JP2021129397A - 電力変換器の制御回路 - Google Patents

電力変換器の制御回路 Download PDF

Info

Publication number
JP2021129397A
JP2021129397A JP2020022524A JP2020022524A JP2021129397A JP 2021129397 A JP2021129397 A JP 2021129397A JP 2020022524 A JP2020022524 A JP 2020022524A JP 2020022524 A JP2020022524 A JP 2020022524A JP 2021129397 A JP2021129397 A JP 2021129397A
Authority
JP
Japan
Prior art keywords
power supply
abnormality
voltage
unit
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020022524A
Other languages
English (en)
Other versions
JP7156321B2 (ja
JP2021129397A5 (ja
Inventor
幸一 西端
Koichi Nishibata
幸一 西端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2020022524A priority Critical patent/JP7156321B2/ja
Priority to PCT/JP2021/003038 priority patent/WO2021161794A1/ja
Publication of JP2021129397A publication Critical patent/JP2021129397A/ja
Publication of JP2021129397A5 publication Critical patent/JP2021129397A5/ja
Priority to US17/886,168 priority patent/US11973368B2/en
Application granted granted Critical
Publication of JP7156321B2 publication Critical patent/JP7156321B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0243Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being a broken phase
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/027Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an over-current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Abstract

【課題】制御回路内に異常が発生した場合であっても、短絡制御を適正に行うことができる電力変換器の制御回路を提供する。
【解決手段】制御回路50は、回転電機を駆動制御するためのスイッチング指令を生成して出力するマイコン60と、スイッチング指令に基づいて、上,下アームスイッチSWH,SWLを駆動する上,下アームドライバ81,82と、異常用電源90とを備え、制御回路50内に異常が発生した場合、異常用電源90により生成された電力を用いて、3相の下アームスイッチSWLをオンし、3相の上アームスイッチSWHをオフする3相短絡制御を行う。
【選択図】 図2

Description

本発明は、回転電機の各相の巻線に電気的に接続された上下アームのスイッチを有する電力変換器の制御回路に関する。
この種の制御回路としては、回転電機等に異常が発生したことを判定した場合、上下アームのスイッチを強制的にオフに切り替えるシャットダウン制御を行うものが知られている。シャットダウン制御が行われる場合において、回転電機を構成するロータの回転によって巻線に逆起電圧が発生していると、巻線の線間電圧が、上下アームのスイッチの直列接続体に並列接続される蓄電部の電圧よりも高くなっていることがある。線間電圧が高くなる状況は、例えば、ロータの界磁磁束量が大きかったり、ロータの回転速度が高かったりする場合に発生し得る。
巻線の線間電圧が蓄電部の電圧よりも高くなる場合、シャットダウン制御が行われていたとしても、スイッチに逆並列に接続されたダイオード、巻線及び蓄電部を含む閉回路に巻線で発生した誘起電流が流れるいわゆる回生が実施されることとなる。その結果、電力変換器の蓄電部側の直流電圧が大きく上昇し、蓄電部、電力変換器及び蓄電部に接続された電力変換器以外の機器のうち少なくとも1つが故障する懸念がある。
このような問題に対処すべく、特許文献1に記載されているように、上下アームのうちいずれか一方のアームにおけるスイッチをオンし、他方のアームにおけるスイッチをオフする短絡制御を行う制御回路が知られている。詳しくは、この制御回路は、給電ユニットから給電されることにより動作可能となっており、出力段駆動制御部を有している。出力段駆動制御部は、上記短絡制御を行う。ここで、給電ユニットに異常が発生した場合に備えて、制御回路は、給電ユニットに依存しない電力供給源の電力を出力段駆動制御部に供給可能な構成を備えている。この構成によれば、給電ユニットに異常が発生した場合であっても、短絡制御を行うことができる。
特表2013−506390号公報
給電ユニットに異常が発生していない場合であっても、制御回路内の異常が発生し得る。このような異常が発生した場合、制御回路の制御が停止され、上下アームのスイッチがオフになるシャットダウン状態となり得る。つまり、短絡制御を実施することができなくなり得る。
本発明は、制御回路内に異常が発生した場合であっても、短絡制御を適正に行うことができる電力変換器の制御回路を提供することを主たる目的とする。
本発明は、蓄電部と、
多相の回転電機と、
前記回転電機の各相の巻線に電気的に接続された上下アームのスイッチを有する電力変換器と、を備えるシステムに適用される電力変換器の制御回路において、
前記回転電機を駆動制御するためのスイッチング指令を生成して出力するスイッチ指令生成部と、
給電されることにより動作可能となり、前記スイッチング指令に基づいて、上下アームの前記スイッチを駆動するスイッチ駆動部と、
前記蓄電部から給電されて電力を生成する異常用電源と、
前記制御回路内に異常が発生したことを判定する異常判定部と、
前記異常判定部により異常が発生したと判定された場合、前記異常用電源により生成された電力を用いて、上下アームのうちいずれか一方のアームにおける前記スイッチをオンし、他方のアームにおける前記スイッチをオフする短絡制御を行う異常時制御部と、を備える。
スイッチ指令生成部が正常に動作できなくなる異常等、制御回路内に異常が発生することがある。このような異常が発生した場合においても、短絡制御を適正に実施することが要求される。そこで、本発明では、異常判定部により制御回路内に異常が発生したと判定された場合、蓄電部を電力供給源とする異常用電源により生成された電力を用いて短絡制御が行われる。これにより、従来ではシャットダウン状態となるような制御回路内の異常が発生した場合であっても、短絡制御を適正に行うことができる。
第1実施形態に係る制御システムの全体構成図。 制御回路及びその周辺構成を示す図。 上,下アームドライバ及びその周辺構成を示す図。 OR回路、電源停止部及びそれらの周辺構成を示す図。 高圧側ASC指令により実施される3相短絡制御の処理手順を示すフローチャート。 高圧側ASC指令により実施される3相短絡制御の一例を示すタイムチャート。 過電圧異常時の3相短絡制御の処理手順を示すフローチャート。 スイッチ異常時等の3相短絡制御の処理手順を示すフローチャート。 制御システムの起動方法を示す図。 制御システムの起動方法を示す図。 制御システムの起動方法を説明するためのブロック図。 第2実施形態に係る制御回路及びその周辺構成を示す図。 上,下アームドライバ及びその周辺構成を示す図。 異常用電源の起動態様等を示すタイムチャート。 第3実施形態に係る制御回路及びその周辺構成を示す図。 上,下アームドライバ及びその周辺構成を示す図。 その他の実施形態に係る制御システムの全体構成図。
<第1実施形態>
以下、本発明に係る制御回路を具体化した第1実施形態について、図面を参照しつつ説明する。本実施形態に係る制御回路は、電力変換器としての3相インバータに適用される。本実施形態において、インバータを備える制御システムは、電気自動車やハイブリッド車等の車両に搭載される。
図1に示すように、制御システムは、回転電機10及びインバータ15を備えている。回転電機10は、車載主機であり、そのロータが図示しない駆動輪と動力伝達可能とされている。本実施形態では、回転電機10として、同期機が用いられており、より具体的には、永久磁石同期機が用いられている。
インバータ15は、スイッチングデバイス部20を備えている。スイッチングデバイス部20は、上アームスイッチSWHと下アームスイッチSWLとの直列接続体を3相分備えている。各相において、上,下アームスイッチSWH,SWLの接続点には、回転電機10の巻線11の第1端が接続されている。各相巻線11の第2端は、中性点で接続されている。各相巻線11は、電気角で互いに120°ずらされて配置されている。ちなみに、本実施形態では、各スイッチSWH,SWLとして、電圧制御形の半導体スイッチング素子が用いられており、より具体的には、IGBTが用いられている。上,下アームスイッチSWH,SWLには、フリーホイールダイオードである上,下アームダイオードDH,DLが逆並列に接続されている。
各上アームスイッチSWHの高電位側端子であるコレクタには、高電位側電気経路22Hを介して、高圧電源30の正極端子が接続されている。各下アームスイッチSWLの低電位側端子であるエミッタには、低電位側電気経路22Lを介して、高圧電源30の負極端子が接続されている。本実施形態において、高圧電源30は、2次電池であり、その出力電圧(定格電圧)が例えば百V以上である。
高電位側電気経路22Hには、第1遮断スイッチ23aが設けられ、低電位側電気経路22Lには、第2遮断スイッチ23bが設けられている。各スイッチ23a,23bは、例えば、リレー又は半導体スイッチング素子である。ここで、各スイッチ23a,23bは、インバータ15が備える制御回路50によって駆動されてもよいし、制御回路50に対して上位の制御装置によって駆動されてもよい。
インバータ15は、「蓄電部」としての平滑コンデンサ24を備えている。平滑コンデンサ24は、高電位側電気経路22Hのうち第1遮断スイッチ23aよりもスイッチングデバイス部20側と、低電位側電気経路22Lのうち第2遮断スイッチ23bよりもスイッチングデバイス部20側とを電気的に接続している。
制御システムは、車載電気機器25を備えている。電気機器25は、例えば、電動コンプレッサ及びDCDCコンバータのうち少なくとも一方を含む。電動コンプレッサは、車室内空調装置を構成し、車載冷凍サイクルの冷媒を循環させるべく、高圧電源30から給電されて駆動される。DCDCコンバータは、高圧電源30の出力電圧を降圧して車載低圧負荷に供給する。低圧負荷は、図2に示す低圧電源31を含む。本実施形態において、低圧電源31は、その出力電圧(定格電圧)が高圧電源30の出力電圧(定格電圧)よりも低い電圧(例えば12V)の2次電池であり、例えば鉛蓄電池である。
図1及び図2に示すように、制御システムは、相電流センサ40、角度センサ41及び温度センサ42を備えている。相電流センサ40は、回転電機10に流れる各相電流のうち、少なくとも2相分の電流に応じた電流信号を出力する。角度センサ41は、回転電機10の電気角に応じた角度信号を出力する。角度センサ41は、例えば、レゾルバ、エンコーダ又は磁気抵抗効果素子を有するMRセンサであり、本実施形態ではレゾルバである。温度センサ42は、回転電機10の構成部品等、制御システムの構成部品の温度に応じた温度信号を出力する。
図2を用いて、制御回路50の構成について説明する。制御回路50は、入力回路61、中間電源回路62及び第1〜第5低圧電源回路63〜67を備えている。入力回路61には、ヒューズ32を介して低圧電源31の正極端子が接続されている。低圧電源31の負極端子には、接地部位としてのグランドが接続されている。
中間電源回路62は、入力回路61の出力電圧VBを降圧することにより、中間電圧Vm(例えば6V)を生成する。第1低圧電源回路63は、中間電源回路62の出力電圧Vmを降圧することにより、第1電圧V1r(例えば5V)を生成する。第2低圧電源回路64は、第1低圧電源回路63から出力された第1電圧V1rを降圧することにより、第2電圧V2r(例えば3.3V)を生成する。第3低圧電源回路65は、第1低圧電源回路63から出力された第1電圧V1rを降圧することにより、第3電圧V3rを生成する。本実施形態において、第3電圧V3rは、第2電圧V2rよりも低い電圧(例えば1.2V)とされている。
第4低圧電源回路66は、入力回路61の出力電圧VBを降圧することにより、第4電圧V4r(例えば5V)を生成する。本実施形態において、第4電圧V4rは、第1電圧V1rと同じ値である。第5低圧電源回路67は、入力回路61の出力電圧VBを昇圧することにより、第5電圧V5r(例えば30V)を生成する。
入力回路61、各電源回路62〜67及びマイコン60は、制御回路50の低圧領域に設けられている。なお、本実施形態において、第1〜第3低圧電源回路63〜65が「第1電源回路」に相当し、第4低圧電源回路66が「第2電源回路」に相当する。
相電流センサ40には、第1低圧電源回路63の第1電圧V1rが供給される。これにより、相電流センサ40は、相電流に応じた電流信号を出力できるようになっている。電流信号は、制御回路50が備える電流インターフェース部70を介してマイコン60に入力される。マイコン60は、入力された電流信号に基づいて、相電流を算出する。
制御回路50は、励磁回路71、FBインターフェース部72及びレゾルバデジタルコンバータ73を備えている。励磁回路71は、第5低圧電源回路67の第5電圧V5rが供給されることにより動作可能に構成されている。励磁回路71は、角度センサ41を構成するレゾルバステータに正弦波状の励磁信号を供給する。レゾルバステータから出力された角度信号は、FBインターフェース部72を介してレゾルバデジタルコンバータ73に入力される。FBインターフェース部72及びレゾルバデジタルコンバータ73は、第1低圧電源回路63の第1電圧V1rが供給されることにより動作可能に構成されている。レゾルバデジタルコンバータ73は、FBインターフェース部72からの角度信号に基づいて、回転電機10の電気角を算出する。算出された電気角は、マイコン60に入力される。マイコン60は、入力された電気角に基づいて、回転電機10の電気角速度を算出する。
制御回路50は、温度インターフェース部74を備えている。温度センサ42から出力された温度信号は、温度インターフェース部74を介してマイコン60に入力される。温度インターフェース部74は、第1低圧電源回路63の第1電圧V1rが供給されることにより動作可能に構成されている。マイコン60は、入力された温度信号に基づいて、温度センサ42の検出対象の温度を算出する。
制御回路50は、第1,第2CANトランシーバ75,76を備えている。第1,第2CANトランシーバ75,76は、第1低圧電源回路63の第1電圧V1rが供給されることにより動作可能に構成されている。マイコン60は、第1,第2CANトランシーバ75,76及び第1,第2CANバス43,44を介した情報のやり取りを行う。
なお、電流インターフェース部70、励磁回路71、FBインターフェース部72、レゾルバデジタルコンバータ73、温度インターフェース部74及び第1,第2CANトランシーバ75,76は、制御回路50の低圧領域に設けられている。
マイコン60は、CPUと、それ以外の周辺回路とを備えている。周辺回路には、例えば、外部と信号をやり取りするための入出力部と、AD変換部とが含まれている。マイコン60には、第1低圧電源回路63の第1電圧V1r、第2低圧電源回路64の第2電圧V2r及び第3低圧電源回路65の第3電圧V3rが供給される。
制御回路50は、電圧センサ77、過電圧検出部78及び状態判定部79を備えている。電圧センサ77は、高電位側電気経路22H及び低電位側電気経路22Lに電気的に接続され、入力回路61の出力電圧VB及び第5低圧電源回路67の第5電圧V5rが供給されることにより動作可能に構成されている。電圧センサ77は、平滑コンデンサ24の端子電圧に応じた電圧信号を出力する。電圧センサ77から出力された電圧信号は、マイコン60及び過電圧検出部78に入力される。
過電圧検出部78は、第1低圧電源回路63の第1電圧V1rが供給されることにより動作可能に構成されている。過電圧検出部78は、入力された電圧信号に基づいて算出した平滑コンデンサ24の端子電圧がその上限電圧を超えているか否かを判定する。過電圧検出部78は、その端子電圧が上限電圧を超えていると判定した場合、マイコン60及び状態判定部79に対して過電圧信号を出力する。
状態判定部79は、第1低圧電源回路63の第1電圧V1rが供給されることにより動作可能に構成されている。また、本実施形態において、状態判定部79は、ロジック回路で構成されている。電圧センサ77、過電圧検出部78及び状態判定部79は、制御回路50の低圧領域に設けられている。
マイコン60は、回転電機10の制御量をその指令値に制御すべく、スイッチングデバイス部20の各スイッチSWH,SWLに対するスイッチング指令を生成する。制御量は、例えばトルクである。マイコン60は、各センサ40〜42,77の出力信号等に基づいて、スイッチング指令を生成する。なお、マイコン60は、各相において、上アームスイッチSWHと下アームスイッチSWLとが交互にオンされるようなスイッチング指令を生成する。また、本実施形態において、マイコン60が「スイッチ指令生成部」を含む。
制御回路50は、絶縁電源80、上アームドライバ81及び下アームドライバ82を備えている。本実施形態において、上アームドライバ81は、各上アームスイッチSWHに対応して個別に設けられ、下アームドライバ82は、各下アームスイッチSWLに対応して個別に設けられている。このため、ドライバ81,82は合わせて6つ設けられている。
絶縁電源80は、入力回路61から供給された電圧に基づいて、上アームドライバ81に供給する上アーム駆動電圧VdHと、下アームドライバ82に供給する下アーム駆動電圧VdLとを生成して出力する。絶縁電源80及び各ドライバ81,82は、制御回路50において、低圧領域と高圧領域との境界を跨いで低圧領域及び高圧領域に設けられている。具体的には、絶縁電源80は、3相の上アームドライバ81それぞれに対して個別に設けられた上アーム絶縁電源と、3相の下アームドライバ82に共通の下アーム絶縁電源とを備えている。本実施形態では、各上アーム絶縁電源と下アーム絶縁電源とが共通の電源制御部により制御される。なお、下アーム絶縁電源は、3相の下アームドライバ82それぞれに対して個別に設けられていてもよい。
続いて、図3を用いて、上,下アームドライバ81,82について説明する。
上アームドライバ81は、「スイッチ駆動部」としての上アーム駆動部81aと、上アーム絶縁伝達部81bとを備えている。上アーム駆動部81aは、高圧領域に設けられている。上アーム絶縁伝達部81bは、低圧領域と高圧領域との境界を跨いで低圧領域及び高圧領域に設けられている。上アーム絶縁伝達部81bは、低圧領域及び高圧領域の間を電気的に絶縁しつつ、マイコン60から出力されたスイッチング指令を上アーム駆動部81aに伝達する。上アーム絶縁伝達部81bは、例えば、フォトカプラ又は磁気カプラである。
上アームドライバ81のうち、上アーム駆動部81a、及び上アーム絶縁伝達部81bの高圧領域側の構成等は、絶縁電源80の上アーム駆動電圧VdHが供給されることにより動作可能に構成されている。上アームドライバ81のうち、上アーム絶縁伝達部81bの低圧領域側の構成等は、第1低圧電源回路63の第1電圧V1rが供給されることにより動作可能に構成されている。
上アーム駆動部81aは、入力されたスイッチング指令がオン指令である場合、上アームスイッチSWHのゲートに充電電流を供給する。これにより、上アームスイッチSWHのゲート電圧が閾値電圧Vth以上となり、上アームスイッチSWHがオンされる。一方、上アーム駆動部81aは、入力されたスイッチング指令がオフ指令である場合、上アームスイッチSWHのゲートからエミッタ側へと放電電流を流す。これにより、上アームスイッチSWHのゲート電圧が閾値電圧Vth未満となり、上アームスイッチSWHがオフされる。
上アーム駆動部81aは、上アームスイッチSWHに異常が発生している旨の情報であるフェール信号Sgfailと、上アームスイッチSWHの温度Tswdの情報とを、上アーム絶縁伝達部81bを介してマイコン60に伝達する。上アームスイッチSWHの異常には、過熱異常、過電圧異常及び過電流異常の少なくとも1つが含まれる。
下アームドライバ82は、「スイッチ駆動部」としての下アーム駆動部82aと、下アーム絶縁伝達部82bとを備えている。本実施形態において、各ドライバ81,82の構成は基本的には同じである。このため、以下では、下アームドライバ82の詳細な説明を適宜省略する。
下アームドライバ82のうち、下アーム駆動部82a、及び下アーム絶縁伝達部82bの高圧領域側の構成等は、絶縁電源80の下アーム駆動電圧VdLが供給されることにより動作可能に構成されている。下アームドライバ82のうち、下アーム絶縁伝達部82bの低圧領域側の構成等は、第1低圧電源回路63の第1電圧V1rが供給されることにより動作可能に構成されている。
下アーム駆動部82aは、入力されたスイッチング指令がオン指令である場合、下アームスイッチSWLのゲートに充電電流を供給する。これにより、下アームスイッチSWLのゲート電圧が閾値電圧Vth以上となり、下アームスイッチSWLがオンされる。一方、下アーム駆動部82aは、入力されたスイッチング指令がオフ指令である場合、下アームスイッチSWLのゲートからエミッタ側へと放電電流を流す。これにより、下アームスイッチSWLのゲート電圧が閾値電圧Vth未満となり、下アームスイッチSWLがオフされる。
下アーム駆動部82aは、下アームスイッチSWLに異常が発生している旨の情報であるフェール信号Sgfailと、下アームスイッチSWLの温度Tswdの情報とを、下アーム絶縁伝達部82bを介してマイコン60に伝達する。下アームスイッチSWLの異常には、過熱異常、過電圧異常及び過電流異常の少なくとも1つが含まれる。
図2の説明に戻り、制御回路50は、フェール検知部83を備えている。フェール検知部83は、低圧領域に設けられ、各ドライバ81,82からのフェール信号Sgfailが入力されるようになっている。フェール検知部83は、各ドライバ81,82のいずれかからフェール信号Sgfailが入力された場合、異常信号をマイコン60及び状態判定部79に出力する。
制御回路50は、低圧側ASC指令部84、監視部85、OR回路86、及び「異常判定部」としての電源停止部87を備えている。低圧側ASC指令部84、監視部85、OR回路86及び電源停止部87は、低圧領域に設けられている。監視部85は、入力回路61の出力電圧VBが供給されることにより動作可能に構成され、電源停止部87は、第4低圧電源回路66の第4電圧V4rが供給されることにより動作可能に構成されている。
低圧側ASC指令部84は、状態判定部79から低圧側ASC指令CmdASCが入力された場合、3相分の下アームドライバ82に入力されるスイッチング指令を、マイコン60から出力されるスイッチング指令にかかわらず強制的にオン指令にする。
図2及び図3を用いて、制御回路50のうち高圧領域の構成について説明する。
制御回路50は、異常用電源90と、「異常時制御部」としての高圧側ASC指令部91とを備えている。異常用電源90は、平滑コンデンサ24の出力電圧VHが供給されることにより異常用駆動電圧Vepsを生成する。異常用電源90として、種々の電源を用いることができ、例えばスイッチング電源を用いることができる。異常用電源90の入力側には、平滑コンデンサ24の高電位側が接続されている。異常用電源90の出力側から出力される異常用駆動電圧Vepsは、その目標電圧に制御される。
制御回路50は、通常用電源経路92、通常用ダイオード93、異常用電源経路94及び異常用ダイオード95を備えている。通常用電源経路92は、絶縁電源80の出力側と下アーム駆動部82aとを接続し、下アーム駆動電圧VdLを下アーム駆動部82aに供給する。通常用ダイオード93は、アノードが絶縁電源80の出力側に接続された状態で、通常用電源経路92の中間位置に設けられている。
通常用電源経路92のうち通常用ダイオード93よりも下アーム駆動部82a側と、異常用電源90の出力側とは、異常用電源経路94により接続されている。異常用ダイオード95は、アノードが異常用電源90の出力側に接続された状態で、異常用電源経路94に設けられている。異常用電源経路94は、異常用駆動電圧Vepsを下アーム駆動部82aに供給する。
高圧側ASC指令部91には、通常用電源経路92を介して絶縁電源80の下アーム駆動電圧VdLが供給されるようになっている。高圧側ASC指令部91は、高圧側ASC指令SgASCを下アーム駆動部82aに対して出力する。
続いて、図4を用いて、OR回路86、電源停止部87及びその周辺構成について説明する。OR回路86は、第1〜第4抵抗体86a〜86d及び第1,第2スイッチ86e,86fを備えている。第1抵抗体86aの第1端には、マイコン60と、第2抵抗体86bの第1端とが接続されている。第2抵抗体86bの第2端は、グランドに接続されている。第1抵抗体86aの第2端には、第3抵抗体86cを介して監視部85に接続されている。
第4抵抗体86dの第1端には、第4低圧電源回路66が接続され、第4抵抗体86dの第2端には、第1スイッチ86eを介してグランドが接続されている。第1スイッチ86eのベースには監視部85からの第1判定信号Sg1が供給される。第1抵抗体86aの第2端には、第2スイッチ86fを介してグランドが接続されている。第2スイッチ86fのベースには、第4抵抗体86dと第1スイッチ86eとの接続点が接続されている。
マイコン60は、自己監視機能を有している。マイコン60は、自身に異常が発生していないと判定した場合、第2判定信号Sg2の論理をHにする。この場合、OR回路86の出力信号である異常通知信号FMCUの論理がHになる。一方、マイコン60は、自身に異常が発生していると判定した場合、第2判定信号Sg2の論理をLにする。この場合、異常通知信号FMCUの論理がLになる。
監視部85は、マイコン60に異常が発生しているか否かを監視する機能を有し、例えば、ウォッチドックカウンタ(WDC)又はファンクションウォッチドックカウンタ(F−WDC)で構成されている。監視部85は、マイコン60に異常が発生していないと判定した場合、第1判定信号Sg1の論理をLにする。この場合、第1,第2スイッチ86e,86fがオフに維持され、異常通知信号FMCUの論理がHになる。一方、監視部85は、マイコン60に異常が発生していると判定した場合、第1判定信号Sg1の論理をHにする。この場合、第1,第2スイッチ86e,86fがオンに切り替えられ、異常通知信号FMCUの論理がLにされる。
異常通知信号FMCUは、電源停止部87に入力される。電源停止部87は、異常検知回路87aと、切替スイッチ87bとを備えている。切替スイッチ87bの第1端には、グランドが接続され、切替スイッチ87bの第2端には、制御回路50が備える第1,第2分圧抵抗体96a,96bの接続点が接続されている。第1,第2分圧抵抗体96a,96bの直列接続体の第1端には、入力回路61が接続され、この直列接続体の第2端には、グランドが接続されている。第1,第2分圧抵抗体96a,96bの接続点には、絶縁電源80のUVLO端子が接続されている。絶縁電源80の制御部は、この接続点に入力される電圧である判定電圧Vjinが低電圧閾値VUVLOを下回ったと判定した場合、絶縁電源80を停止させる低電圧誤動作防止処理を実施する。一方、絶縁電源80の制御部は、入力された判定電圧Vjinが、低電圧閾値VUVLOよりも高い解除閾値(<VB)を超えたと判定した場合、低電圧誤動作防止処理を停止し、絶縁電源80の動作を再開させる。
異常検知回路87aは、第4低圧電源回路66の第4電圧V4rが供給されることにより動作可能に構成されている。異常検知回路87aは、異常通知信号FMCUの論理がHであると判定した場合、切替スイッチ87bをオフする。この場合、判定電圧Vjinが低電圧閾値VUVLO以上とされる。一方、異常検知回路87aは、異常通知信号FMCUの論理がLであると判定した場合、切替スイッチ87bをオンする。この場合、判定電圧Vjinが低電圧閾値VUVLO未満となり、低電圧誤動作防止処理が実施される。この処理が実施されると、絶縁電源80は停止され、上アーム駆動電圧VdH及び下アーム駆動電圧VdLは0Vに向かって徐々に低下し始める。
本実施形態では、従来ではシャットダウン状態となるような制御回路50内の異常が発生した場合であっても、3相短絡制御(ASC:Active Short Circuit)が実施可能となっている。ここで、制御回路50内の異常には、マイコン60の異常と、中間電源回路62及び第1〜第3低圧電源回路63〜65の少なくとも1つの異常と、マイコン60から上,下アームドライバ81,82へとスイッチング指令を正常に伝達できなくなる異常と、絶縁電源80から電圧を出力できなくなる異常とが含まれる。絶縁電源80から電圧を出力できなくなる異常には、絶縁電源80の異常と、低圧電源31から絶縁電源80に給電できなくなる異常とが含まれる。ここで、低圧電源31から絶縁電源80に給電できなくなる異常は、例えば、入力回路61等、低圧電源31から絶縁電源80までの電気経路が断線することで発生する。また、下アームドライバ82を例に説明すると、スイッチング指令を正常に伝達できなくなる異常には、マイコン60から下アーム絶縁伝達部82bまでの信号経路が断線する異常が含まれる。なお、上述した異常は、例えば車両の衝突により発生する。
図5を用いて、制御回路50内に異常が発生した場合に実施される3相短絡制御について説明する。
ステップS10では、電源停止部87の異常検知回路87aは、入力される異常通知信号FMCUの論理がLであるか否かを判定する。マイコン60から出力される第2判定信号Sg2の論理がLの場合、又は監視部85から出力される第1判定信号Sg1の論理がHの場合、異常通知信号FMCUの論理がLとなる。中間電源回路62やマイコン60の電源となる第1〜第3低圧電源回路63〜65に異常が発生した場合にも、マイコン60から出力される第2判定信号Sg2の論理がLとなる。
異常検知回路87aは、異常通知信号FMCUの論理がLであると判定した場合、切替スイッチ87bをオンに切り替える。これにより、絶縁電源80のUVLO端子に入力される判定電圧Vjinがグランド電位である0Vに向かって低下する。
ステップS11では、絶縁電源80の電源制御部は、判定電圧Vjinが低電圧閾値VUVLOを下回るまで待機する。電源制御部は、判定電圧Vjinが低電圧閾値VUVLOを下回ったと判定した場合、ステップS12において、低電圧誤動作防止処理を行い、絶縁電源80を停止させる。これにより、絶縁電源80から出力される上,下アーム駆動電圧VdH,VdLは0Vに向かって低下し始める。
ステップS13では、高圧側ASC指令部91は、絶縁電源80から出力される下アーム駆動電圧VdLを検出し、検出した下アーム駆動電圧VdLが低下し始めた後、異常用電源90に対して起動を指示する。これにより、ステップS14において、異常用電源90から異常用駆動電圧Vepsが出力され始める。
具体的には、高圧側ASC指令部91は、検出した下アーム駆動電圧VdLが低下し始めた後、上アームスイッチSWHがオフするまでの十分な期間が経過してから異常用電源90の起動を指示する。これは、上下アーム短絡の発生を防止するためである。
例えば、高圧側ASC指令部91は、検出した下アーム駆動電圧VdLが低下し始めた後、検出した下アーム駆動電圧VdLが所定電圧Vpを下回ったと判定した場合に異常用電源90の起動を指示してもよい。ここで、所定電圧Vpは、上アームスイッチSWHがオフするまでの十分な期間が経過したと判定できる値に設定され、例えば、上記閾値電圧Vthと同じ値又は閾値電圧Vth未満の値に設定されていればよい。
また、例えば、高圧側ASC指令部91は、検出した下アーム駆動電圧VdLが低下し始めてから所定期間経過したタイミングで異常用電源90の起動を指示してもよい。ここで、上記所定期間は、上アームスイッチSWHがオフするまでの十分な期間が経過したと判定できる値に設定されていればよい。
その後、ステップS15において、高圧側ASC指令部91は、高圧側ASC指令SgASCを下アーム駆動部82aに対して出力する。これにより、ステップS16において、下アーム駆動部82aは、3相分の下アームスイッチSWLをオンする。つまり、3相分の「オン側スイッチ」としての下アームスイッチSWLがオンされ、3相分の「オフ側スイッチ」としての上アームスイッチSWHがオフされる3相短絡制御が行われる。
図6を用いて、図5の処理についてさらに説明する。図6(a)はマイコン60の異常の有無の推移を示し、図6(b)は監視部85から出力される第1判定信号Sg1の推移を示し、図6(c)は異常通知信号FMCUの推移を示し、図6(d)は絶縁電源80の動作状態の推移を示す。図6(e),(f)は絶縁電源80から出力される上,下アーム駆動電圧VdH,VdLの推移を示し、図6(g)は異常用電源90の動作状態の推移を示し、図6(h)は高圧側ASC指令部91から出力される高圧側ASC指令SgASCの推移を示し、図6(i)は各相の下アームスイッチSWLの駆動状態の推移を示す。
時刻t1において、マイコン60の異常が発生する。このため、時刻t2において、監視部85から出力される第1判定信号Sg1の論理がHに反転し、時刻t3において、異常通知信号FMCUの論理がLに反転する。その結果、切替スイッチ87bがオンに切り替えられ、絶縁電源80の低電圧誤動作防止処理が実施される。これにより、時刻t4において、絶縁電源80が停止され、上,下アーム駆動電圧VdH,VdLが低下し始める。
下アーム駆動電圧VdLが低下し始めた後、時刻t4から上アームスイッチSWHがオフするまでの十分な期間が経過した時刻t5において、高圧側ASC指令部91により異常用電源90の起動が指示される。これにより、異常用電源90から異常用駆動電圧Vepsが出力され始める。ここで、十分な期間が経過したか否かは、上述したように、例えば、検出された下アーム駆動電圧VdLが所定電圧Vpを下回ったか否か、又は下アーム駆動電圧VdLが低下し始めてから所定期間経過したか否かで判定されればよい。その後、時刻t6において、高圧側ASC指令部91から下アーム駆動部82aへと高圧側ASC指令SgASCが出力され、時刻t7において、下アーム駆動部82aにより3相分の下アームスイッチSWLがオンにされる。
なお、低圧電源31に異常が発生したり、入力回路61に異常が発生したり、低圧電源31と制御回路50とを電気的に接続する給電経路が断線したり、絶縁電源80に異常が発生したりする場合にも、ステップS11〜S16の処理により、3相短絡制御が行われる。つまり、この場合、低電圧誤動作防止処理により絶縁電源80が停止され、上,下アーム駆動電圧VdH,VdLが0Vに向かって低下し、3相短絡制御が行われる。
続いて、図7を用いて、過電圧異常が発生した場合に実施する3相短絡制御について説明する。
ステップS20では、状態判定部79は、過電圧検出部78から過電圧信号が入力されたか否かを判定する。
状態判定部79は、過電圧信号が入力されたと判定した場合、ステップS21において、低圧側ASC指令部84に対して低圧側ASC指令CmdASCを出力する。
ステップS22では、低圧側ASC指令部84は、低圧側ASC指令CmdASCが入力された場合、3相分の上アームドライバ81に入力されるスイッチング指令を、マイコン60から出力されるスイッチング指令にかかわらず強制的にオフ指令にするシャットダウン指令CmdSDNを出力する。また、低圧側ASC指令部84は、3相分の下アームドライバ82に入力されるスイッチング指令を、マイコン60から出力されるスイッチング指令にかかわらず強制的にオン指令にする。これにより、3相短絡制御が実施される。
なお、図8を用いて、その他の異常が発生した場合に実施する3相短絡制御についても説明する。図8の処理は、マイコン60により実行される。
ステップS30では、フェール検知部83からの異常信号に基づいて、各上,下アームスイッチSWH,SWLのいずれかに異常が発生しているか否かを判定する。
ステップS30において肯定判定した場合、ステップS31に進み、各上,下アームスイッチSWH,SWLのうち、いずれの相及びいずれのアームのスイッチに異常が発生したかを特定し、また、その異常がオープン異常又はショート異常のいずれであるかを特定する。
ステップS32では、上,下アームのうち、一方のアームの少なくとも1つのスイッチにショート異常が発生した場合、上,下アームのうち、ショート異常が発生したアームの3相分のスイッチに対するスイッチング指令としてオン指令を出力し、他のアームの3相分のスイッチに対するスイッチング指令としてオフ指令を出力する。これにより、3相短絡制御が実施される。
一方、上,下アームのうち、一方のアームの少なくとも1つのスイッチにオープン異常が発生した場合、上,下アームのうち、オープン異常が発生したアームとは別のアームの3相分のスイッチに対してオン指令を出力し、他のアームの3相分のスイッチに対してオフ指令を出力する。これにより、3相短絡制御が実施される。
ステップS30において否定判定した場合には、ステップS33に進み、センサ異常又は通信異常が発生したか否かを判定する。センサ異常には、相電流センサ40、角度センサ41、温度センサ42及び電圧センサ77の少なくとも1つの異常が含まれる。相電流センサ40の異常には、相電流センサ40自身の異常、及び電流インターフェース部70の異常の少なくとも1つが含まれる。角度センサ41の異常には、角度センサ41自身の異常、励磁回路71の異常、FBインターフェース部72の異常及びレゾルバデジタルコンバータ73の異常の少なくとも1つが含まれる。温度センサ42の異常には、温度センサ42自身の異常、及び温度インターフェース部74の異常の少なくとも1つが含まれる。
また、通信異常には、第1CANトランシーバ75、第2CANトランシーバ76、第1CANバス43及び第2CANバス44の少なくとも1つの異常が含まれる。
ステップS34では、3相分の上アームスイッチSWHに対するスイッチング指令としてオフ指令を出力し、3相分の下アームスイッチSWLに対するスイッチング指令としてオン指令を出力する。これにより、3相短絡制御が実施される。
続いて、制御システムの起動方法について説明する。ここでは、2つの起動方法について説明する。
まず、図9を用いて、1つ目の起動方法について説明する。
時刻t1において、低圧電源31から制御回路50へと電力が供給され始め、時刻t2において各電源回路62〜67が起動する。その後、第1〜第3低圧電源回路63〜65からマイコン60へと電力が供給され、時刻t3においてマイコン60が起動する。その後、時刻t3〜t4において、監視部85によるマイコン60の初回の監視が実行される。監視部85によりマイコン60の異常が発生していないと判定された場合、時刻t4において、異常通知信号FMCUの論理がHにされる。これにより、時刻t5において、絶縁電源80のUVLO端子に入力される判定電圧Vjinが解除閾値を超え、絶縁電源80が起動する。
続いて、図10及び図11を用いて、2つ目の起動方法について説明する。
時刻t1において、低圧電源31から制御回路50へと電力が供給され始め、時刻t2において各電源回路62〜67が起動する。その後、第1〜第3低圧電源回路63〜65からマイコン60へと電力が供給され、時刻t3においてマイコン60が起動する。
時刻t3〜t4において、監視部85によるマイコン60の初回の監視が実行される。監視部85は、マイコン60の異常が発生していないと判定した場合、時刻t4において、第2判定信号Sg2の論理をHにすることにより、異常通知信号FMCUの論理をHにする。制御回路50が備えるラッチ部97は、異常通知信号FMCUをラッチし、絶縁電源80の停止機能を有効にすべく、ラッチした信号をラッチ信号Srとして電源停止部87に出力する。
一方、時刻t1において、絶縁電源80へと電力が供給され始め、時刻t2よりも後であってかつ時刻t3よりも前の時刻taにおいて、絶縁電源80が起動する。ここで、電源停止部87は、時刻t4において、ラッチ信号Srの論理がHの状態で異常通知信号FMCUの論理がHの場合、切替スイッチ87bをオフに維持して絶縁電源80の動作を継続させる。一方、電源停止部87は、時刻t4において、ラッチ信号Srの論理がHの状態で異常通知信号FMCUの論理がLの場合、切替スイッチ87bをオンにして絶縁電源80を停止させる。2つ目の方法によれば、3相短絡制御の実施準備を早期に完了させることができる。
以上詳述した本実施形態によれば、以下の効果が得られるようになる。
監視部85から出力される第1判定信号Sg1やマイコン60から出力される第2判定信号Sg2の論理がLになることにより、異常通知信号FMCUの論理がLになる。そして、電源停止部87において異常通知信号FMCUの論理がLであると判定された場合、平滑コンデンサ24を電力供給源とする異常用電源90により生成された電力を用いて、高圧側ASC指令部91の指示により3相短絡制御を行わせる。これにより、従来ではシャットダウン状態となるような制御回路50内の異常が発生した場合であっても、シャットダウン状態にさせずに3相短絡制御を適正に行うことができる。
高圧側ASC指令部91は、検出した下アーム駆動電圧VdLが低下し始めた後、下アーム駆動部82aに対して高圧側ASC指令SgASCを出力する。この構成によれば、下アーム駆動電圧VdLを用いて、低圧領域から高圧領域へと3相短絡制御の指示を伝達できる。このため、その指示を低圧領域から高圧領域に伝達するための専用の絶縁伝達部を追加することなく、低圧電源31から制御回路50へと給電できなくなる異常や制御回路50の異常発生時に3相短絡制御を行うことができる。
マイコン60は、第1〜第3低圧電源回路63〜65から給電されることにより動作可能に構成され、電源停止部87は、第1〜第3低圧電源回路63〜65とは異なる第4低圧電源回路66から給電されることにより動作可能に構成されている。この構成によれば、第1〜第3低圧電源回路63〜65のいずれかに異常が発生した場合であっても、第4低圧電源回路66により電源停止部87を動作させることができる。つまり、第1〜第3低圧電源回路63〜65のいずれかに異常が発生することに伴い電源停止部87を動作させることができなくなるといった従属故障を回避できる。このため、電源停止部87を利用した3相短絡制御を的確に実施できる。また、電源停止部87により絶縁電源80を停止させることを利用する方法によれば、例えば、マイコン60の異常に限らず、マイコン60から各駆動部81a,82aまでのスイッチング指令の信号伝達経路に異常が発生した場合であっても、3相短絡制御を的確に実施できる。
<第1実施形態の変形例>
・図4において、絶縁電源80を停止させるための異常通知信号FMCUの生成源としては、第1判定信号Sg1及び第2判定信号Sg2のいずれか一方であってもよい。
・高圧側ASC指令部91は、下アーム駆動電圧VdLに代えて、上アーム駆動電圧VdHに基づいて高圧側ASC指令SgASCを出力してもよい。この場合、高圧側ASC指令部91は、絶縁伝達部を介して上アーム駆動電圧VdHの情報を取得すればよい。
・監視部85に供給される電圧としては、入力回路61の出力電圧VBに限らず、第1〜第3低圧電源回路63〜65の出力電圧以外であれば他の電源の電圧であってもよい。
・絶縁電源80を構成する電源制御部が、上アーム絶縁電源及び下アーム絶縁電源それぞれに対して個別に設けられていてもよい。この場合、低電圧誤動作防止処理により、上アーム絶縁電源に対応して設けられた電源制御部と、下アーム絶縁電源に対応して設けられた電源制御部との双方を停止させることにより絶縁電源80を停止させればよい。
・3相短絡制御として、3相分の上アームスイッチSWHをオンし、3相分の下アームスイッチSWLをオフする制御が実施されてもよい。この場合、異常用電源90は、3相分の上アーム駆動部81aそれぞれに対して個別に備えられればよい。
・上,下アームドライバ81,82を構成する上,下アーム絶縁伝達部81b,82bの低圧領域側の構成に第1低圧電源回路63の第1電圧V1rが供給されなくなるカプラ異常が発生すると、マイコン60からのスイッチング指令を上,下アーム駆動部81a,82aに伝達できなくなる。この場合、シャットダウン状態になってしまう。この問題に対処すべく、以下に説明する構成を採用することができる。
下アーム絶縁伝達部82bの低圧領域側の構成に対する電力供給源を、第1低圧電源回路63とは別の電源回路(以下、別電源回路)とする。別電源回路としては、例えば、第1低圧電源回路63に異常が発生した場合であって従属故障が発生しない電源を用いることができ、具体的には例えば、中間電源回路62の出力電圧Vmを降圧することにより第5電圧V5r(例えば5V)を生成する第5電源回路を用いることができる。
この構成において、別電源回路の出力電圧が低下した場合に絶縁電源80を停止させ、高圧側ASC指令部91から高圧側ASC指令SgASCを下アーム駆動部82aに対して出力させればよい。具体的には例えば、電源停止部87の異常検知回路87aは、別電源回路の出力電圧を検出し、検出した出力電圧が低下した場合に切替スイッチ87bをオンに切り替えればよい。以上説明した構成によれば、カプラ異常が発生した場合であっても、3相短絡制御を行うことができる。
<第2実施形態>
以下、第2実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図12及び図13に示すように、制御回路50の高圧領域側の構成が一部変更されている。なお、図12及び図13において、先の図2及び図3に示した構成については、便宜上、同一の符号を付している。
図12に示すように、制御回路50の低圧領域には、「強制オフ部」としてのシャットダウン指令部100が設けられている。シャットダウン指令部100は、ロジック回路で構成され、OR回路86からの異常通知信号FMCUが入力される。シャットダウン指令部100は、入力される異常通知信号FMCUの論理がHになった場合、マイコン60からのスイッチング指令にかかわらず、3相分の上,下アームドライバ81,82に対するスイッチング指令を強制的にオフ指令にする。この構成によれば、上アーム駆動電圧VdHの低下を待たずに3相短絡制御を開始できる。つまり、制御回路50内の異常が発生した後、3相短絡制御を迅速に開始できる。
図13に示すように、通常用電源経路92には、異常用ダイオード95に代えて、異常用スイッチ101が設けられている。高圧側ASC指令部91は、検出した下アーム駆動電圧VdLが低下し始めた後、異常用スイッチ101をオンに切り替える。これにより、異常用電源90から下アーム駆動部82aへと異常用駆動電圧Vepsが供給され始める。なお、高圧側ASC指令部91は、シャットダウン指令部100により強制的にオフ指令にされた後に高圧側ASC指令SgASCを下アーム駆動部82aに対して出力すればよい。
本実施形態において、異常用電源90は、第1,第2遮断スイッチ23a,23bがオンに切り替えられて異常用電源90の入力電圧VHinが0から上昇し始めてから、異常用電源90の入力電圧VHinが平滑コンデンサ24の端子電圧VH(高圧電源30の端子電圧)になるまでの期間において、その入力電圧VHinが規定電圧Vαを超えるタイミングで起動される。具体的には、上記規定電圧Vαは、異常用電源90の制御部が起動する電圧である。この起動電圧は、例えば、低電圧誤動作防止処理の解除閾値と同じ値に設定される。
図14を用いて、異常用電源90の動作等について説明する。図14(a)は入力回路61の出力電圧VBの推移を示し、図14(b)は異常用電源90の入力電圧VHinの推移を示し、図14(c)は第1〜第3低圧電源回路63〜65の出力電圧の推移を示す。図14(d)はマイコン60の動作状態の推移を示し、図14(e)は絶縁電源80から出力される上,下アーム駆動電圧VdH,VdLの推移を示し、図14(f)は異常用電源90の出力電圧Vepsの推移を示す。なお、第1〜第3低圧電源回路63〜65それぞれの出力電圧の推移は実際には異なるが、図14(c)ではその推移を簡略化して示している。
時刻t1において、入力回路61の出力電圧VBが所定の電圧に到達し、第1〜第3低圧電源回路63〜65の出力電圧が上昇し始める。第1,第2遮断スイッチ23a,23bがオンに切り替えられた後、時刻t2において、異常用電源90の入力電圧VHinが規定電圧Vαを超え、異常用電源90が起動する。その後、時刻t3においてマイコン60が起動する。
以上の構成により、異常用電源90は、OR回路86から出力される異常通知信号FMCUの論理がLに反転する前から動作することとなる。このため、異常用スイッチ101がオンに切り替えられることにより、異常用電源90から下アーム駆動部82aへと速やかに異常用駆動電圧Vepsが供給され始める。
以上説明した本実施形態によれば、以下の効果が得られるようになる。
低圧領域に設けられたシャットダウン指令部100は、入力される異常通知信号FMCUの論理がHになった場合、マイコン60からのスイッチング指令にかかわらず、3相分の上,下アームドライバ81,82に対するスイッチング指令を強制的にオフ指令にする。これにより、上アーム駆動電圧VdHの低下を待たずに3相短絡制御を開始できる。つまり、3相短絡制御を迅速に開始することができる。
第1,第2遮断スイッチ23a,23bがオンに切り替えられて異常用電源90の入力電圧VHinが0から上昇し始めてから、異常用電源90の入力電圧VHinが平滑コンデンサ24の端子電圧VHになるまでの期間において、その入力電圧VHinが規定電圧Vαを超えるタイミングで異常用電源90が起動される。つまり、異常用電源90は、OR回路86から出力される異常通知信号FMCUの論理がLに反転する前から動作することとなる。このため、異常用スイッチ101がオンに切り替えられることにより、異常用電源90から下アーム駆動部82aへと速やかに異常用駆動電圧Vepsを供給できる。これにより、3相短絡制御を迅速に開始することができる。
<第2実施形態の変形例>
・シャットダウン指令部100は、上,下アームドライバ81,82のうち、いずれかのアームドライバに対するスイッチング指令を強制的にオフ指令にしてもよい。例えば、シャットダウン指令部100は、3相分の上アームドライバ81のみに対するスイッチング指令をオフ指令とし、3相分の下アームスイッチSWLは、第1実施形態で説明したのと同様に、下アーム駆動電圧VdLの低下をトリガとしてオンされればよい。
・シャットダウン指令部100によりスイッチング指令を強制的にオフ指令にするトリガは、異常通知信号FMCUに限らず、3相短絡制御の実行を指示する他の信号であってもよい。
・上アームスイッチSWHを強制的にオフにするための構成としては、シャットダウン指令部100を用いた構成に限らない。例えば、上アームドライバ81に対する上アーム駆動電圧VdHの供給を停止させることにより上アームドライバ81を停止させる構成、又は上アーム絶縁伝達部81bとは別の絶縁伝達部を介して上アーム駆動部81aにオフ指令を伝達する構成により、上アームスイッチSWHを強制的にオフさせてもよい。
<第3実施形態>
以下、第3実施形態について、第2実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図15及び図16に示すように、ゲートに電圧を直接供給するために、制御回路50の高圧領域側の構成が一部変更されている。なお、図15及び図16において、先の図12及び図13に示した構成については、便宜上、同一の符号を付している。また、本実施形態においても、異常用電源90の起動タイミングは、第2実施形態と同じである。
制御回路50の高圧領域において、下アーム駆動部82aと下アームスイッチSWLのゲートとを接続するゲート充放電経路には、第1規制ダイオード102が設けられている。第1規制ダイオード102は、アノードが下アーム駆動部82a側に接続された状態で設けられている。なお、図16では、下アームスイッチSWLのゲート放電経路の図示を省略している。
制御回路50は、異常用スイッチ103を備えている。異常用スイッチ103は、異常用電源90の出力側と、共通経路104とを接続する。共通経路104には、各第2規制ダイオード105を介して各下アームスイッチSWLのゲートが接続されている。
高圧側ASC指令部91は、検出した下アーム駆動電圧VdLが低下し始めた後、異常用スイッチ103をオンに切り替える。これにより、異常用電源90から各下アームスイッチSWLのゲートへと異常用駆動電圧Vepsが直接供給され始める。その結果、3相短絡制御が実施される。なお、高圧側ASC指令部91は、先の図5のステップS13で説明した方法と同様の方法で異常用スイッチ103をオンに切り替えればよい。
<その他の実施形態>
なお、上記各実施形態は、以下のように変更して実施してもよい。
・回転電機としては、1つの巻線群を備えるものに限らず、複数の巻線群を備えるものであってもよい。この場合、各巻線群に対応してスイッチングデバイス部が備えられることとなる。この構成において、制御回路50は、各スイッチングデバイス部のうち一部であってかつ少なくとも1つのスイッチングデバイス部に対してのみ3相短絡制御を実施し、他のスイッチングデバイス部に対して3相短絡制御を実施せず制御を継続してもよい。
図17に、制御システムに、2つの巻線群を有する6相の回転電機200と、インバータ205とが備えられる例を示す。インバータ205は、第1スイッチングデバイス部210と、第2スイッチングデバイス部220とを有している。回転電機200は、第1巻線群201と、第2巻線群202とを有している。第1巻線群201には、第1スイッチングデバイス部210が接続され、第2巻線群202には、第2スイッチングデバイス部220が接続されている。この構成において、制御回路50は、各スイッチングデバイス部210,220のうち、例えば、第1スイッチングデバイス部210に対してのみ3相短絡制御を実施し、第2スイッチングデバイス部220に対する制御を継続してもよい。
ちなみに、制御回路の冗長化を目的として、制御システムに制御回路が複数(例えば2つ)備えられていてもよい。また、制御回路の電源の冗長化を目的として、制御システムに、制御回路に対する低圧電源が複数(例えば2つ)備えられていてもよい。
また、回転電機としては、例えば9相のものであってもよい。
・異常用電源90としては、スイッチング電源(具体的には、絶縁型又は非絶縁型スイッチング電源)に限らず、例えば、シリーズ電源又はツェナーダイオードで構成された電源であってもよい。
・第2,第3実施形態において、先の第1実施形態の変形例で説明したように、カプラ異常が発生した場合に備えて別電源回路が設けられ、別電源回路の出力電圧が低下した場合に絶縁電源80を停止させて3相短絡制御を行う構成が用いられてもよい。
・各ドライバ81,82として、低圧領域及び高圧領域の境界を跨がず、高圧領域のみに設けられるドライバが用いられてもよい。
・先の図1に示す構成において、平滑コンデンサ24と各遮断スイッチ23a,23bとの間に昇圧コンバータが備えられていてもよい。
・スイッチングデバイス部を構成するスイッチとしては、IGBTに限らず、例えばボディダイオードを内蔵するNチャネルMOSFETであってもよい。
・スイッチングデバイス部を構成する各相各アームのスイッチとしては、互いに並列接続された2つ以上のスイッチであってもよい。この場合、互いに並列接続されたスイッチの組み合わせとしては、例えば、SiCのスイッチング素子及びSiのスイッチング素子の組み合わせ、又はIGBT及びMOSFETの組み合わせであってもよい。
・回転電機の制御量としては、トルクに限らず、例えば、回転電機のロータの回転速度であってもよい。
・回転電機としては、永久磁石同期機に限らず、例えば巻線界磁型同期機であってもよい。また、回転電機としては、同期機に限らず、例えば誘導機であってもよい。さらに、回転電機としては、車載主機として用いられるものに限らず、電動パワーステアリング装置や空調用電動コンプレッサを構成する電動機等、他の用途に用いられるものであってもよい。
・本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
10…回転電機、15…インバータ、24…平滑コンデンサ、50…制御回路、60…マイコン、90…異常用電源。

Claims (10)

  1. 蓄電部(24)と、
    多相の回転電機(10,200)と、
    前記回転電機の各相の巻線に電気的に接続された上下アームのスイッチ(SWH,SWL)を有する電力変換器(15,205)と、を備えるシステムに適用される電力変換器の制御回路(50)において、
    前記回転電機を駆動制御するためのスイッチング指令を生成して出力するスイッチ指令生成部(60)と、
    給電されることにより動作可能となり、前記スイッチング指令に基づいて、上下アームの前記スイッチを駆動するスイッチ駆動部(81a,82a)と、
    前記蓄電部から給電されて電力を生成する異常用電源(90)と、
    前記制御回路内に異常が発生したことを判定する異常判定部(87)と、
    前記異常判定部により異常が発生したと判定された場合、前記異常用電源により生成された電力を用いて、上下アームのうちいずれか一方のアームにおける前記スイッチ(SWL)をオンし、他方のアームにおける前記スイッチ(SWH)をオフする短絡制御を行う異常時制御部(91)と、を備える電力変換器の制御回路。
  2. 前記スイッチ指令生成部及び前記異常判定部は、低圧領域に設けられ、
    前記蓄電部、前記スイッチ駆動部、前記異常用電源及び前記異常時制御部は、前記低圧領域とは電気的に絶縁された高圧領域に設けられ、
    前記システムには、前記低圧領域に設けられた低圧電源(31)が備えられ、
    前記低圧領域と前記高圧領域との境界を跨いで前記低圧領域及び前記高圧領域に設けられ、前記低圧電源から給電されて前記スイッチ駆動部に供給する電力を生成する絶縁電源(80)を備え、
    前記異常判定部は、前記制御回路内に異常が発生したと判定した場合に前記絶縁電源を停止させ、
    前記異常時制御部は、前記絶縁電源の出力電圧を検出し、検出した出力電圧が低下し始めた後、前記異常用電源により生成された電力を用いて前記短絡制御を行う請求項1に記載の電力変換器の制御回路。
  3. 前記低圧電源から給電されて前記スイッチ指令生成部に供給する電力を生成する第1電源回路(63〜65)と、
    前記低圧電源から給電されて前記異常判定部に供給する電力を生成する第2電源回路(66)と、を備え、
    前記スイッチ指令生成部は、前記第1電源回路から給電されることにより動作可能に構成されており、
    前記異常判定部は、前記第2電源回路から給電されることにより動作可能に構成されている請求項2に記載の電力変換器の制御回路。
  4. 前記低圧電源から給電されて前記スイッチ指令生成部に供給する電力を生成する電源回路(63〜65)と、
    前記電源回路以外の電源であってかつ前記低圧電源を電力供給源とする電源(61)から給電されることにより動作可能に構成されているとともに前記低圧領域に設けられ、前記スイッチ指令生成部に異常が発生しているか否かを監視する監視部(85)を備え、
    前記異常判定部は、前記監視部により異常が発生したと判定された場合、前記絶縁電源を停止させる請求項2に記載の電力変換器の制御回路。
  5. 前記スイッチ指令生成部に異常が発生しているか否かの初回の判定が前記監視部により行われ、その判定結果が前記スイッチ指令生成部に異常が発生していないとの結果である場合に前記絶縁電源を起動させる請求項4に記載の電力変換器の制御回路。
  6. 前記スイッチ指令生成部に異常が発生しているか否かの初回の判定が前記監視部により行われ、その判定結果が前記スイッチ指令生成部に異常が発生していないとの結果である場合に前記異常判定部による前記絶縁電源の停止機能を有効にする請求項4に記載の電力変換器の制御回路。
  7. 前記スイッチ指令生成部は、自身に異常が発生しているか否かを判定する機能を有し、自身に異常が発生していると判定した場合、異常が発生した旨の情報を前記異常判定部に対して出力し、
    前記異常判定部は、前記異常が発生した旨の情報が入力された場合、前記絶縁電源を停止させる請求項2〜6のいずれか1項に記載の電力変換器の制御回路。
  8. 前記スイッチ駆動部は、
    上アームの前記スイッチを駆動する上アーム駆動部(81a)と、
    下アームの前記スイッチを駆動する下アーム駆動部(82a)と、を有し、
    前記絶縁電源は、前記上アーム駆動部及び前記下アーム駆動部に供給する電力を生成し、
    上下アームの前記スイッチのうち、前記短絡制御によりオンされるスイッチをオン側スイッチ(SWL)とし、前記短絡制御によりオフされるスイッチをオフ側スイッチ(SWH)とし、
    前記異常時制御部は、前記上アーム駆動部及び前記下アーム駆動部のうち前記オフ側スイッチを駆動対象とする駆動部(81a)に対して前記絶縁電源から供給される電圧(VdH)が所定電圧(Vp)を下回った場合、前記上アーム駆動部及び前記下アーム駆動部のうち前記オン側スイッチを駆動対象とする駆動部(82a)に前記短絡制御の実行を指示する請求項2〜7のいずれか1項に記載の電力変換器の制御回路。
  9. 上下アームの前記スイッチのうち、前記短絡制御によりオフされるスイッチをオフ側スイッチ(SWH)とし、
    前記異常時制御部により前記短絡制御が行われる場合、前記スイッチ駆動部に入力される前記オフ側スイッチに対する前記スイッチング指令を強制的にオフ指令とする強制オフ部(100)を備える請求項1〜7のいずれか1項に記載の電力変換器の制御回路。
  10. 前記異常時制御部は、前記異常用電源により生成された電力を前記スイッチ駆動部に供給しつつ前記スイッチ駆動部に前記短絡制御の実行を指示する請求項1〜9のいずれか1項に記載の電力変換器の制御回路。
JP2020022524A 2020-02-13 2020-02-13 電力変換器の制御回路 Active JP7156321B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020022524A JP7156321B2 (ja) 2020-02-13 2020-02-13 電力変換器の制御回路
PCT/JP2021/003038 WO2021161794A1 (ja) 2020-02-13 2021-01-28 電力変換器の制御回路
US17/886,168 US11973368B2 (en) 2020-02-13 2022-08-11 Control apparatus of power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020022524A JP7156321B2 (ja) 2020-02-13 2020-02-13 電力変換器の制御回路

Publications (3)

Publication Number Publication Date
JP2021129397A true JP2021129397A (ja) 2021-09-02
JP2021129397A5 JP2021129397A5 (ja) 2022-01-21
JP7156321B2 JP7156321B2 (ja) 2022-10-19

Family

ID=77291433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020022524A Active JP7156321B2 (ja) 2020-02-13 2020-02-13 電力変換器の制御回路

Country Status (2)

Country Link
JP (1) JP7156321B2 (ja)
WO (1) WO2021161794A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016759A1 (zh) * 2022-07-18 2024-01-25 中国第一汽车股份有限公司 一种主动短路控制电路及其装置、控制方法、系统和车辆

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115601B1 (ja) * 2021-07-15 2022-08-09 富士電機株式会社 制御装置、モータ駆動装置及びモータ駆動システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159684A (ja) * 2014-02-25 2015-09-03 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
JP2017118815A (ja) * 2015-12-17 2017-06-29 アイシン・エィ・ダブリュ株式会社 インバータ制御回路
JP2017208912A (ja) * 2016-05-17 2017-11-24 アイシン・エィ・ダブリュ株式会社 インバータ制御基板
JP2017208911A (ja) * 2016-05-17 2017-11-24 アイシン・エィ・ダブリュ株式会社 インバータ制御基板
WO2018030381A1 (ja) * 2016-08-09 2018-02-15 富士電機株式会社 電力変換装置
JP2019198139A (ja) * 2018-05-07 2019-11-14 株式会社デンソー 電力変換器の制御回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159684A (ja) * 2014-02-25 2015-09-03 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
JP2017118815A (ja) * 2015-12-17 2017-06-29 アイシン・エィ・ダブリュ株式会社 インバータ制御回路
JP2017208912A (ja) * 2016-05-17 2017-11-24 アイシン・エィ・ダブリュ株式会社 インバータ制御基板
JP2017208911A (ja) * 2016-05-17 2017-11-24 アイシン・エィ・ダブリュ株式会社 インバータ制御基板
WO2018030381A1 (ja) * 2016-08-09 2018-02-15 富士電機株式会社 電力変換装置
JP2019198139A (ja) * 2018-05-07 2019-11-14 株式会社デンソー 電力変換器の制御回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016759A1 (zh) * 2022-07-18 2024-01-25 中国第一汽车股份有限公司 一种主动短路控制电路及其装置、控制方法、系统和车辆

Also Published As

Publication number Publication date
WO2021161794A1 (ja) 2021-08-19
JP7156321B2 (ja) 2022-10-19
US20220393504A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
JP7091815B2 (ja) 電力変換器の制御回路
WO2021161794A1 (ja) 電力変換器の制御回路
WO2021261265A1 (ja) 電力変換器の制御回路
JP7409136B2 (ja) 電力変換器の制御回路
WO2022030190A1 (ja) 電力変換器の制御回路
JP2013255297A (ja) 車両用インバータ装置
WO2021161795A1 (ja) 電力変換器の制御回路
US10374509B2 (en) Control circuit for power converter
WO2021161797A1 (ja) 電力変換器の制御回路
US11973368B2 (en) Control apparatus of power converter
JP7318605B2 (ja) 電力変換器の制御回路
WO2021161796A1 (ja) 電力変換器の制御回路
JP7243676B2 (ja) 電力変換器の制御回路
JP7338589B2 (ja) 電力変換器の制御回路
WO2021220908A1 (ja) 電力変換器の制御回路
JP7276277B2 (ja) 電力変換器の制御回路
WO2022059559A1 (ja) 電力変換器の制御装置
WO2021182013A1 (ja) 電力変換器の制御回路
US20230421045A1 (en) Control apparatus for inverter
JP7259563B2 (ja) 回転電機制御システム
JP2021129396A (ja) 電力変換器の制御回路

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220919

R151 Written notification of patent or utility model registration

Ref document number: 7156321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151