JP2021136860A - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
JP2021136860A
JP2021136860A JP2020206856A JP2020206856A JP2021136860A JP 2021136860 A JP2021136860 A JP 2021136860A JP 2020206856 A JP2020206856 A JP 2020206856A JP 2020206856 A JP2020206856 A JP 2020206856A JP 2021136860 A JP2021136860 A JP 2021136860A
Authority
JP
Japan
Prior art keywords
magnet
soft magnetic
rotor
electric machine
rotary electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020206856A
Other languages
English (en)
Inventor
智一 進士
Tomokazu Shinji
智一 進士
晃司 三竹
Koji Mitsutake
晃司 三竹
和也 内田
Kazuya Uchida
和也 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to US17/182,452 priority Critical patent/US11710994B2/en
Priority to CN202110205611.XA priority patent/CN113381537A/zh
Publication of JP2021136860A publication Critical patent/JP2021136860A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

【課題】効率の向上が図られた回転電機を提供する。【解決手段】 IPMモータ1では、磁石用孔16に収容された磁石構造体30において、第1の永久磁石32Aより径方向外側に第1の軟磁性体34Aが位置している。第1の軟磁性体34Aは、ロータコア14の電気抵抗率より高い電気抵抗率を有するため、第1の軟磁性体34Aにおいて渦電流が発生する事態が抑制されている。そのため、IPMモータ1では、渦電流損に起因する効率低下が抑えられており、効率向上を図ることができる。【選択図】図4

Description

本発明は、回転電機に関する。
従来より、回転電機として、インナーロータ型モータの一種であり、ロータ内部に永久磁石が埋め込まれたIPMモータが知られている(たとえば下記特許文献1)。
特開2000−134842号公報 特開平11−262205号公報
上述したIPMモータでは、ロータの軸線方向に関して、ステータにコイルが巻回されることから、ロータ端部近傍にデッドスペースが出来やすい。そこで、モータ特性の向上を図るため、ロータの長さがステータの長さよりも長くなるように設計してロータ端面がステータ端面から突出する構成とすることが考えられる。このような構成においては、ロータの端面部に、ロータ端面に対して垂直な成分を有する磁束が生じやすく、そのような磁束が変動することでロータの端面部に渦電流が生じる。その結果、渦電流損によるモータ効率の低下が招かれ得る。
発明者らは、鋭意研究の末、ロータの端面部をステータ端面から突出する構成において、モータ効率の向上を図ることができる技術を新たに見出した。
本発明は、効率の向上が図られた回転電機を提供することを目的とする。
本発明の一形態に係る回転電機は、所定の軸線周りに回転可能なロータとステータとを備え、ロータおよびステータの一方が複数の磁石構造体が取り付けられる磁石保持部を有し、他方が複数のコイルが取り付けられるコイル保持部を有する回転電機であって、各磁石構造体は、ロータの軸線方向に沿って延びる複数の磁石用孔のそれぞれに収容されており、かつ、永久磁石と、ロータの軸線方向に直交する径方向の外側において永久磁石と重なる軟磁性体との対を有する。
上記回転電機においては、各磁石構造体が永久磁石より径方向外側に位置する軟磁性体を有し、軟磁性体において渦電流が発生する事態が抑制されている。そのため、上記回転電機では、渦電流損に起因する効率低下が抑えられており、効率向上を図ることができる。
他の形態に係る回転電機は、各磁石構造体が、永久磁石と軟磁性体との対を複数対有する。
他の形態に係る回転電機は、各磁石構造体が、複数の永久磁石と複数の軟磁性体とを含むとともに永久磁石と軟磁性体とが交互に積層された積層構造を有し、積層構造に含まれる永久磁石の数が2つまたは3つである。
他の形態に係る回転電機は、各磁石構造体の、ロータの軸線方向に直交する径方向における最内層および最外層が軟磁性材料で構成されている。
他の形態に係る回転電機は、各磁石構造体が、ロータの軸線方向から見て、ロータの軸線方向に直交する径方向の外側に内弧が位置するアーチ状を有する。
他の形態に係る回転電機は、磁石構造体の永久磁石が、ロータの軸線方向に直交する径方向の外側に向かって配向が集中されている。
他の形態に係る回転電機は、各磁石構造体が、ロータの軸線方向から見て、ロータの軸線方向に直交する径方向に対して交差して延びる長方形状を有する。
他の形態に係る回転電機は、各磁石構造体が、ロータの軸線方向から見て、ロータの軸線方向に直交する径方向の外側に向けられたV字状を有する。
他の形態に係る回転電機は、磁石保持部が、ロータの軸線方向において複数のケイ素鋼板が積層された積層鋼板で構成されており、磁石構造体の軟磁性体が、軟磁性粉の圧粉成形体で構成されている。
他の形態に係る回転電機は、軟磁性体が、2.9×10−4〜4×10Ωmの電気抵抗率を有し、かつ、1.60〜2.10Tの飽和磁束密度を有する。
他の形態に係る回転電機は、永久磁石が焼結磁石である。
本発明によれば、効率の向上が図られた回転電機が提供される。
一実施形態に係るIPMモータを示した概略平面図である。 図1に示したIPMモータのII−II線断面図である。 図1に示したIPMモータの要部の概略斜視図である。 図3に示したIPMモータの要部の平面図である。 図3に示した磁石構造体の構成および磁石配向を示した図である。 異なる態様のIPMモータの要部を示した平面図である。 異なる態様のIPMモータの要部を示した平面図である。 異なる態様のIPMモータの要部を示した平面図である。 異なる態様のIPMモータの要部を示した平面図である。 実施例に係るIPMモータの各種条件を示した表である。 実施例の結果を示した表である。 実施例の結果を示した表である。 異なる態様のIPMモータを示した概略平面図である。 実施例に係るIPMモータの各種条件を示した表である。 実施例の結果を示した表である。 実施例の結果を示したグラフである。 実施例の結果を示したグラフである。 実施例の結果を示したグラフである。 実施例の結果を示したグラフである。 実施例の結果を示したグラフである。 実施例の結果を示したグラフである。 実施例の結果を示したグラフである。
以下、図面を参照して種々の実施形態および実施例について説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を付し、重複する説明を省略する。
以下に示す実施形態では、回転電機として、モータ(より詳しくはIPMモータ)を例に説明する。図1に、実施形態に係るIPMモータ1を示す。図1は、軸線Xの方向から見たIPMモータ1の平面図を示している。IPMモータ1は、ロータ10とステータ20とを有し、ステータ20の内側にロータ10が位置するインナーロータ型のモータである。IPMモータ1は、8極12スロットの構成を有する。
ロータ10は、シャフト12とロータコア14(磁石保持部)とを備えて構成されている。
シャフト12は、円柱状の形状を有し、図1の紙面に垂直な方向に延びている。シャフト12は、たとえばステンレス等によって構成されている。
ロータコア14は、円筒状の形状を有し、内側に軸孔14aを有する。シャフト12は、ロータコア14の軸孔14aに嵌め込まれており、ロータコア14とシャフト12とは軸線X周りに一体的に回転する。本実施形態では、ロータコア14は、外径が158.4mmであり、内径が85mmである。また、ロータコア14の幅W(すなわち、軸線Xの方向に関する長さ)は、100mmである。
ロータコア14は、軸線Xの方向において複数の鋼板が積層された積層鋼板(電磁鋼板)で構成されている。各鋼板の厚さは、たとえば0.2〜0.5mmである。鋼板には、ケイ素鋼板が採用され得る。ロータコア14がケイ素鋼板の積層鋼板で構成されている場合には、ロータコア14は5.6×10−7Ωm程度の電気抵抗率を有する。
図1〜3に示すように、ロータコア14には、後述する磁石構造体30が複数取り付けられている。各磁石構造体30は、ロータ10の軸線Xに対して平行に延びる磁石用孔16に収容されている。より詳しくは、一つの磁石用孔16に対して、一つの磁石構造体30が収容されている。磁石用孔16の内側寸法は、後述する磁石構造体30の外形寸法よりわずかに大きく設計されている。そのため、磁石構造体30は、磁石用孔16内において位置や姿勢が変わらない。
本実施形態では、ロータ10は、同一形状の8個の磁石構造体30を備えており、8個の磁石構造体30は、磁石構造体30の対が軸線Xに関して均等な角度間隔で配置されている。磁石構造体30はいずれも、軸線Xの方向から見て、アーチ状(またはC字状)の端面形状および断面形状を有しており、その内弧30a側がロータコア14の外周面14bを向くように配置されている。磁石構造体30の外弧30bはロータ10の軸線X側に位置している。磁石構造体30の開き角は、IPMモータ1の極数に応じて10〜180°の範囲から選択することができ、本実施形態においては100°である。磁石構造体30はロータ10の径方向(軸線Xを通り、かつ、軸線Xに直交する方向)に延びる仮想線に対して線対称であってもよい。磁石構造体30はいずれも、全体としてラジアル配向されており、内弧側にN極を有するN極磁石30Aと内弧側にS極を有する極磁石30Bとが軸線X周りに交互に配置されている。
磁石構造体30は、その延在方向がロータ10の軸線Xと平行になるようにロータコア14の磁石用孔16内に配置される。図2に示すように、磁石用孔16および磁石構造体30は、軸線Xの方向に関し、ロータコア14の全長に亘って延在している。磁石構造体30の延在方向に関する長さは、ロータコア14の幅Wと実質的に同一であり、本実施形態では100mmである。
ステータ20は、ロータ10の外周を囲むように設けられた円筒状のステータコア21(コイル保持部)を備えている。ロータ10とステータ20との間には、均一幅のエアギャップG(一例として0.8mm幅)が設けられている。ステータコア21の内周側には、複数(本実施形態では12個)のコイル22が配置されている。複数のコイル22は、集中巻方式のCu線で構成されており、ロータ10の軸線Xに関して均等な角度間隔で配置されている。図示しないインバータ回路等から複数のコイル22に3相交流電圧が印加されると、ステータコア21の内周側に回転磁界が発生する。本実施形態では、ステータコア21は、外径が250mmであり、内径が160mmである。また、ステータコア21の幅W(すなわち、軸線Xの方向に関する長さ)は、ロータコア14の幅Wと実質的に同一であり本実施形態では100mmである。
磁石構造体30は、図4および図5に示すように、第1の永久磁石32Aと第1の軟磁性体34Aとを備えて構成されている。
第1の永久磁石32Aは、軸線Xの方向から見て、アーチ状(またはC字状)の端面形状および断面形状を有しており、その内弧側がロータコア14の外周面14bを向いている。換言すると、第1の永久磁石32Aの内弧は、ロータ10の径方向の外側に位置している。本実施形態において、第1の永久磁石32Aは、軸線Xの方向から見て、350mmの面積を有し、1〜10mm程度の幅(径方向長さ)を有する。
第1の永久磁石32Aは、一軸異方性を有する永久磁石である。第1の永久磁石32Aは、本実施形態では、希土類系永久磁石で構成されており、たとえばネオジム系焼結磁石(一例としてNdFeB系焼結磁石)である。第1の永久磁石32Aは、ネオジム系以外の焼結磁石(たとえばSmCo系焼結磁石であり、フェライト焼結磁石)であってもよく、焼結磁石以外の磁石(たとえばボンド磁石や熱間加工磁石等)であってもよい。
第1の永久磁石32Aは、図5に示すようにラジアル配向されており、具体的には内側曲面に集中配向されている。第1の永久磁石32Aをラジアル配向とすることで、パラレル配向とした場合に比べて、容易に高トルク化を実現することができる。第1の永久磁石32Aの配向は、ラジアル配向角度に合わせた態様でもよく、パラレル配向よりも内側曲面側に配向を集中させた態様であってもよい。
第1の軟磁性体34Aは、第1の永久磁石32Aと同様、軸線Xの方向から見て、アーチ状(またはC字状)の端面形状および断面形状を有しており、その内弧側がロータコア14の外周面14bを向いている。換言すると、第1の永久磁石32Aの内弧は、ロータ10の径方向の外側に位置している。本実施形態において、第1の軟磁性体34Aは、軸線Xの方向から見て、0.1〜30mm程度の幅(径方向長さ)を有する。第1の永久磁石32Aは、全体としてアーチ状であれば、一つの磁石片で構成されていてもよく複数の磁石片で構成されていてもよい。
第1の軟磁性体34Aは、軟磁性材料で構成されている。第1の軟磁性体34Aには、電磁鋼板、磁性鉄粉、ソフトフェライト、パーマロイ等を採用することができる。第1の軟磁性体34Aは、本実施形態では、軟磁性粉の圧粉成形体で構成されている。圧粉成形体の軟磁性粉として、FeSi粉等の純鉄系磁性粉を採用することができる。圧粉成形体の軟磁性粉の平均粒径(d50)は、たとえば20〜100μmである。圧粉成形体は、軟磁性粉を結着することで得られ、結着には樹脂等の結着剤を用いることができる。圧粉成形体は、軟磁性粉を用いた熱間成形によって得ることができる。第1の軟磁性体34AがFeSi粉の圧粉成形体で構成されている場合には、第1の軟磁性体34Aは300Ωm程度の電気抵抗率を有する。第1の軟磁性体34Aが軟磁性粉の圧粉成形体で構成されている場合には、第1の軟磁性体34Aはたとえば500〜1000H/mの透磁率を有する。第1の軟磁性体34Aが積層鋼板で構成されている場合には、第1の軟磁性体34Aはたとえば5000〜20000H/m(一例として10000H/m)透磁率を有する。第1の軟磁性体34Aは、2.9×10−4〜4×10Ωmの電気抵抗率を有し、かつ、1.60〜2.10Tの飽和磁束密度を有していてもよい。
第1の軟磁性体34Aは、ロータ10の径方向の外側において、第1の永久磁石32Aと重なっている。すなわち、磁石構造体30において、第1の軟磁性体34Aが内弧30a側に位置し、第1の永久磁石32Aが外弧30b側に位置している。
磁石構造体30を構成する工程において、第1の永久磁石32Aと第1の軟磁性体34Aとは接着剤によって互いに固着することができる。または、第1の軟磁性体34Aを構成する圧粉体と第1の永久磁石32Aとを重ねて樹脂モールドすることで、磁石構造体30を得ることもできる。このようにして磁石構造体30を構成した後、磁石用孔16に磁石構造体30を収容してもよい。さらには、磁石用孔16内に焼結磁石を事前に配置しておき、圧粉体と樹脂との混合物を射出成型して固定してもよい。または、圧粉体と樹脂との混合物にて永久磁石と圧縮成形して一体化してもよい。その際に使用される樹脂は、ポリエチレン、ポリプロピレン、ポリアミド、ABSなどの熱可塑性樹脂、エポキシ系樹脂やフェノール系樹脂の熱硬化性樹脂であってもよい。
上述したIPMモータ1では、磁石用孔16に収容された磁石構造体30は、1対の永久磁石と軟磁性体(すなわち、第1の永久磁石32Aと第1の軟磁性体34A)を含み、第1の軟磁性体34Aが第1の永久磁石32Aより径方向外側に位置している。第1の軟磁性体34Aは、ロータコア14の電気抵抗率より高い電気抵抗率を有するため、第1の軟磁性体34Aにおいて渦電流が発生する事態が抑制されている。そのため、IPMモータ1では、渦電流損に起因する効率低下が抑えられており、効率向上を図ることができる。
本実施形態では、1対の永久磁石と軟磁性体(第1の永久磁石32Aと第1の軟磁性体34A)に加えて、第2の軟磁性体34Bをさらに備えている。第2の軟磁性体34Bは、ロータ10の径方向の内側において、第1の永久磁石32Aと重なっている。すなわち、磁石構造体30において、第2の軟磁性体34Bは第1の軟磁性体34Aよりも外弧30b側に位置している。すなわち、磁石構造体30は、第1の永久磁石32Aが2つの軟磁性体34A、34Bによって挟まれたサンドイッチ構造を有し、ロータ10の径方向における最内層(すなわち、第1の軟磁性体34A)および最外層(すなわち、第2の軟磁性体34B)が軟磁性材料で構成されている。磁石構造体30を磁石用孔16内に配置する際には、ある一定寸法公差が必要になるが、磁石構造体30の最内層および最外層を軟磁性材料で構成することで、所望の外形寸法にする際に軟磁性体を加工することとなり、IPMモータ1のトルクに大きな影響を与える磁力の発生減である永久磁石の寸法を変えずに(永久磁石の体積を減らすことなく)磁石用孔16内に磁石構造体30を配置することができる。
磁石構造体30は、永久磁石を所望の形状に加工した後、下記手法により一体化する。必要な面だけの加工、もしくは未加工磁石を用いることが好ましい。磁石構造体30の寸法公差は、軟磁性体を満たすように加工するため、永久磁石は加工を省略することが可能となり、加工コスト、焼結磁石の研磨代削減により低コスト化が可能となるためである。
IPMモータ1において、磁石構造体30が永久磁石と軟磁性体との対を1対のみ含む態様以外に、磁石構造体30が永久磁石と軟磁性体との対を複数含む態様とすることができる。たとえば、磁石構造体30が、複数の永久磁石と複数の軟磁性体とを含むとともに永久磁石と軟磁性体とが交互に積層された積層構造を有する態様であってもよい。この場合、積層構造に含まれる永久磁石の数は2つまたは3つであってもよい。
図6は、永久磁石と軟磁性体との対を3対含む磁石構造体30を示した図である。図6に示した磁石構造体30は、3つの永久磁石32A、32B、32Cと、4つの軟磁性体34A、34B、34C、34Dとを含む積層構造を有する。3つの永久磁石32A、32B、32Cは同じ材料で構成することができ、4つの軟磁性体34A、34B、34C、34Dも互いに同じ材料で構成することができる。3つの永久磁石32A、32B、32Cの体積の和は、図4に示した第1の永久磁石32Aの体積と実質的に同一とすることができる。3つの永久磁石32A、32B、32Cのいずれに関しても、径方向外側(ロータコア14の外周面14b側)で重なる軟磁性体34A、34B、34Cが位置しているため、上述したIPMモータ1と同様、軟磁性体34A、34B、34Cの比較的高い電気抵抗率により渦電流の発生が抑制される。また、図6に示した磁石構造体30においても、最内層および最外層が軟磁性材料で構成されているため、外形寸法を容易に調整することができ、それにより磁石構造体30を磁石用孔16内に収容する工程をより簡便におこなうことができる。
図7は、永久磁石と軟磁性体との対を6対含む磁石構造体30を示した図である。図7に示した磁石構造体30は、6つの永久磁石32A〜32Fと、7つの軟磁性体34A〜34Gとを含む積層構造を有する。6つの永久磁石32A〜32Fは同じ材料で構成することができ、7つの軟磁性体34A〜34Gも互いに同じ材料で構成することができる。6つの永久磁石32A〜32Fの体積の和は、図4に示した第1の永久磁石32Aの体積と実質的に同一とすることができる。6つの永久磁石32A〜32Fのいずれに関しても、径方向外側(ロータコア14の外周面14b側)で重なる軟磁性体34A〜34Gが位置しているため、上述したIPMモータ1と同様、軟磁性体34A〜34Gの比較的高い電気抵抗率により渦電流の発生が抑制される。また、図7に示した磁石構造体30においても、最内層および最外層が軟磁性材料で構成されているため、外形寸法を容易に調整することができ、それにより磁石構造体30を磁石用孔16内に収容する工程をより簡便におこなうことができる。
図6および図7に示した磁石構造体30は、磁石用孔16内に収容する工程の前に、複数の永久磁石と複数の軟磁性体とを一体化して得ることができる。この場合、複数の永久磁石を一つずつ磁石用孔16内に収容する場合に比べて、組立工数の削減や製造の効率化を図ることができる。
また、図6および図7に示した磁石構造体30では、永久磁石間に軟磁性体が存在することで、d軸インダクタンスが小さくなり、q軸インダクタンスが大きくなり、その結果、IPMモータとしてのトータルトルクが向上する。
IPMモータ1において、各磁石構造体30が、アーチ状(またはC字状)の端面形状および断面形状を有する態様以外であってもよく、たとえば長方形状またはV字状の端面形状および断面形状を有する態様とすることができる。
図8は、長方形状の端面形状および断面形状を有する磁石構造体30を示した図である。図8に示した磁石構造体30は、軸線Xの方向から見て、長方形状の端面形状および断面形状を有し、ロータ10の径方向に対して交差するように延在しており、本実施形態ではロータ10の径方向に対して直交するように延在している。そのため、磁石構造体30の一方の長辺30a側がロータコア14の外周面14bに対向し、他方の長辺30b側がロータコア14の内周面14aに対向するように配置されている。図8に示した磁石構造体30はロータ10の径方向に延びる仮想線に対して線対称であってもよい。
図8に示した磁石構造体30では、第1の永久磁石32Aと第1の軟磁性体34Aとの対を一対含み、第1の永久磁石32Aおよび第1の軟磁性体34Aは、軸線Xの方向から見て、いずれも長方形状の端面形状および断面形状を有する。図8に示した磁石構造体30は、永久磁石と軟磁性体との対を1対のみ含む態様以外に、磁石構造体30が永久磁石と軟磁性体との対を複数含む態様とすることができる。たとえば、磁石構造体30が、永久磁石と軟磁性体との対を2対のみ含む態様であってもよく3対のみ含む態様であってもよい。第1の永久磁石32Aは、全体として長方形状であれば、一つの磁石片で構成されていてもよく複数の磁石片で構成されていてもよい。
図9は、V字状の端面形状および断面形状を有する磁石構造体30を示した図である。図9に示した磁石構造体30は、軸線Xの方向から見て、V字状の端面形状および断面形状を有し、劣角側がロータコア14の外周面14bを向くように配置されている。そのため、磁石構造体30の劣角側の面30aがロータコア14の外周面14bに対向し、優角側の面30bがロータコア14の内周面14aに対向している。図9に示した磁石構造体30はロータ10の径方向に延びる仮想線に対して線対称であってもよい。
図9に示した磁石構造体30では、第1の永久磁石32Aと第1の軟磁性体34Aとの対を一対含み、第1の永久磁石32Aおよび第1の軟磁性体34Aは、軸線Xの方向から見て、いずれもV字状の端面形状および断面形状を有する。図9に示した磁石構造体30は、永久磁石と軟磁性体との対を1対のみ含む態様以外に、磁石構造体30が永久磁石と軟磁性体との対を複数含む態様とすることができる。たとえば、磁石構造体30が、永久磁石と軟磁性体との対を2対のみ含む態様であってもよく3対のみ含む態様であってもよい。第1の永久磁石32Aは、全体としてV字状であれば、一つの磁石片で構成されていてもよく複数の磁石片で構成されていてもよい。
発明者らは、実施例として、図6および図7に示した磁石構造体30のような永久磁石の多層化がモータ特性に及ぼす影響を確認するための電磁界シミュレーションによる解析をおこなった。実施例に係るモータの仕様および解析条件は図10に示す表のとおりであり、解析の結果は図11および図12のとおりであった。なお、全実施例において磁石構造体における永久磁石の体積(の総和)は同一とした。
図11に示した実施例1〜4から、永久磁石の数を複数にすることで、永久磁石の数が1つのときに比べて、最大トルクが高まり、かつ、トルクリップルが低減することがわかった。また、図11の実施例2と実施例3とから、電磁鋼板で構成された軟磁性体と軟磁性粉の圧粉成形体で構成された軟磁性体とでは同程度の最大トルクおよびトルクリップルとなることがわかった。
図12に示した実施例5は、磁石構造体30が永久磁石と軟磁性体との対を1対のみ含み、永久磁石がパラレル配向されており、かつ、軟磁性体が電磁鋼板で構成されているときの結果を示す。図12に示した実施例6は、磁石構造体30が永久磁石と軟磁性体との対を3対含み、各永久磁石をボンド磁石(HIDENSE1000)で構成されており、かつ、軟磁性体が電磁鋼板で構成されているときの結果を示す。図12に示した実施例7は、磁石構造体30が永久磁石と軟磁性体との対を6対含み、かつ、軟磁性体が軟磁性粉の圧粉成形体で構成されているときの結果を示す。実施例1〜7から、永久磁石を焼結磁石で構成することで最大トルクの大幅な向上が図られること、パラレル配向よりもラジアル配向とすることで最大トルクの向上とトルクリップルの低減が図られることがわかった。ボンド磁石は樹脂成分があるため、焼結体磁石と比べると残留磁束密度が60〜70%まで低下する。また、ボンド磁石は磁石用孔16内に磁石成分を射出する必要があるため、磁石成分の配向を制御することが難しい。
また、発明者らは、図13に示したような分布巻方式のIPMモータ1についても、実施例1〜7と同様の解析をおこなった。そのモータの仕様および解析条件は図14に示す表のとおりであり、解析の結果は図15のとおりであった。
図15に示した実施例8〜11から、分布巻方式のIPMモータにおいても、集中巻方式のIPMモータと同様、永久磁石の数を複数にすることで、永久磁石の数が1つのときに比べて、最大トルクが高まり、かつ、トルクリップルが低減することがわかった。また、図15の実施例9と実施例10とから、分布巻方式のIPMモータにおいても、電磁鋼板で構成された軟磁性体と軟磁性粉の圧粉成形体で構成された軟磁性体とでは同程度の最大トルクおよびトルクリップルとなることがわかった。
さらに、発明者らは、磁石構造体の永久磁石の形状と層数がモータ特性に及ぼす影響を確認するための解析をおこなった。具体的には、図4に示したようなアーチ状の永久磁石、図8に示したような長方形状の永久磁石および図9に示したようなV字状の永久磁石のそれぞれについて、1層、2層、3層、6層としたときの最大トルクを求めた。解析の結果は、表1〜3および図16〜18のとおりであった。図16は、アーチ状の永久磁石に係る表1の結果をプロットしたものである。図17は、長方形状の永久磁石に係る表2の結果をプロットしたものである。図18は、V字状の永久磁石に係る表3の結果をプロットしたものである。図16〜18のグラフの横軸は電流位相角[deg.]である。なお、各形状の永久磁石では、永久磁石の体積(の総和)は同一とした。
Figure 2021136860

Figure 2021136860

Figure 2021136860
表1〜3および図16〜18から、2層、3層および6層の永久磁石のときの最大トルクは、1層の永久磁石の最大トルクよりも大きいまたは同程度となることが確認された。特に電流位相角45°付近での最大トルクは、2層、3層および6層の永久磁石のいずれも、1層の永久磁石より大きくなることが確認された。
図19、20は、上記表1〜3の結果を用いて、各形状の永久磁石における最大トルクと層数との関係を示したグラフである。図19の縦軸は最大トルクを示しており、図20の縦軸は、1層の永久磁石のときの最大トルクに対する割合を示している。図19、20のグラフから、最大トルクは1層から2層になると顕著に大きくなることが確認され、また、3層から6層になっても大幅に大きくならないことが確認された。永久磁石の層数が増すに従い、製造工程および製造コストも増す。そのため、製造工程および製造コストを抑えつつ大きいトルクを得るには、永久磁石の層数は2層または3層とすればよい。
また、発明者らは、磁石構造体の軟磁性体の構成材料がモータ特性に及ぼす影響を確認するための解析をおこなった。具体的には、複数の構成材料(電磁鋼板、圧粉磁心A、圧粉磁心B、圧粉磁心C、フェライト、圧粉磁心D)ごとに、抵抗値、80kA/mにおける飽和磁束密度、トルク、永久磁石の渦電流損、効率を確認した。表4および表5は、それぞれ永久磁石の層数を1層および3層としたときのデータである。図21は、表4および表5のデータを用いて、軟磁性体の抵抗値と永久磁石の渦電流損との関係を示したグラフである。図22は、表4および表5のデータを用いて、磁束飽和密度とトルクとの関係を示したグラフである。
Figure 2021136860

Figure 2021136860
表4、5および図21の結果から、相対的に抵抗値が低い電磁鋼板で構成された軟磁性体では、永久磁石の渦電流損が比較的大きくなり、その他の構成材料(圧粉磁心A〜D、フェライト)では渦電流損が抑えられることが確認された。一方、表4、5および図22の結果からは、フェライトで構成された軟磁性体では、飽和磁束密度が低くなり、それにより実用上十分に大きなトルクを得ることが困難であることが確認された。これらの結果から、圧粉磁心で構成された軟磁性体を用いることで、良好なモータ特性が得られることが確認された。加えて、軟磁性体が、2.9×10−4〜4×10Ωmの電気抵抗率を有し、かつ、1.60〜2.10Tの飽和磁束密度を有することで、良好なモータ特性が得られることが確認された。
本発明に係るロータは、上述した実施形態に限らず、様々に変形することができる。
たとえば、上述した実施形態においては、たとえば、IPMモータの極数やスロット数は、適宜増減することができる。また、永久磁石での端面形状および断面形状は、アーチ状に限らず、V字状等であってもよく、軸線Xの方向から見て複数に分割された形状であってもよい。上述した実施形態では、回転電機の一種であるモータ(電動機)について説明したが、本発明は回転電機の一種である発電機にも適用することができる。
1…IPMモータ、10…ロータ、14…ロータコア、20…ステータ、21…ステータコア、22…コイル、30…磁石構造体、32A〜32F…永久磁石、34A〜34G…軟磁性体。

Claims (11)

  1. 所定の軸線周りに回転可能なロータとステータとを備え、前記ロータおよび前記ステータの一方が複数の磁石構造体が取り付けられる磁石保持部を有し、他方が複数のコイルが取り付けられるコイル保持部を有する回転電機であって、
    前記各磁石構造体は、前記ロータの軸線方向に沿って延びる複数の磁石用孔のそれぞれに収容されており、かつ、永久磁石と、前記ロータの軸線方向に直交する径方向の外側において前記永久磁石と重なる軟磁性体との対を有する、回転電機。
  2. 前記各磁石構造体が、前記永久磁石と前記軟磁性体との対を複数対有する、請求項1に記載の回転電機。
  3. 前記各磁石構造体が、複数の前記永久磁石と複数の前記軟磁性体とを含むとともに前記永久磁石と前記軟磁性体とが交互に積層された積層構造を有し、前記積層構造に含まれる前記永久磁石の数が2つまたは3つである、請求項1に記載の回転電機。
  4. 前記各磁石構造体の、前記ロータの軸線方向に直交する径方向における最内層および最外層が軟磁性材料で構成されている、請求項2または3に記載の回転電機。
  5. 前記各磁石構造体が、前記ロータの軸線方向から見て、前記ロータの軸線方向に直交する径方向の外側に内弧が位置するアーチ状を有する、請求項1〜4のいずれか一項に記載の回転電機。
  6. 前記磁石構造体の前記永久磁石が、前記ロータの軸線方向に直交する径方向の外側に向かって配向が集中されている、請求項5に記載の回転電機。
  7. 前記各磁石構造体が、前記ロータの軸線方向から見て、前記ロータの軸線方向に直交する径方向に対して交差して延びる長方形状を有する、請求項1〜4のいずれか一項に記載の回転電機。
  8. 前記各磁石構造体が、前記ロータの軸線方向から見て、前記ロータの軸線方向に直交する径方向の外側に向けられたV字状を有する、請求項1〜4のいずれか一項に記載の回転電機。
  9. 前記磁石保持部が、前記ロータの軸線方向において複数のケイ素鋼板が積層された積層鋼板で構成されており、
    前記磁石構造体の前記軟磁性体が、軟磁性粉の圧粉成形体で構成されている、請求項1〜8のいずれか一項に記載の回転電機。
  10. 前記軟磁性体が、2.9×10−4〜4×10Ωmの電気抵抗率を有し、かつ、1.60〜2.10Tの飽和磁束密度を有する、請求項1〜9のいずれか一項に記載の回転電機。
  11. 前記永久磁石が焼結磁石である、請求項1〜10のいずれか一項に記載の回転電機。

JP2020206856A 2020-02-25 2020-12-14 回転電機 Pending JP2021136860A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/182,452 US11710994B2 (en) 2020-02-25 2021-02-23 Rotating electrical machine
CN202110205611.XA CN113381537A (zh) 2020-02-25 2021-02-24 旋转电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020029915 2020-02-25
JP2020029915 2020-02-25

Publications (1)

Publication Number Publication Date
JP2021136860A true JP2021136860A (ja) 2021-09-13

Family

ID=77661875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020206856A Pending JP2021136860A (ja) 2020-02-25 2020-12-14 回転電機

Country Status (1)

Country Link
JP (1) JP2021136860A (ja)

Similar Documents

Publication Publication Date Title
JP6422595B2 (ja) 電動機および空気調和機
CN104185938B (zh) 电机
EP3457534B1 (en) Rotating electric machine
WO2015104956A1 (ja) 回転電機
US8829758B2 (en) Rotary electric machine
KR20100134678A (ko) 자속 집중 극체를 구비한 영구 자석 회전자
JP2008022663A (ja) 回転電機
CN108475971B (zh) 磁化方法、转子、电动机以及涡旋压缩机
JP2010130818A (ja) 界磁子の製造方法
JP6661939B2 (ja) ロータ
JPWO2013069076A1 (ja) 永久磁石埋込型電動機の回転子、及びこの回転子を用いた電動機、及びこの電動機を用いた圧縮機、及びこの圧縮機を用いた空気調和機
JP2011050216A (ja) 電動機
JPWO2018198866A1 (ja) 電動機要素、電動機、装置
US11710994B2 (en) Rotating electrical machine
JP6121914B2 (ja) 同期電動機
CN111953097A (zh) 旋转电机
JP2021136860A (ja) 回転電機
JP4238588B2 (ja) モーター、モーター用ロータ及び複合異方性磁石
JP7251090B2 (ja) 永久磁石及びモータ
US11239714B2 (en) Rotating electrical machine
JP2018098936A (ja) 磁石ユニット
JP5740250B2 (ja) 永久磁石式回転電機
WO2018101160A1 (ja) 磁石ユニット
JP2020096485A (ja) 永久磁石および回転電機
JP7243117B2 (ja) 永久磁石及びモータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240528