JP2021148195A - Power transmission device - Google Patents

Power transmission device Download PDF

Info

Publication number
JP2021148195A
JP2021148195A JP2020048544A JP2020048544A JP2021148195A JP 2021148195 A JP2021148195 A JP 2021148195A JP 2020048544 A JP2020048544 A JP 2020048544A JP 2020048544 A JP2020048544 A JP 2020048544A JP 2021148195 A JP2021148195 A JP 2021148195A
Authority
JP
Japan
Prior art keywords
housing
planetary gear
power transmission
transmission device
spring member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020048544A
Other languages
Japanese (ja)
Inventor
泰寛 藤田
Yasuhiro Fujita
泰寛 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020048544A priority Critical patent/JP2021148195A/en
Priority to CN202120359460.9U priority patent/CN215334303U/en
Publication of JP2021148195A publication Critical patent/JP2021148195A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Retarders (AREA)
  • General Details Of Gearings (AREA)

Abstract

To provide a power transmission device capable of preventing generation of foreign sound such as tooth hammering sound in a planetary gear mechanism by torque fluctuation.SOLUTION: In a power transmission device 100 in which a plurality of planetary gear mechanisms PG1, PG2 coaxially disposed, are housed in a housing 1, ring gears r1, r2 of two planetary gear mechanisms PG1, PG2 axially adjacent to each other, are fixed in the housing 1, a spring member 13 bent into a dog leg shape is disposed in a circumferential clearance δ between each of the ring gears r1, r2 of two planetary gear mechanisms PG1, PG2 axially adjacent to each other and the housing 1 in a manner of axially crossing both ring gears r1, r2. Here, the ring gears r1, r2 of two planetary gear mechanisms PG1, PG2 are respectively fixed to the housing 1 by spline-fitting, and the spring members 13 are respectively disposed in a circumferential clearance δ of the fitting portion of the ring gears r1, r2 and the housing 1. The plurality of spring members 13 are arranged at equal angular pitches in a circumferential direction.SELECTED DRAWING: Figure 3

Description

本発明は、同軸上に配置された複数の遊星ギヤ機構を備える動力伝達装置に関する。 The present invention relates to a power transmission device including a plurality of planetary gear mechanisms arranged coaxially.

例えば、車両の動力伝達装置には、エンジンや電動モータなどの駆動源から入力軸に入力される回転を減速するための減速機構が設けられているが、この減速機構において高い減速比を得るために、例えば、複数の遊星ギヤ機構を軸方向に並設して構成される動力伝達装置が知られている。 For example, a vehicle power transmission device is provided with a deceleration mechanism for decelerating the rotation input to an input shaft from a drive source such as an engine or an electric motor. In order to obtain a high reduction ratio in this deceleration mechanism. In addition, for example, a power transmission device in which a plurality of planetary gear mechanisms are arranged side by side in the axial direction is known.

ところで、各遊星ギヤ機構は、サンギヤと、該サンギヤの周囲に配置されるリングギヤと、サンギヤとリングギヤに噛合して自転しながらサンギヤの周りを公転する複数のピニオンギヤ(遊星ギヤ)と、これらのピニオンギヤを回転可能に支持するキャリアを含んで構成されている。このような遊星ギヤ機構を例えば軸方向に2つ並設して構成される動力伝達装置によれば、駆動源によって回転駆動される入力軸の回転が2つの遊星ギヤ機構によって2段階に減速されるために高い減速比が得られるとともに、全体を小型コンパクトに構成することができる。 By the way, each planetary gear mechanism includes a sun gear, a ring gear arranged around the sun gear, a plurality of pinion gears (planetary gears) that revolve around the sun gear while meshing with the sun gear and the ring gear, and these pinion gears. It is configured to include a carrier that rotatably supports the. According to a power transmission device in which two such planetary gear mechanisms are arranged side by side in the axial direction, for example, the rotation of the input shaft rotationally driven by the drive source is decelerated in two stages by the two planetary gear mechanisms. Therefore, a high reduction ratio can be obtained, and the whole can be made compact and compact.

しかしながら、複数の遊星ギヤ機構を軸方向に並設した減速機構を備える動力伝達装置においては、高負荷時にリングギヤに軸振れが生じ、リングギヤがハウジングに衝突して異音が発生するという不具合が起こる可能性がある。 However, in a power transmission device provided with a reduction mechanism in which a plurality of planetary gear mechanisms are arranged side by side in the axial direction, there is a problem that the ring gears cause axial runout at high load and the ring gears collide with the housing to generate an abnormal noise. there is a possibility.

そこで、特許文献1には、リングギヤの外周に軟質弾性体を固着し、リングギヤがハウジングに衝突した際の衝撃を軟質弾性体の弾性変形によって吸収することによって、リングギヤの軸振れに起因する異音の発生を抑えるようにした消音装置が提案されている。 Therefore, in Patent Document 1, a soft elastic body is fixed to the outer periphery of the ring gear, and the impact when the ring gear collides with the housing is absorbed by the elastic deformation of the soft elastic body, so that an abnormal noise caused by the shaft runout of the ring gear is obtained. A muffling device has been proposed that suppresses the occurrence of.

実開昭62−080071号公報Jikkai Sho 62-080071

しかしながら、特許文献1において提案された消音装置においては、高負荷時に軟質弾性体が叩かれて潰されるため、該軟質弾性体による衝撃吸収効果が低下し、異音の抑制効果も低下するという問題がある。 However, in the sound deadening device proposed in Patent Document 1, since the soft elastic body is struck and crushed at a high load, the impact absorption effect of the soft elastic body is reduced, and the effect of suppressing abnormal noise is also reduced. There is.

ところで、リングギヤがスプライン嵌合によってハウジングに固定されている遊星ギヤ機構においては、トルク変動によってリングギヤとハウジングとのスプライン嵌合部にスプライン歯同士の衝突による歯打ち音が発生するという問題があるが、特許文献1において提案された消音装置では、このような歯打ち音の発生を防ぐことはできない。 By the way, in a planetary gear mechanism in which a ring gear is fixed to a housing by spline fitting, there is a problem that a rattling noise is generated at a spline fitting portion between the ring gear and the housing due to collision between spline teeth due to torque fluctuation. The muffling device proposed in Patent Document 1 cannot prevent the occurrence of such a rattling noise.

本発明は、上記問題に鑑みてなされたもので、その目的は、トルク変動による遊星ギヤ機構における歯打ち音などの異音の発生を防ぐことができる動力伝達装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a power transmission device capable of preventing generation of abnormal noise such as rattling noise in a planetary gear mechanism due to torque fluctuation.

上記目的を達成するため、本発明は、同軸上に配置された複数の遊星ギヤ機構(PG1,PG2)をハウジング(1)内に収容し、軸方向に隣接する2つの前記遊星ギヤ機構(PG1,PG2)の各リングギヤ(r1,r2)を前記ハウジング(1)に固定した動力伝達装置(100)であって、軸方向に隣接する2つの前記遊星ギヤ機構(PG1,PG2)の各リングギヤ(r1,r2)と前記ハウジング(1)との周方向隙間(δ)に、屈曲するバネ部材(13)を、前記両リングギヤ(r1,r2)を軸方向に跨ぐように配置したことを特徴とする。 In order to achieve the above object, the present invention accommodates a plurality of planetary gear mechanisms (PG1, PG2) arranged coaxially in the housing (1), and two planetary gear mechanisms (PG1) adjacent to each other in the axial direction. , PG2) is a power transmission device (100) in which each ring gear (r1, r2) is fixed to the housing (1), and each ring gear (PG1, PG2) of the two planetary gear mechanisms (PG1, PG2) adjacent to each other in the axial direction. A feature is that a bending spring member (13) is arranged in a circumferential gap (δ) between r1, r2) and the housing (1) so as to straddle both ring gears (r1, r2) in the axial direction. do.

ここで、2つの前記遊星ギヤ機構(PG1,PG2)の各リングギヤ(r1,r2)は、前記ハウジング(1)にそれぞれスプライン嵌合によって固定され、これらのリングギヤ(r1,r2)と前記ハウジング(1)との嵌合部の周方向隙間(δ)に前記バネ部材(13)を配置する。 Here, the ring gears (r1, r2) of the two planetary gear mechanisms (PG1, PG2) are fixed to the housing (1) by spline fitting, respectively, and these ring gears (r1, r2) and the housing (r1, r2) are fixed. The spring member (13) is arranged in the circumferential gap (δ) of the fitting portion with 1).

本発明によれば、軸方向に隣接する2つの遊星ギヤ機構におけるトルク変動がバネ部材の弾性変形によって吸収されため、リングギヤのスプライン歯とハウジングのスプライン歯との衝突が防がれ、両者の衝突による歯打ち音の発生が防がれて動力伝達装置の静音化が図られる。 According to the present invention, the torque fluctuations in the two planetary gear mechanisms adjacent to each other in the axial direction are absorbed by the elastic deformation of the spring member, so that the collision between the spline teeth of the ring gear and the spline teeth of the housing is prevented, and the collision between the two is prevented. The generation of rattling noise is prevented and the power transmission device is made quieter.

また、前記動力伝達装置(100)において、複数の前記バネ部材(13)を周方向に等角度ピッチで配置することが望ましい。 Further, in the power transmission device (100), it is desirable that a plurality of the spring members (13) are arranged at equal angle pitches in the circumferential direction.

このように複数のバネ部材を周方向に等角度ピッチで配置することによって、各遊星ギヤ機構におけるトルク変動を複数のバネ部材によって周方向に均等に効果的に吸収することができる。 By arranging the plurality of spring members at equal angles in the circumferential direction in this way, the torque fluctuations in each planetary gear mechanism can be effectively and evenly absorbed in the circumferential direction by the plurality of spring members.

また、前記動力伝達装置(100)において、前記バネ部材(13)は、金属製の板材または棒材をくの字状に折り曲げて構成され、その長手方向両端部が隣接する前記各リングギヤ(r1,r2)にそれぞれ当接し、長手方向中間の屈曲部が前記ハウジング(1)に当接するよう配置されていることが好ましい。 Further, in the power transmission device (100), the spring member (13) is formed by bending a metal plate or bar in a dogleg shape, and both end portions in the longitudinal direction thereof are adjacent to each ring gear (r1). , R2), respectively, and it is preferable that the bent portion in the middle in the longitudinal direction is arranged so as to abut on the housing (1).

そして、この場合、前記バネ部材(13)の前記屈曲部の前記ハウジング(1)への当接点(P)は、同バネ部材(13)の長手方向両端部に前記各リングギヤ(r1,r2)から作用する力(F1,F2)による当該当接点(P)を中心とする互いに逆方向のモーメント(M1,M2)が釣り合う位置に配置されていることが望ましい。 In this case, the contact points (P) of the bent portion of the spring member (13) with the housing (1) are located at both ends of the spring member (13) in the longitudinal direction. It is desirable that the moments (M1, M2) in opposite directions centering on the contact point (P) due to the forces acting from (F1, F2) are arranged at a balanced position.

上記構成によれば、バネ部材の長手方向両端部に2つの遊星ギヤ機構の各リングギヤから作用する力によるモーメントが釣り合って互いに相殺するため、各リングギヤのスプライン歯が、ハウジングのスプライン歯に接触せず、歯打ち音などの異音を防ぐことができる。 According to the above configuration, the moments due to the forces acting from the ring gears of the two planetary gear mechanisms are balanced and cancel each other at both ends in the longitudinal direction of the spring member, so that the spline teeth of the ring gears come into contact with the spline teeth of the housing. However, it is possible to prevent abnormal noise such as rattling noise.

本発明によれば、動力伝達装置の遊星ギヤ機構において、トルク変動による歯打ち音などの異音の発生を防ぐことができるという効果が得られる。 According to the present invention, in the planetary gear mechanism of the power transmission device, it is possible to obtain an effect that it is possible to prevent the generation of abnormal noise such as rattling noise due to torque fluctuation.

本発明に係る動力伝達装置の基本構成を模式的に示す縦断面図である。It is a vertical cross-sectional view which shows typically the basic structure of the power transmission device which concerns on this invention. 本発明に係る動力伝達装置の遊星ギヤ機構の速度線図である。It is a speed diagram of the planetary gear mechanism of the power transmission device which concerns on this invention. 本発明に係る動力伝達装置の遊星ギヤ機構部の半裁断面図である。It is a half-cut sectional view of the planetary gear mechanism part of the power transmission device which concerns on this invention. 図3のA−A線断面図である。FIG. 3 is a cross-sectional view taken along the line AA of FIG. 図4のB部拡大断面図である。It is an enlarged cross-sectional view of part B of FIG. 図5のC−C線断面図である。FIG. 5 is a cross-sectional view taken along the line CC of FIG. バネ部材の斜視図である。It is a perspective view of a spring member.

以下に本発明の実施の形態を添付図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は本発明に係る動力伝達装置の基本構成を模式的に示す縦断面図、図2は同動力伝達装置の遊星ギヤ機構の速度線図であり、図1に示す動力伝達装置100は、不図示の電気自動車(EV車)に搭載されるものであって、以下のように構成されている。 FIG. 1 is a vertical sectional view schematically showing a basic configuration of a power transmission device according to the present invention, FIG. 2 is a speed diagram of a planetary gear mechanism of the power transmission device, and the power transmission device 100 shown in FIG. 1 is a speed diagram. It is mounted on an electric vehicle (EV vehicle) (not shown) and has the following configuration.

すなわち、図1に示す動力伝達装置100は、ハウジング1内に駆動源である電動モータMと多段減速機T、ディファレンシャル機構(差動機構)Dなどを収容して構成されている。より詳細には、ハウジング1内は隔壁1Aによってモータ室SMとギヤ室SGとに区画されており、モータ室SMには、駆動源である電動モータMが収容され、ギヤ室SGには多段減速機Tとディファレンシャル機構Dが収容されている。なお、電動モータMは、回生時に発電機(ジェネレータ)としても機能するものであって、これには不図示のインバータを介してバッテリが電気的に接続されており、このバッテリから供給される電力によって当該電動モータMが回転駆動される。 That is, the power transmission device 100 shown in FIG. 1 includes an electric motor M as a drive source, a multi-stage speed reducer T, a differential mechanism (differential mechanism) D, and the like in the housing 1. More specifically, the inside of the housing 1 is divided into a motor chamber SM and a gear chamber SG by a partition wall 1A, an electric motor M as a drive source is housed in the motor chamber SM, and a multi-stage deceleration is performed in the gear chamber SG. The machine T and the differential mechanism D are housed. The electric motor M also functions as a generator during regeneration, and a battery is electrically connected to the electric motor M via an inverter (not shown), and the electric power supplied from the battery is connected to the electric motor M. The electric motor M is driven to rotate.

上記電動モータMの中心には、該電動モータMによって回転駆動される回転可能な中空の入力軸(モータ軸)2が挿通しており、この入力軸2の軸方向両端部は、軸受(ボールベアリング)3によってハウジング1に回転可能に支持されている。そして、この入力軸2の軸方向一端部(図1の左端部)は、ハウジング1の隔壁1Aを貫通してギヤ室SGに臨んでいる。 A rotatable hollow input shaft (motor shaft) 2 rotationally driven by the electric motor M is inserted in the center of the electric motor M, and both ends of the input shaft 2 in the axial direction are bearings (balls). It is rotatably supported by the housing 1 by a bearing) 3. An axial end portion (left end portion in FIG. 1) of the input shaft 2 penetrates the partition wall 1A of the housing 1 and faces the gear chamber SG.

ギヤ室SGに収容された多段減速機Tは、入力軸2の軸方向(図1の左右方向)に隣接して並設された第1遊星ギヤ機構PG1と第2遊星ギヤ機構PG2を備えている。ここで、第1遊星ギヤ機構PG1は、入力軸2のギヤ室SGへと延出する軸方向一端部(図1の左端部)の外周に形成された小径のサンギヤs1と、ハウジング1の内周に固定された大径のリングギヤr1と、サンギヤs1とリングギヤr1に噛合して自転しながらサンギヤs1の周りを公転する複数(図1には2つのみ図示)のピニオンギヤ(遊星ギヤ)p1と、これらのピニオンギヤp1を回転(自転)可能に支持するキャリアc1を備えている。 The multi-stage speed reducer T housed in the gear chamber SG includes a first planetary gear mechanism PG1 and a second planetary gear mechanism PG2 arranged side by side adjacent to the axial direction of the input shaft 2 (left-right direction in FIG. 1). There is. Here, the first planetary gear mechanism PG1 includes a small-diameter sun gear s1 formed on the outer periphery of one end in the axial direction (left end in FIG. 1) extending to the gear chamber SG of the input shaft 2, and the inside of the housing 1. A large-diameter ring gear r1 fixed to the circumference and a plurality of pinion gears (planetary gears) p1 that revolve around the sun gear s1 while engaging with the sun gear s1 and the ring gear r1 and revolving around the sun gear s1. , The carrier c1 that supports these pinion gears p1 so as to be rotatable (rotating) is provided.

また、第2遊星ギヤ機構PG2は、第1遊星ギヤ機構PG1のキャリアc1に形成された小径のサンギヤs2と、ハウジング1の内周に固定された大径のリングギヤr2と、サンギヤs2とリングギヤr2に噛合して自転しながらサンギヤs2の周りを公転する複数(図1には2つのみ図示)のピニオンギヤ(遊星ギヤ)p2と、これらのピニオンギヤp2を回転(自転)可能に支持するキャリアc2を備えている。 Further, the second planetary gear mechanism PG2 includes a small diameter sun gear s2 formed on the carrier c1 of the first planetary gear mechanism PG1, a large diameter ring gear r2 fixed to the inner circumference of the housing 1, a sun gear s2 and a ring gear r2. A plurality of pinion gears (planetary gears) p2 that revolve around the sun gear s2 while meshing with each other (only two are shown in FIG. 1) and a carrier c2 that supports these pinion gears p2 so that they can rotate (rotate). I have.

そして、第2遊星ギヤ機構PG2のキャリアc2には、ディファレンシャル機構Dのケース(デフケース)4が取り付けられている。なお、ディファレンシャル機構Dの構成は公知であるため、これについての説明は省略するが、このディファレンシャル機構Dからは左右の出力軸(車軸)5L,5Rが同一軸上を車幅方向(図1の左右方向)に沿って延びており、各車軸5L,5Rの外端部には不図示の車輪(駆動輪)がそれぞれ取り付けられている。ここで、ディファレンシャル機構Dのケース(デフケース)4は、軸受(ボールベアリング)6によってハウジング1に回転可能に支持されている。 A case (diff case) 4 of the differential mechanism D is attached to the carrier c2 of the second planetary gear mechanism PG2. Since the configuration of the differential mechanism D is known, the description thereof will be omitted, but from this differential mechanism D, the left and right output shafts (axles) 5L and 5R are on the same axis in the vehicle width direction (FIG. 1). It extends along the left-right direction), and wheels (driving wheels) (not shown) are attached to the outer ends of the axles 5L and 5R, respectively. Here, the case (diff case) 4 of the differential mechanism D is rotatably supported by the housing 1 by the bearing (ball bearing) 6.

ところで、一方(図1の右方)の出力軸(車軸)5Rは、第2遊星ギヤ機構PG2のキャリアc2の中空部と中空の入力軸(モータ軸)2を貫通してハウジング1の外方へと延出しており、この出力軸(車軸)5Rと入力軸(モータ軸)2とは同一軸心上を車幅方向(図1の左右方向)に沿って回転可能に配置されている。なお、出力軸(車軸)5Rの軸方向一端部(図1の右端部)は、軸受7によってハウジング1に回転可能に支持されている。 By the way, one output shaft (axle) 5R (on the right side of FIG. 1) penetrates the hollow portion of the carrier c2 of the second planetary gear mechanism PG2 and the hollow input shaft (motor shaft) 2 to the outside of the housing 1. The output shaft (axle) 5R and the input shaft (motor shaft) 2 are rotatably arranged along the same axis along the vehicle width direction (left-right direction in FIG. 1). An axial end portion (right end portion in FIG. 1) of the output shaft (axle) 5R is rotatably supported by the housing 1 by a bearing 7.

而して、以上のように構成された動力伝達装置100において、電動モータMが起動されて入力軸(モータ軸)2が所定の速度で回転駆動されると、この入力軸2の回転は、第1遊星ギヤ機構PG1と第2遊星ギヤ機構PG2によって2段減速されて左右の出力軸(車軸)5L,5Rへとそれぞれ伝達される。 Thus, in the power transmission device 100 configured as described above, when the electric motor M is started and the input shaft (motor shaft) 2 is rotationally driven at a predetermined speed, the rotation of the input shaft 2 is rotated. It is decelerated by two stages by the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 and transmitted to the left and right output shafts (axles) 5L and 5R, respectively.

すなわち、図2に示すように、第1遊星ギヤ機構PG1においては、入力軸(モータ軸)2に形成されたサンギヤs1が入力軸2と共に速度V1で回転駆動されると、自転しながらサンギヤs1の周りを公転するピニオンギヤp1を支持するキャリアc1が速度(ピニオンギヤp1の公転速度)V2(<V1)で回転する。この結果、入力軸(モータ軸)2の回転は、第1遊星ギヤ機構PG1によって速度V1から速度V2(<V1)へと減速される。 That is, as shown in FIG. 2, in the first planetary gear mechanism PG1, when the sun gear s1 formed on the input shaft (motor shaft) 2 is rotationally driven together with the input shaft 2 at a speed V1, the sun gear s1 rotates while rotating. The carrier c1 that supports the pinion gear p1 that revolves around the pinion gear p1 rotates at a speed (revolution speed of the pinion gear p1) V2 (<V1). As a result, the rotation of the input shaft (motor shaft) 2 is decelerated from the speed V1 to the speed V2 (<V1) by the first planetary gear mechanism PG1.

そして、第2遊星ギヤ機構PG2においては、図2に示すように、第1遊星ギヤ機構PG1のキャリアc1に形成されたサンギヤs2がキャリアc1と同速度V2で回転し、自転しながらサンギヤs2の周りを公転するピニオンギヤp2を支持するキャリアc2が速度(ピニオンギヤp2の公転速度)V3(<V2)で回転する。 Then, in the second planetary gear mechanism PG2, as shown in FIG. 2, the sun gear s2 formed on the carrier c1 of the first planetary gear mechanism PG1 rotates at the same speed V2 as the carrier c1 and rotates while rotating on the sun gear s2. The carrier c2 that supports the pinion gear p2 that revolves around it rotates at a speed (revolution speed of the pinion gear p2) V3 (<V2).

以上の結果、入力軸(モータ軸)2の回転は、第1遊星ギヤ機構PG1と第2遊星ギヤ機構PG2によって速度V1から速度V3(<V2<V1)へと2段減速される。すると、ディファレンシャル機構Dのケース(デフケース)4が第2遊星ギヤ機構PG2のキャリアc2と共に速度V3で回転し、この回転は、ディファレンシャル機構Dによって分配されて左右の出力軸(車軸)5L,5Rへと伝達され、左右の出力軸(車軸)5L,5Rがそれぞれ回転駆動される。この結果、左右の出力軸(車軸)5L,5Rの各外端部にそれぞれ取り付けられた左右の不図示の車輪(駆動輪)がそれぞれ回転駆動されるため、電気自動車(EV車)が所定の速度で走行する。 As a result of the above, the rotation of the input shaft (motor shaft) 2 is decelerated by the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 in two steps from the speed V1 to the speed V3 (<V2 <V1). Then, the case (diff case) 4 of the differential mechanism D rotates at a speed V3 together with the carrier c2 of the second planet gear mechanism PG2, and this rotation is distributed by the differential mechanism D to the left and right output shafts (axles) 5L and 5R. And the left and right output shafts (axles) 5L and 5R are rotationally driven, respectively. As a result, the left and right wheels (driving wheels) attached to the outer ends of the left and right output shafts (axles) 5L and 5R are rotationally driven, so that the electric vehicle (EV vehicle) is predetermined. Drive at speed.

次に、多段減速機Tの構成の詳細を図3〜図6に基づいて以下に説明する。 Next, the details of the configuration of the multi-stage speed reducer T will be described below with reference to FIGS. 3 to 6.

図3は本発明に係る動力伝達装置の遊星ギヤ機構部の半裁断面図、図4は図3のA−A線断面図、図5は図4のB部拡大断面図、図6は図5のC−C線断面図、図7はバネ部材の斜視図である。 FIG. 3 is a half-cut sectional view of a planetary gear mechanism portion of the power transmission device according to the present invention, FIG. 4 is a sectional view taken along line AA of FIG. 3, FIG. 5 is an enlarged sectional view of portion B of FIG. 4, and FIG. 6 is FIG. CC line sectional view, FIG. 7 is a perspective view of a spring member.

図3に示すように、第1遊星ギヤ機構PG1においては、複数(図3には1つのみ図示)のピニオンギヤp1は、キャリアc1に取り付けられた水平な第1ピニオンシャフト8に対して軸受(ニードルベアリング)9によってそれぞれ回転(自転)可能に支持されている。 As shown in FIG. 3, in the first planetary gear mechanism PG1, a plurality of pinion gears p1 (only one is shown in FIG. 3) are bearings (only one is shown in FIG. 3) with respect to the horizontal first pinion shaft 8 attached to the carrier c1. Needle bearings) 9 support each of them so that they can rotate (rotate).

また、第2遊星ギヤ機構PG2においては、複数(図3には1つのみ図示)のピニオンギヤp2は、キャリアc2に取り付けられた水平な第2ピニオンシャフト10に対して軸受(ニードルベアリング)11によってそれぞれ回転(自転)可能に支持されている。なお、この第2遊星ギヤ機構PG2のキャリアc2は、軸受(ボールベアリング)12によってハウジング1に回転可能に支持されている。 Further, in the second planetary gear mechanism PG2, a plurality of pinion gears p2 (only one is shown in FIG. 3) are provided by bearings (needle bearings) 11 with respect to the horizontal second pinion shaft 10 attached to the carrier c2. Each is supported so that it can rotate (rotate). The carrier c2 of the second planetary gear mechanism PG2 is rotatably supported by the housing 1 by a bearing (ball bearing) 12.

ところで、第1遊星ギヤ機構PG1のリングギヤr1と第2遊星ギヤ機構PG2のリングギヤr2は、図3に示すように、間に軸受(ボールベアリング)12を挟んで軸方向に並設されており、これらのリングギヤr1,r2は、その外周部がハウジング1の内周部にスプライン嵌合によって固定されている。ここで、第1遊星ギヤ機構PG1のリングギヤr1のハウジング1のスプライン嵌合部の詳細を図4に示すが、同図に示すように、このスプライン嵌合部においては、ハウジング1の内周に形成された複数のスプライン歯1aとリングギヤr1の外周に形成された複数のスプライン歯r1aとが互いに噛合している。そして、ハウジング1のスプライン歯1aとリングギヤr1のスプライン歯r1aとの間には、複数の周方向隙間δが形成されている。 By the way, as shown in FIG. 3, the ring gear r1 of the first planetary gear mechanism PG1 and the ring gear r2 of the second planetary gear mechanism PG2 are arranged side by side in the axial direction with a bearing (ball bearing) 12 sandwiched between them. The outer peripheral portions of these ring gears r1 and r2 are fixed to the inner peripheral portion of the housing 1 by spline fitting. Here, the details of the spline fitting portion of the housing 1 of the ring gear r1 of the first planetary gear mechanism PG1 are shown in FIG. 4. As shown in the figure, in this spline fitting portion, on the inner circumference of the housing 1. The plurality of spline teeth 1a formed and the plurality of spline teeth r1a formed on the outer periphery of the ring gear r1 are in mesh with each other. A plurality of circumferential gaps δ are formed between the spline teeth 1a of the housing 1 and the spline teeth r1a of the ring gear r1.

また、図3に示すように、第2遊星ギヤ機構PG2のリングギヤr2のハウジング1へのスプライン嵌合部においても、ハウジング1の内周に形成された複数のスプライン歯1aとリングギヤr2の外周に形成された複数のスプライン歯r2aが互いに噛合しているが、両スプライン歯1a、r2aとの間にも複数の径方向隙間δが形成されている。 Further, as shown in FIG. 3, also in the spline fitting portion of the ring gear r2 of the second planetary gear mechanism PG2 to the housing 1, a plurality of spline teeth 1a formed on the inner circumference of the housing 1 and the outer periphery of the ring gear r2 Although the plurality of formed spline teeth r2a are in mesh with each other, a plurality of radial gaps δ are also formed between the two spline teeth 1a and r2a.

而して、本実施の形態においては、ハウジング1のスプライン歯1aとリングギヤr1,r2のスプライン歯r1a,r2aとの間に形成される複数の周方向隙間δのうちの幾つか(本実施の形態では、4つ)には、図3〜図6に示すように、くの字状(あるいはU字状又はV字状、以下同じ。)に屈曲するバネ部材13が両リングギヤr1,r2を軸方向に跨ぐようにそれぞれ配置されている(図3及び図6参照)。ここで、バネ部材13は、図7に示すように、バネ鋼などの金属製の板材をくの字状に折り曲げて構成されており、本実施の形態では、4つのバネ部材13が周方向に等角度ピッチ(90°ピッチ)で配置されている。なお、バネ部材13を配置する数は任意であって、例えば、バネ部材13が2つである場合には周方向に180°ピッチ、3つである場合には周方向に120°ピッチ、6つである場合には周方向に60°ピッチで配置され、当該バネ部材13の数をnとすると、その周方向の配置角度は360°/nとなる。また、バネ部材13を金属製の棒部材(丸棒や角棒)をくの字状に折り曲げることによって構成してもよい。 Thus, in the present embodiment, some of the plurality of circumferential gaps δ formed between the spline teeth 1a of the housing 1 and the spline teeth r1a and r2a of the ring gears r1 and r2 (in the present embodiment). In the four forms, as shown in FIGS. 3 to 6, spring members 13 that bend in a dogleg shape (or U shape or V shape, the same applies hereinafter) form both ring gears r1 and r2. They are arranged so as to straddle each other in the axial direction (see FIGS. 3 and 6). Here, as shown in FIG. 7, the spring member 13 is formed by bending a metal plate material such as spring steel into a dogleg shape, and in the present embodiment, the four spring members 13 are arranged in the circumferential direction. They are arranged at an equal angle pitch (90 ° pitch). The number of spring members 13 to be arranged is arbitrary. For example, when there are two spring members 13, the pitch is 180 ° in the circumferential direction, and when there are three, the pitch is 120 ° in the circumferential direction. In the case of one, the spring members are arranged at a pitch of 60 ° in the circumferential direction, and when the number of the spring members 13 is n, the arrangement angle in the circumferential direction is 360 ° / n. Further, the spring member 13 may be formed by bending a metal rod member (round rod or square rod) into a dogleg shape.

ところで、各バネ部材13は、図6に示すように、その長手方向両端部が軸方向に隣接する2つのリングギヤr1,r2にそれぞれ当接し、長手方向中間の屈曲部がハウジング1に当接するよう配置されている。ここで、各バネ部材13の屈曲部のハウジング1への当接点Pは、当該バネ部材13の長手方向両端部に各リングギヤr1,r2から作用する力F1,F2による当該当接点Pを中心とする互いに逆方向のモーメントM1,M2が釣り合う位置に配置されている。 By the way, as shown in FIG. 6, each spring member 13 is in contact with two ring gears r1 and r2 adjacent to each other in the longitudinal direction at both ends in the longitudinal direction, and the bent portion in the middle in the longitudinal direction is in contact with the housing 1. Have been placed. Here, the contact point P of the bent portion of each spring member 13 with respect to the housing 1 is centered on the contact point P due to the forces F1 and F2 acting on both ends of the spring member 13 in the longitudinal direction from the ring gears r1 and r2. The moments M1 and M2 in opposite directions are arranged at a balanced position.

より詳細には、リングギヤr1,r2は、複数のピニオンギヤp1,p2からトルクT1,T2を受けるが、ピニオンギヤp1,p2は、これらを支持するキャリアc1,c2と同速度V2,V3(図2の速度線図参照)でサンギヤs1,s2の周りを公転する。ここで、図2から明らかなように、ピニオンギヤp1の公転速度(キャリアc1の回転速度)V2の方がピニオンギヤp2の公転速度(キャリアc3の回転速度)V3よりも大きいため(V2>V3)、リングギヤr1がピニオンギヤp1から受けるトルクT1の方がリングギヤr2がピニオンギヤp2から受けるトルクT2よりも小さくなる(T1<T2)。 More specifically, the ring gears r1 and r2 receive torques T1 and T2 from a plurality of pinion gears p1 and p2, and the pinion gears p1 and p2 have the same speed V2 and V3 as the carriers c1 and c2 supporting them (FIG. 2). Revolve around the sun gears s1 and s2 (see speed diagram). Here, as is clear from FIG. 2, the revolution speed of the pinion gear p1 (rotational speed of the carrier c1) V2 is larger than the revolution speed of the pinion gear p2 (rotational speed of the carrier c3) V3 (V2> V3). The torque T1 received by the ring gear r1 from the pinion gear p1 is smaller than the torque T2 received by the ring gear r2 from the pinion gear p2 (T1 <T2).

ここで、各リングギヤr1,r2の噛み合い点の半径をrとすると、各リングギヤr1,r2からバネ部材13に作用する力F1,F2は、それぞれ次式によって表される。 Here, assuming that the radius of the meshing point of each ring gear r1 and r2 is r, the forces F1 and F2 acting on the spring member 13 from each ring gear r1 and r2 are expressed by the following equations, respectively.

F1=T1/r …(1)
F2=T2/r …(2)
前述のように、T1<T2であるため、上式(1),(2)からF1,F2には次の大小関係が成立する。
F1 = T1 / r ... (1)
F2 = T2 / r ... (2)
As described above, since T1 <T2, the following magnitude relations are established for F1 and F2 from the above equations (1) and (2).

F1<F2 …(3)
ここで、図6に示すように、バネ部材13のリングギヤr1,r2への当接点P1,P2のハウジング1への当接点Pからの距離をそれぞれL1,L2とすると、力F1,F2による当接点Pを中心とする互いに逆方向のモーメントM1,M2は、それぞれ次式にて表される。
F1 <F2 ... (3)
Here, as shown in FIG. 6, assuming that the distances of the contact points P1 and P2 of the spring member 13 to the ring gears r1 and r2 from the contact points P to the housing 1 are L1 and L2, respectively, the forces F1 and F2 are applied. The moments M1 and M2 in opposite directions with respect to the contact point P are expressed by the following equations, respectively.

M1=F1×L1 …(4)
M2=F2×L2 …(5)
これらのモーメントが釣り合う(M1=M2)には、次の関係が成立する必要がある。
M1 = F1 x L1 ... (4)
M2 = F2 x L2 ... (5)
In order for these moments to be balanced (M1 = M2), the following relationship must be established.

F1×L1=F2×L2 …(6)
したがって、バネ部材13の長手方向両端部(リングギヤr1,r2への当接点P1,P2)の屈曲点(ハウジング1への当接点P)からの距離L1,L2には、次の関係が成立する。
F1 x L1 = F2 x L2 ... (6)
Therefore, the following relationship is established for the distances L1 and L2 from the bending points (contact points P to the housing 1) of both ends of the spring member 13 in the longitudinal direction (contact points P1 and P2 to the ring gears r1 and r2). ..

L1/L2=F2/F1 …(7)
ここで、(3)式よりF1<F2であるため、L1とL2との間には次の大小関係が成立する。
L1 / L2 = F2 / F1 ... (7)
Here, since F1 <F2 from the equation (3), the following magnitude relationship is established between L1 and L2.

L1>L2 …(8)
以上において、本実施の形態では、軸方向に隣接する第1遊星ギヤ機構PG1と第2遊星ギヤ機構PG2のリングリヤr1,r2のハウジング1とのスプライン嵌合部の周方向隙間(具体的には、リングギヤr1,r2のスプライン歯r1a,r2aとハウジング1のスプライン歯1aとの周方向隙間)δにくの字状に屈曲するバネ部材13を両リングギヤr1,r2を軸方向に跨ぐように配置したため、第1遊星ギヤ機構PG1と第2遊星ギヤ機構PG2におけるトルク変動がバネ部材13の弾性変形によって吸収される。このため、リングギヤr1,r2のスプライン歯r1a,r2aとハウジング1のスプライン歯1aとの衝突が防がれ、両者の衝突による歯打ち音の発生が防がれて動力伝達装置100の静音化が図られる。
L1> L2 ... (8)
In the above, in the present embodiment, there is a circumferential gap (specifically, a circumferential gap) between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 ring rear r1 and r2 housings 1 adjacent to each other in the axial direction. , Circumferential gap between the spline teeth r1a and r2a of the ring gears r1 and r2 and the spline teeth 1a of the housing 1) Therefore, the torque fluctuations in the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 are absorbed by the elastic deformation of the spring member 13. Therefore, the collision between the spline teeth r1a and r2a of the ring gears r1 and r2 and the spline teeth 1a of the housing 1 is prevented, the generation of rattling noise due to the collision between the two is prevented, and the power transmission device 100 is made quieter. It is planned.

また、本実施の形態では、複数のバネ部材13を周方向に等角度ピッチで配置したため、各遊星ギヤ機構PG1,PG2におけるトルク変動を複数のバネ部材13によって周方向に均等に効果的に吸収することができる。 Further, in the present embodiment, since the plurality of spring members 13 are arranged at equal angles in the circumferential direction, the torque fluctuations in the planetary gear mechanisms PG1 and PG2 are effectively and evenly absorbed in the circumferential direction by the plurality of spring members 13. can do.

さらに、本実施の形態においては、バネ部材13の屈曲部のハウジング1への当接点Pを、当該バネ部材13の長手方向両端部に各リングギヤr1,r2から作用する力F1,F2によるモーメントM1,M2が釣り合う位置に配置したため、各リングギヤr1,r2のスプライン歯r1a,r2aが、ハウジング1のスプライン歯1aに接触せず、歯打ち音などの異音を防ぐことができる。 Further, in the present embodiment, the contact points P of the bent portions of the spring member 13 with respect to the housing 1 are the moments M1 due to the forces F1 and F2 acting on both ends of the spring member 13 in the longitudinal direction from the ring gears r1 and r2. , M2 are arranged at balanced positions, so that the spline teeth r1a and r2a of the ring gears r1 and r2 do not come into contact with the spline teeth 1a of the housing 1, and abnormal noise such as rattling noise can be prevented.

なお、以上は本発明を電気自動車(EV車)に搭載される動力伝達装置に対して適用した形態について説明したが、本発明は、エンジンのみを駆動源とする車両や駆動源としてエンジンと電動機を併用するハイブリッド車両(HEV車)に搭載される動力伝達装置、或いは車両以外の複数の遊星ギヤ機構を軸方向に並設した任意の装置に設けられる動力伝達装置に対しても同様に適用可能である。 Although the embodiment in which the present invention is applied to a power transmission device mounted on an electric vehicle (EV vehicle) has been described above, the present invention describes a vehicle having only an engine as a drive source and an engine and an electric motor as a drive source. It can also be applied to a power transmission device mounted on a hybrid vehicle (HEV vehicle) in which the above is used in combination, or a power transmission device provided in an arbitrary device in which a plurality of planetary gear mechanisms other than the vehicle are arranged side by side in the axial direction. Is.

その他、本発明は、以上説明した実施の形態に適用が限定されるものではなく、特許請求の範囲及び明細書と図面に記載された技術的思想の範囲内で種々の変形が可能である。 In addition, the present invention is not limited to the embodiments described above, and various modifications can be made within the scope of claims and the technical ideas described in the specification and drawings.

1 ハウジング
13 バネ部材
100 動力伝達装置
F1,F2 リングギヤからバネ部材に作用する力
M1,M2 バネ部材に作用するモーメント
P バネ部材のハウジングへの当接点
P1,P2 バネ部材のリングギヤへの当接点
PG1 第1遊星ギヤ機構
PG2 第2遊星ギヤ機構
c1,c2 キャリア
p1,p2 ピニオンギヤ
r1,r2 リングギヤ
s1,s2 サンギヤ
δ 周方向隙間
1 Housing 13 Spring member 100 Power transmission device F1, F2 Force acting on the spring member from the ring gear M1, M2 Moment acting on the spring member P Contact point of the spring member with the housing P1, P2 Contact point of the spring member with the ring gear PG1 1st planetary gear mechanism PG2 2nd planetary gear mechanism c1, c2 carrier p1, p2 pinion gear r1, r2 ring gear s1, s2 sun gear δ circumferential gap

Claims (5)

同軸上に配置された複数の遊星ギヤ機構をハウジング内に収容し、軸方向に隣接する2つの前記遊星ギヤ機構の各リングギヤを前記ハウジングに固定した動力伝達装置であって、
軸方向に隣接する2つの前記遊星ギヤ機構の各リングギヤと前記ハウジングとの周方向隙間に、屈曲するバネ部材を、前記両リングギヤを軸方向に跨ぐように配置したことを特徴とする動力伝達装置。
A power transmission device in which a plurality of planetary gear mechanisms arranged coaxially are housed in a housing, and each ring gear of the two planetary gear mechanisms adjacent in the axial direction is fixed to the housing.
A power transmission device characterized in that a bending spring member is arranged in a circumferential gap between each ring gear of the two planetary gear mechanisms adjacent in the axial direction and the housing so as to straddle both ring gears in the axial direction. ..
2つの前記遊星ギヤ機構の各リングギヤは、前記ハウジングにそれぞれスプライン嵌合によって固定され、これらのリングギヤと前記ハウジングとの嵌合部の周方向隙間に前記バネ部材を配置したことを特徴とする請求項1に記載の動力伝達装置。 Each ring gear of the two planetary gear mechanisms is fixed to the housing by spline fitting, and the spring member is arranged in a circumferential gap between the ring gear and the fitting portion of the housing. Item 1. The power transmission device according to item 1. 複数の前記バネ部材を周方向に等角度ピッチで配置したことを特徴とする請求項1または2に記載の動力伝達装置。 The power transmission device according to claim 1 or 2, wherein a plurality of the spring members are arranged at equal angles in the circumferential direction. 前記バネ部材は、金属製の板材または棒材をくの字状に折り曲げて構成され、その長手方向両端部が隣接する前記各リングギヤにそれぞれ当接し、長手方向中間の屈曲部が前記ハウジングに当接するよう配置されていることを特徴とする請求項1〜3の何れかに記載の動力伝達装置。 The spring member is formed by bending a metal plate or bar in a dogleg shape, both ends of the spring member abut on adjacent ring gears, and the bent portion in the middle of the longitudinal direction hits the housing. The power transmission device according to any one of claims 1 to 3, wherein the power transmission device is arranged so as to be in contact with each other. 前記バネ部材の前記屈曲部の前記ハウジングへの当接点は、同バネ部材の長手方向両端部に前記各リングギヤから作用する力による当該当接点を中心とする互いに逆方向のモーメントが釣り合う位置に配置されていることを特徴とする請求項4に記載の動力伝達装置。 The contact points of the bent portion of the spring member with the housing are arranged at positions where moments in opposite directions centering on the contact points due to the forces acting from the ring gears are balanced at both ends of the spring member in the longitudinal direction. The power transmission device according to claim 4, wherein the power transmission device is provided.
JP2020048544A 2020-03-19 2020-03-19 Power transmission device Pending JP2021148195A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020048544A JP2021148195A (en) 2020-03-19 2020-03-19 Power transmission device
CN202120359460.9U CN215334303U (en) 2020-03-19 2021-02-07 Power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020048544A JP2021148195A (en) 2020-03-19 2020-03-19 Power transmission device

Publications (1)

Publication Number Publication Date
JP2021148195A true JP2021148195A (en) 2021-09-27

Family

ID=77848121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020048544A Pending JP2021148195A (en) 2020-03-19 2020-03-19 Power transmission device

Country Status (2)

Country Link
JP (1) JP2021148195A (en)
CN (1) CN215334303U (en)

Also Published As

Publication number Publication date
CN215334303U (en) 2021-12-28

Similar Documents

Publication Publication Date Title
JP5664663B2 (en) Power transmission device for vehicle
JP4020560B2 (en) Eccentric rocking speed reducer
JP4799199B2 (en) In-wheel motor drive device
JP5117960B2 (en) Vehicle drive device
JP4985741B2 (en) Power transmission device for vehicle
KR101066233B1 (en) Reduction gear
JP5156961B2 (en) Reduction gear
JP3287972B2 (en) Power transmission device for electric vehicles
WO2013069098A1 (en) Power transmission device for vehicle
JP2012197939A (en) Power output device
KR20220151438A (en) In-wheel driving device and assembling method thereof
JP6160478B2 (en) Drive device for hybrid vehicle
JP2007196980A (en) Stabilizer device
JP2007132513A (en) Power output device
JP2011230713A (en) Power transmission device for hybrid vehicle
JP2016031081A (en) Differential gear
JP3481875B2 (en) Reduction gear device and drum drive device of concrete mixer truck using the same
JP4967789B2 (en) Wheel drive device
JP2019052685A (en) Vehicle driving device
JP2021148195A (en) Power transmission device
JP2000205351A (en) Coriolis movement gear device
JP4804439B2 (en) Reducer
JP7080339B2 (en) Decelerator
JP2011247348A (en) Meshed gear for vehicle
JPH06307505A (en) Differential plant gear transmission