WO2024016759A1 - 一种主动短路控制电路及其装置、控制方法、系统和车辆 - Google Patents

一种主动短路控制电路及其装置、控制方法、系统和车辆 Download PDF

Info

Publication number
WO2024016759A1
WO2024016759A1 PCT/CN2023/088969 CN2023088969W WO2024016759A1 WO 2024016759 A1 WO2024016759 A1 WO 2024016759A1 CN 2023088969 W CN2023088969 W CN 2023088969W WO 2024016759 A1 WO2024016759 A1 WO 2024016759A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
active short
signal
voltage
module
Prior art date
Application number
PCT/CN2023/088969
Other languages
English (en)
French (fr)
Inventor
王圣斌
黄荣华
朱占山
王忠禹
钟华
刘志强
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2024016759A1 publication Critical patent/WO2024016759A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/085Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the present invention relates to a control circuit and its device, control method, system and vehicle, and in particular to an active short-circuit control circuit and its device, control method, system and vehicle.
  • the intelligent power unit is the core component of the electric drive system. It performs direct-to-AC high-power electric energy conversion. It can not only drive the motor to output torque, but also absorb braking energy from the motor to the battery. Charge.
  • the IPU is composed of a main circuit composed of a power module, a drive unit, a bus capacitor and a copper bar.
  • the power module is the core component of electric energy conversion
  • the drive unit converts the low-voltage control signal of the control unit into a high-voltage signal that drives the power module, and is the unit that directly controls the module for electric energy conversion.
  • the reliability of the drive unit affects the safety of the entire vehicle. Whether it can control the power module to work safely and effectively is an important indicator of the vehicle's functional safety system.
  • a traditional protection circuit When a traditional protection circuit detects a motor failure, it controls the motor to enter a safe state. Normally, there are two safe states of the motor. One is to directly place all power switching devices in the open circuit state (FreeWheeling, FW); the other is to place the half bridge of the power switching device in open circuit and the opposite half bridge. For short circuit, it is also called active three-phase short circuit (Active Short Circuit, ASC).
  • ASC Active Three-phase short circuit
  • the control and drive unit of the inverter of the electric drive system fails, in order to avoid irreversible damage to the entire vehicle system caused by excessive reverse electromotive force, the motor needs to be controlled to enter an active short-circuit state.
  • the current active short-circuit state trigger mode has various shortcomings, such as:
  • the drive unit When a working fault occurs in the drive unit or module (such as bus voltage overvoltage, module overvoltage or overcurrent, drive chip itself failure), the drive unit will output a fault signal to the control unit, and then the control unit Yuanfa sends an active short-circuit signal to the drive unit and inputs it into the low-voltage side of the drive chip, thereby driving the module into an active short-circuit state.
  • a working fault occurs in the drive unit or module (such as bus voltage overvoltage, module overvoltage or overcurrent, drive chip itself failure)
  • the drive unit will output a fault signal to the control unit, and then the control unit Yuanfa sends an active short-circuit signal to the drive unit and inputs it into the low-voltage side of the drive chip, thereby driving the module into an active short-circuit state.
  • the low-voltage side and high-voltage side of the driver chip lose power, so the motor loses control signals. At this time, the motor is in the energy feedback generator state and has a high back electromotive force. At this time, the backup power circuit needs to draw power from the bus voltage, supply power to the high-voltage side of the driver chip, and drive the module into an active short-circuit state.
  • the above two working conditions correspond to the active short-circuit control of the low-voltage side and the high-voltage side respectively.
  • the priority of the high-voltage side active short-circuit is higher than that of the low-voltage side.
  • the low-voltage side active short-circuit signal is triggered by the microcontroller of the control unit.
  • the microcontroller itself fails, the motor control signal is invalid, and the high-voltage side cannot obtain the active short-circuit control signal, or the active short-circuit is triggered on the low-voltage side of the driver chip, and there is a certain time delay.
  • the topology There is already a delay circuit, resulting in a slower fault response in the circuit structure - the above problem needs to be solved urgently.
  • the purpose of the present invention is to provide an active short-circuit control circuit and its device, control method, system and vehicle.
  • the first technical problem to be solved is to trigger the active short-circuit signal through a microcontroller to ensure the reliability and safety of the drive unit and power module. safety, thereby ensuring the safety of the entire vehicle;
  • the second technical problem to be solved by the present invention is to set up an isolated driving power supply and a backup power supply module in the active short-circuit control circuit.
  • the backup power supply is provided, so that the active short-circuit control circuit can continue to control the motor.
  • Another technical problem to be solved by the present invention is to provide a vehicle with an active short-circuit control function.
  • the motor of the vehicle encounters driving/power module failure, bus voltage overvoltage, microcontroller operation abnormality, etc., it can Let the motor enter the active short-circuit safety state in time to prevent excessive reverse electromotive force from causing damage to the entire vehicle system.
  • the present invention provides the following solutions:
  • An active short-circuit control circuit which is powered by the vehicle low-voltage power supply and the vehicle busbar, specifically includes:
  • the power module controls the motor by controlling the state of its own switching device
  • Microcontroller for outputting motor control signals
  • a driving module which is electrically connected between the power module and the microcontroller.
  • the function of the driving module is to photoelectrically isolate the control signal output by the microcontroller, amplify the signal and send it to the power module;
  • the microcontroller monitoring module is used to monitor the operating status of the microcontroller in real time. When the microcontroller is abnormal, it sends an abnormal signal to the active short-circuit processing module;
  • the overvoltage monitoring module is used to monitor the bus voltage in real time and output the divided signal of the bus voltage to the active short circuit processing module;
  • the active short circuit processing module is connected to the driving module, the microcontroller monitoring module and the overvoltage monitoring module respectively.
  • the active short circuit processing module receives the monitoring signal from the microcontroller monitoring module and the overvoltage monitoring module. After signal processing, the divided voltage signal of the bus voltage is output to the driving module as a digital signal that controls the active short-circuit state.
  • Isolated drive power supply is used to convert the voltage of the vehicle's low-voltage system into a high-voltage drive voltage to power the drive high-voltage side circuit, active short-circuit processing module, and overvoltage monitoring module;
  • the backup power module draws power from the bus voltage.
  • the backup power module supplies power to the drive high-voltage side circuit, active short-circuit processing module, and overvoltage monitoring module respectively.
  • the active short-circuit processing module isolates and converts the low-voltage signal sent by the microcontroller monitoring module into a high-voltage side signal, and detects whether the bus voltage exceeds the safety threshold based on the divided voltage signal of the bus voltage;
  • the active short-circuit processing module specifically includes: an isolation module, a signal processing module, a buffer, a comparator and an OR gate, wherein:
  • the isolation module receives the monitoring signal from the microcontroller monitoring module, isolates and converts the monitoring signal from the low-voltage signal into a high-voltage side signal, and outputs it to the signal processing module;
  • the signal processing module receives the high-voltage side signal for identification and monitoring from the signal processing module, and sends a digital signal to control the active short-circuit state to one end of the OR gate;
  • the buffer receives the divided voltage signal of the bus voltage from the overvoltage monitoring module, performs impedance matching, and transmits the divided voltage signal into the comparator;
  • the comparator when the divided voltage signal of the bus voltage exceeds the threshold, the comparator sends an active short-circuit control signal to the other end of the OR gate;
  • OR gate when one of the microcontroller and bus voltage is abnormal, the OR gate sends an active short-circuit signal to drive the high-voltage side circuit, and then the high-voltage side circuit drives the power module.
  • the isolation module is a photoelectric coupler
  • the anode of the light-emitting diode in the photocoupler is the working status signal input end of the microcontroller
  • the cathode of the light-emitting diode is grounded
  • the set of the phototransistor corresponding to the light-emitting diode is The electrode is connected to the anode of the first diode
  • the emitter of the phototransistor is grounded
  • one end of the first capacitor and the first resistor are respectively connected between the non-inverting end of the first diode and the second comparator
  • the first capacitor and The other end of the first resistor is connected to ground
  • the inverting end of the second comparator is connected to high level
  • the inverting end of the third comparator is connected between the first diode and the non-inverting end of the second comparator
  • the third comparator The non-inverting terminal of the comparator is connected to low level
  • the output terminals of the second and third comparators are respectively connected
  • the buffer includes a sixth operational amplifier, a second resistor, and a second capacitor.
  • the non-inverting end of the sixth operational amplifier is connected to one end of the second resistor, and the other end of the second resistor is connected to the overvoltage monitoring circuit.
  • the signal input terminal is connected, the inverting terminal of the sixth operational amplifier is connected to the output terminal, the output terminal of the sixth operational amplifier is also connected to one terminal of the third resistor, and the other terminal of the third resistor is connected to the non-inverting terminal of the seventh operational amplifier.
  • Fourth resistor It is connected between the non-inverting terminal and the output terminal of the seventh operational amplifier.
  • the inverting terminal of the seventh operational amplifier is used to set the equivalent threshold voltage.
  • the output terminal of the seventh operational amplifier is connected to the other input terminal of the fifth OR gate.
  • the output terminal of the fifth OR gate is the active short-circuit signal terminal.
  • An active short-circuit control device is provided with the active short-circuit control circuit.
  • An active short circuit control method specifically including:
  • the drive module Detect whether there is a fault in the drive module or power module. If there is a fault, the drive module sends a fault signal to the microcontroller.
  • the microcontroller identifies and reports the vehicle and sends an active short-circuit signal to the drive module.
  • the motor enters the active short-circuit safety state, or: If there is no fault, maintain the original status and work normally;
  • the active short-circuit processing module determines whether the bus voltage is over-voltage. If the bus voltage is not over-voltage, it will maintain the original state and operate normally; if the bus voltage is over-voltage, the active short-circuit processing module will send an active short-circuit signal to the driving high-voltage circuit, and further determine whether the bus voltage is discharged. to lower than the shutdown threshold voltage: If the bus voltage is discharged below the shutdown threshold voltage, the active short-circuit processing module stops sending the active short-circuit signal; if the bus voltage is not discharged lower than the shutdown threshold voltage, the active short-circuit processing module continues to send Active short circuit signal;
  • An active short-circuit control system specifically including:
  • the drive/power module fault detection unit is used to detect whether there is a fault in the drive module or power module, send an active short-circuit signal or maintain normal operation in the original state;
  • the bus voltage overvoltage detection unit is used to determine whether the bus voltage is overvoltage, and further determine whether the bus voltage is discharged below the judgment threshold voltage, and sends an active short-circuit signal or maintains normal operation in the original state;
  • the microcontroller status detection unit is used to send an active short-circuit signal or maintain the original status to work normally according to the working status of the microcontroller.
  • An electronic device including: a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory complete communication with each other through the communication bus; a computer program is stored in the memory.
  • the computer program When executed by the processor, causes the processor to execute the steps of the method.
  • a computer-readable storage medium stores a computer program executable by an electronic device, causing the electronic device to perform the steps of a method when the computer program is run on the electronic device.
  • a vehicle the vehicle is provided with an active short-circuit control system.
  • the active short-circuit control system is used to control the motor to enter an active short-circuit state, and further includes:
  • a processor runs a program, and when the program is run, the data output from the electronic device performs the steps of the active short circuit control method
  • a storage medium is used to store a program that, when running, performs the steps of the active short circuit control method for data output from the electronic device.
  • the present invention has the following advantages:
  • the active short-circuit state can be triggered when either microcontroller failure or bus voltage overvoltage occurs, and there is no need to consider whether the low-voltage side circuit is faulty.
  • the monitoring unit of the microcontroller directly sends an active short-circuit control signal to the high-voltage side to avoid irreversible damage to the entire vehicle system caused by excessive reverse electromotive force.
  • the active short-circuit control circuit is equipped with an isolated drive power supply and a backup power supply module.
  • the isolated drive power supply is used to convert the voltage of the vehicle's low-voltage system into a high-voltage drive voltage, driving the high-voltage side circuit, active short-circuit processing module, and overvoltage monitoring module.
  • the backup power module draws power through the bus voltage.
  • the backup power module supplies power to the drive high-voltage side circuit, active short-circuit processing module, and over-voltage monitoring module respectively, so that the active short-circuit control circuit The function of controlling the active short circuit of the motor can continue to be realized.
  • the present invention discloses an active short-circuit control method and system based on an active short-circuit circuit.
  • the control method and system can send signals based on control logic judgment factors such as whether the drive module and power module are faulty, whether the bus voltage is overvoltage, whether the microcontroller is working normally, etc.
  • Active short-circuit signal controls the motor to enter the active short-circuit safety state in time to prevent excessive reverse electromotive force from causing damage to the entire vehicle system.
  • the vehicle with active short-circuit control function disclosed in the present invention can make the motor enter the active short-circuit safety state in time when the motor of the vehicle encounters driving/power module failure, bus voltage overvoltage, abnormal microcontroller operation and other working conditions. Prevent excessive reverse electromotive force from causing damage to the entire vehicle system.
  • Figure 1 is the schematic block diagram of the active short-circuit control circuit.
  • Figure 2 is a schematic block diagram of the active short-circuit processing module.
  • Figure 3 is the circuit schematic diagram of the active short-circuit processing module.
  • Figure 4 is a flow chart of the active short circuit control method.
  • Figure 5 is the architecture diagram of the active short-circuit control system.
  • FIG. 6 is a flow chart (Part 1) of an active short-circuit control method in a possible specific embodiment.
  • FIG. 7 is a flow chart (Part 2) of the active short-circuit control method in a possible specific embodiment.
  • Figure 8 is a flow chart (Part 3) of the active short-circuit control method in a possible specific embodiment.
  • Figure 9 is a system architecture diagram of the electronic device.
  • the active short-circuit control circuit is powered by the vehicle low-voltage power supply and the vehicle bus, specifically including:
  • the power module 180 controls the motor by controlling the state of its own switching device
  • the microcontroller 100 is used to output motor control signals and perform active short-circuit control on the motor.
  • the microcontroller 100 receives vehicle instructions and outputs motor control signals to the drive module 110 .
  • Driving module 110 The driving module 110 is electrically connected between the power module 180 and the microcontroller 100.
  • the function of the driving module 110 is to photoelectrically isolate the control signal output by the microcontroller 100, amplify the signal and send it to the power module 180;
  • the emitter when a power signal is applied to the input terminal, the emitter emits light, and after the photoreceiver receives the light, it generates photocurrent and flows out from the output terminal, thus realizing "electricity-optical-electricity” conversion. It uses light as the medium to couple the input signal to the output. It has the advantages of no contact, strong anti-interference ability, insulation between output and input, and one-way signal transmission.
  • the drive module 110 includes an upper three-bridge drive circuit and a lower three-bridge drive circuit. Each bridge drive circuit is divided into a low-voltage side circuit and a high-voltage side circuit. When the electric drive system is operating normally, the low-voltage side circuit is powered by a low-voltage power supply, and the high-voltage side circuit is powered by a low-voltage power supply. Powered by an isolated driver supply.
  • the microcontroller monitoring module 120 is used to monitor the operating status of the microcontroller 100 in real time. When the microcontroller 100 is abnormal, it sends an abnormal signal to the active short circuit processing module 150. For example: the microcontroller monitoring module 120 monitors the microcontroller. According to the operating status of the microcontroller 100, when an abnormality such as software failure or power outage occurs in the microcontroller, a fault signal is sent to the active short circuit processing module 150.
  • the overvoltage monitoring module 130 is used to monitor the bus voltage in real time and output the divided signal of the bus voltage to the active short-circuit processing module 150 through the principle of resistor voltage dividing.
  • the signal voltage output by the voltage dividing circuit must be sent to In the next-level circuit, theoretically, the input of the next-level circuit of the voltage divider circuit is the output end of the voltage divider circuit.
  • the active short circuit processing module 150 is connected to the driving module 110, the microcontroller 100 monitoring module and the overvoltage monitoring module 130 respectively.
  • the active short circuit processing module 150 receives the monitoring signal from the microcontroller monitoring module 120, and from The divided voltage signal of the bus voltage of the overvoltage monitoring module 130 undergoes signal processing and outputs a digital signal for controlling the active short-circuit state to the driving module 110 .
  • the working principle of the main circuit of the active short-circuit control circuit is:
  • the microcontroller 100, the low-voltage side circuit of the drive module 110, and the microcontroller monitoring module 120 are all powered by the low-voltage power supply; the high-voltage side circuit of the drive module 110, the overvoltage monitoring module 130, and active short circuit processing
  • the modules 150 are all powered by low-voltage power through the isolated drive power module 190 .
  • the backup power supply module 170 supplies power to the drive high-side circuit 160, overvoltage monitoring module 130, and active short-circuit processing module 150 of the drive module.
  • the overvoltage monitoring module 130 monitors the bus voltage in real time, and outputs the divided signal of the bus voltage to the active short circuit processing module 150 through the principle of resistor voltage division;
  • the active short-circuit processing module 150 receives the monitoring signal from the microcontroller monitoring module 120 and the divided voltage signal of the bus voltage from the over-voltage monitoring module 130. After signal processing, it outputs a digital signal to control the active short-circuit state to the driving module 110.
  • the switch tube in the power module 180 is adjusted to control the motor to enter an active short-circuit safety state.
  • the ASC signal output by the active short-circuit processing module 150 to control the active short-circuit state has a higher priority and covers the control of the drive module 110 by the microcontroller 100 .
  • it also includes:
  • the isolated driving power supply module 190 is used to convert the voltage of the vehicle's low-voltage system into a high-voltage driving voltage to supply power to the driving high-voltage side circuit 160, the active short-circuit processing module 150, and the over-voltage monitoring module 130;
  • the backup power module 170 takes power through the bus voltage.
  • the backup power modules are the drive high-voltage side circuit 160, the active short-circuit processing module 150, and the over-voltage monitoring module. 130 power supply. Due to the existence of the backup power module 170, even if the low-voltage system loses power or the isolation driving power module 190 fails, the backup power module 170 can still supply power to the driving high-voltage side circuit 160, the active short-circuit processing module 150, and the over-voltage monitoring module 130 respectively. Ensure that the system implements active short-circuit function.
  • the active short circuit processing module 150 includes an isolation module 151, a signal processing module 152, a buffer 153, a comparator 154 and an OR gate 155, where:
  • the isolation module 151 receives the monitoring signal sent by the microcontroller monitoring module 120, isolates and converts the monitoring signal from a low-voltage signal into a high-voltage side signal, and outputs it to the signal processing module 152;
  • the signal processing module 152 receives the high-voltage side signal for identification and monitoring from the signal processing module, and sends a digital signal to control the active short-circuit state to one end of the OR gate 155;
  • the buffer 153 receives the divided voltage signal of the bus voltage from the overvoltage monitoring module 130, performs impedance matching, and sends the divided voltage signal into the comparator 154; if there is no buffer 153, the overvoltage monitoring module 130 is directly connected to the comparator 154. , the resistance inside the comparator 154 will affect the divided voltage value.
  • the comparator 154 sends an active short-circuit control signal to the other end of the OR gate 155 when the divided signal of the bus voltage exceeds the threshold.
  • OR gate 155 when one of the microcontroller and the bus voltage is abnormal, the OR gate 155 sends an active short-circuit signal to drive the high-voltage side circuit 160, and then drives the high-voltage side circuit 160 and then drives the power module 180 to control the motor.
  • Vmon is the working status signal of the microcontroller, and the Vmon signal is connected to the optocoupler U1 (isolated optocoupler).
  • the above components constitute the signal processing module 152.
  • the anode of the first diode D1 is connected to the output end of the photocoupler U1, and the first resistor R1 and the first capacitor C1 are connected in parallel between the cathode of the first diode D1 and ground, that is, the output end of the photocoupler U1 is connected
  • the output terminal of the fourth OR gate U4 is The output of signal processing module 152.
  • the isolation module 151 is a photoelectric coupler U1
  • the anode of the light-emitting diode in the photoelectric coupler U1 is the input end of the microcontroller working status signal Vmon.
  • the cathode of the phototransistor is grounded, the collector of the phototransistor corresponding to the light-emitting diode is connected to the anode of the first diode D1, the emitter of the phototransistor is grounded, and one end of the first capacitor C1 and the first resistor R1 is connected to the first diode respectively.
  • the other ends of the first capacitor C1 and the first resistor R1 are connected to ground, the inverting terminal of the second comparator U2 is connected to high level, and the inverting terminal of the third comparator U3 is connected to the ground. terminal is connected between the first diode D1 and the non-inverting terminal of the second comparator U2, the non-inverting terminal of the third comparator U3 is connected to low level, and the output terminals of the second and third comparators are connected to the fourth OR gate U4 respectively.
  • the two inputs of are connected, and the fourth OR gate
  • the output terminal of U4 is connected to an input terminal of the fifth OR gate U5, and the output terminal of the fifth OR gate U5 is an active short-circuit signal terminal.
  • the buffer 153 includes a sixth operational amplifier U6, a second resistor R2, and a second capacitor C2.
  • the non-inverting terminal of the sixth operational amplifier U6 is connected to one terminal of the second resistor R2, and the other terminal of the second resistor R2 is connected to the overvoltage monitoring signal input.
  • the inverting terminal of the sixth operational amplifier U6 is connected to the output terminal
  • the output terminal of the sixth operational amplifier U6 is also connected to one end of the third resistor R3, and the other end of the third resistor R3 is connected to the seventh operational amplifier U7 is connected to the non-inverting terminal
  • the fourth resistor R4 is connected between the non-inverting terminal and the output terminal of the seventh operational amplifier U7
  • the inverting terminal of the seventh operational amplifier U7 is used to set the equivalent threshold voltage
  • the output terminal of the seventh operational amplifier U7 Connected to the other input terminal of the fifth OR gate U5, the output terminal of the fifth OR gate U5 is an active short-circuit signal terminal.
  • the Vmon signal is a square wave signal with a variable duty cycle.
  • the Vmon signal has a duty cycle of 50%.
  • the duty cycle of the Vmon signal will change. If the low voltage is powered off, the Vmon signal will also be powered off, which is equivalent to a signal with a duty cycle of 0.
  • the Vmon signal charges the first capacitor C1 through the first diode D1.
  • the function of the first diode D1 is that when the Vmon signal is 0, the first capacitor C1 can be completely discharged through the first resistor R1.
  • the current state can be achieved.
  • the duty cycle of the Vmon signal is 50%
  • the voltage of the first capacitor C1 remains within the range of Vh and Vl.
  • both the second comparator U2 and the third comparator U3 output "0".
  • the duty cycle of the Vmon signal changes, the voltage of the first capacitor C1 will exceed the range of Vh and Vl, and one of the second comparator U2 and the third comparator U3 outputs "1", thereby initiating an active short circuit.
  • the V dc signal is an analog level signal obtained by dividing the bus voltage.
  • the V dc signal is first input to the low-pass filter circuit composed of the second resistor R2 and the second capacitor C2 to prevent certain voltage spikes from accidentally opening the active short circuit, and then is input to the comparator 154 after passing through the sixth operational amplifier U6.
  • the purpose of placing U6 is to prevent the filter from affecting the input impedance of the comparator.
  • the seventh comparator U7, the third resistor R3, and the fourth resistor R4 form a hysteresis comparator.
  • the seventh operational amplifier U7 When the comparator input voltage increases from 0 to Vth(h), that is, when the bus voltage increases from 0V to the overvoltage threshold, the seventh operational amplifier U7 outputs "0"; after the bus voltage exceeds the threshold, the seventh operational amplifier U7 Output "1", turn on the active short circuit; as the motor back electromotive force decreases, when the bus voltage drops to the shutdown threshold, that is, the relatively strong input voltage drops below Vth (l), the seventh operational amplifier U7 outputs "0", turns off the active short circuit.
  • the OR gate 155 can output an active short-circuit signal to realize the active short-circuit function.
  • the present invention also discloses a corresponding active short-circuit control device.
  • the active short-circuit control device is provided with an active short-circuit control circuit.
  • the active short-circuit control device works on the high-voltage side of the drive unit. , the active short-circuit state can be triggered in both cases of microcontroller failure or bus voltage overvoltage, and there is no need to consider whether the low-voltage side circuit is faulty. In this device, the active short-circuit module 150 does not interfere with the microcontroller 100 and the drive module.
  • the ASC signal output by the active short-circuit module 150 has a higher priority, covering the control effect of the microcontroller 100 on the drive module 110, and realizing that the priority of the high-voltage side active short-circuit control is higher than that of the low-voltage side active short-circuit control. Effect.
  • the present invention also discloses an active short-circuit control method corresponding to the circuit and its device.
  • the method steps specifically include:
  • the method steps are expressed as a series of action combinations for the purpose of simple description.
  • the embodiments of the present invention are not limited by the described action sequence, because According to embodiments of the present invention, certain steps may be performed in other orders or simultaneously.
  • those skilled in the art should also know that the embodiments described in the specification are preferred embodiments, and the actions involved are not necessarily necessary for the embodiments of the present invention.
  • the active short-circuit control system disclosed in the present invention specifically includes:
  • the drive/power module fault detection unit is used to detect whether there is a fault in the drive module or power module, send an active short-circuit signal or maintain normal operation in the original state;
  • the bus voltage overvoltage detection unit is used to determine whether the bus voltage is overvoltage, and further determine whether the bus voltage is discharged below the judgment threshold voltage, and sends an active short-circuit signal or maintains normal operation in the original state;
  • the microcontroller status detection unit is used to send an active short-circuit signal or maintain the original status according to the working status of the microcontroller.
  • the system described above is only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in one place. , or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • this embodiment shows whether there is a fault in the drive/power module, whether the bus voltage is overvoltage, and whether the microcontroller is working normally. How to implement the active short-circuit control method in specific application scenarios, specifically:
  • step S300 detect whether there is a fault in the drive module or power module. If there is a fault, perform step S310: the drive module sends a fault signal to the microcontroller. The microcontroller identifies and reports the entire vehicle and then sends an active short circuit. The signal is sent to the drive module, and the motor enters the active short-circuit safety state, or: if there is no fault, step S320 is executed to maintain the original state and operate normally;
  • step S330 Determine whether the bus voltage is overvoltage. If the bus voltage is not overvoltage, perform step S370 to maintain the original state and operate normally; if the bus voltage is overvoltage, perform step S340, and the active short circuit processing module Send an active short-circuit signal to the driving high-voltage circuit, and execute step S350 to further determine whether the bus voltage is discharged below the shutdown threshold voltage: If the bus voltage is discharged below the shutdown threshold voltage, execute step S360, active short-circuit processing module Stop sending active short-circuit signals; if the bus voltage discharge is not lower than the shutdown threshold voltage, the active short-circuit processing module continues to send active short-circuit signals;
  • step S380 Determine whether the microcontroller is working normally. If the microcontroller is working normally, perform step S400 to maintain the original state and work normally. Or: the microcontroller is working abnormally, perform step S400 and perform active short-circuit processing. The module sends an active short-circuit signal to the driving high-voltage circuit.
  • the present invention Based on the circuit principle of the above-mentioned active short-circuit control circuit and the control logic of the control method, the present invention provides four different working modes:
  • the vehicle low voltage system supplies power to the microcontroller 100 and the microcontroller monitoring module 120 and the drive low-voltage side circuit 140.
  • the low-voltage power passes through the isolated drive power module 190 for voltage After the isolation conversion, power is supplied to the driving high-voltage side circuit 160, the active short-circuit processing module 150, and the over-voltage monitoring module 130.
  • the microcontroller 100 sends a PWM signal to the drive module 110, the drive module 110 outputs a high-voltage drive signal to the power module 180, and the motor runs normally.
  • the driving module 110 monitors the status of itself and the power module 180 at all times
  • the microcontroller monitoring module 120 monitors the status of the microcontroller at all times
  • the overvoltage monitoring module 130 monitors the bus voltage at all times.
  • the vehicle power supply is normal, but when the drive module 110 or the power module 180 fails (such as the drive chip is damaged, the power module is overvoltage or overcurrent), the drive module 110 sends a fault signal to the microcontroller 100, and the microcontroller The controller 100 identifies and reports the entire vehicle and sends an active short-circuit signal to the drive module 110, and the motor enters an active short-circuit safety state.
  • the divided voltage signal of the bus voltage output by the overvoltage monitoring module 130 will also exceed the safety threshold.
  • the comparator outputs an active short-circuit control signal to the OR gate 155.
  • the active short-circuit state as the motor discharges, the bus voltage gradually decreases, and the switching tube of the power module 180 will enter the linear amplification mode, generating a large amount of heat. Therefore, it is necessary to set the turn-off threshold voltage in the design of the comparator 154.
  • the active short-circuit state is exited.
  • the microcontroller monitoring module 120 When the vehicle loses power at low voltage, or the microcontroller hardware fails, or the software fails, the microcontroller monitoring module 120 will send a fault signal to the active short circuit processing module 150. If a low-voltage power outage occurs, the microcontroller 100, the driving low-voltage side circuit 140, and the isolated driving power module 190 will have no power supply. At this time, the backup power supply 170 supplies power to the driving high-voltage side circuit 160 and the active short-circuit processing module 150 . When the microcontroller monitoring module 120 sends a fault signal to the active short circuit processing module 150, the signal is first converted into a high-voltage side signal through the isolation module 151, and the signal processing module 152 identifies the signal. Once the signal is abnormal, the signal processing module 152 will send an active short-circuit control signal to the OR gate 155, thereby causing the motor to enter an active short-circuit state.
  • the present invention also discloses electronic equipment and storage media corresponding to the active short-circuit control circuit and its device, control method and system:
  • An electronic device including: a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory complete communication with each other through the communication bus; a computer program is stored in the memory.
  • the processor When executed by the processor, the processor is caused to execute the steps of the active short circuit control method.
  • a computer-readable storage medium stores a computer program that can be executed by an electronic device.
  • the computer program When the computer program is run on the electronic device, the electronic device performs the steps of the active short-circuit control method.
  • the communication bus mentioned in the above-mentioned electronic equipment can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the communication bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • Electronic devices include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system.
  • This hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory.
  • the operating system can be any one or more computer operating systems that control electronic devices through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system, windows operating system or various vehicle-mounted operating systems. Operating system, vehicle central control system, etc.
  • the execution subject of electronic device control in the embodiment of the present invention may be an electronic device, or a functional module in the electronic device that can call a program and execute the program.
  • the electronic device can obtain the firmware corresponding to the storage medium.
  • the firmware corresponding to the storage medium is provided by the supplier.
  • the firmware corresponding to different storage media can be the same or different, and is not limited here.
  • After the electronic device obtains the firmware corresponding to the storage medium it can write the firmware corresponding to the storage medium into the storage medium, specifically, burn the firmware corresponding to the storage medium into the storage medium.
  • the process of burning the firmware into the storage medium can be implemented using existing technology, and will not be described again in the embodiment of the present invention.
  • the electronic device can also obtain the reset command corresponding to the storage medium.
  • the reset command corresponding to the storage medium is provided by the supplier.
  • the reset commands corresponding to different storage media can be the same or different, and are not limited here.
  • the storage medium of the electronic device is a storage medium in which the corresponding firmware is written.
  • the electronic device can respond to the reset command corresponding to the storage medium in the storage medium in which the corresponding firmware is written, so that the electronic device responds to the reset command corresponding to the storage medium.
  • Reset command to reset the storage medium in which the corresponding firmware is written.
  • the process of resetting the storage medium according to the reset command can be implemented with existing technology, and will not be described again in the embodiment of the present invention.
  • the invention also discloses a vehicle, especially an electric vehicle.
  • the vehicle is provided with an active short-circuit control system.
  • the active short-circuit control system is used to control the motor to enter the vehicle.
  • Active short circuit conditions also include:
  • a processor that runs a program and performs the steps of the active short-circuit control method on data output from the electronic device when the program is run;
  • a storage medium is used to store a program that performs the steps of the active short-circuit control method for data output from the electronic device when running.
  • the present invention can be implemented by means of software plus a necessary general hardware platform. Based on this understanding, the technical solution of the present invention can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product can be stored in a storage medium, such as ROM/RAM, disk , optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments of the present invention.
  • the present invention may be used in a variety of general or special purpose computing system environments or configurations, such as: personal computers, server computers, handheld or portable devices, tablet devices, multi-processor systems, microprocessor-based systems, set-top boxes, Programmed consumer electronics devices, network PCs, minicomputers, mainframe computers, distributed computing environments including any of the above systems or devices, etc.
  • the invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer.
  • program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
  • tasks are performed by remote processing devices connected through a communications network.
  • program modules may be located in both local and remote computer storage media including storage devices.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more components for implementing the specified logical function(s). Executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures.
  • each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration can be implemented by special purpose hardware-based systems that perform the specified functions or acts. , or can be implemented using a combination of specialized hardware and computer instructions.
  • each functional module in various embodiments of the present invention can be integrated together to form an independent part, each module can exist alone, or two or more modules can be integrated to form an independent part.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or optical disk and other media that can store program code.
  • relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that these entities or operations are mutually exclusive. any such actual relationship or sequence exists between them.
  • the terms “comprises,” “comprises,” or any other variations thereof are intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus that includes a list of elements includes not only those elements, but also those not expressly listed other elements, or elements inherent to the process, method, article or equipment.
  • an element defined by the statement “comprises a" does not exclude the presence of additional identical elements in a process, method, article, or apparatus that includes the stated element.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Protection Of Static Devices (AREA)

Abstract

本发明公开了一种主动短路控制电路及其装置、控制方法、系统和车辆,电路由整车低压电源和整车母线进行供电,具体包括:通过控制自身开关器件的状态,实现对电机的控制,微控制器,用于输出电机控制信号;在功率模块和微控制器之间电性连接有驱动模块,还包括:微控制器监测模块、过压监测模块以及主动短路处理模块。本发明通过对主动短路控制电路进行改进,在微控制器故障和母线电压过压两种情况任一发生时都可触发主动短路状态,且完全不必考虑低压侧电路是否故障,当微控制器本身出现故障导致电机控制信号无效时,当微控制器出现软件失效、掉电等异常时,发送故障信号给主动短路处理模块,避免了反向电动势过高引起整车系统的不可逆损坏。

Description

一种主动短路控制电路及其装置、控制方法、系统和车辆 技术领域
本发明涉及一种控制电路及其装置、控制方法、系统和车辆,尤其涉及一种主动短路控制电路及其装置、控制方法、系统和车辆。
背景技术
在电动车动力系统中,智能功率单元(IPU)是电驱系统中的核心部件,它进行直-交流的大功率电能变换,既可以驱动电机输出扭矩,又可以从电机吸收制动能量为电池充电。IPU由功率模块、驱动单元、母线电容和铜排组成的主回路组成。其中功率模块是电能转换的核心部件,而驱动单元将控制单元的低压控制信号转换为驱动功率模块的高压信号,是直接控制模块进行电能转换的单元。驱动单元的可靠性影响着整车的安全性,其能否控制功率模块安全有效地工作是车辆功能安全系统的重要指标。
传统的保护电路当检测到电机出现故障时,控制电机进入安全状态。通常情况下电机的安全状态包括两种,一种是直接将所有功率开关器件置于开路状态(FreeWheeling,FW);另一种是将功率开关器件的半桥置于开路,对边半桥置于短路,也称主动三相短路(Active Short Circuit,ASC)。当电机高转速时,为避免反向电动势的产生,控制电机进入ASC安全状态,当电机低转速时,控制电机进入FW状态。当电动车在高速行驶过程中,一旦电驱系统逆变器的控制和驱动单元出现了故障,为避免反向电动势过高引起整车系统的不可逆损坏,需要控制电机进入主动短路状态。然而,目前的主动短路状态触发模式存在种种缺陷,例如:
当驱动单元或模块出现工作故障(如母线电压过压、模块过压或过流、驱动芯片自身失效)时,驱动单元会输出故障信号给控制单元,随后控制单 元发给驱动单元主动短路信号,输入驱动芯片的低压侧,进而驱动模块进入主动短路状态。
当整车低压控制电源断路时,驱动芯片的低压侧和高压侧失去供电,故电机失去控制信号。此时电机处于能量回馈的发电机状态,且具有较高的反电动势。这时需要备份电源电路从母线电压处取电,给驱动芯片高压侧供电,并驱动模块进入主动短路状态。
上述两种工况分别对应了低压侧和高压侧的主动短路控制,高压侧主动短路的优先级要高于低压侧主动短路的,低压侧主动短路信号都是通过控制单元的微控制器触发。在现有技术中,当微控制器本身出现故障时,电机控制信号无效,高压侧无法获得主动短路控制信号,或者主动短路是在驱动芯片低压侧触发,存在一定时间延迟,再加上拓扑中本就有延时电路,导致在电路结构中故障响应较慢——上述问题亟需得到解决。
发明内容
本发明的目的在于提供一种主动短路控制电路及其装置、控制方法、系统和车辆,首先要解决的技术问题是通过微控制器触发主动短路信号,保证驱动单元和功率模块的可靠性与安全性,进而保障整车的安全性;
本发明其次要解决的技术问题是在主动短路控制电路中设置隔离驱动电源和备份电源模块,当低压系统掉电或隔离驱动电源模块故障时提供备份电源,使主动短路控制电路能够继续实现控制电机主动短路的功能;
本发明要解决的另一个技术问题是提供一种具有主动短路控制功能的车辆,当该车辆的电机在遭遇驱动\功率模块故障、母线电压过压、微控制器工作异常等工况时,能够让电机及时进入主动短路安全状态,防止反向电动势过高对整车系统造成损坏。
本发明提供了下述方案:
一种主动短路控制电路,所述主动短路控制电路通过整车低压电源和整车母线进行供电,具体包括:
功率模块,通过控制自身开关器件的状态,实现对电机的控制;
微控制器,用于输出电机控制信号;
驱动模块,所述驱动模块电性连接在所述功率模块和所述微控制器之间,驱动模块的作用是将微控制器输出的控制信号进行光电隔离、信号放大后发送至功率模块;
还包括:
微控制器监测模块,用于实时监测微控制器的运行状态,当微控制器出现异常时发送异常信号给主动短路处理模块;
过压监测模块,用于实时监测母线电压,向主动短路处理模块输出母线电压的分压信号;
主动短路处理模块,所述主动短路处理模块分别与驱动模块、微控制器监测模块和过压监测模块相连,主动短路处理模块接收来自微控制器监测模块的监测信号,以及来自过压监测模块的母线电压的分压信号,经过信号处理,向所述驱动模块输出控制主动短路状态的数字信号。
进一步的,还包括:
隔离驱动电源,用于将整车低压系统的电压转换为高压驱动电压,为驱动高压侧电路、主动短路处理模块、过压监测模块供电;
备份电源模块,所述备份电源模块通过母线电压处取电,当低压系统掉电或隔离驱动电源模块故障时,备份电源模块分别为驱动高压侧电路、主动短路处理模块、过压监测模块供电。
进一步的,所述主动短路处理模块将微控制器监测模块发出的低压信号进行隔离并转化为高压侧信号,并根据母线电压的分压信号检测母线电压是否超过安全阈值;
所述主动短路处理模块具体包括:隔离模块、信号处理模块、缓冲器、比较器和或门,其中:
隔离模块,接收微控制器监测模块发出的监测信号,将该监测信号由低压信号隔离并转化为高压侧信号,输出至信号处理模块;
信号处理模块,接收来自信号处理模块的识别监测用高压侧信号,并发出控制主动短路状态的数字信号至或门的一端;
缓冲器,接收来自过压监测模块的母线电压的分压信号,进行阻抗匹配,将所述分压信号输送进比较器;
比较器,当母线电压的分压信号超出阈值时,比较器发送主动短路控制信号至或门的另一端;
或门,当微控制器和母线电压其中之一出现异常时,或门发送主动短路信号给驱动高压侧电路,然后高压侧电路再驱动功率模块。
进一步的,所述隔离模块为光电耦合器,所述光电耦合器中的发光二极管的正极为微控制器工作状态信号输入端,发光二极管的负极接地,与所述发光二极管对应的光敏三极管的集电极与第一二极管的正极相连,光敏三极管的发射极接地,第一电容和第一电阻的一端分别连接在第一二极管和第二比较器的同相端之间,第一电容和第一电阻的另一端接地,第二比较器的反相端接高电平,第三比较器的反相端连接在第一二极管和第二比较器的同相端之间,第三比较器的同相端接低电平,第二、三比较器的输出端分别与第四或门的两个输入端相连,第四或门的输出端与第五或门的一个输入端相连,第五或门的输出端为主动短路信号端。
进一步的,所述缓冲器包括第六运放、第二电阻、第二电容,所述第六运放的同相端与第二电阻的一端相连,所述第二电阻的另一端与过压监测信号输入端相连,第六运放的反相端与输出端相连,第六运放的输出端还与第三电阻的一端相连,第三电阻的另一端与第七运放的同相端相连,第四电阻 连接在第七运放的同相端和输出端之间,第七运放的反相端用于设置等效阈值电压,第七运放的输出端与第五或门的另一个输入端相连,第五或门的输出端为主动短路信号端。
一种主动短路控制装置,所述主动短路控制装置中设置有所述的主动短路控制电路。
一种主动短路控制方法,具体包括:
检测驱动模块或功率模块是否存在故障,根据故障存在与否发送主动短路信号或维持原状态正常工作;
判断母线电压是否过压,并进一步判断母线电压是否放电至低于判断阈值电压,发送主动短路信号或维持原状态正常工作;
检测微控制器的工作状态,发送主动短路信号或维持原状态正常工作。
进一步的,具体包括:
检测驱动模块或功率模块是否存在故障,如果存在故障,驱动模块发送故障信号给微控制器,微控制器识别并上报整车后发送主动短路信号给驱动模块,电机进入主动短路安全状态,或:如果不存在故障,则维持原状态正常工作;
判断母线电压是否过压,如果母线电压未过压,则维持原状态正常工作;如果母线电压过压,则由主动短路处理模块发送主动短路信号给驱动高压电路,并进一步判断判断母线电压是否放电至低于关断阈值电压:如果母线电压放电至低于关断阈值电压,则主动短路处理模块停止发送主动短路信号;如果母线电压放电未低于关断阈值电压,则主动短路处理模块继续发送主动短路信号;
判断微控制器工作是否正常,如果微控制器工作正常,则维持原状态正常工作,或:微控制器工作异常,主动短路处理模块发送主动短路信号给驱动高压电路。
一种主动短路控制系统,具体包括:
驱动/功率模块故障检测单元,用于检测驱动模块或功率模块是否存在故障,发送主动短路信号或维持原状态正常工作;
母线电压过压检测单元,用于判断母线电压是否过压,并进一步判断母线电压是否放电至低于判断阈值电压,发送主动短路信号或维持原状态正常工作;
微控制器状态检测单元,用于根据微控制器的工作状态,发送主动短路信号或维持原状态正常工作。
一种电子设备,包括:处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;所述存储器中存储有计算机程序,当所述计算机程序被所述处理器执行时,使得所述处理器执行所述方法的步骤。
一种计算机可读存储介质,其存储有可由电子设备执行的计算机程序,当所述计算机程序在所述电子设备上运行时,使得所述电子设备执行方法的步骤。
一种车辆,所述车辆上设置有主动短路控制系统,当车辆的电驱系统逆变器的控制和驱动单元出现故障时,主动短路控制系统用于控制电机进入主动短路状态,还包括:
电子设备,用于实现主动短路控制方法;
处理器,所述处理器运行程序,当所述程序运行时从所述电子设备输出的数据执行主动短路控制方法的步骤;
存储介质,用于存储程序,所述程序在运行时对于从电子设备输出的数据执行主动短路控制方法的步骤。
本发明与现有技术相比具有以下的优点:
通过对主动短路控制电路进行改进,在微控制器故障和母线电压过压两种情况下任一情况发生时均可触发主动短路状态,且完全不必考虑低压侧电路是否故障,当微控制器本身出现故障导致电机控制信号无效时,微控制器的监测单元直接给高压侧发送主动短路控制信号,避免了反向电动势过高引起整车系统的不可逆损坏。
在主动短路控制电路中设置有隔离驱动电源和备份电源模块,隔离驱动电源用于将整车低压系统的电压转换为高压驱动电压,为驱动高压侧电路、主动短路处理模块、过压监测模块。而当低压系统掉电或隔离驱动电源模块故障时,备份电源模块通过母线电压处取电,备份电源模块分别为驱动高压侧电路、主动短路处理模块、过压监测模块供电,使主动短路控制电路能够继续实现控制电机主动短路的功能。
本发明公开的基于主动短路电路的主动短路控制方法和系统,控制方法、系统能够根据驱动模块、功率模块是否故障、母线电压时是否过压、微控制器工作是否正常等控制逻辑判断因素,发送主动短路信号,控制电机及时进入主动短路安全状态,防止反向电动势过高对整车系统造成损坏。
本发明公开的具有主动短路控制功能的车辆,当该车辆的电机在遭遇驱动\功率模块故障、母线电压过压、微控制器工作异常等工况时,能够让电机及时进入主动短路安全状态,防止反向电动势过高对整车系统造成损坏。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是主动短路控制电路的原理框图。
图2是主动短路处理模块的原理框图。
图3是主动短路处理模块的电路原理图。
图4是主动短路控制方法的流程图。
图5是主动短路控制系统的架构图。
图6是一个可能的具体实施例中主动短路控制方法的流程图(之一)。
图7是一个可能的具体实施例中主动短路控制方法的流程图(之二)。
图8是一个可能的具体实施例中主动短路控制方法的流程图(之三)。
图9是电子设备的系统架构图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示的主动短路控制电路,主动短路控制电路通过整车低压电源和整车母线进行供电,具体包括:
功率模块180,通过控制自身开关器件的状态,实现对电机的控制;
微控制器100,用于输出电机控制信号,对电机进行主动短路控制,示例性的:微控制器100接收整车指令,输出电机控制信号给驱动模块110。
驱动模块110,驱动模块110电性连接在功率模块180和微控制器100之间,驱动模块110的作用是将微控制器100输出的控制信号进行光电隔离、信号放大后发送至功率模块180;
示例性的:当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。以光为媒介把输入端信号耦合到输出端,具有无触点,抗干扰能力强,输出和输入之间绝缘,单向传输信号等优点。
驱动模块110包括上三桥驱动电路和下三桥驱动电路,每一桥驱动电路分为低压侧电路和高压侧电路,在电驱系统正常工作时,低压侧电路通过低压电源供电,高压侧电路通过隔离驱动电源供电。
微控制器监测模块120,用于实时监测微控制器100的运行状态,当微控制器100出现异常时发送异常信号给主动短路处理模块150,示例性的:微控制器监测模块120监测微控制器100的运行状态,当微控制器出现软件失效、掉电等异常时,发送故障信号给主动短路处理模块150。
过压监测模块130,用于实时监测母线电压,通过电阻分压的原理,向主动短路处理模块150输出母线电压的分压信号;本领域技术人员能够理解,分压电路输出的信号电压要送到下一级电路中,理论上分压电路的下一级电路输入瑞是分压电路的输出端。
主动短路处理模块150,主动短路处理模块150分别与驱动模块110、微控制器100监测模块和过压监测模块130相连,主动短路处理模块150接收来自微控制器监测模块120的监测信号,以及来自过压监测模块130的母线电压的分压信号,经过信号处理,向驱动模块110输出控制主动短路状态的数字信号。
主动短路控制电路主电路的工作原理是:
当整车电压供给正常时,微控制器100、驱动模块110的低压侧电路、微控制器监测模块120均通过低压电源供电;驱动模块110的高压侧电路、过压监测模块130、主动短路处理模块150均由低压电源经隔离驱动电源模块190供电。
当整车低压掉电或隔离驱动电源模块190断路时,由备份电源模块170给驱动模块的驱动高压侧电路160、过压监测模块130、主动短路处理模块150供电。
过压监测模块130实时监测母线电压,通过电阻分压的原理,向主动短路处理模块150输出母线电压的分压信号;
主动短路处理模块150接收来自微控制器监测模块120的监测信号,以及来自过压监测模块130的母线电压的分压信号,经过信号处理,向驱动模块110输出控制主动短路状态的数字信号,对功率模块180内的开关管进行调节,控制电机进入主动短路安全状态,主动短路处理模块150输出的控制主动短路状态的ASC信号优先级更高,覆盖了微控制器100对驱动模块110的控制。
优选的,还包括:
隔离驱动电源模块190,用于将整车低压系统的电压转换为高压驱动电压,为驱动高压侧电路160、主动短路处理模块150、过压监测模块130供电;
备份电源模块170,备份电源模块通过母线电压处取电,当低压系统掉电或隔离驱动电源模块190故障时,备份电源模块分别为驱动高压侧电路160、主动短路处理模块150、过压监测模块130供电。由于有备份电源模块170的存在,即使低压系统掉电或隔离驱动电源模块190出现故障,备份电源模块170也能够分别为驱动高压侧电路160、主动短路处理模块150、过压监测模块130供电,保障系统实现主动短路功能。
如图2所示的主动短路处理模块150的原理框图:
主动短路处理模块150包括隔离模块151、信号处理模块152、缓冲器153、比较器154和或门155,其中:
隔离模块151,接收微控制器监测模块120发出的监测信号,将该监测信号由低压信号隔离并转化为高压侧信号,输出至信号处理模块152;
信号处理模块152,接收来自信号处理模块的识别监测用高压侧信号,并发出控制主动短路状态的数字信号至或门155的一端;
缓冲器153,接收来自过压监测模块130的母线电压的分压信号,进行阻抗匹配,将分压信号输送进比较器154;如果没有缓冲器153,过压监测模块130直接与比较器154连接,比较器154内部的电阻会影响分压电压值。
比较器154,当母线电压的分压信号超出阈值时,比较器154发送主动短路控制信号至或门155的另一端。
或门155,当微控制器和母线电压其中之一出现异常时,或门155发送主动短路信号给驱动高压侧电路160,然后驱动高压侧电路160再驱动功率模块180,实现对电机的控制。
如图3所示的主动短路处理模块150的电路原理图,Vmon是微控制器工作状态信号,Vmon信号接入光电耦合器U1(隔离光耦)。第一电阻R1、第一二极管D1、第一电容C1、第二比较器U2、第三比较器U3、第四或门U4,以上器件组成信号处理模块152。第一二极管D1的正极接光电耦合器U1的输出端,第一电阻R1和第一电容C1并联在第一二极管D1的负极和地之间,即光电耦合器U1的输出端接在第二比较器U2的同相端和第三比较器U3的反相端,而两个比较器的输出端分别作为第四或门U4的两个输入,第四或门U4的输出端即为信号处理模块152的输出。
主动短路处理模块150的原理框图中具体电路元器件的电路连接关系:隔离模块151为光电耦合器U1,光电耦合器U1中的发光二极管的正极为微控制器工作状态信号Vmon输入端,发光二极管的负极接地,与发光二极管对应的光敏三极管的集电极与第一二极管D1的正极相连,光敏三极管的发射极接地,第一电容C1和第一电阻R1的一端分别连接在第一二极管D1和第二比较器U2的同相端之间,第一电容C1和第一电阻R1的另一端接地,第二比较器U2的反相端接高电平,第三比较器U3的反相端连接在第一二极管D1和第二比较器U2的同相端之间,第三比较器U3的同相端接低电平,第二、三比较器的输出端分别与第四或门U4的两个输入端相连,第四或门 U4的输出端与第五或门U5的一个输入端相连,第五或门U5的输出端为主动短路信号端。
缓冲器153包括第六运放U6、第二电阻R2、第二电容C2,第六运放U6的同相端与第二电阻R2的一端相连,第二电阻R2的另一端与过压监测信号输入端Vdc相连,第六运放U6的反相端与输出端相连,第六运放U6的输出端还与第三电阻R3的一端相连,第三电阻R3的另一端与第七运放U7的同相端相连,第四电阻R4连接在第七运放U7的同相端和输出端之间,第七运放U7的反相端用于设置等效阈值电压,第七运放U7的输出端与第五或门U5的另一个输入端相连,第五或门U5的输出端为主动短路信号端。
主动短路处理模块150的电路原理说明:Vmon信号是占空比可变的方波信号,当微控制器正常工作时,Vmon信号是占空比为50%。当微控制器工作异常时,Vmon信号的占空比会发生变化。如果低压掉电,则Vmon信号也会掉电,相当于占空比为0的信号。Vmon信号经过光电耦合器U1的隔离后,通过第一二极管D1为第一电容C1充电。第一二极管D1的作用是当Vmon信号为0时,第一电容C1能全部通过第一电阻R1放电,通过合理地设定第一电容C1和第一电阻R1的取值,能够实现当Vmon信号占空比为50%时,第一电容C1的电压保持在Vh和Vl范围内,此时第二比较器U2和第三比较器U3均输出“0”。一旦Vmon信号占空比发生了变化,第一电容C1的电压会超出Vh和Vl范围,第二比较器U2和第三比较器U3的其中之一输出“1”,从而启动主动短路。
Vdc信号是母线电压经由分压得到的模拟电平信号。Vdc信号首先输入至第二电阻R2和第二电容C2组成的低通滤波电路,防止某些电压尖峰导致误开启主动短路,然后经过第六运放U6后输入给比较器154,第六运放U6的作用是防止滤波器影响比较器的输入阻抗。第七比较器U7、第三电阻R3、第四电阻R4组成了一个滞回比较器,通过设计阈值电压Vth、第三电阻 R3、第四电阻R4的阻值,能够得到合适的高低压阈值电阻Vth(h)、Vth(l)。在比较器输入电压从0增长到Vth(h)过程中,即母线电压从0V增长到过压阈值的过程,第七运放U7输出“0”;母线电压超过阈值后,第七运放U7输出“1”,开启主动短路;随着电机反电动势降低,母线电压降低到关断阈值时,即比较强输入电压下降到Vth(l)以下,第七运放U7输出“0”,关闭主动短路。
综上所述,只要微控制器100监测信号Vmon或过压监测信号Vdc出现异常时,或门155就能输出主动短路信号,实现主动短路功能。
本发明在公开了主动短路控制电路的基础之上,还公开了与之对应的主动短路控制装置,该主动短路控制装置中设置有主动短路控制电路,该主动短路控制装置工作于驱动单元高压侧,在微控制器故障或母线电压过压两种情况下均可触发主动短路状态,且完全不必考虑低压侧电路是否故障,在本装置中主动短路模块150的不干预微控制器100与驱动模块110之间的连接,主动短路模块150输出的ASC信号优先级更高,覆盖了微控制器100对驱动模块110的控制作用,实现了高压侧主动短路控制的优先级高于低压侧主动短路控制的效果。
如图4所示,本发明在公开了主动短路控制电路及其装置的基础之上,还公开了与电路及其装置对应的主动短路控制方法,方法步骤具体包括:
检测驱动模块或功率模块是否存在故障,根据故障存在与否发送主动短路信号或维持原状态正常工作;
判断母线电压是否过压,并进一步判断母线电压是否放电至低于判断阈值电压,发送主动短路信号或维持原状态正常工作;
检测微控制器的工作状态,发送主动短路信号或维持原状态正常工作。
在本实施例公开的主动短路控制方法中,本领域技术人员凭借其掌握的本领域普通技术知识或技术常识,并结合本发明说明书公开的内容,能够判 断或检测出驱动模块、功率模块是否存在故障,能够判断母线电压是否过压,还能够检测微控制器的工作状态。
对于本实施例公开的方法步骤,出于简单描述的目的将方法步骤表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明实施例并不受所描述的动作顺序的限制,因为依据本发明实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明实施例所必须的。
如图5所示的主动短路控制系统架构图,本发明公开的主动短路控制系统具体包括:
驱动/功率模块故障检测单元,用于检测驱动模块或功率模块是否存在故障,发送主动短路信号或维持原状态正常工作;
母线电压过压检测单元,用于判断母线电压是否过压,并进一步判断母线电压是否放电至低于判断阈值电压,发送主动短路信号或维持原状态正常工作;
微控制器状态检测单元,用于根据微控制器的工作状态,发送主动短路信号或维持原状态正常
值得注意的是,虽然在本系统中只披露了驱动/功率模块故障检测单元、母线电压过压检测单元和微控制器状态检测单元,但并不意味着本系统的组成仅仅局限于上述基本功能单元,相反,本发明所要表达的意思是在上述基本功能单元的基础之上本领域技术人员可以结合现有技术任意添加一个或多个功能单元,形成无穷多个实施例或技术方案,也就是说本系统是开放式而非封闭式的,不能因为本实施例仅仅披露了个别基本功能模块,就认为本发明权利要求的保护范围局限于所公开的基本功能单元。同时,为了描述的方便,描述以上装置时以功能分为各种单元、模块分别描述。当然在实施本发明时可以把各单元、模块的功能在同一个或多个软件和/或硬件中实现。
以上所描述的系统仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施方式方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
如图6至图8所示的一个(或多个)可能的实施例,该实施例通过检测驱动/功率模块是否存在故障、判断母线电压是否过压,以及微控制器工作是否正常,展现了主动短路控制方法在具体应用场景上如何实现,具体为:
如图6所示,步骤S300:检测驱动模块或功率模块是否存在故障,如果存在故障,则执行步骤S310:驱动模块发送故障信号给微控制器,微控制器识别并上报整车后发送主动短路信号给驱动模块,电机进入主动短路安全状态,或:如果不存在故障,则执行步骤S320,维持原状态正常工作;
如图7所示,步骤S330:判断母线电压是否过压,如果母线电压未过压,则执行步骤S370,维持原状态正常工作;如果母线电压过压,则执行步骤S340,由主动短路处理模块发送主动短路信号给驱动高压电路,并执行步骤S350,进一步判断判断母线电压是否放电至低于关断阈值电压:如果母线电压放电至低于关断阈值电压,则执行步骤S360,主动短路处理模块停止发送主动短路信号;如果母线电压放电未低于关断阈值电压,则主动短路处理模块继续发送主动短路信号;
如图8所示,步骤S380:判断微控制器工作是否正常,如果微控制器工作正常,则执行步骤S400,维持原状态正常工作,或:微控制器工作异常,执行步骤S400,主动短路处理模块发送主动短路信号给驱动高压电路。
基于上述主动短路控制电路的电路原理和控制方法的控制逻辑,本发明提供了四种不同的工作模式:
MODE 1(正常工作模式)
当整车系统低压和母线电压都在正常工作范围内时,整车低压系统给微控制器100以及微控制器监测模块120和驱动低压侧电路140供电,低压电经过隔离驱动电源模块190进行电压隔离转换后为驱动高压侧电路160、主动短路处理模块150、过压监测模块130供电。此模式状态下,微控制器100发送PWM信号给驱动模块110,驱动模块110输出高压驱动信号给功率模块180,电机正常运行。与此同时,驱动模块110时刻监视自身以及功率模块180的状态,微控制器监测模块120时刻监测微控制器的状态,过压监测模块130时刻监测母线电压。
MODE 2(驱动模块或功率模块故障)
此模式下整车电源供电正常,但当驱动模块110或功率模块180出现故障时(如驱动芯片损坏、功率模块过压或过流),驱动模块110发送故障信号给微控制器100,微控制器100识别并上报整车后发送主动短路信号给驱动模块110,电机进入主动短路安全状态。
MODE 3(过压故障)
当母线电压超过安全阈值时,过压监测模块130输出的母线电压的分压信号也会超过安全阈值。一旦缓冲器153输出的信号大于比较器154的安全阈值电压,比较器输出主动短路控制信号给或门155。在主动短路状态下,随着电机的放电,母线电压逐渐降低,功率模块180的开关管会进入线性放大模式,产生大量热量。因此,有必要在比较器154的设计中设置关断阈值电压,当缓冲器153输出的信号小于关断阈值电压时,退出主动短路状态。
MODE 4(微控制器故障)
当整车低压掉电、或微控制器硬件故障、或软件失效时,微控制器监测模块120会给主动短路处理模块150发送故障信号。如果发生低压掉电,则微控制器100、驱动低压侧电路140、隔离驱动电源模块190均无电源供电, 此时由备份电源170给驱动高压侧电路160、主动短路处理模块150供电。当微控制器监测模块120发送故障信号给主动短路处理模块150时,该信号首先通过隔离模块151被转化为高压侧信号,信号处理模块152对该信号进行识别。一旦该信号发生异常,信号处理模块152就会发出主动短路控制信号给或门155,从而使电机进入主动短路状态。
如图9所示,本发明还公开了与主动短路控制电路及其装置、控制方法、系统对应的电子设备和存储介质:
一种电子设备,包括:处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;所述存储器中存储有计算机程序,当所述计算机程序被所述处理器执行时,使得所述处理器执行主动短路控制方法的步骤。
一种计算机可读存储介质,其存储有可由电子设备执行的计算机程序,当所述计算机程序在所述电子设备上运行时,使得所述电子设备执行主动短路控制方法的步骤。
上述电子设备提到的通信总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
电子设备包括硬件层,运行在硬件层之上的操作系统层,以及运行在操作系统上的应用层。该硬件层包括中央处理器(CPU,Central Processing Unit)、内存管理单元(MMU,Memory Management Unit)和内存等硬件。该操作系统可以是任意一种或多种通过进程(Process)实现电子设备控制的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统、windows操作系统或各种车载操作系统、车载中控系统等。
本发明实施例中的电子设备控制的执行主体可以是电子设备,或者是电子设备中能够调用程序并执行程序的功能模块。电子设备可以获取到存储介质对应的固件,存储介质对应的固件由供应商提供,不同存储介质对应的固件可以相同可以不同,在此不做限定。电子设备获取到存储介质对应的固件后,可以将该存储介质对应的固件写入存储介质中,具体地是往该存储介质中烧入该存储介质对应固件。将固件烧入存储介质的过程可以采用现有技术实现,在本发明实施例中不做赘述。
电子设备还可以获取到存储介质对应的重置命令,存储介质对应的重置命令由供应商提供,不同存储介质对应的重置命令可以相同可以不同,在此不做限定。
此时电子设备的存储介质为写入了对应的固件的存储介质,电子设备可以在写入了对应的固件的存储介质中响应该存储介质对应的重置命令,从而电子设备根据存储介质对应的重置命令,对该写入对应的固件的存储介质进行重置。根据重置命令对存储介质进行重置的过程可以现有技术实现,在本发明实施例中不做赘述。
本发明还公开了一种车辆,尤指电动车,车辆上设置有主动短路控制系统,当车辆的电驱系统逆变器的控制和驱动单元出现故障时,主动短路控制系统用于控制电机进入主动短路状态,还包括:
电子设备,用于实现主动短路控制方法;
处理器,处理器运行程序,当程序运行时从电子设备输出的数据执行主动短路控制方法的步骤;
存储介质,用于存储程序,程序在运行时对于从电子设备输出的数据执行主动短路控制方法的步骤。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一 般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非被特定定义,否则不会用理想化或过于正式的含义来解释。
需要说明的是,本说明书与权利要求中使用了某些词汇来指称特定元件。本领域技术人员应可以理解,车辆制造商可能会用不同名词来称呼同一个元件。本说明书与权利要求并不以名词的差异来作为区分元件的方式,而是以元件在功能上的差异作为区分的准则。如通篇说明书及权利要求当中所提及的“包含”或“包括”为一开放式用语,故其应被理解成“包括但不限定于”。后续将对实施本发明的较佳实施方式进行描述说明,但是所述说明是以说明书的一般原则为目的,并非用于限定本发明的范围。本发明的保护范围当根据其所附的权利要求所界定者为准。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施方式或者实施方式的某些部分所述的方法。
本发明可用于众多通用或专用的计算系统环境或配置中,例如:个人计算机、服务器计算机、手持设备或便携式设备、平板型设备、多处理器系统、基于微处理器的系统、置顶盒、可编程的消费电子设备、网络PC、小型计算机、大型计算机、包括以上任何系统或设备的分布式计算环境等等。
本发明可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中 实践本发明,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
在本发明所提供的几个实施例中,应该理解到,所揭示的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本发明的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,由所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本发明各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (12)

  1. 一种主动短路控制电路,所述主动短路控制电路通过整车低压电源和整车母线进行供电,具体包括:
    功率模块,通过控制自身开关器件的状态,实现对电机的控制;
    微控制器,用于输出电机控制信号;
    驱动模块,所述驱动模块电性连接在所述功率模块和所述微控制器之间,驱动模块的作用是将微控制器输出的控制信号进行光电隔离、信号放大后发送至功率模块;
    其特征在于,还包括:
    微控制器监测模块,用于实时监测微控制器的运行状态,当微控制器出现异常时发送异常信号给主动短路处理模块;
    过压监测模块,用于实时监测母线电压,向主动短路处理模块输出母线电压的分压信号;
    主动短路处理模块,所述主动短路处理模块分别与驱动模块、微控制器监测模块和过压监测模块相连,主动短路处理模块接收来自微控制器监测模块的监测信号,以及来自过压监测模块的母线电压的分压信号,经过信号处理,向所述驱动模块输出控制主动短路状态的数字信号。
  2. 根据权利要求1所述的主动短路控制电路,其特征在于,还包括:
    隔离驱动电源,用于将整车低压系统的电压转换为高压驱动电压,为驱动高压侧电路、主动短路处理模块、过压监测模块供电;
    备份电源模块,所述备份电源模块通过母线电压处取电,当低压系统掉电或隔离驱动电源模块故障时,备份电源模块分别为驱动高压侧电路、主动短路处理模块、过压监测模块供电。
  3. 根据权利要求1所述的主动短路控制电路,其特征在于,所述主动短路处理模块将微控制器监测模块发出的低压信号进行隔离并转化为高压侧信号,并根据母线电压的分压信号检测母线电压是否超过安全阈值;
    所述主动短路处理模块具体包括:隔离模块、信号处理模块、缓冲器、比较器和或门,其中:
    隔离模块,接收微控制器监测模块发出的监测信号,将该监测信号由低压信号隔离并转化为高压侧信号,输出至信号处理模块;
    信号处理模块,接收来自信号处理模块的识别监测用高压侧信号,并发出控制主动短路状态的数字信号至或门的一端;
    缓冲器,接收来自过压监测模块的母线电压的分压信号,进行阻抗匹配,将所述分压信号输送进比较器;
    比较器,当母线电压的分压信号超出阈值时,比较器发送主动短路控制信号至或门的另一端;
    或门,当微控制器和母线电压其中之一出现异常时,或门发送主动短路信号给驱动高压侧电路,然后高压侧电路再驱动功率模块。
  4. 根据权利要求3所述的主动短路控制电路,其特征在于,所述隔离模块为光电耦合器,所述光电耦合器中的发光二极管的正极为微控制器工作状态信号输入端,发光二极管的负极接地,与所述发光二极管对应的光敏三极管的集电极与第一二极管的正极相连,光敏三极管的发射极接地,第一电容和第一电阻的一端分别连接在第一二极管和第二比较器的同相端之间,第一电容和第一电阻的另一端接地,第二比较器的反相端接高电平,第三比较器的反相端连接在第一二极管和第二比较器的同相端之间,第三比较器的同相端接低电平,第二、三比较器的输出端分别与第四或门的两个输入端相连,第四或门的输出端与第五或门的一个输入端相连,第五或门的输出端为主动短路信号端。
  5. 根据权利要求3所述的主动短路控制电路,其特征在于,所述缓冲器包括第六运放、第二电阻、第二电容,所述第六运放的同相端与第二电阻的一端相连,所述第二电阻的另一端与过压监测信号输入端相连,第六运放的 反相端与输出端相连,第六运放的输出端还与第三电阻的一端相连,第三电阻的另一端与第七运放的同相端相连,第四电阻连接在第七运放的同相端和输出端之间,第七运放的反相端用于设置等效阈值电压,第七运放的输出端与第五或门的另一个输入端相连,第五或门的输出端为主动短路信号端。
  6. 一种主动短路控制装置,其特征在于,所述主动短路控制装置中设置有权利要求1至5中任一项所述的主动短路控制电路。
  7. 一种主动短路控制方法,其特征在于,具体包括:
    检测驱动模块或功率模块是否存在故障,根据故障存在与否发送主动短路信号或维持原状态正常工作;
    判断母线电压是否过压,并进一步判断母线电压是否放电至低于判断阈值电压,发送主动短路信号或维持原状态正常工作;
    检测微控制器的工作状态,发送主动短路信号或维持原状态正常工作。
  8. 根据权利要求7所述的主动短路控制方法,其特征在于,具体包括:
    检测驱动模块或功率模块是否存在故障,如果存在故障,驱动模块发送故障信号给微控制器,微控制器识别并上报整车后发送主动短路信号给驱动模块,电机进入主动短路安全状态,或:如果不存在故障,则维持原状态正常工作;
    判断母线电压是否过压,如果母线电压未过压,则维持原状态正常工作;如果母线电压过压,则由主动短路处理模块发送主动短路信号给驱动高压电路,并进一步判断判断母线电压是否放电至低于关断阈值电压:如果母线电压放电至低于关断阈值电压,则主动短路处理模块停止发送主动短路信号;如果母线电压放电未低于关断阈值电压,则主动短路处理模块继续发送主动短路信号;
    判断微控制器工作是否正常,如果微控制器工作正常,则维持原状态正常工作,或:微控制器工作异常,主动短路处理模块发送主动短路信号给驱动高压电路。
  9. 一种主动短路控制系统,其特征在于,具体包括:
    驱动/功率模块故障检测单元,用于检测驱动模块或功率模块是否存在故障,发送主动短路信号或维持原状态正常工作;
    母线电压过压检测单元,用于判断母线电压是否过压,并进一步判断母线电压是否放电至低于判断阈值电压,发送主动短路信号或维持原状态正常工作;
    微控制器状态检测单元,用于根据微控制器的工作状态,发送主动短路信号或维持原状态正常工作。
  10. 一种电子设备,其特征在于,包括:处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;所述存储器中存储有计算机程序,当所述计算机程序被所述处理器执行时,使得所述处理器执行权利要求7或8所述方法的步骤。
  11. 一种计算机可读存储介质,其特征在于,其存储有可由电子设备执行的计算机程序,当所述计算机程序在所述电子设备上运行时,使得所述电子设备执行权利要求7或8所述方法的步骤。
  12. 一种车辆,其特征在于,所述车辆上设置有主动短路控制系统,当车辆的电驱系统逆变器的控制和驱动单元出现故障时,主动短路控制系统用于控制电机进入主动短路状态,还包括:
    电子设备,用于实现主动短路控制方法;
    处理器,所述处理器运行程序,当所述程序运行时从所述电子设备输出的数据执行权利要求7或8所述的主动短路控制方法的步骤;
    存储介质,用于存储程序,所述程序在运行时对于从电子设备输出的数据执行权利要求7或8所述的主动短路控制方法的步骤。
PCT/CN2023/088969 2022-07-18 2023-04-18 一种主动短路控制电路及其装置、控制方法、系统和车辆 WO2024016759A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210843074.6 2022-07-18
CN202210843074.6A CN115275931A (zh) 2022-07-18 2022-07-18 一种主动短路控制电路及其装置、控制方法、系统和车辆

Publications (1)

Publication Number Publication Date
WO2024016759A1 true WO2024016759A1 (zh) 2024-01-25

Family

ID=83767411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088969 WO2024016759A1 (zh) 2022-07-18 2023-04-18 一种主动短路控制电路及其装置、控制方法、系统和车辆

Country Status (2)

Country Link
CN (1) CN115275931A (zh)
WO (1) WO2024016759A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115275931A (zh) * 2022-07-18 2022-11-01 中国第一汽车股份有限公司 一种主动短路控制电路及其装置、控制方法、系统和车辆
CN117526544B (zh) * 2024-01-03 2024-05-17 深圳市英威腾电源有限公司 一种ups模块的控制方法、系统、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768213A (zh) * 2019-11-18 2020-02-07 上海威迈斯电源有限公司 电动汽车电机系统三相主动短路的控制电路及控制方法
CN111106788A (zh) * 2018-10-26 2020-05-05 上海汽车集团股份有限公司 一种电机的主动短路保护系统
CN111959278A (zh) * 2020-07-21 2020-11-20 一巨自动化装备(上海)有限公司 一种电机控制器下桥臂主动关断控制系统及方法
JP2021129397A (ja) * 2020-02-13 2021-09-02 株式会社デンソー 電力変換器の制御回路
CN114172120A (zh) * 2021-12-01 2022-03-11 中国第一汽车股份有限公司 一种主动短路控制电路及方法
CN114285001A (zh) * 2021-12-31 2022-04-05 蜂巢传动科技河北有限公司 车辆电机控制系统及方法
CN115275931A (zh) * 2022-07-18 2022-11-01 中国第一汽车股份有限公司 一种主动短路控制电路及其装置、控制方法、系统和车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106788A (zh) * 2018-10-26 2020-05-05 上海汽车集团股份有限公司 一种电机的主动短路保护系统
CN110768213A (zh) * 2019-11-18 2020-02-07 上海威迈斯电源有限公司 电动汽车电机系统三相主动短路的控制电路及控制方法
JP2021129397A (ja) * 2020-02-13 2021-09-02 株式会社デンソー 電力変換器の制御回路
CN111959278A (zh) * 2020-07-21 2020-11-20 一巨自动化装备(上海)有限公司 一种电机控制器下桥臂主动关断控制系统及方法
CN114172120A (zh) * 2021-12-01 2022-03-11 中国第一汽车股份有限公司 一种主动短路控制电路及方法
CN114285001A (zh) * 2021-12-31 2022-04-05 蜂巢传动科技河北有限公司 车辆电机控制系统及方法
CN115275931A (zh) * 2022-07-18 2022-11-01 中国第一汽车股份有限公司 一种主动短路控制电路及其装置、控制方法、系统和车辆

Also Published As

Publication number Publication date
CN115275931A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2024016759A1 (zh) 一种主动短路控制电路及其装置、控制方法、系统和车辆
CN109802527B (zh) 一种过温保护电路及电机控制器
CN106130537B (zh) 一种1oo2d功能安全数字量输出电路
CN202268683U (zh) 一种电机过流保护电路
WO2015176523A1 (zh) 一种驱动信号的丢波检测电路及开关管驱动电路
CN209562148U (zh) 一种ipm过电流及过温保护电路
CN204333892U (zh) 一种提高容性负载启动能力的本质安全电路
US20230088540A1 (en) Fault handling system of solid-state transformer
CN215378425U (zh) 智能直流电源系统
TWM636645U (zh) 具高壓直流輸入能力及一對多連接功能之太陽能監控關斷裝置
CN105896563B (zh) 反并联晶闸管分相投切电容器的过零触发控制电路
TW202017295A (zh) 電源轉換器
CN211859597U (zh) 一种峰值限流充电浪涌电流抑制电路
CN209805787U (zh) 一种基于数控车床伺服驱动器的igbt保护电路
CN210724180U (zh) 一种接口保护电路装置
CN212380935U (zh) 制动电阻保护电路及变频器
CN113162009B (zh) 一种过能保护电路、剩余电流装置、电子设备和配电盒
WO2022161275A1 (zh) 一种电池充电保护电路以及机器人
CN210350849U (zh) 安防电源备电电路及电源盘
CN203596757U (zh) 具有隔离保护的车载逆变器
CN111190118B (zh) 电池管理系统及其开关模块栅极驱动电压的故障检测电路
CN112600169A (zh) 一种保护装置、Buck电路和Buck电路的控制方法
CN219304695U (zh) 一种变频器型智能晃电保护装置
CN221305499U (zh) 一种宽压输入模组
CN211293889U (zh) 数据保护电源电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841832

Country of ref document: EP

Kind code of ref document: A1