JP2021109243A - フラックス入りワイヤ及び溶接継手の製造方法 - Google Patents

フラックス入りワイヤ及び溶接継手の製造方法 Download PDF

Info

Publication number
JP2021109243A
JP2021109243A JP2021002897A JP2021002897A JP2021109243A JP 2021109243 A JP2021109243 A JP 2021109243A JP 2021002897 A JP2021002897 A JP 2021002897A JP 2021002897 A JP2021002897 A JP 2021002897A JP 2021109243 A JP2021109243 A JP 2021109243A
Authority
JP
Japan
Prior art keywords
oxide
total
flux
conversion value
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021002897A
Other languages
English (en)
Inventor
孟 松尾
Takeshi Matsuo
孟 松尾
孝浩 加茂
Takahiro Kamo
孝浩 加茂
聖人 笹木
Masahito Sasaki
聖人 笹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2021109243A publication Critical patent/JP2021109243A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

【課題】溶接作業性と共に低温靭性及び耐低温割れ性にも優れた溶接金属が得られるフラックス入りワイヤ及びフラックス入りワイヤを用いた溶接継手の製造方法の提供。【解決手段】鋼製外皮と前記鋼製外皮の内部に充填されたフラックスとを備え、所定の化学成分を有し、Ti酸化物のTiO2換算値の合計、Si酸化物のSiO2換算値の合計、Zr酸化物のZrO2換算値の合計、Al酸化物のAl2O3換算値の合計、K2SiF6、K2ZrF6、NaF、Na3AlF6、CaF2、及びMgF2のいずれか1種以上の弗化物の合計、Na酸化物、NaF、及びNa3AlF6のいずれか1種以上のNa含有化合物の合計、K酸化物、K2SiF6、及びK2ZrF6のいずれか1種以上のK含有化合物の合計を所定量含み、所定のX値が0.10〜160.00であるフラックス入りワイヤ。【選択図】なし

Description

本開示は、フラックス入りワイヤ及び溶接継手の製造方法に関する。
近年、建設機械、産業機械の大型化、軽量化の要求が増加しており、それに伴って使用される鋼板も690MPa級鋼などの超高張力鋼板が使用されるようになっている。
そして、従来から、超高張力鋼板を溶接するワイヤについて、種々の検討がされている。
例えば、特許文献1には、「ワイヤ全質量に対する質量%で、C:0.02〜0.09%、Si:0.2〜0.6%、Mn:1.5〜3.3%、Ni:1.5〜3.5%、Mo:0.21〜0.5%、Ti:0.01〜0.1%、B:0.002〜0.015%を含有し、Al:0.05%以下、Nb:0.015%以下、V:0.015%以下であり、TiO換算値:3〜8%、SiO換算値:0.1〜0.5%、Mg:0.3〜0.8%、弗素化合物のF換算値:0.05〜0.5%、弗素化合物中のNa換算値及びK換算値の1種または2種の合計:0.05〜0.2%、NaO及びKOの合計:0.05〜0.2%、ZrO換算値:0.2%以下、Al換算値:0.1%以下であるAr−CO混合ガスシールドアーク溶接用フラックス入りワイヤ」が開示されている。
特許文献1のワイヤは、鋼構造物等に使用される0.2%耐力690MPa以上の高張力鋼を溶接するにあたって全姿勢溶接での溶接作業性が良好であり、かつ、耐低温割れ性及び低温靭性に優れる溶接金属を得ることができる。
また、特許文献2には、「鋼製外皮と、前記鋼製外皮の内部に充填されたフラックスと、を備え、前記フラックスが、F換算値で合計0.11%以上の弗化物と、TiO換算で4.30〜7.50%のTi酸化物と、質量%で合計0.30〜2.40%の酸化物と、質量%で合計0〜0.60%の炭酸塩とを含み、CaO換算でのCa酸化物の含有量が質量%で0.20%未満であり、CaFの含有量が0.50%未満であり、化学成分が所定の範囲内であり、Z値が2.00%以下であり、V値が5.0以上27.0以下であり、Ceqが0.30〜1.00%以下であるフラックス入りワイヤ」が開示されている。
特許文献2のワイヤは、高強度且つ高靭性であり、耐低温割れ性に優れ、良好なビード形状を有する溶接部が得られ、溶接中のスパッタ発生量を大幅に低減することができ、溶接中の溶融金属の粘度を上昇させることができる。
その他、フラックス入りワイヤについては、特許文献3〜13にも開示されている。
特開2016−209901号公報 国際公開2018/087812号 特許第6432715号 国際公開2017/154122号 国際公開2017/154120号 特開2019−42782号公報 特開2019−25525号公報 特開2019−25524号公報 特開2018−192520号公報 国際公開2019/142835号 国際公開2017/038610号 国際公開2017/038609号 国際公開2016/060208号
特許文献1〜2で開示されているように、溶接作業性を高めるには、Ti酸化物をワイヤに含有させることが有効である。
一方で、ワイヤにTi酸化物を含有させると、溶接金属中の酸素量が多くなり、溶接金属の低温靭性が確保できない。そのため、溶接作業性と溶接金属の低温靭性とを両立するためには、溶接金属の低酸素化が必要である。また、溶接金属には、耐低温割れ性が要求され、拡散水素量の低減も必要である。
しかし、特許文献1〜13のワイヤは、諸特性に優れた溶接金属が得られるが、近年の要求から、溶接作業性(特に立向溶接性)と共に、溶接金属の低温靭性及び耐低温割れ性について、さらなる改善が求められているのが現状である。
そこで、本開示の課題は、溶接作業性(特に立向溶接性)と共に、低温靭性及び耐低温割れ性にも優れた溶接金属が得られるフラックス入りワイヤ、及び、当該フラックス入りワイヤを用いた溶接継手の製造方法を提供することである。
課題を解決するための手段は、次の態様を含む。
<1> 鋼製外皮と前記鋼製外皮の内部に充填されたフラックスとを備える溶接用のフラックス入りワイヤであって、
前記フラックス入りワイヤ全質量に対する質量%で、酸化物、弗化物、窒化物、及び金属炭酸塩を除く化学成分が、
C :0.020〜0.100%、
Si:0.20〜0.80%、
Mn:1.50〜3.50%、
P :0〜0.030%、
S :0〜0.030%、
Cu:0.005〜1.000%、
Ni:0.10〜5.00%、
Cr:0〜1.000%、
Mo:0〜1.000%、
Cr+Mo:0.005〜1.000%、
Nb:0〜0.0150%、
V :0〜0.0150%、
Mg:0〜1.00%、
Al:0〜0.100%、
Ca:0〜0.100%、
Ti:0〜0.100%、
B :0〜0.0100%、
REM:0〜0.100%、
Bi:0〜0.050%、並びに
残部:Fe及び不純物であり、
Ti酸化物のTiO換算値の合計が3.00〜8.00%であり、
Si酸化物のSiO換算値の合計が0.10〜0.50%であり、
Zr酸化物のZrO換算値の合計が0〜0.80%であり、
Al酸化物のAl換算値の合計が0〜0.80%であり
SiF、KZrF、NaF、NaAlF、CaF、及びMgFのいずれか1種以上の弗化物を含有しその合計が0.10〜2.00%であり、
Na酸化物、NaF、及びNaAlFのいずれか1種以上のNa含有化合物を含有しその合計(ただしNa酸化物はNaO換算値)が0.01〜2.00%であり、
K酸化物、KSiF、及びKZrFのいずれか1種以上のK含有化合物を含有しその合計(ただしK酸化物はKO換算値)が0.01〜2.00%であり、
かつ、下記式Aによって算出されるX値が0.10〜160.00であるフラックス入りワイヤ。
X=(8×CaF+5×MgF+5×NaF+5×KSiF+5×KZrF+NaAlF)/(SiO+Al+ZrO+0.5×MgO+CaO+0.5×NaO+0.5×KO+MnO+FeO) ・・・・式A
式A中、CaF、MgF、NaF、KSiF、KZrF、及びNaAlFは、各化学式で示される化合物の、フラックス入りワイヤの全質量に対する質量%での含有量である。また、SiOはSi酸化物のSiO換算値の合計を示し、AlはAl酸化物のAl換算値の合計を示し、ZrOはZr酸化物のZrO換算値の合計を示し、MgOはMg酸化物のMgO換算値の合計を示し、CaOはCa酸化物のCaO換算値の合計を示し、NaOはNa酸化物のNaO換算値の合計を示し、KOはK酸化物のKO換算値の合計を示し、MnOはMn酸化物のMnO換算値の合計を示し、FeOはFe酸化物のFeO換算値の合計を示す。なお、式Aにおける前記SiO換算値、前記Al換算値、前記ZrO換算値、前記MgO換算値、前記CaO換算値、前記NaO換算値、前記KO換算値、前記MnO換算値、及び前記FeO換算値はフラックス入りワイヤの全質量に対する質量%で表す。
<2> Mg酸化物、及びMgFのいずれか1種以上のMg含有化合物を含有しその合計(ただしMg酸化物はMgO換算値)が0.01〜2.00%である<1>に記載のフラックス入りワイヤ。
<3> 下記式Bによって算出されるCeqが0.300〜0.750である<1>又は<2>に記載のフラックス入りワイヤ。
Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14 ・・・式B
式B中、元素記号は、フラックス入りワイヤの全質量に対する各元素の質量%での含有量である。
<4> 鋼製外皮は、前記鋼製外皮の継目に溶接部を有する<1>〜<3>のいずれか1項に記載のフラックス入りワイヤ。
<5> 表面にポリテトラフルオロエチレン油及びパーフルオロポリエーテル油の一方又は両方が塗布されている<1>〜<4>のいずれか1項に記載のフラックス入りワイヤ。
<6> <1>〜<5>のいずれか1項に記載のフラックス入りワイヤを用いて、鋼材を溶接する工程を備える溶接継手の製造方法。
本開示によれば、溶接作業性(特に立向溶接性)と共に、低温靭性及び耐低温割れ性にも優れた溶接金属が得られるフラックス入りワイヤ、及び、当該フラックス入りワイヤを用いた溶接継手の製造方法が提供できる。
本開示の一例である実施形態について説明する。
なお、本明細書中において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値に「超」及び「未満」が付されていない場合は、これらの数値を下限値及び上限値として含む範囲を意味する。また、「〜」の前後に記載される数値に「超」又は「未満」が付されている場合の数値範囲は、これらの数値を下限値又は上限値として含まない範囲を意味する。
本明細書中に段階的に記載されている数値範囲において、ある段階的な数値範囲の上限値は、他の段階的な記載の数値範囲の上限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。また、ある段階的な数値範囲の下限値は、他の段階的な記載の数値範囲の下限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。
また、含有量について、「%」は「質量%」を意味する。
含有量(%)として「0〜」は、その成分は任意成分であり、含有しなくてもよいことを意味する。
<フラックス入りワイヤ>
本開示に係るフラックス入りワイヤは、鋼製外皮と、鋼製外皮の内部に充填されたフラックスとを備える。
本開示に係るフラックス入りワイヤは、酸化物、弗化物、窒化物、及び金属炭酸塩を除く化学成分が所定の組成であり、Ti酸化物、Si酸化物、弗化物、Na含有化合物、K含有化合物を所定量で含み、Zr酸化物、Al酸化物を含まないか又は所定量で含み、後述する式Aによって算出されるX値が0.10〜160.00である。
以下、本開示に係るフラックス入りワイヤを構成する要件(任意要件も含む)の限定理由について具体的に説明する。
以下に、これらの成分について詳細に説明する。なお、以下の説明において「%」は、特に説明がない限り、「フラックス入りワイヤの全質量に対する質量%」を意味する。
以下に説明する化学成分は、鋼製外皮に含まれてもよいし、フラックスに含まれてもよい。また、本開示に係るフラックス入りワイヤが鋼製外皮の外表面にめっき層を有する場合は、めっき層に含まれてもよい。以下の説明において「窒化物、酸化物、弗化物、及び金属炭酸塩を除く化学成分」を単に「化学成分」と称する場合がある。
本開示に係るフラックス入りワイヤの、酸化物、弗化物、窒化物、及び金属炭酸塩を除く化学成分は、
C :0.020〜0.100%、
Si:0.20〜0.80%、
Mn:1.50〜3.50%、
P :0〜0.030%、
S :0〜0.030%、
Cu:0.005〜1.000%、
Ni:0.10〜5.00%、
Cr:0〜1.000%
Mo:0〜1.000%、
Cr+Mo:0.005〜1.000%
Nb:0〜0.0150%、
V :0〜0.0150%、
Mg:0〜1.00%、
Al:0〜0.100%、
Ca:0〜0.100%、
Ti:0〜0.100%、
B :0〜0.0100%、
REM:0〜0.100%、
Bi:0〜0.050%、並びに
残部:Fe及び不純物である。
つまり、本開示に係るフラックス入りワイヤにおいて、上記成分は、酸化物、弗化物、窒化物、及び金属炭酸塩以外に含まれる成分の含有量である。
(C:0.020〜0.100%)
Cは、溶接時にアークの安定化に寄与するとともに、溶接金属の強度向上の効果がある。しかし、C含有量が0.020%未満では、この効果が十分に得られず、アークが不安定になるとともに、必要な溶接金属の強度が得られない。一方、C含有量が0.100%を超えると、Cが溶接金属中に過剰に歩留まることにより、溶接金属の強度が過剰に高くなり、低温靱性が低下する。
そのため、C含有量は0.020〜0.100%とする。
C含有量の下限は、好ましくは、0.040%、0.050%、又は0.060%である。
C含有量の上限は、好ましくは、0.090%、0.080%、又は0.070%である。
(Si:0.20〜0.80%)
Siは、溶接時に一部が溶接スラグとなることにより溶接ビードの形状及び外観を良好にし、溶接作業性(特に立向溶接性)の向上に寄与する。しかし、Si含有量が0.20%未満では、溶接ビードの形状及び外観を良好にする効果が十分に得られない。一方、Si含有量が0.80%を超えると、Siが溶接金属中に過剰に歩留まることにより、溶接金属の低温靱性が低下する。
そのため、Si含有量は0.20〜0.80%とする。
Si含有量の下限は、好ましくは、0.25%、0.30%、又は0.40%である。
Si含有量の上限は、好ましくは、0.75%、0.70%、又は0.60%である。
(Mn:1.50〜3.50%)
Mnは、溶接金属中に歩留まることにより、溶接金属の強度と低温靱性を高める効果がある。しかし、Mn含有量が1.50%未満では、これらの効果が十分に得られず、必要な溶接金属の強度及び低温靭性が得られない。一方、Mn含有量が3.50%を超えると、Mnが溶接金属中に過剰に歩留まり、溶接金属の強度が過剰に高くなり、低温靱性が低下する。
そのため、Mn含有量は、1.50〜3.50%とする。
Mn含有量の下限は、好ましくは、1.55%、1.60%、又は1.70である。
Mn含有量の上限は、好ましくは、3.45%、3.30%、又は3.20%である。
(P:0〜0.030%)
Pは不純物元素であり、溶接金属の靱性を低下させるので、フラックス入りワイヤ中のP含有量は極力低減させることが好ましい。従って、フラックス入りワイヤの化学成分のP含有量の下限値は0%である。また、フラックス入りワイヤの化学成分のP含有量が0.030%以下であれば、Pの靱性への悪影響が許容できる範囲内となる。溶接金属の凝固割れを効果的に抑制するために、P含有量は、好ましくは0.020%以下、0.015%以下、又は0.010%以下である。
ただし、脱Pコストの低減の観点から、P含有量は、0.003%以上がよい。
(S:0〜0.030%)
Sも不純物元素であり、溶接金属中に過大に存在すると、溶接金属の靱性と延性とをともに劣化させるので、フラックス入りワイヤ中のS含有量は極力低減させることが好ましい。従って、フラックス入りワイヤの化学成分のS含有量の下限値は0%である。また、フラックス入りワイヤの化学成分のS含有量が0.030%以下であれば、溶接金属の靱性及び延性にSが及ぼす悪影響が許容できる範囲内となる。S含有量は、好ましくは、0.020%以下、0.010%以下、0.008%以下、0.006%以下、又は0.005%以下である。
ただし、脱Sコストの低減の観点から、S含有量は、0.003%以上がよい。
(Cu:0.005〜1.000%)
Cuは、溶接金属の強度と低温靭性を向上させる効果を有する。その効果を十分に得るためには、Cu含有量を0.005%以上とする。Cuは、フラックス入りワイヤの鋼製外皮の表面のめっきに含まれてもよく、フラックスに単体又は合金として含まれてもよい。Cuめっきは、防錆性、通電性、及び、耐チップ磨耗性を向上させる効果も有する。
従って、Cu含有量は、例えば鋼製外皮及びフラックスに含有されているCuと、ワイヤ表面のめっきに含まれるCuとの合計量である。
一方、Cu含有量が1.000%を超えると、溶接金属の低温靭性が低下する場合がある。
そのため、Cu含有量は、0.005〜1.000%とする。
Cu含有量の下限は、好ましくは、0.010%、0.020%、又は0.030%である。
Cu含有量の上限は、好ましくは、0.950%、0.900%、又は0.800%である。
(Ni:0.10〜5.00%)
Niは、Niの固溶靭化により、溶接金属の低温靭性の向上に寄与する。その効果を得るには、Ni含有量を0.10%以上とする。
一方、Ni含有量が5.00%を超えると、溶接金属の耐低温割れ性と共に低温靭性が低下する。
そのため、Ni含有量は、0.10〜5.00%とする。
Ni含有量の下限は、好ましくは、0.20%、0.40%、又は0.50%である。
Ni含有量の上限は、好ましくは、4.90%、4.70%、又は4.50%である。
(Cr:0〜1.000%)
Crは必須成分ではないので、Cr含有量の下限値は0%である。ただし、Moを含有しない場合、必須成分となる。
一方、Crは、溶接金属の焼入性を確保して溶接金属の強度を高めるために有効な元素である。ただし、Cr含有量が1.000%超の場合、溶接金属の低温靱性が劣化する場合がある。
そのため、Cr含有量の上限は1.000%以下とする。
Cr含有量の上限は、好ましくは、0.900%、0.800%、又は0.700%である。
(Mo:0〜1.000%)
Moは必須成分ではないので、フラックス入りワイヤの化学成分のMo含有量の下限値は0%である。ただし、Crを含有しない場合、必須成分となる。
一方、Moは、溶接金属の焼入性を向上させる効果を有するので、溶接金属の高強度化に有効な元素である。ただし、Mo含有量が1.000%超えると、溶接金属の低温靭性が劣化する。
そのため、Mo含有量の上限は1.000%以下とする。
Mo含有量の上限は、好ましくは、0.900%、0.800%、又は0.700%である。
(Cr+Mo(Cr及びMoの合計):0.005〜1.000%)
Cr及びMoの合計含有量が、0.005%未満となると、焼入性が不足となり、強度が確保できない。
一方、Cr及びMoの合計含有量が1.000%を超えると、焼入性が過剰となり、低温靭性が確保できない。
そのため、Cr及びMoの合計含有量は、0.005〜1.000%とする。
Cr及びMoの合計含有量の下限は、好ましくは、0.010%、0.020%、又は0.030%である。
Cr及びMoの合計含有量の上限は、好ましくは、0.900%、0.800%、又は0.700%である。
(Nb:0〜0.0150%)
Nbは必須成分ではないので、Nb含有量の下限値は0%である。
Nbは、溶接金属において微細炭化物を形成し、この微細炭化物が溶接金属中で析出強化を生じさせるので、Nbは溶接金属の引張強さを向上させる。
一方、Nb含有量が0.0150%を超えると、Nbが溶接金属中で粗大な析出物を形成して溶接金属の低温靭性を劣化させる。
そのため、Nb含有量は、0〜0.0150%とする。
Nb含有量の下限は、好ましくは、0.0001%、0.0005%、0.0010%、又は0.0080%である。
Nb含有量の上限は、好ましくは、0.0140%、0.0130%、0.0120%、又は0.0100%である。
(V:0〜0.0150%)
Vは必須成分ではないので、V含有量の下限値は0%である。
Vは溶接金属の焼入性を向上させるので、溶接金属の高強度化に有効な元素である。
一方、V含有量が0.0150%を超えると、溶接金属中のV炭化物の析出量が過剰となり、溶接金属が過剰に硬化し、溶接金属の低温靭性を劣化させる場合がある。
そのため、V含有量は、0〜0.0150%とする。
V含有量の下限は、好ましくは、0.0001%、0.0005%、0.0010%、又は0.0080%である。
V含有量の上限は、好ましくは、0.0140%、0.0130%、0.0120%、又は0.0100%である。
(Mg:0〜1.00%)
Mgは必須成分ではないので、Mg含有量の下限値は0%である。
一方、Mgは脱酸元素であり、Alと同様に、溶接金属中の酸素量を低減させ、溶接作業性(特に立向溶接性)と共に、低温靭性を向上させる効果を有する。ただし、Mg含有量が1.00%を超えると、アーク中で激しくMgと酸素とが反応し、スパッタ及びヒュームの発生量が増大する場合がある。
そのため、Mg含有量は0〜1.00%とする。
Mg含有量の下限は、好ましくは、0.05%、0.10%、又は0.20%である。
Mg含有量の上限は、好ましくは、0.90%、0.80%、又は0.70%である。
(Al:0〜0.100%)
Alは必須成分ではないので、Al含有量の下限値は0%である。
一方、Alは脱酸元素であり、Mgと同様に、溶接金属中の酸素量を低減させ、溶接作業性(特に立向溶接性)と共に、低温靭性を向上させる効果を有する。ただし、Al含有量が0.100%を超えると、接金属の低温靱性を劣化させる。
そのため、Al含有量は0〜0.100%とする。
Al含有量の下限は、好ましくは、0.010%、0.020%、又は0.030%である。
Al含有量の上限は、好ましくは、0.090%、0.080%、又は0.070%である。
(Ca:0〜0.100%)
Caは必須成分ではないので、Ca含有量の下限値は0%である。
Caは、溶接金属中での硫化物の構造を変化させ、また硫化物及び酸化物のサイズを微細化させ、これにより溶接金属の低温靭性を向上させる働きを有する。
一方、Ca含有量が0.100%を超えると、スパッタ量が増大し、溶接作業性(特に立向溶接性)が損なわれる。
そのため、Ca含有量は0〜0.100%とする。
Ca含有量の下限は、好ましくは、0.010%、0.020%、又は0.030%である。
Ca含有量の上限は、好ましくは、0.090%、0.080%、又は0.070%である。
(Ti:0〜0.100%)
Tiは必須成分ではないので、Ti含有量の下限値は0%である。
Tiは脱酸元素であり、溶接金属中の酸素量を低減させ、溶接作業性(特に立向溶接性)と共に、低温靭性を向上させる効果がある。また、Tiは、溶接金属中に僅かに残留して固溶Nを固定するので、固溶Nが溶接金属の低温靱性に及ぼす悪影響を緩和する効果を有する。
一方で、Ti含有量が0.100%を超えると、溶接金属において過度な析出物の生成による靱性劣化が生じる。なお、フラックス入りワイヤの化学成分にTiを含有させる場合、一般的には、フェロチタン(鉄とチタンとの合金)をフラックス中に含有させる。
そのため、Ti含有量は0〜0.100%とする。
Ti含有量の下限は、好ましくは、0.010%、0.020%、又は0.030%である。
Ti含有量の上限は、好ましくは、0.090%、0.080%、又は0.070%である。
(B:0〜0.0100%)
Bは必須成分ではないので、B含有量の下限値は0%である。
Bは、溶接金属において固溶Nと結びついてBNを形成するので、固溶Nが溶接金属の低温靭性に及ぼす悪影響を減じる効果を有する。また、Bは溶接金属の焼入性を高めるので溶接金属の強度を向上させる効果も有する。
一方、B含有量が0.0100%を超えると、溶接金属中のBが過剰となり、粗大なBN及びFe23(C、B)等のB化合物を形成して溶接金属の低温靭性を劣化させる場合がる。
そのため、B含有量は0〜0.0100%とする。
B含有量の下限は、好ましくは、0.0010%、0.0020%、又は0.0030%である。
B含有量の上限は、好ましくは、0.0090%、0.0080%、又は0.0070%である。
(REM:0〜0.100%)
REMは必須成分ではないので、REM含有量の下限値は0%である。
REMは、溶接金属中での硫化物の構造を変化させ、また硫化物及び酸化物のサイズを微細化させ、これにより溶接金属の低温靭性を向上させる働きを有する。
一方、REM含有量が0.100%を超えると、スパッタ量が増大し、溶接作業性(特に立向溶接性)が損なわれる。
そのため、REM含有量は0〜0.100%とする。
REM含有量の下限は、好ましくは、0.010%、0.020%、又は0.030%である。
REM含有量の上限は、好ましくは、0.090%、0.080%、又は0.070%である。
なお、本明細書にいうREMとは、Sc、Y、およびランタノイドの合計17元素を指し、REM含有量とは、REMが1種の場合はその含有量、2種以上の場合はそれらの合計含有量を指す。
(Bi:0〜0.050%)
Biは必須成分ではないので、Bi含有量の下限値は0%である。
Biは、スラグの剥離性を改善する元素である。
一方、Bi含有量が0.050%を超えると、溶接金属に凝固割れが発生する。
そのため、Bi含有量は0〜0.050%とする。
Bi含有量の下限は、好ましくは、0.005%、0.010%、又は0.020%である。
Bi含有量の上限は、好ましくは、0.045%、0.040%、又は0.035%である。
(残部:Fe及び不純物)
本開示に係るフラックス入りワイヤの化学成分におけるその他の残部成分はFeと不純物である。残部のFeは、例えば鋼製外皮に含まれるFe、及びフラックス中に含有された合金粉中のFe(例えば鉄粉)等である。
また、不純物とは、フラックス入りワイヤを工業的に製造する際に、原料に由来して、又は製造工程の種々の要因によって混入する成分であって、本開示に係るフラックス入りワイヤに悪影響を与えない範囲で許容されるものを意味する。
(Ti酸化物のTiO換算値の合計:質量%で3.00〜8.00%)
Ti酸化物は、スラグ成分であり、ビード全体を均一にスラグで被包させる作用を有する。また、Ti酸化物は、アークの持続を安定させ、スパッタ発生量を低減させる効果を有する。そのため、Ti酸化物を含有させると、溶接作業性(特に立向溶接性)が向上する。
Ti酸化物のTiO換算値の合計が3.00%未満であると、スラグ生成量が不足してビードを均一に被包できないので、スラグがビード表面に焼き付くことによってビード外観が不良になる。また、Ti酸化物のTiO換算値の合計が3.00%未満であると、アークを安定させる効果が無くなり、スパッタ発生量も増加する。また、溶接作業性(特に立向溶接性)が確保できない。
一方、Ti酸化物のTiO換算値の合計が8.00%を超えると、アークが安定することによってスパッタ発生量は減少するが、スラグの粘性が高まることによって、スラグが厚くなり、ビードの止端部が膨らんだ形状となる。また、Ti酸化物のTiO換算値の合計が8.00%を超えると、ピットが発生しやすくなる。また、スラグ巻き込みが発生する。加えて、溶接金属の酸素量が増加し、低温靭性が確保できない。
よって、Ti酸化物のTiO換算値の合計は、3.00〜8.00%とする。
Ti酸化物のTiO換算値の合計の下限は、好ましくは、3.50%、4.00%、又は4.50%である。
Ti酸化物のTiO換算値の合計の上限は、好ましくは、7.50%、7.00%、又は6.50%である。
なお、Ti酸化物は、主に、フラックス中の、ルチル、酸化チタン、チタンスラグ、イルミナイト、チタン酸ソーダ、チタン酸カリ等として存在し得る。このため、主に、フラックスのTi酸化物の含有量を制御することにより、上記範囲のTi酸化物の含有量とすることができる。
ここで、Ti酸化物のTiO換算値の合計とは、ワイヤ中に含まれている全てのTi酸化物(例えば、TiO、TiO、Ti、Tiなどがあり、ルチル、酸化チタン、チタンスラグ、イルミナイト、チタン酸ソーダ、チタン酸カリ等として添加される。)をTiOに換算した場合の、TiOのワイヤ全質量に対する質量%である。
そして、Ti酸化物のTiO換算値の合計は、蛍光X線分析装置を用いて、ワイヤに酸化物として存在するTiの質量を分析する。具体的には、ワイヤを研磨してワイヤ径φの1/2位置の長手方向断面(ワイヤの長手方向に平行な断面:L断面)を露出させ、該断面を分析する。例えば、分析によってTiO、Ti、Tiが検出された場合であれば、各Ti酸化物の質量%を[TiO]、[Ti]、[Ti]で表し、Ti酸化物のTiO換算値の合計を[換算TiO]で表すと、以下の式1により計算される。
[換算TiO]=(0.60×[TiO]+0.67×[Ti]+0.64×[Ti])×1.67・・・式1
式1における係数(0.60、0.67、0.64)は、各酸化物中に含まれるTi量を算出するための係数であり、末尾の乗数(1.67)は、ワイヤに酸化物として存在するTiの総量からTiO換算値を算出するための乗数である。
ここで、係数の求め方について説明する。M(例;TiO、Ti、Ti)の酸化物が検出されたとすると、Mにかかる係数は下記式2で計算する。
[M元素の原子量]×x/([M元素の原子量]×x+[酸素の原子量]×y)・・・式2
式1における0.60、0.67、0.64が、上記式2で求められる係数に相当する。
また、換算値を算出するための乗数の求め方について説明する。M(例;TiO)に換算するための乗数は下記式3で計算する。
([M元素の原子量]×a+[酸素の原子量]×b)/[M元素の原子量×a]・・・式3
式1における1.67が、上記式3で求められる乗数に相当する。
なお酸化物は、2種の金属元素と結合した化合物である場合も考えられる。その場合の係数の求め方は、M (例;TiO・Fe、つまりM=Ti、M=Fe、x=1、y=3、z=1の酸化物)が検出されたとすると、下記式4で計算する。
[M元素の原子量]×x/([M元素の原子量]×x+[酸素の原子量]×y+[M元素の原子量]×z)・・・式4
なお、Si酸化物のSiO換算値の合計、Zr酸化物のZrO換算値の合計、Al酸化物のAl換算値の合計、Mg酸化物のMgO換算値の合計、Na酸化物のNaO換算値の合計、K酸化物のKO換算値の合計、Ca酸化物のCaO換算値の合計、Mn酸化物のMnO換算値の合計、及びFe酸化物のFeO換算値の合計も、Ti酸化物のTiO換算値の合計と同様の計算により得られる。つまり、蛍光X線分析装置によってワイヤ径φの1/2位置の長手方向断面を分析し、検出された各種酸化物に応じて、前記式2、式3、式4に即して係数および乗数を算出し、前記式1と同様にして計算する。
分析によって検出される代表的な酸化物を、以下に列挙する。
Si酸化物;SiO、SiO、Si、Si
Zr酸化物;ZrO
Al酸化物;AlO、Al、Al
Mg酸化物;MgO、MgO、Mg
Na酸化物;NaO、Na
K酸化物;KO、KO
Ca酸化物;CaO、CaO
Mn酸化物;MnO、MnO、MnO
Fe酸化物;FeO、Fe、FeO
(Si酸化物のSiO換算値の合計:質量%で0.10〜0.50%)
Si酸化物は、スラグ成分であり、溶融スラグの粘性を高め、スラグ剥離性を改善する作用を有する。
Si酸化物のSiO換算値の合計が0.10%未満では、スラグ被包状態が悪くスラグ剥離性が不良になり、ビード形状及びビード外観も不良になる。また、溶接作業性(特に立向溶接性)が確保できない。
一方、Si酸化物のSiO換算値の合計が0.50%を超えると、スパッタ発生量が多くなる。さらに、Si酸化物のSiO換算値の合計が0.50%を超えると、ピット及びガス溝等が発生し易くなる。また、スラグ巻き込みが発生する。加えて、溶接金属の酸素量が増加し、低温靭性が確保できない。
よって、Si酸化物のSiO換算値の合計は、0.10〜0.50%とする。
Si酸化物のSiO換算値の合計の下限は、好ましくは、0.15%、0.20%、又は0.25%である。
Si酸化物のSiO換算値の合計の上限は、好ましくは、0.45%、0.40%、又は0.35%である。
なお、Si酸化物は、主に、フラックス中の珪砂、ジルコンサンド、長石、珪酸ソーダ、珪酸カリ等として存在し得る。このため、主に、フラックスのSi酸化物の含有量を制御することにより、上記Si酸化物の含有量の範囲とすることができる。
(Zr酸化物のZrO換算値の合計:質量%で0〜0.80%)
Zr酸化物は、溶接金属の酸素量を増加させ、低温靭性が劣化する。そのため、Zr酸化物は含まないことがよく、Zr酸化物のZrO換算値の合計の下限は0%とする。
ただし、Zr酸化物は、スラグ成分であり、水平すみ肉溶接でスラグ被包性を高めてビード形状を平滑にする作用を有する。
一方で、Zr酸化物のZrO換算値の合計が0.80%を超えると、ビード形状が凸状になりやすい。また、スラグ巻き込みが発生する。
よって、Zr酸化物のZrO換算値の合計は、0〜0.80%とする。
Zr酸化物のZrO換算値の合計の上限は、好ましくは、0.60%、0.20%、又は0.10%である。
なお、Zr酸化物は、主に、フラックス中のジルコンサンド、酸化ジルコニウム等として存在し得るものであり、また、Ti酸化物に微量含有される場合もある。このため、主に、フラックスのZr酸化物の含有量を制御することにより、上記Zr酸化物の含有量の範囲とすることができる。
(Al酸化物のAl換算値の合計:質量%で0〜0.80%)
Al酸化物は、溶接スラグの凝固温度を低温化させ、溶接作業性(特に立向溶接性)が劣化する。そのため、Al酸化物は含まないことがよく、Al酸化物のAl換算値の合計の下限は0%とする。
ただし、Al酸化物は、溶融スラグを構成した場合、スラグ被包性を良好にすることにより、すみ肉ビードの上脚側のアンダーカットを防止する作用を有する。
一方、Al酸化物のAl換算値の合計が0.80%を超えると、すみ肉ビードの下脚側のビード止端部が膨らんだビード形状となる。また、スラグ巻き込みが発生する。
よって、Al酸化物のAl換算値の合計は、0〜0.80%とする。
Al酸化物のAl換算値の合計の上限は、好ましくは、0.60%、0.20%、又は0.10%である。
なお、Al酸化物は、主にフラックス中のアルミナ、長石等の成分として存在する場合が多い。このため、主に、フラックスのAl酸化物の含有量を制御することにより、上記Al酸化物の含有量の範囲とすることができる。
(弗化物の合計:質量%で0.10〜2.00%)
SiF、KZrF、NaF、NaAlF、CaF、及びMgF(以下、これらの弗化物を「特定弗化物」と称す場合がある)は、溶接時に分解したFが、溶接金属の拡散性水素量を低減する。これは、溶接時に、弗素(F)が水素(H)と結合して弗化水素(HF)となり、このHFが溶接金属外に放出されるためと推測される。
特定弗化物の合計が0.10%未満であると、溶接金属の拡散性水素量の低減作用が小さく、耐低温割れ性が確保できない。
一方、特定弗化物の合計が2.00%超えであると、溶接スラグの凝固温度が低温化し、溶接作業性(特に立向溶接性)が劣化する。
よって、特定弗化物のいずれか1種以上の弗化物を含有しその合計を、0.10〜2.00%とする。
特定弗化物の合計の下限は、好ましくは、0.20%、0.30%、又は0.40%である。
特定弗化物の合計の上限は、好ましくは、1.90%、1.80%、又は1.70%である。
(Na含有化合物の合計:質量%で0.01〜2.00%)
Na酸化物、NaF、及びNaAlF(以下、これらのNa含有化合物を「特定Na含有化合物」と称す場合がある)は、溶接時に分解しNaが、脱酸剤として作用し、溶接金属の酸素量を低減する。
特定Na含有化合物の合計が0.01%未満であると、溶接金属の酸素量の低減作用が小さく、低温靭性が確保できない。
一方、特定Na含有化合物の合計が2.00%超えであると、溶接スラグの凝固温度が低温化し、溶接作業性(特に立向溶接性)が劣化する。
よって、特定Na含有化合物のいずれか1種以上のNa含有化合物を含有しその合計を、0.01〜2.00%とする。
特定Na含有化合物の合計の下限は、好ましくは、0.15%、0.20%、又は0.30%である。
特定Na含有化合物の合計の上限は、好ましくは、1.90%、1.80%、又は1.70%である。
なお、Na酸化物の含有量については、Na酸化物のNaO換算値の合計を意味する。
(K含有化合物の合計:質量%で0.01〜2.00%)
K酸化物、KSiF、及びKZrF(以下、これらのK含有化合物を「特定K含有化合物」と称す場合がある)は、溶接時に分解したKが、脱酸剤として作用し、溶接金属の酸素量を低減する。
特定K含有化合物の合計が0.01%未満であると、溶接金属の酸素量の低減作用が小さく、低温靭性が確保できない。
一方、特定K含有化合物の合計が2.00%超えであると、溶接スラグの凝固温度が低温化し、溶接作業性(特に立向溶接性)が劣化する。
よって、特定K含有化合物のいずれか1種以上のK含有化合物を含有しその合計を、0.01〜2.00%とする。
特定K含有化合物の合計の下限は、好ましくは、0.20%、0.30%、又は0.40%である。
特定K含有化合物の合計の上限は、好ましくは、1.95%、1.90%。又は1.80%である。
なお、K酸化物の含有量については、K酸化物のKO換算値の合計を意味する。
(Mg含有化合物の合計:質量%で0.01〜2.00%)
本実施形態に係るフラックス入りワイヤは、特定Na含有化合物、及び特定K含有化合物に加え、Mg酸化物、及びMgFのいずれか1種以上のMg含有化合物を含有してもよい。
Mg酸化物、及びMgF(以下、これらのMg含有化合物を「特定Mg含有化合物」と称す場合がある)は、溶接時に分解しMgが、脱酸剤として作用し、溶接金属の酸素量を低減する。
特定Mg含有化合物の合計が0.01%以上であると、溶接金属の酸素量の低減作用が大きくなり、さらに低温靭性が向上する。
一方、特定Mg含有化合物の合計が2.00%以下であると、溶接スラグの凝固温度が高温化し、さらに溶接作業性(特に立向溶接性)が向上する、
よって、特定Mg含有化合物の合計を0〜2.00%としてもよく、特定Mg含有化合物のいずれか1種以上のMg含有化合物を含有しその合計を、0.01〜2.00%とすることが好ましい。
特定Mg含有化合物の合計の下限は、より好ましくは、0.20%、0.30%、又は0.40%である。
特定Mg含有化合物の合計の上限は、より好ましくは、1.90%、1.80%、又は1.70%である。
なお、Mg酸化物の含有量については、Mg酸化物のMgO換算値の合計を意味する。
(特定Na含有化合物、及び特定K含有化合物をワイヤに含有させる意義)
特定Na含有化合物量、及び特定K含有化合物量を各々0.01%未満とし、脱酸剤として機能するCaを含むCaFを増加させても、スパッタが増加し、溶接作業性が劣化する。また、脱酸剤として機能する金属Mgを増加させても、金属Mgは溶接金属の拡散性水素量を増加させ、耐低温割れ性が劣化する。
そのため、溶接作業性(特に立向溶接性)と共に、低温靭性及び耐低温割れに優れた溶接金属を得るには、ワイヤに、特定Na含有化合物、及び特定K含有化合物を各々上記範囲で含ませる必要がある。
同様の観点から、ワイヤに、特定Mg含有化合物量を上記範囲で含ませることも好ましい。
なお、特定Mg含有化合物、特定Na含有化合物、及び特定K含有化合物の含有量は、フラックス入りワイヤの全質量に対する質量%での含有量である。
(式Aによって算出されるX値)
本開示に係るフラックス入りワイヤにおいて、下記式Aによって算出されるX値は0.10〜160.00である。
X=(8×CaF+5×MgF+5×NaF+5×KSiF+5×KZrF+NaAlF)/(SiO+Al+ZrO+0.5×MgO+CaO+0.5×NaO+0.5×KO+MnO+FeO) ・・・・式A
式A中、CaF、MgF、NaF、KSiF、KZrF、及びNaAlFは、各化学式で示される化合物の、フラックス入りワイヤの全質量に対する質量%での含有量である。また、SiOはSi酸化物のSiO換算値の合計を示し、AlはAl酸化物のAl換算値の合計を示し、ZrOはZr酸化物のZrO換算値の合計を示し、MgOはMg酸化物のMgO換算値の合計を示し、CaOはCa酸化物のCaO換算値の合計を示し、NaOはNa酸化物のNaO換算値の合計を示し、KOはK酸化物のKO換算値の合計を示し、MnOはMn酸化物のMnO換算値の合計を示し、FeOはFe酸化物のFeO換算値の合計を示す。なお、式Aにおける前記SiO換算値、前記Al換算値、前記ZrO換算値、前記MgO換算値、前記CaO換算値、前記NaO換算値、前記KO換算値、前記MnO換算値、及び前記FeO換算値はフラックス入りワイヤの全質量に対する質量%で表す。
式Aにおいて、分子は、溶接時に分解して、脱酸剤として機能し、溶接金属の酸素量を低減する成分(Ca、Mg、Na、K、Si)と、溶接金属の拡散性水素量を低減するフッ素と、を含む化合物量の指標である。
一方、分母は、溶接金属の酸素量を増加する酸素(O)を含む化合物量の指標である。
つまり、X値が0.10未満では、溶接金属の酸素量を増加する酸素(O)を含む化合物量が多すぎ、溶接金属の酸素量低減作用が小さく、低温靭性を確保できない。
一方、X値が160.00超えでは、弗化物量が多すぎて、スラグ巻き込みが生じ、健全な継手を作製できなくなる。
よって、式Aによって算出されるX値は0.10〜160.00とする。
X値の下限は、好ましくは、1.00、5.00、又は10.00である。
X値の上限は、好ましくは、130.00、100.00、70.00、50.00、又は20.00である。
(式Bによって算出されるCeq)
本開示に係るフラックス入りワイヤにおいて、式Bによって算出されるCeqは、0.300〜0.750であることが好ましい。
Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14 ・・・式B
式B中、元素記号は、酸化物、弗化物、窒化物、及び金属炭酸塩を除く化学成分として含まれる各元素の、フラックス入りワイヤの全質量に対する質量%での含有量である。
Ceqは、溶接金属の焼入性に影響する。Ceqが高い場合、溶接金属が硬化するので溶接金属の引張強さが向上するが、溶接金属の低温靭性が低下する。
Ceqが0.300%以上である場合、溶接金属のCeqも充足し易くなり、溶接金属の引張強さが充足する傾向がある。
Ceqが0.750%以下である場合、溶接金属のCeqが過剰となることを抑制し易くなり、溶接金属の低温靭性が充足し、かつ低温割れが抑制される傾向がある。
そのため、Ceqは、0.300〜0.750が好ましい。
Ceqの下限は、好ましくは、0.350、0.400、又は0.450である。
Ceqの上限は、好ましくは、0.700、0.650、又は0.600である。
−その他酸化物の合計含有量:0〜10.00%−
本開示に係るフラックス入りワイヤにおいて、Ti酸化物、Si酸化物、Zr酸化物、及びAl酸化物以外の酸化物として、Fe酸化物、Mg酸化物、Na酸化物、K酸化物、Mn酸化物、及びCa酸化物からなる群より選ばれる酸化物を含む場合その合計含有量は、10.00%以下であることが好ましい。Fe酸化物、Mg酸化物、Na酸化物、K酸化物、Mn酸化物、及びCa酸化物からなる群に含まれる酸化物を単に「その他酸化物」と略す場合がある。またその他酸化物における各々の酸化物の含有量の合計値を、単に「その他酸化物の合計含有量」と略す場合がある。
本開示に係るフラックス入りワイヤが、上記その他酸化物の1種又は2種以上の酸化物を含む場合、上記その他酸化物の合計含有量は、Fe酸化物のFeO換算値、Mg酸化物のMgO換算値、Na酸化物のNaO換算値、K酸化物のKO換算値、Mn酸化物のMnO換算値、及びCa酸化物のCaO換算値の合計として求める。
なお、本開示に係るフラックス入りワイヤにおいて、その他酸化物は必須成分ではないので、フラックス入りワイヤにおける、その他酸化物の合計含有量の下限値は0%である。
一方、その他酸化物は、溶接ビード形状を良好に維持する効果と、立向溶接性を向上させる効果とを有する。また、Mg酸化物、及びFe酸化物等は、アークを安定させる効果も有する。そのような効果を得るためには、その他酸化物の合計含有量を0%超にしてもよい。これらの効果をより発揮させるために、その他酸化物の合計含有量の下限を、0.05%、0.10%、0.15%、又は0.20%、としてもよい。しかし、その他酸化物の合計含有量が10.00%を超えると、スラグの巻き込みが生じ、健全な継手を作製できなくなる恐れがある。そのため、その他酸化物の合計含有量の上限値は10.00%とすることが好ましく、9.00%、8.00%、7.00%、6.00%、3.00%、2.00%、1.00%、0.50%又は0.30%としてもよい。
本開示に係るフラックス入りワイヤにおける、その他酸化物の含有量は、酸化物の種類ごとに限定する必要はない。
なお、各その他酸化物の含有量及びその他酸化物の合計含有量は、前述したTi酸化物の含有量と同様に蛍光X線分析と電子線マイクロアナライザ(Electron Probe Micro Analyzer:EPMA)を併用することによって測定する。
(窒化物、金属炭酸塩)
窒化物(特にフラックス中の窒化物)は、溶接金属中の拡散性水素量を減少させて、溶接金属の耐低温割れ性を顕著に向上させる働きを有する。この理由は明らかではないが、窒化物中のNが溶接中に水素(H)と結合してアンモニア(NH)となり、このNHが溶接金属外に放出されることが理由の一つであると推測される。
そのため、本開示に係るフラックス入りワイヤは、窒化物を含んでもよい。
本開示に係るフラックス入りワイヤには窒化物として、例えば、AlN、BN、Ca、CeN、CrN、CuN、FeN、FeN、FeN、MgN、MoN、NbN、Si、TiN、VN、ZrN、MnN、及びMnNからなる群から選択される1種又は2種以上を含んでもよい。
金属炭酸塩は、アークによって電離し、COガスを発生させる。COガスは、溶接雰囲気中の水素分圧を下げ、溶接金属中の拡散性水素量を低減させる。
そのため、本開示に係るフラックス入りワイヤは、フラックス中に金属炭酸塩を含んでもよい。
本開示に係るフラックス入りワイヤには金属炭酸塩として、例えば、MgCO、NaCO、LiCO、CaCO、KCO、BaCO、FeCO、MnCO、及びSrCOからなる群から選択される1種又は2種以上を含んでもよい。
ただし、金属炭酸塩の種類及び組成は限定されない。
なお、窒化物及び金属炭酸塩の含有量は、前述したTi酸化物の含有量と同様に蛍光X線分析と電子線マイクロアナライザ(Electron Probe Micro Analyzer:EPMA)を併用することによって測定する。
本開示に係るフラックス入りワイヤは、ワイヤ表面に塗布された潤滑剤をさらに備えてもよい。ワイヤ表面に塗布された潤滑剤は、溶接時のワイヤの送給性を向上させる効果を有する。溶接ワイヤ用の潤滑剤としては、様々な種類のもの(例えばパーム油等の植物油)を使用できるが、溶接金属の低温割れを抑制するためには、Hを含有しないポリテトラフルオロエチレン油(PTFE油)及びパーフルオロポリエーテル油(PFPE油)の一方又は両方を使用することが好ましい。また、上述したように、本開示に係るフラックス入りワイヤは、ワイヤ表面に形成されためっきをさらに備えてもよい。この場合、潤滑剤はめっきの表面に塗布される。
本開示に係るフラックス入りワイヤに含まれる水素量は特に限定されないが、溶接金属の拡散性水素量を低減するためには、フラックス入りワイヤの全質量に対して12ppm以下であることが好ましい。フラックス入りワイヤ中の水素量は、フラックス入りワイヤの保管の間に、フラックス入りワイヤ内に水分が侵入することにより増大するおそれがある。従って、ワイヤ製造からワイヤ使用までの期間が長い場合は、後述の手段によって水分の浸入を防止することが望ましい。
(鋼製外皮)
本開示に係るフラックス入りワイヤの鋼製外皮は、特に限定されない。例えば、鋼製外皮は、化学組成がC:0〜0.1%、Si:0〜0.10%、Mn:0〜3.00%、P:0〜0.030%、S:0〜0.020%、Al:0〜0.1%、及びN:0〜0.030%を含み、残部が少なくとも鉄及び不純物を含む軟鋼外皮が例示できる。
(ワイヤ形状)
次に、本開示に係るフラックス入りワイヤの形状(ワイヤ構造)について説明する。
通常、フラックス入りワイヤは、鋼製外皮の継目が溶接されているのでスリット状の隙間がない形状(シームレス形状)を有するワイヤ(鋼製外皮の継目に溶接部を有するワイヤ、以下、シームレスワイヤと呼ぶことがある)と、鋼製外皮の継目が溶接されていないのでスリット状の隙間を含む形状を有するワイヤとのいずれかに区別される。
本開示に係るフラックス入りワイヤでは、いずれの形状も採用することができる。しかしながら、溶接金属の低温割れの発生を抑制するためには、鋼製外皮にスリット状の隙間がないことが好ましい。溶接時に溶接部に侵入するH(水素)は、溶接金属及び被溶接材中に拡散し、応力集中部に集積して低温割れの発生原因となる。Hの供給源は様々であるが、溶接部の清浄度、及びガスシールドの条件が厳密に管理された状態で溶接が行われる場合、ワイヤ中に含まれる水分(HO)が主なHの供給源となり、この水分の量が、溶接継手の拡散性水素量に強く影響する。
鋼製外皮がシームを有する場合、大気中の水分がシームを通じてフラックス中に侵入しやすい。このため、鋼製外皮のシームを除去することにより、ワイヤ製造後からワイヤ使用までの間に、大気中の水分が鋼製外皮を通じてフラックス中に侵入することを抑制することが望ましい。鋼製外皮がシームを有し、且つワイヤ製造からワイヤ使用までの期間が長い場合は、水分等のHの供給源が侵入することを防止するために、フラックス入りワイヤ全体を真空包装するか、乾燥した状態に保持できる容器内でフラックス入りワイヤを保存することが望ましい。
(ワイヤ直径)
本開示に係るフラックス入りワイヤの直径は特に限定されないが、例えばφ1.0〜φ2.0mmである。なお、一般的なフラックス入りワイヤの直径はφ1.2〜φ1.6mmである。
(充填率)
本開示に係るフラックス入りワイヤの充填率は、上述された条件が満たされる限り、特に限定されない。一般的なフラックス入りワイヤの充填率に鑑みて、本開示に係るフラックス入りワイヤの充填率の下限値を、例えば8%、10%、又は12%としてもよい。また、本開示に係るフラックス入りワイヤの充填率の上限値を、例えば28%、25%、22%、20%、又は17%としてもよい。
<フラックス入りワイヤの製造方法>
次に、本開示に係るフラックス入りワイヤの製造方法について説明する。
なお、以下に説明する製造方法は一例であり、本開示に係るフラックス入りワイヤを製造する方法は、以下の方法に限定されるものではない。
(シームレス形状を有するフラックス入りワイヤの場合)
シームレス形状を有するフラックス入りワイヤの製造方法は、フラックスを調製する工程と、鋼帯を長手方向に送りながら、成形ロールを用いて成形してU字型のオープン管を得る工程と、オープン管の開口部を通じてオープン管内にフラックスを供給する工程と、オープン管の開口部の相対するエッジ部(周方向両端部)を突合せ溶接してシームレス管を得る工程と、シームレス管を伸線して所定の線径を有するフラックス入りワイヤを得る工程と、伸線する工程の途中又は完了後にフラックス入りワイヤを焼鈍する工程とを備える。
フラックスは、フラックス入りワイヤの各成分が上述された所定の範囲内になるように調製される。なお、鋼製外皮の材料である鋼帯の幅及び厚さ、並びにフラックスの充填量等によって決定されるフラックスの充填率も、フラックス入りワイヤの各成分量に影響することに留意する必要がある。
突合せ溶接は、電縫溶接、レーザ溶接、又はTIG溶接等により行われる。
また、伸線工程の途中又は伸線工程の完了後に、フラックス入りワイヤ中の水分を除去するために、フラックス入りワイヤは焼鈍される。フラックス入りワイヤのH含有量を12ppm以下とするためには、焼鈍温度は、650℃以上とし、焼鈍時間は、4時間以上とすることが好ましい。なお、フラックスの変質を防ぐために、焼鈍温度は900℃以下とすることが好ましい。
突合せシーム溶接された、スリット状の隙間がないフラックス入りワイヤの断面は、研磨して、エッチングすれば、溶接跡が観察されるが、エッチングしないと溶接跡は観察されない。そのため、上記のようにシームレスと呼ぶことがある。例えば、溶接学会編「新版 溶接・接合技術入門」(2008年)産報出版、p.111には、突合せシーム溶接された、スリット状の隙間がないフラックス入りワイヤは、シームレスタイプのワイヤと記載されている。フラックス入りワイヤの鋼製外皮の隙間をろう付けしても、スリット状の隙間がないフラックス入りワイヤが得られる。
(スリット状の隙間を有するフラックス入りワイヤの場合)
スリット状の隙間を有するフラックス入りワイヤの製造方法は、オープン管の周方向の両端部を突き合わせ溶接してシームレス管を得る工程の代わりに、オープン管を成形してオープン管の端部を突き合わせてスリット状の隙間有りの管を得る工程を有する点以外は、シームレス形状を有するフラックス入りワイヤの製造方法と同じである。スリット状の隙間を有するフラックス入りワイヤの製造方法は、突き合わせられたオープン管の端部をかしめる工程をさらに備えてもよい。
スリット状の隙間を有するフラックス入りワイヤの製造方法では、スリット状の隙間有りの管を伸線する。
<溶接継手の製造方法>
次に、本開示に係る溶接継手の製造方法(溶接方法)について説明する。
本開示に係る溶接継手の製造方法は、上述された本開示に係るフラックス入りワイヤを用いて、鋼材を、溶接する工程を備える。
本開示に係る溶接継手の製造方法において、溶接方式は、ガスシールドアーク溶接が好適である。
本開示に係る溶接継手の製造方法において、溶接継手の母材となる鋼材(被溶接材)の種類は特に限定されないが、例えば、PCM(溶接割れ感受性組成)が0.24%以上である低温割れ感受性が高い鋼材、特に、引張強さが590MPa以上1700MPa以下であり、板厚20mm以上の高強度鋼板を好適に用いることができる。
本開示に係る溶接継手の製造方法では、1パスから最終パスのいずれか1つ以上において、本開示に係るフラックス入りワイヤを用いて母材鋼板を溶接する工程を備えることがよい。溶接が1パスのみである場合、その1パスにおいて本開示に係るフラックス入りワイヤが用いられる。
母材鋼板(母材)の種類は特に限定されない。フラックス入りワイヤの極性は、溶接金属の拡散性水素量及びスパッタ発生量に及ぼす影響が無視できる程度に小さいので、プラス及びマイナスのいずれであってもよいが、プラスであることが好ましい。
本開示に係る溶接継手の製造方法において用いられるシールドガスの種類は特に限定されない。本開示に係る溶接継手の製造方法は、シールドガスの種類に関わらず、優れた溶接作業性を発揮し、高強度、高靱性、及び高疲労強度を有する溶接継手を得ることができる。本開示に係る溶接継手の製造方法におけるシールドガスとして、一般的に多用されている100体積%の炭酸ガス、及びArと3〜30体積%COとの混合ガス等を好ましく使用することができる。また、本開示に係るフラックス入りワイヤを用いた溶接の際のシールドガスは5体積%以下のOガスを含んでいてもよい。これらのガスは廉価であるので、これらのガスを用いた溶接は産業利用上有利である。
通常、これらのガスは、ルチル系フラックス入りワイヤと組み合わせて用いられた際に、多量のスパッタを生じさせて溶接作業性を悪化させる。しかしながら、本開示に係る溶接継手の製造方法は、スパッタ量を十分に抑制することができる本開示に係るフラックス入りワイヤを用いるので、これらのガスがシールドガスである場合でも、良好な溶接作業性を発揮することができる。
本開示に係る溶接継手の製造方法における溶接姿勢は特に限定されない。本開示に係る溶接継手の製造方法は、溶接姿勢が下向姿勢、横向姿勢、立向姿勢、及び上向姿勢のいずれであっても、良好な溶接作業性(特に立向溶接性)を発揮することができる。
本開示に係る溶接継手の製造方法によって得られる溶接継手は、母材鋼板(母材)と、溶接金属及び溶接熱影響部から構成される溶接部とを備える。溶接継手の母材は特に限定されない。本開示に係る溶接継手は、本開示に係るフラックス入りワイヤを用いて製造されるので、良好なビード形状を有する溶接金属を備える。得られる溶接金属の引張強さは、590〜1200MPaの高強度となる。
次に、実施例及び比較例により、本開示の実施可能性及び効果についてさらに詳細に説明するが、下記実施例は本開示を限定するものではなく、前・後記の趣旨に徹して設計変更することはいずれも本開示の技術的範囲に含まれるものである。
(フラックス入りワイヤの製造)
実施例及び比較例のフラックス入りワイヤは、以下に説明する方法により製造した。
まず、鋼帯を長手方向に送りながら、成形ロールを用いて成形してU型のオープン管を得た。このオープン管の開口部を通じてオープン管内にフラックスを供給し、オープン管の開口部の相対するエッジ部を突合わせ溶接してシームレス管を得た。
このシームレス管を伸線して、スリット状の隙間がないフラックス入りワイヤを得た。ただし、一部の試料は、シーム溶接をしないスリット状の隙間有りの管とし、それを伸線した。
このようにして、最終のワイヤ径がφ1.2mmのフラックス入りワイヤを試作した。 なお、これらフラックス入りワイヤの伸線作業の途中で、フラックス入りワイヤを650〜950℃の温度範囲内で4時間以上焼鈍した。試作後、ワイヤ表面には潤滑剤を塗布した。これらフラックス入りワイヤの構成を表1A〜表1Hに示す。
表1A〜表1Hに示された、化学成分の含有量、酸化物の含有量、弗化物の含有量、Na含有化合物の含有量、K含有化合物の含有量、Mg含有化合物の含有量及び鉄粉の含有量の単位は、フラックス入りワイヤ全質量に対する質量%である。表中において「フラックス入りワイヤ全質量に対する質量%」は、「質量%」と略し、「酸化物、弗化物、窒化物、及び金属炭酸塩を除く化学成分」は、「化学成分」と略した。
Figure 2021109243
Figure 2021109243
Figure 2021109243
Figure 2021109243
Figure 2021109243
Figure 2021109243
Figure 2021109243
Figure 2021109243
表1A〜表1B及び表1E〜表1Fに示されたフラックス入りワイヤの残部(すなわち、表に示された各成分以外の成分)は、鉄及び不純物である。
表に示されたフラックス入りワイヤのうち、「ワイヤ構造」欄で「シームレス」と記載されたフラックス入りワイヤは、シームレス形状を有し、「備考」欄で特に断りが無い限り、潤滑剤としてパーム油が塗布されたワイヤである。また、「ワイヤ構造」欄で「スリット状隙間有」と記載されたフラックス入りワイヤは、スリット状の隙間を有するワイヤであり、「備考」欄で「PTFE塗布」と記載されたワイヤは、PTFE油が塗布されたワイヤである。
表1A〜表1D及び表1E〜表1Hに示されたフラックス入りワイヤに含まれる各元素は、鋼製外皮又は金属粉の形態である。なお、表においては、本開示で規定される範囲から外れる数値に下線を付してある。
また、表1A〜表1D及び表1E〜表1Hにおいて、化学成分や化合物などの含有量に係る表中の空欄は、その化学成分や化合物などが意図的に含有されていないことを意味する。これらの化学成分や化合物などが不可避的に混入されるか生成することもある。
[評価]
実施例及び比較例のフラックス入りワイヤを用いて、立向上進溶接で、ガスシールドアーク溶接することにより評価を行った。具体的には、以下に説明する方法により評価された。
溶接する鋼板として板厚が50mmである引張強さ780MPa級鋼を用い、評価の際の溶接ガスの種類は、Ar−20%COガスとした。また、評価の際に、溶接電流は全て直流とし、ワイヤの極性は全てプラスとした。
なお、評価する際の溶接条件は、表2に記載の条件とした。
Figure 2021109243
(溶接金属の酸素量の評価)
実施例及び比較例のフラックス入りワイヤを用いてガスシールドアーク溶接することにより得られる溶接金属の酸素量を評価した。
溶接金属の酸素量の測定は、板厚中央部かつ溶接金属の幅中央部の箇所から溶接継ぎ手の長手方向に溶接金属の酸素測定用の分析試料のピンを切り出し、不活性ガス溶解赤外線吸収法により測定した。
酸素量が380ppm以下を◎、380ppm超450ppm以下を○、450ppm超を×とした。
(スラグ巻き込みの評価)
スラグ巻き込みの評価は、立向上進隅肉溶接を上述の鋼板に行うことで評価した。溶接部5箇所の断面全てでスラグ巻き込みがないフラックス入りワイヤを「合格」とした。
(耐低温割れ性の評価)
耐低温割れ性の評価は、温度5℃かつ湿度60%の一定雰囲気管理下において、板厚が50mmである引張強さ780MPa級鋼板に、表2の溶接条件で溶接を行い、これにより得られた溶接継手にJIS Z 3157―1993(U形溶接割れ試験方法)及びJIS Z 3158:2016(y形溶接割れ試験方法)に準拠した試験を行うことにより実施した。U形溶接割れ試験及びy形溶接割れ試験のそれぞれの溶接継手について「割れ無し」「割れ有」を判断した。
Figure 2021109243
Figure 2021109243
実施例のフラックス入りワイヤは、立向上進溶接でもスラグ巻き込みが発生せず、溶接作業性(特に立向溶接性)にも優れていた。
実施例のフラックス入りワイヤは、得られる溶接金属の酸素量が低く、低温靭性に優れることがわかる。また、y形溶接割れ試験及びU形溶接割れ試験のすべての断面において、断面割れ無し(断面割れが発生していないこと)であり、得られる溶接金属が耐低温割れ性を有していることがわかる。
一方、比較例は、本開示で規定する要件のいずれかを満たしていなかったので、1つ以上の評価項目において不合格となった。

Claims (6)

  1. 鋼製外皮と前記鋼製外皮の内部に充填されたフラックスとを備える溶接用のフラックス入りワイヤであって、
    前記フラックス入りワイヤ全質量に対する質量%で、酸化物、弗化物、窒化物、及び金属炭酸塩を除く化学成分が、
    C :0.020〜0.100%、
    Si:0.20〜0.80%、
    Mn:1.50〜3.50%、
    P :0〜0.030%、
    S :0〜0.030%、
    Cu:0.005〜1.000%、
    Ni:0.10〜5.00%、
    Cr:0〜1.000%、
    Mo:0〜1.000%、
    Cr+Mo:0.005〜1.000%、
    Nb:0〜0.0150%、
    V :0〜0.0150%、
    Mg:0〜1.00%、
    Al:0〜0.100%、
    Ca:0〜0.100%、
    Ti:0〜0.100%、
    B :0〜0.0100%、
    REM:0〜0.100%、
    Bi:0〜0.050%、並びに
    残部:Fe及び不純物であり、
    Ti酸化物のTiO換算値の合計が3.00〜8.00%であり、
    Si酸化物のSiO換算値の合計が0.10〜0.50%であり、
    Zr酸化物のZrO換算値の合計が0〜0.80%であり、
    Al酸化物のAl換算値の合計が0〜0.80%であり
    SiF、KZrF、NaF、NaAlF、CaF、及びMgFのいずれか1種以上の弗化物を含有しその合計が0.10〜2.00%であり、
    Na酸化物、NaF、及びNaAlFのいずれか1種以上のNa含有化合物を含有しその合計(ただしNa酸化物はNaO換算値)が0.01〜2.00%であり、
    K酸化物、KSiF、及びKZrFのいずれか1種以上のK含有化合物を含有しその合計(ただしK酸化物はKO換算値)が0.01〜2.00%であり、
    かつ、下記式Aによって算出されるX値が0.10〜160.00であるフラックス入りワイヤ。
    X=(8×CaF+5×MgF+5×NaF+5×KSiF+5×KZrF+NaAlF)/(SiO+Al+ZrO+0.5×MgO+CaO+0.5×NaO+0.5×KO+MnO+FeO) ・・・・式A
    式A中、CaF、MgF、NaF、KSiF、KZrF、及びNaAlFは、各化学式で示される化合物の、フラックス入りワイヤの全質量に対する質量%での含有量である。また、SiOはSi酸化物のSiO換算値の合計を示し、AlはAl酸化物のAl換算値の合計を示し、ZrOはZr酸化物のZrO換算値の合計を示し、MgOはMg酸化物のMgO換算値の合計を示し、CaOはCa酸化物のCaO換算値の合計を示し、NaOはNa酸化物のNaO換算値の合計を示し、KOはK酸化物のKO換算値の合計を示し、MnOはMn酸化物のMnO換算値の合計を示し、FeOはFe酸化物のFeO換算値の合計を示す。なお、式Aにおける前記SiO換算値、前記Al換算値、前記ZrO換算値、前記MgO換算値、前記CaO換算値、前記NaO換算値、前記KO換算値、前記MnO換算値、及び前記FeO換算値はフラックス入りワイヤの全質量に対する質量%で表す。
  2. Mg酸化物、及びMgFのいずれか1種以上のMg含有化合物を含有しその合計(ただしMg酸化物はMgO換算値)が0.01〜2.00%である請求項1に記載のフラックス入りワイヤ。
  3. 下記式Bによって算出されるCeqが0.300〜0.750である請求項1又は請求項2に記載のフラックス入りワイヤ。
    Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14 ・・・式B
    式B中、元素記号は、酸化物、弗化物、窒化物、及び金属炭酸塩を除く化学成分として含まれる各元素の、フラックス入りワイヤの全質量に対する質量%での含有量である。
  4. 鋼製外皮は、前記鋼製外皮の継目に溶接部を有する請求項1〜請求項3のいずれか1項に記載のフラックス入りワイヤ。
  5. 表面にポリテトラフルオロエチレン油及びパーフルオロポリエーテル油の一方又は両方が塗布されている請求項1〜請求項4のいずれか1項に記載のフラックス入りワイヤ。
  6. 請求項1〜請求項5のいずれか1項に記載のフラックス入りワイヤを用いて、鋼材を溶接する工程を備える溶接継手の製造方法。
JP2021002897A 2020-01-10 2021-01-12 フラックス入りワイヤ及び溶接継手の製造方法 Pending JP2021109243A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020003097 2020-01-10
JP2020003097 2020-01-10

Publications (1)

Publication Number Publication Date
JP2021109243A true JP2021109243A (ja) 2021-08-02

Family

ID=77058686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021002897A Pending JP2021109243A (ja) 2020-01-10 2021-01-12 フラックス入りワイヤ及び溶接継手の製造方法

Country Status (1)

Country Link
JP (1) JP2021109243A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7518051B2 (ja) 2021-09-29 2024-07-17 株式会社神戸製鋼所 片面突合せ溶接方法及び溶接継手の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7518051B2 (ja) 2021-09-29 2024-07-17 株式会社神戸製鋼所 片面突合せ溶接方法及び溶接継手の製造方法

Similar Documents

Publication Publication Date Title
JP6809533B2 (ja) フラックス入りワイヤ、溶接継手の製造方法、及び溶接継手
JP6766867B2 (ja) フラックス入りワイヤ、溶接継手の製造方法、及び溶接継手
JP6953869B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP7495653B2 (ja) フラックス入りワイヤ及び溶接継手の製造方法
JP2014113615A (ja) 炭酸ガスシールドアーク溶接用フラックス入りワイヤ
JP2015217393A (ja) 炭酸ガスシールドアーク溶接用フラックス入りワイヤ
JP6953931B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP6953870B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP6953930B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP7485895B2 (ja) フラックス入りワイヤ及び溶接継手の製造方法
WO2020217963A1 (ja) Ni基合金フラックス入りワイヤ
JP2021109243A (ja) フラックス入りワイヤ及び溶接継手の製造方法
JP7469597B2 (ja) フラックス入りワイヤ及び溶接継手の製造方法
JP2022157587A (ja) フラックス入りワイヤ及び溶接継手の製造方法
JP2022157454A (ja) フラックス入りカットワイヤ及び溶接継手の製造方法
JP7557162B2 (ja) フラックス入りワイヤ及び溶接継手の製造方法
JP2023051585A (ja) フラックス入りワイヤ及び溶接継手の製造方法
WO2024069985A1 (ja) フラックス入りワイヤ及び溶接継手の製造方法
JP7247081B2 (ja) ガスシールドアーク溶接用メタル系フラックス入りワイヤ
JP2022157455A (ja) フラックス入りワイヤ及び溶接継手の製造方法
JP2022061805A (ja) 溶接継手の製造方法及び開先充填用のフラックス入りカットワイヤ
JP2023051584A (ja) フラックス入りワイヤ及び溶接継手の製造方法
JPH07276087A (ja) ガスシールドアーク溶接メタル系フラックス入りワイヤ
JPH07276077A (ja) ガスシールドアーク溶接メタル系フラックス入りワイヤ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230919