の変化に基づいて、前記被駆動機構の状態を判定する判定部と、
    を有する、内視鏡システム。
  2. 前記判定部は、前記複数の歯車の各々の回転周波数と、前記振幅の変化が起こっている周波数とを比較することによって、劣化している歯車を判定する、請求項1に記載の内視鏡システム。
  3. 前記判定部は、前記複数の歯車の各々の回転周波数における前記振幅の変化の大きさに基づいて、前記被駆動機構の劣化を判定する、請求項2に記載の内視鏡システム。
  4. 前記被駆動機構は、前記内視鏡本体に設けられた被駆動部材と前記モータとの間に介在し、前記モータの駆動力を前記被駆動部材に伝達する、請求項1に記載の内視鏡システム。
  5. 前記被駆動部材は、前記内視鏡本体の挿入部に配置されており、前記モータ及び前記被駆動機構は前記挿入部の基端側に配置されている、請求項3に記載の内視鏡システム。
  6. 前記被駆動部材は、前記モータの駆動力によって前記挿入部の長手軸周りに回動する、請求項5に記載の内視鏡システム。
  7. 前記被駆動部材は、外周部に螺旋状のフィンを備えている、請求項6に記載の内視鏡システム。
  8. 前記周波数分析部は、前記波形をフーリエ変換して周波数分析する機能はソフトウエアで構築され、
    前記ソフトウエアは、前記複数の歯車の各々のパラメータデータを用いて、前記周波数に応じた前記振幅を算出する、請求項1に記載の内視鏡システム。
  9. 前記判定部は、前記振幅と所定の閾値とを比較することにより、前記被駆動機構の状態が、劣化状態であるかを判定する、請求項1に記載の内視鏡システム。
  10. 前記判定部において判定された前記被駆動機構の状態を表示するための表示情報を生成する表示情報生成部を有する、請求項1に記載に内視鏡システム。
  11. 前記判定部において判定された前記被駆動機構の状態についての情報を、前記内視鏡本体に設けられた不揮発性メモリに書き込む書き込み部を有する、請求項1に記載の内視鏡システム。
  12. 内視鏡本体に設けられたモータにより被駆動機構を駆動する内視鏡のモータ制御システムであって、
    前記内視鏡本体または前記内視鏡本体が使用時に接続される機器に配置された若しくは前記内視鏡本体と前記機器との接続部に設けられた、前記モータによる前記被駆動機構の駆動時に前記モータに流れる電流を検出する電流検出部と、
    前記機器に設けられ、前記電流検出部により得られる前記モータに流れる電流の時間経過に伴う変化を示す波形をフーリエ変換し、周波数に応じた振幅の変化を分析する周波数分析部と、
    を有する、内視鏡のモータ制御システム。
  13. 前記被駆動機構は、前記内視鏡本体に設けられた被駆動部材と前記モータとの間に介在し、前記モータの駆動力を前記被駆動部材に伝達する、請求項12に記載の内視鏡のモータ制御システム。
  14. 前記被駆動部材は、前記内視鏡本体の挿入部に配置されており、前記モータ及び前記被駆動機構は前記挿入部の基端側に配置されている、請求項13に記載の内視鏡のモータ制御システム。
  15. 前記被駆動部材は、前記モータの駆動力によって前記挿入部の長手軸周りに回動する、請求項14に記載の内視鏡のモータ制御システム。
  16. 前記被駆動部材は、外周部に螺旋状のフィンを備えている、請求項15に記載の内視鏡のモータ制御システム。
JP2018076033A 2018-04-11 2018-04-11 内視鏡システム及びモータ制御システム Pending JP2021151276A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018076033A JP2021151276A (ja) 2018-04-11 2018-04-11 内視鏡システム及びモータ制御システム
PCT/JP2019/007913 WO2019198373A1 (ja) 2018-04-11 2019-02-28 内視鏡システム及びモータ制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018076033A JP2021151276A (ja) 2018-04-11 2018-04-11 内視鏡システム及びモータ制御システム

Publications (1)

Publication Number Publication Date
JP2021151276A true JP2021151276A (ja) 2021-09-30

Family

ID=68164123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018076033A Pending JP2021151276A (ja) 2018-04-11 2018-04-11 内視鏡システム及びモータ制御システム

Country Status (2)

Country Link
JP (1) JP2021151276A (ja)
WO (1) WO2019198373A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3525736B2 (ja) * 1998-04-28 2004-05-10 日産自動車株式会社 モータを駆動源とした機械の診断装置
JP2013158569A (ja) * 2012-02-07 2013-08-19 Olympus Medical Systems Corp 内視鏡
CN107072499B (zh) * 2015-07-15 2020-02-14 奥林巴斯株式会社 医疗设备用的驱动力传递机构
JP5985099B1 (ja) * 2016-03-31 2016-09-06 株式会社高田工業所 回転機械系の異常検知方法、その異常検知方法を用いた回転機械系の異常監視方法、及びその異常監視方法を用いた回転機械系の異常監視装置

Also Published As

Publication number Publication date
WO2019198373A1 (ja) 2019-10-17

Similar Documents

Publication Publication Date Title
JP4668643B2 (ja) 内視鏡装置
JP5766940B2 (ja) 管状挿入システム
WO2015118773A1 (ja) 挿入装置
JP2006314775A (ja) 内視鏡装置
EP2070480B1 (en) Ultrasound image processing apparatus and ultrasound diagnostic apparatus
JP2006043449A (ja) 内視鏡システム
JP4436638B2 (ja) 内視鏡装置及び内視鏡挿入動作プログラム
JPH08299260A (ja) 超音波内視鏡
US20090299183A1 (en) Ultrasound diagnostic apparatus
JP2008253524A (ja) 超音波観測システム
US9603507B2 (en) Insertion device
US20170258298A1 (en) Endoscope system
JP2009233247A (ja) 超音波検査システム及び画像処理装置
JP2021151276A (ja) 内視鏡システム及びモータ制御システム
JP6150579B2 (ja) 挿入装置
JP5046609B2 (ja) 超音波診断装置
JP2016174782A (ja) 超音波観察システム、超音波プロセッサ装置、及び超音波観察システムの作動方法
JPH03198828A (ja) 内視鏡装置
KR102146307B1 (ko) 전후방 복합구동 방식 내시경 로봇 시스템 및 이를 이용한 고안전 내시경 로봇 구동 제어 방법
JP2019170638A (ja) 内視鏡システム
JP7096713B2 (ja) 内視鏡システム
JP6728493B2 (ja) 装置、制御装置及び制御方法
JP5028284B2 (ja) 内視鏡の光源装置、および内視鏡システム
JP2009142441A (ja) 内視鏡の光源装置、および内視鏡システム
JP6298787B2 (ja) 超音波観察システム及び超音波プローブの種別判定方法