JP2021106463A - 送電装置、送電装置の制御方法およびプログラム - Google Patents

送電装置、送電装置の制御方法およびプログラム Download PDF

Info

Publication number
JP2021106463A
JP2021106463A JP2019236965A JP2019236965A JP2021106463A JP 2021106463 A JP2021106463 A JP 2021106463A JP 2019236965 A JP2019236965 A JP 2019236965A JP 2019236965 A JP2019236965 A JP 2019236965A JP 2021106463 A JP2021106463 A JP 2021106463A
Authority
JP
Japan
Prior art keywords
power
value
received
power transmission
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019236965A
Other languages
English (en)
Inventor
元 岩瀬
Hajime Iwase
元 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019236965A priority Critical patent/JP2021106463A/ja
Publication of JP2021106463A publication Critical patent/JP2021106463A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】無線電力伝送において、送受電される電力の変化による電力損失の推定精度の低下を低減する。【解決手段】送電装置は、受電装置への無線電力伝送の開始から送電出力を上昇させていく間の、第1のタイミングにおいて第1の受電電力値を、第1のタイミングよりも後の第2のタイミングにおいて第2の受電電力値を、受電装置から取得し、第1の受電電力値と第2の受電電力値を用いて送電出力と受電装置の受電電力との相関を較正する。送電装置は、無線電力伝送において受電装置への供給を保証する送電電力を示す設定電力または無線電力伝送における上限の送電電力を示す設定電力に基づいて閾値を決定し、決定された閾値と第2の受電電力値との比較に基づいて、第2の受電電力値を上記較正に用いるか否かを判断する。【選択図】 図5

Description

本発明は、無線電力伝送における送電装置、送電装置の制御方法およびプログラムに関する。
無線充電規格の標準化団体Wireless Power Consortium(WPC)が策定する規格(WPC規格)において、送電電力の損失量を計測して、近傍の異物を検出する方法が規定されている。当該方法では、送電装置は受電電力を含む、第1と第2の較正基準値を受電装置から受信し、それらを基に損失量を算出し補間することで異物検出を較正する。しかし、第1と第2の較正基準値の差が小さくなると、電力損失推定が基準値のノイズの影響を受けやすくなり、異物検出の精度が低下する。特許文献1によれば、異物検出の精度の低下を抑制するために、受電装置から受信された第2の較正基準値の大きさが所定の電力値より大きい場合のみ送電装置が受諾応答を返答する。これにより、第2の較正基準値を一定以上大きな値で受信することができ、ノイズの影響を抑制することができる。
特開2017−070074号公報
特許文献1では、所定の電力値を基準に第2の較正基準値に受諾応答を返すか否かを判断する。しかしながら、受電装置の性能や状態などにより、実際に送受電される可能性のある最大の電力は変化する。実際に送受電される電力が、上記基準となる所定の電力値に対して大きくなった場合、第1と第2の較正基準値の差は送受電される電力と比較して小さくなってしまう。このような基準値を基に較正を行った場合、異物検出の精度が低下し、異物の未検出や誤検出が発生する可能性があった。
本発明によれば、無線電力伝送において、送受電される電力の変化による電力損失の推定精度の低下を低減する技術が提供される。
本発明の一態様による送電装置は以下の構成を有する。すなわち、
受電装置への無線電力伝送の開始から送電出力を上昇させていく間の、第1のタイミングにおいて第1の受電電力値を、前記第1のタイミングよりも後の第2のタイミングにおいて第2の受電電力値を、前記受電装置から取得する取得手段と、
前記第1の受電電力値と前記第2の受電電力値を用いて送電出力と前記受電装置の受電電力との相関を較正する較正手段と、
無線電力伝送において受電装置への供給を保証する送電電力または前記無線電力伝送における上限の送電電力を示す設定電力に基づいて閾値を決定する決定手段と、
前記閾値と前記第2の受電電力値との比較に基づいて、前記第2の受電電力値を前記較正手段による前記較正に用いるか否かを判断する判断手段と、を有する。
本発明によれば、無線電力伝送において、送受電される電力の変化による電力損失の推定精度の低下が低減される。
無線充電システムの構成を示す図。 受電装置の構成例を示すブロック図。 送電装置の構成例を示すブロック図。 送電装置による処理の一例を示すフローチャート。 第2較正基準値に関する処理の一例を示すフローチャート。 拡張較正基準値に関する処理の一例を示すフローチャート。 受電装置による処理の一例を示すフローチャート。 無線充電システムで実行される処理例を示す図。 無線充電システムで実行される処理例を示す図。 (a)第1較正基準値と第2較正基準値を取得する通信シーケンスを示す図、(b)は電力損失較正処理を説明する図。
以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
(1)システムの構成
図1に、本実施形態に係る無線充電システム(無線電力伝送システム)の構成例を示す。本システムは、一例において、受電装置101と送電装置102を含んで構成される。以下では、受電装置101をRXと呼び、送電装置102をTXと呼ぶ場合がある。RXは、TXから受電して内蔵バッテリに充電を行う電子機器である。TXは、充電台103に載置されたRXに対して無線で送電する電子機器である。範囲104は、RXがTXから受電が可能な範囲である。なお、RXとTXは無線充電以外のアプリケーションを実行する機能を有しうる。RXの一例はスマートフォンであり、TXの一例はそのスマートフォンを充電するためのアクセサリ機器である。また、RXおよびTXは、ハードディスク装置やメモリ装置などの記憶装置であってもよいし、パーソナルコンピュータ(PC)などの情報処理装置であってもよい。また、RXおよびTXは、例えば、撮像装置(カメラやビデオカメラ等)やスキャナ等の画像入力装置であってもよいし、プリンタやコピー機、プロジェクタ等の画像出力装置であってもよい。
本システムは、WPC(Wireless Power Consortium)が規定するWPC規格に基づいて、無線充電のための電磁誘導方式を用いた無線電力伝送を行う。すなわち、RXとTXは、RXの受電コイルとTXの送電コイルとの間で、WPC規格に基づく無線充電のための無線電力伝送を行う。なお、無線電力伝送の方式は、WPC規格で規定された方式に限られず、他の電磁誘導方式、磁界共鳴方式、電界共鳴方式、マイクロ波方式、レーザー等を利用した方式であってもよい。また、本実施形態では、無線電力伝送が無線充電に用いられるものとするが、無線充電以外の用途で無線電力伝送が行われてもよい。
WPC規格では、RXがTXから受電する際に保証される電力の大きさが、Guaranteed Power(以下、「GP」と呼ぶ。)と呼ばれる値によって定義される。GPは、例えばRXとTXの位置関係が変動して受電コイルと送電コイルとの間の送電効率が低下したとしても、RXの負荷(例えば、充電用の回路等)へ出力されることが保証される電力値を示す。例えばGPが5ワットの場合、受電コイルと送電コイルの位置関係が変動して送電効率が低下したとしても、TXは、RX内の負荷へ5ワットを出力することができるように制御して送電を行う。
まず、WPC規格に基づく送受電制御のための通信について説明する。WPC規格では、電力伝送が実行されるPower Transferフェーズと実際の電力伝送が行われる前のフェーズとを含んだ、複数のフェーズが規定され、各フェーズにおいて必要な送電制御のための通信が行われる。電力伝送前のフェーズは、Selectionフェーズ、Pingフェーズ、Configurationフェーズ、Negotiationフェーズ、Calibrationフェーズを含む。
Selectionフェーズでは、TXが、Analog Pingを間欠送信し、送電可能範囲内に物体が存在すること(例えば充電台103にRXや導体片等が載置されたこと)を検出する。Pingフェーズでは、TXが、Digital Pingを送信し、そのDigital Pingを受信したRXからの応答を受信することにより、検出された物体がRXであることを認識する。Configurationフェーズでは、Configurationパケットを利用してRXが識別情報と能力情報をTXへ通知する。Negotiationフェーズでは、RXが要求するGPの値やTXの送電能力等に基づいてGPの値を決定する。Calibrationフェーズでは、WPC規格に基づいて、RXが受電電力値をTXへ通知し、TXが送電中に異物検出を行うための較正を行う。
Power Transferフェーズでは、送電の継続、およびエラーや満充電による送電停止等のための制御を行う。TXとRXは、これらの送受電制御のための通信を、WPC規格に基づいて無線電力伝送と同じアンテナ(コイル)を用いて信号を重畳するインバンド(In−band)通信により行う。なお、TXとRXとの間で、WPC規格に基づくインバンド通信が可能な範囲は、送電可能範囲とほぼ同様である。よって、図1において、範囲104は、TXとRXの送受電コイルにより無線電力伝送とインバンド通信が可能な範囲も表している。なお、以下の説明において、RXが「載置された」とは、RXが範囲104の内側に進入したことを意味し、実際には充電台103の上にRXが載置されない状態をも含むものとする。
なお、TXとRXは、無線電力伝送と異なるアンテナ(コイル)を用いて、送受電制御のための通信(アウトバンド通信)を行うように構成されてもよい。すなわち、本実施形態のインバンド通信で行われる通信は、アウトバンド通信で行うように構成されてもよい。無線電力伝送と異なるアンテナ(コイル)を用いる通信の一例としては、Bluetooth(登録商標) Low Energy規格に準拠する通信方式が挙げられる。また、無線電力伝送と異なるアンテナ(コイル)を用いる通信の他の例として、IEEE802.11規格シリーズの無線LAN(例えばWi−Fi(登録商標))、ZigBee(登録商標)が挙げられる。さらには、無線電力伝送と異なるアンテナ(コイル)を用いる通信は、NFC(Near Field Communication)、RFID(Radio Frequency Identifier)等の他の通信方式によって行われてもよい。無線電力伝送と異なるアンテナ(コイル)を用いる通信は、無線電力伝送で用いられる周波数とは異なる周波数により行われるようにしてもよい。
(2)装置構成
続いて、本実施形態に係る受電装置101(RX)および送電装置102(TX)の構成について説明する。なお、以下で説明する構成は一例に過ぎず、説明される構成の一部(場合によっては全部が)他の同様の機能を果たす他の構成と置き換えられ又は省略されてもよく、さらなる構成が説明される構成に追加されてもよい。さらに、以下の説明で示される1つのブロックが複数のブロックに分割されてもよいし、複数のブロックが1つのブロックに統合されてもよい。
(2.1)受電装置101(RX)の構成
図2は、本実施形態に係るRXの構成例を示すブロック図である。RXは、一例において、制御部201、バッテリ202、受電部203、検出部204、受電コイル205、通信部206、表示部207、操作部208、メモリ209、タイマ210、および、充電部211を有する。以下、各部を説明する。
制御部201は、例えばメモリ209に記憶されている制御プログラムを実行することにより、RXの全体を制御する。制御部201は、一例において、RXにおける機器認証と受電に必要な制御を行う。制御部201は、無線電力伝送以外のアプリケーションを実行するための制御を行ってもよい。制御部201は、例えばCPU(Central Processing Unit)やMPU(Micro Processing Unit)等の1つ以上のプロセッサを含んで構成される。なお、制御部201は、特定用途向け集積回路(ASIC)等の特定の処理に専用のハードウェアや、所定の処理を実行するようにコンパイルされたFPGA(フィールドプログラマブルゲートアレイ)等のアレイ回路を含んで構成されてもよい。制御部201は、各種処理を実行中に記憶しておくべき情報をメモリ209に記憶させる。また、制御部201は、タイマ210を用いて時間を計測しうる。
バッテリ202は、RX全体に対して、制御と受電と通信に必要な電力を供給する。また、バッテリ202は、受電コイル205を介して受電された電力を蓄電する。受電コイル205において、TXの送電コイル305から放射された電磁波により誘導起電力(交流電力)が発生する。受電部203は、受電コイル205において電磁誘導により生じた交流電力を取得する。そして、受電部203は、交流電力を直流または所定周波数の交流電力に変換して、バッテリ202を充電するための処理を行う充電部212に電力を出力する。すなわち、受電部203は、RXにおける負荷に対して電力を供給する。上述のGPは、受電部203から出力されることが保証される電力である。
検出部204は、WPC規格に基づいて、RXがTXから受電可能な範囲104に載置されているか否かの検出を行う。検出部204は、例えば、受電部203が受電コイル205を介してWPC規格のDigital Pingを受電した時の受電コイル205の電圧値または電流値を検出する。検出部204は、例えば、電圧が所定の電圧閾値を下回る場合又は電流値が所定の電流閾値を超える場合に、RXが範囲104に載置されていると判定しうる。
通信部206は、TXとの間で、インバンド通信によって、上述のようなWPC規格に基づく制御通信を行う。通信部206は、受電コイル205から入力された電磁波を復調してTXから送信された情報を取得し、その電磁波を負荷変調することによってTXへ送信すべき情報を電磁波に重畳することにより、TXとの間で通信を行う。すなわち、通信部206で行う通信は、TXの送電コイル305からの送電に重畳されて行われる。表示部207は、視覚的、聴覚的、触覚的等の任意の手法で、ユーザに対して情報を提示する。表示部207は、例えば、RXの状態や、図1のようなTXおよびRXを含む無線電力伝送システムの状態を、ユーザに通知する。表示部207は、例えば、液晶ディスプレイやLED、スピーカ、振動発生回路、その他の通知デバイスを含んで構成される。
操作部208は、ユーザからのRXに対する操作を受け付ける受付機能を有する。操作部208は、例えば、ボタンやキーボード、マイク等の音声入力デバイス、加速度センサやジャイロセンサ等の動き検出デバイス、又はその他の入力デバイスを含んで構成される。なお、タッチパネルのように、表示部207と操作部208とが一体化されたデバイスが用いられてもよい。メモリ209は、上述のように、各種情報を記憶する。なお、メモリ209は、制御部201と異なる機能部によって得られた情報を記憶してもよい。タイマ210は、例えば起動された時刻からの経過時間を測定するカウントアップタイマや、設定された時間からカウントダウンするカウントダウンタイマ等によって計時を行う。
(2.2)送電装置102(TX)の構成
図3は本実施形態に係るTXの構成例を示すブロック図である。TXは、一例において、制御部301、電源部302、送電部303、検出部304、送電コイル305、通信部306、表示部307、操作部308、メモリ309、および、タイマ310を有する。以下、各部を説明する。
制御部301は、例えばメモリ309に記憶されている制御プログラムを実行することにより、TXの全体を制御する。制御部301は、一例において、TXにおける機器認証と送電に必要な制御とを行う。制御部301は、無線電力伝送以外のアプリケーションを実行するための制御を行ってもよい。制御部301は、例えばCPU(Central Processing Unit)やMPU(Micro Processing Unit)等の1つ以上のプロセッサを含んで構成される。なお、制御部301は、特定用途向け集積回路(ASIC)等の特定の処理に専用のハードウェアや、所定の処理を実行するようにコンパイルされたFPGA(フィールドプログラマブルゲートアレイ)等のアレイ回路を含んで構成されてもよい。制御部301は、各種処理を実行中に記憶しておくべき情報をメモリ309に記憶させる。また、制御部301は、タイマ310を用いて時間を計測しうる。
電源部302は、TX全体に対して、制御と送電と通信に必要な電力を供給する。電源部302は、例えば、商用電源またはバッテリである。送電部303は、電源部302から入力される直流又は交流電力を、無線電力伝送に用いる周波数帯の交流周波数電力に変換し、その交流周波数電力を送電コイル305へ入力することによって、RXに受電させるための電磁波を発生させる。なお、送電部303によって生成される交流電力の周波数は数百kHz(例えば、110kHz〜205kHz)程度である。送電部303は、制御部301の指示に基づいて、RXに送電を行うための電磁波を送電コイル305から出力させるように、交流周波数電力を送電コイル305へ入力する。また、送電部303は、送電コイル305に入力する電圧(送電電圧)または電流(送電電流)を調節することにより、出力させる電磁波の強度を制御する。送電電圧または送電電流を大きくすると電磁波の強度が強くなり、送電電圧または送電電流を小さくすると電磁波の強度が弱くなる。また、送電部303は、制御部301の指示に基づいて、送電コイル305からの送電が開始または停止されるように、交流周波数電力の出力制御を行う。
検出部304は、WPC規格に基づいて、範囲104に物体が存在する載置されているかを検出する。検出部304は、例えば、送電部303が、送電コイル305を介してWPC規格のAnalog Pingを送電した時の送電コイル305の電圧値または電流値を検出する。そして、検出部304は、電圧が所定電圧値を下回る場合又は電流値が所定電流値を超える場合に、範囲104に物体が存在すると判定しうる。なお、この物体がRXであるかその他の異物であるかは、続いて通信部306によってインバンド通信で送信されるDigital Pingに対して所定の応答を受信した場合に、その物体がRXであると判定される。
通信部306は、RXとの間で、インバンド通信によって、上述のようなWPC規格に基づく制御通信を行う。通信部306は、送電コイル305から出力される電磁波を変調して、RXへ情報を伝送する。また、通信部306は、送電コイル305から出力されてRXにおいて変調された電磁波を復調してRXが送信した情報を取得する。すなわち、通信部306で行う通信は、送電コイル305からの送電に重畳されて行われる。表示部307は、視覚的、聴覚的、触覚的等の任意の手法で、ユーザに対して情報を提示する。
表示部307は、例えば、TXの状態や、図1のようなTXとRXとを含む無線電力伝送システムの状態を示す情報を、ユーザに通知する。表示部307は、例えば、液晶ディスプレイやLED、スピーカ、振動発生回路、その他の通知デバイスを含んで構成される。操作部308は、ユーザからのTXに対する操作を受け付ける受付機能を有する。操作部308は、例えば、ボタンやキーボード、マイク等の音声入力デバイス、加速度センサやジャイロセンサ等の動き検出デバイス、又はその他の入力デバイスを含んで構成される。なお、タッチパネルのように、表示部307と操作部308とが一体化されたデバイスが用いられてもよい。メモリ309は、上述のように、各種情報を記憶する。なお、メモリ309は、制御部301と異なる機能部によって得られた情報を記憶してもよい。タイマ310は、例えば起動された時刻からの経過時間を測定するカウントアップタイマや、設定された時間からカウントダウンするカウントダウンタイマ等によって、計時を行う。
(3)処理の流れ
続いて、以上のような構成を備えるRXおよびTXが実行する処理の流れの例について、図4〜図7のフローチャートを用いて説明する。
(3.1)送電装置102(TX)における処理
図4は、TXが実行する処理の流れの例を示すフローチャートである。本処理は、例えばTXの制御部301がメモリ309から読み出したプログラムを実行することによって実現されうる。なお、以下の手順の少なくとも一部がハードウェアによって実現されてもよい。この場合のハードウェアは、例えば、所定のコンパイラを用いて、各処理ステップを実現するためのプログラムからFPGA等のゲートアレイ回路を用いた専用回路を自動的に生成することによって実現されうる。また、本処理は、TXの電源がオンとされたことに応じて、TXのユーザが無線充電アプリケーションの開始指示を入力したことに応じて、又は、TXが商用電源に接続され電力供給を受けていることに応じて実行されうる。但し、他の契機によって本処理が開始されてもよい。
TXは、まず、WPC規格のSelectionフェーズとPingフェーズとして規定されている処理を実行し、RXが載置されるのを待つ(S401)。TXは、WPC規格のAnalog Pingを繰り返し間欠送信し、送電可能範囲内に存在する物体を検出する。そして、TXは、送電可能範囲内に物体が存在することを検出した場合、Digital Pingを送信し、そのDigital Pingに対する所定の応答があった場合に、検出された物体がRXであり、RXが充電台103に載置されたと判定する。
次に、TXは、RXの載置を検出すると、WPC規格で規定されたConfigurationフェーズの通信により、当該RXから識別情報と能力情報を取得する(S402)。ここで、識別情報は、Manufacturer CodeとBasic Device IDを含み得る。また、能力情報は、対応しているWPC規格のバージョンを特定可能な情報要素、RXが負荷に供給できる最大電力を特定する値であるMaximum Power Value、WPC規格のNegotiation機能を有するか否かを示す情報を含み得る。なお、TXは、WPC規格のConfigurationフェーズの通信以外の方法でRXの識別情報と能力情報を取得してもよい。また、識別情報は、Wireless Power ID等の、RXの個体を識別可能な任意の他の識別情報であってもよい。また、能力情報として、上記以外の情報を含んでいてもよい。
続いて、TXは、WPC規格で規定されたNegotiationフェーズの通信により、RXとGPの値を決定する(S403)。なお、S403では、WPC規格のNegotiationフェーズの通信に限らず、GPを決定する他の手順が実行されてもよい。また、TXは、RXがNegotiationフェーズに対応していないことを示す情報を(例えばS402において)取得した場合に、Negotiationフェーズの通信は行わず、GPの値を(例えばWPC規格で予め規定された)小さな値としてもよい。
GPの決定後、TXは、当該GPに基づいて電力損失較正処理を開始する(S404)。電力損失較正処理では、TXからRXへ送電された電力について、TX内部で測定した送電出力値(送電出力の値)とRX内部で測定した受電電力値との相関が較正される。TXは、RXから受信した受電電力値(較正基準値)と当該較正基準値を受信した時点での送電出力値とに基づいて較正された相関を用いて、送電出力値と受電電力値の差分である電力損失を推定することができる。TXは、送電出力値とRXから受信した受電電力値との差分である実際の電力損失と、当該送電出力値について上記相関を用いて推定された電力損失との比較により、異物の存在を検出する。
電力損失較正処理においては、図10(a)に示すようにWPC規格のCalibrationフェーズの通信が行われる。このフェーズでは、TXがRXへの無線電力伝送における送電出力を上昇させていく。RXは、無線電力伝送の開始から送電出力が上昇していく間の第1のタイミングでTXに対して第1の較正基準値(以降、第1較正基準値と呼ぶ。)を含む受電電力情報(mode1のReceived Power)を送信する(F1001)。TXは、自装置の送電状態に基づいて、RXより受信した第1較正基準値を受け入れるか否かを判定し、受け入れる場合はACKを、受け入れない場合はNAKを、RXへ送信する(F1002)。ここで、TXは、自装置の送電状態が安定していると判断した場合には通知(第1較正基準値)を受け入れ、自装置の送電状態が不安定であると判断した場合には通知を受け入れない。RXは、TXからNAKを受信した場合には、mode1のReceived Powerを再度送信する。
一方、RXは、TXからACKを受信すると、送電出力が上昇していく間の、第1のタイミングよりも後の第2のタイミングで、TXに対して、第2の較正基準値(以降、第2較正基準値と呼ぶ。)を含む受電電力情報であるmode2のReceived Powerを送信する(F1003)。TXは、RXから受信した第2較正基準値を受け入れるか否かを判断し、第2較正基準値を受け入れる場合はACKを、受け入れない場合はNAKをRXに対し送信する(F1004)。RXは、TXからNAKを受信した場合には、mode2のReceived Powerを再度送信する。TXは、F1004でRXに対してACKを送信すると、第1較正基準値および第2較正基準値に基づいて、TXにおける送電電力とRXにおける受電電力の相関を較正する。上述したように、この相関は、電力損失の推定値の算出に用いられる。一方、TXは、Negotiationフェーズ(S403)の終了後から所定時間の間に、RXに対してReceived Power(mode2)への応答としてACKを送信できない場合は、較正に失敗したと判断する。
図10(b)は、第1較正基準値および第2較正基準値を用いた電力損失較正処理の一例を説明する図である。縦軸はTXからの送電出力値、横軸はRXにおける受電電力値である。第1較正基準値とそれを受信した時点の送電出力値を示す点1051、および、第2較正基準値とそれを受信した時点の送電出力値を示す点1052を補間(例えば直線補間)することで、送電出力値と受電電力値の相関を較正することができる。TXは、較正された相関に基づいて、送電出力値に対する電力損失を推定する。
TXにおいて、第2較正基準値をRXから受信した場合の処理について図5のフローチャートを用いて説明する。TXは、RXから第2較正基準値を受信したことを契機に、図5に示す第2較正基準値処理を実行し、受信した第2較正基準値を受け入れるか否かを判断する。第2較正基準値処理において、まず、TXは、S403で決定したGPを基に第2較正基準値を受理するか否かの判断基準である閾値を取得する(S501)。続いて、TXは、GPを基に取得した閾値と、受信した第2較正基準値とを基に、その第2較正基準値を受け入れるか否かを判断する(S502)。受け入れると判断した場合は、TXはACKをRXに送信する(S507)。その後、TXは、第1較正基準値と第2較正基準値を用いて電力損失較正処理を実行し(S508)、較正された相関に基づいて算出される電力損失に基づいた異物検出を開始する(S509)。TXは、較正された相関に基づいて推定される電力損失と、RXから受信される受電電力値に基づいて算出される電力損失とに基づいて異物検出を行う。
一方、受信した第2較正基準値を受け入れないと判断した場合、TXは、Negotiationフェーズが終了してから所定時間が経過したか否かを判断する(S503)。所定時間が経過していないと判断された場合(S503でNO)、拒否応答を送信し(S510)、処理を終了し、次の第2較正基準値の受信を待つ。一方、Negotiationフェーズの終了から所定時間が経過したと判断した場合(S503でYES)、TXは送電電力に制限をかけるか否かを判断する(S504)。TXは、S504において制限をかけないと判断した場合(S504でNO)、最後に受信した第2較正基準値を用いて上述したS507〜S509の処理を実行して本処理を終了する。他方、送電電力に制限をかけると判断された場合(S504でYES)、TXは最後に受信した第2較正基準値に基づいて制限値を算出し(S505)、算出した制限値で送電電力を制限する(S506)。その後、TXはS507〜S509の処理を行い、本処理を終了する。なお、このとき、TXは、S505で算出された制限値をRXに通知するようにしてもよい。
本実施形態では、TXは、受理した第1較正基準値と第2較正基準値、およびそれらに対応する送電出力に基づいて得られる電力損失に基づいて、当該電力損失間を線形補間することにより、電力損失の推定値を算出する。但し、電力損失の推定値の算出方法はこれに限らない。例えば、第1較正基準値と第2較正基準値、およびそれらに対応する送電出力値に基づいて線形近似や多項式近似等の統計解析により電力損失の推定値を算出するようにしてもよい。
図4に戻り、TXは、電力損失較正処理の終了後、送電処理を開始する(S405)。送電処理は、WPC規格のPower Transferフェーズにおいて行われる。もちろん、WPC規格以外の方法で行われてもよい。送電処理においてTXは、RXからの受電出力変更指示の受信を契機に、指示された変更量に基づいて送電出力を変更する。送電出力変更指示は、WPC規格のControl Errorであり、電圧の変更量を示す値であるControl Error Valueが含まれている。Control Error Valueには、送電出力を上げる場合は正の値、送電出力を下げる場合は負の値、送電出力を変更しない場合は0が格納される。
また、送電処理(Power Transferフェーズ)においてTXは、電力損失再較正処理を行う。電力損失再較正処理とは、電力損失較正で算出した相関について、新たな基準値を追加した上で相関を再度算出し、電力損失の推定精度を向上させる処理である。電力損失再較正処理において、まずRXはTXに新たな較正基準値となる受電電力情報(以降、拡張較正基準値と呼ぶ)を送信する。TXは自装置の送電状態に基づいて、拡張較正基準値を受け入れるか否かを判断し、受け入れる場合はACKを、受け入れない場合はNAKをRXへ送信する。TXは、RXに対してACKを送信すると、第1較正基準値、第2較正基準値および、拡張較正基準値の受電電力に基づいて電力損失を推定するための相関を較正する。なお、送電中においてRXは拡張較正基準値を繰り返し送信する。
電力損失再較正処理について、図6のフローチャートを参照してさらに説明する。TXは拡張較正基準値の受信を契機に、図6に示す拡張較正基準値処理を実行する。まず、TXは受信した拡張較正基準値を受け入れるか否かの判定を行う(S601)。拡張較正基準値を受け入れると判断した場合(S601でYES)、TXはRXへACKを送信し(S603)、拡張較正基準値に基づき電力損失推定を再較正する(S604)。ここで、上述したS506の処理によって送電電力に制限が設けられている場合は(S605でYES)、送電電力の制限値を、受信した拡張較正基準値に基づき更新し(S606)、本処理を終了する。なお、S606において、TXはRXに、更新された制限値を通知するようにしてもよい。一方、拡張較正基準値を受け入れないと判断した場合(S601でNO)、TXはRXへNAKを送信し(S602)、本処理を終了する。
ここで、電力損失の推定値は、受信した拡張較正基準値の示す受電電力値における電力損失と前回推定値を算出した際の較正基準値の示す受電電力値における電力損失に基づき、当該電力損失間を線形補間することにより算出を行うが、これに限らない。例えば、Calibrationフェーズ以降で受信した少なくとも1つ以上の較正基準値に基づいて、線形近似や多項式近似等の統計解析により電力損失の推定値を算出してもよい。
図4に戻り、TXは送電処理開始後、送電を停止するか否かの判断を行う(S406)。例えば、送電装置が充電台から取り除かれたり、送電装置が異物を検出したりした場合、TXは送電を停止すると判断し(S406でYES)、送電を停止し(S407)、本処理を終了する。送電を停止しないと判断された場合(S406でNO)、TXは送電を継続する。
(3.2)受電装置101(RX)における処理
図7は、RXが実行する処理の流れの例を示すフローチャートである。本処理は、例えばRXの制御部201がメモリ209から読み出したプログラムを実行することによって、実現されうる。なお、以下の手順の少なくとも一部がハードウェアによって実現されてもよい。この場合のハードウェアは、例えば、所定のコンパイラを用いて、各処理ステップを実現するためのプログラムからFPGA等のゲートアレイ回路を用いた専用回路を自動的に生成することによって実現されうる。また、本処理は、例えば、RXの電源がオンとされたことに応じてバッテリ202またはTXからの給電によりRXが起動したことに応じて、或いは、RXのユーザが無線充電アプリケーションの開始指示を入力したことに応じて実行されうる。他の契機によって本処理が開始されてもよい。
RXは、処理の開始後、WPC規格のSelectionフェーズとPingフェーズとして規定される処理を実行し、自装置がTXに載置されるのを待つ(S701)。RXは、例えば、TXからのDigital Pingを検出することによって、TXに載置されたことを検出する。RXは、自装置がTXに載置されたことを検出すると、WPC規格で規定されたConfigurationフェーズの通信により、TXへ識別情報と能力情報を送信する(S702)。RXは、識別情報と能力情報を送信すると、WPC規格で規定されたNegotiationフェーズの通信により、GPを決定する(S703)。RXは、GPの決定後、当該GPに基づいてWPC規格のCalibrationフェーズの通信を行う(S704)。RXは、較正が完了すると、WPC規格で規定されたPower transferフェーズの通信により、受電処理を開始する(S705)。
受電処理において、RXは受電電力制御処理を行う。受電電力制御処理は、TXから供給される電力を、RXが利用する消費電力に対して過不足なく保つ処理であり、受電が停止するまで繰り返し行われる。受電電力制御処理において、RXはバッテリ202の消費電力に対して受電電力が不足している場合、TXに正の値を含む送電出力変更指示を送信する。また、バッテリ202の消費電力に対し受電電力が必要以上に大きい場合、TXに負の値を含む送電出力変更指示を送信する。また、バッテリ202の消費電力に対し受電電力が適当である場合、TXに0を含む送電出力変更指示を送信する。
同様に、受電処理開始後、RXは拡張較正基準値送信処理を行う。拡張較正基準値送信処理において、RXはTXに対し、現在の受電電力を含む拡張較正基準値を繰り返し送信する。また、受電処理開始後、RXは送電を停止するか否かの判断を行う(S706)。例えば、RXが充電台から取り除かれたり、TXの送電停止を検出したりした場合、受電を停止すると判断し(S706でYES)、受電を停止し(S707)、本処理を終了する。なお、RXは、エラーが発生した場合や満充電に達した場合は、WPT規格のEnd Power Transferを送信する。これによりTXからの送電が停止され、無線充電のための一連の処理が終了となる。
(3.3)システムの動作例
図4〜図7を用いて説明したTXとRXの動作シーケンスについて、いくつかの状況を想定して、より具体的に説明する。なお、初期状態としてRXはTXに載置されておらず、TXはRXの要求するGPが送電できるだけの十分な送電能力を持つものとする。
<処理例1>
処理例1では、TXに対しGP=15Wを要求するRXが載置されたとする。また、処理例1では、Calibrationフェーズにおいて、所定時間以内にTXが第2較正基準値を受理する条件を満たす第2較正基準値を受信し、較正に成功する場合のシーケンス例を示す。
まず、TXはAnalog Pingによって物体(RX)が載置されるのを待つ(F801)。RXが載置されると(F802)、Analog Pingに変化が生じ(F803)、TXは物体の載置を検知する(F804)。続いて、TXはDigital Pingを送信する(F805)。Digital Pingを受信することによりRXは自装置がTXに載置されたことを検知する(F806)。また、TXは、Digital Pingに対するRXの応答により、載置された物体がRXであることを検知する。
続いて、TXとRXの間のConfigurationフェーズの通信により、TXはRXから識別情報および能力情報を取得する(F807)。次に、Negotiationフェーズの通信により、GP=15ワットと決定される(F808)。TXはRXから正の値を含む送電出力変更指示を受信し、指示に従って送電出力を上げる(F809、F810)。続いて、Calibrationフェーズの通信を開始すると、RXはTXに対し第1較正基準値を送信する(F811)。TXはRXから受電電力=500ミリワットである第1較正基準値を受信すると、第1の構成基準値を受け入れるか否かを判断する。ここで、TXは自身の送電状態が安定しているため、これを受け入れると判断し、RXにACKを送信する(F812)。
次に、RXはTXに対し、正の値を含む送電出力変更指示を送信する。TXはRXから正の値を含む送電出力変更指示を受信し、指示に従って送電出力を上げる(F813、F814)。その後、RXは前回に較正基準値を送信してから基準値送信時間(例えば2秒)が経過したことを契機に、TXに対し受電電力=3ワットである第2較正基準値を送信する(F815)。TXはRXから第2較正基準値を受信すると、第2較正基準値処理(図5)を実行する(F816)。
TXは、第2較正基準値を受け入れるか否かを判定するための閾値として、GP=15Wに対する一定の割合(例えば9割)を算出し、閾値=13.5Wを設定する(図5のS501)。ここで、閾値をGPの割合によって算出しているがこれに限らない。例えば、GPから一定の値を引いた値を閾値としてもよいし、GPと第2較正基準値の大きさから、較正される電力損失推定における誤差の大きさを算出できる場合、誤差の大きさが一定値以下になるように第2較正基準値を受理する閾値を決定してもよい。閾値の算出後、TXは、受信した第2較正基準値を受理するか否かを判定する(図5のS502)。本例では、TXは、受電電力が安定し、且つ、受信した第2較正基準値が閾値より大きい場合に、当該第2較正基準値を受理すると判定する。現時点では、受電電力は安定しているが、閾値=13.5Wより受信した第2較正基準値に含まれる受電電力値が小さいため、第2較正基準値を受理しないと判断される。
ここで、第2較正基準値を受理するか否かの判断は、受信した第2較正基準値と閾値によって判断しているが、新たに条件を追加してもよい。例えば、受理した第1較正基準値と受信した第2較正基準値の差が一定値以下であった場合第2較正基準値を受理しないと判断してもよい。これにより、第1較正基準の大きさが変化する場合でも異物検出の精度低下を防ぐことができる。
続いて、TXは、Negotiationフェーズが終了してから、またはCalibrationフェーズの開始から、所定時間(例えば10秒)が経過していないと判断し(図5のS503でNO)、拒否応答(NAK)を送信し(S510)、第2較正基準値処理を終了する(F817)。ここで、S510では所定時間が経過したか否かを判断しているがこれに限らない。例えば、較正基準値を受信した回数を基に、所定時間が経過したか否かを判断してもよい。すなわち、較正基準値を受信した回数が所定回数を上回るか否かを判断してもよい。
第2較正基準値処理の終了後、RXはTXに対し、正の値を含む送電出力変更指示を送信する(F818)。TXはRXから正の値を含む送電出力変更指示を受信し、指示に従って送電出力を上げる(F819)。その後、RXは基準値送信時間が経過したことを契機に、TXに対し受電電力=14ワットである第2較正基準値を送信する(F820)。TXはRXから第2較正基準値を受信すると、第2較正基準値処理(図5)を実行する(F821)。この時点で、受電電力が安定し、且つ、受信した第2較正基準値に含まれる受電電力値が閾値=13.5Wより大きいので、TXは、受信した第2較正基準値を受理すると判断する(S501、S502でYES)。そして、TXはRXに受諾応答(ACK)を送信する(S507、F822)。ACKの送信後、TXは、電力損失を較正し異物検出を開始する(S508〜S509)。
このように、TXは、GPを基に算出された閾値を基に、第2較正基準値を受理するか否かを判断することにより、GPが変動した場合においても、第2較正基準値の大きさをGPに対して一定以上に保つことができる。これにより、異物検出の精度低下を防ぎ、異物の未検出や誤検出を抑制することができる。第2較正基準値処理の終了後、RXはTXに対し、正の値を含む送電出力変更指示を送信する(F823)。TXはRXから正の値を含む送電出力変更指示を受信し、指示に従って送電出力を上る(F824)。以降、TXは送電電力がGPとなる範囲で送電を継続する。
<処理例2>
処理例2では、TXに対しGP=30Wを要求するRXが載置される。処理例2は、Calibrationフェーズにおいて、所定時間以内にTXが第2較正基準値を受理する条件を満たす第2較正基準値を受信することができず較正に失敗し、送電電力を制限する場合の動作シーケンスの一例である。
図9においてF901からF910が行われる。F901〜F910の処理はF801〜F810の処理と同様であるが、F908ではGPが30Wに決定されたとする。F909からCalibrationフェーズの通信が開始し、基準値送信時間(例えば2秒)が経過すると、RXはTXに対し第1較正基準値を送信する(F911)。TXはRXから受電電力=500ミリワットである第1較正基準値を受信すると、第1の構成基準値を受け入れるか否かを判断する。ここで、TXは自身の送電状態が安定しているため、受け入れると判断しACKを送信する(F911、F912)。次に、RXはTXに対し、正の値を含む送電出力変更指示を送信する(F913)。TXはRXから正の値を含む送電出力変更指示を受信し、指示に従って送電出力を上げる(F914)。
その後、RXは、第1較正基準値の送信(F911)から基準値送信時間(例えば2秒)が経過したことを契機に、TXに対し受電電力=3ワットである第2較正基準値を送信する(F915)。TXはRXから第2較正基準値を受信すると、第2較正基準値処理(図5)を実行する(F916)。本例では、TXは、GP=30Wに対する9割の値を、第2較正基準値を受け入れる閾値として算出し、閾値=27Wを設定する。受電電力は安定しているが、受信した第2較正基準値に含まれる受電電力値が閾値(=27W)より小さいので、TXは、当該第2較正基準値を受理しないと判断する。Negotiationフェーズが終了してからまたはCalibrationフェーズの開始から所定時間(例えば、10秒)が経過していないと判断されると(S503でNO)、TXは、拒否応答(NAK)を送信し(S510)第2較正基準値処理フローを終了する(F917)。
第2較正基準値処理の終了後、RXはTXに対し、正の値を含む送電出力変更指示を送信する(F918)。TXはRXから正の値を含む送電出力変更指示を受信し、指示に従って送電出力を上げる(F919)。その後、RXは、前回の第2較正基準値の送信(F915)から基準値送信時間が経過したことを契機に、TXに対し受電電力=6ワットである第2較正基準値を送信する(F920)。TXはRXから第2較正基準値を受信すると、第2較正基準値処理(図5)を開始する(F921)。
第2較正基準値処理において、TXは、受信した第2較正基準値に含まれる受電電力値が閾値=27Wより小さいので、受理しないと判断する(S501、S502でNO)。この時点で、Negotiationフェーズの終了から所定時間(10秒)以上が経過していたとする。この場合、TXは、送電電力を制限するか否かを判断する(S503でYES、S504)。例えば、受信した第2較正基準値がGPに占める割合が一定値(例えば、30Wの8割である24W)以下である場合は送電を制限すると判断し、一定値を上回る場合は送電を制限しないと判断する。このように、受信した第2較正基準値とGPを基に、送電電力を制限するか否かを判断することによって、受信した第2較正基準値を用いて較正される、電力損失推定の精度を担保できる場合に、送電電力の制限による送電効率の低下を抑制することができる。
ここで、送電電力を制限するか否かの判断は、受信した第2較正基準値がGPに占める割合が一定値以下であるか否かで判断しているがこれに限らない。例えば、GPと受信した第2較正基準値の大きさから、較正される電力損失推定の精度を評価できる場合、精度が一定以上になる場合は送電電力を制限しないと判断してもよい。また、GPと第2較正基準値の差が一定値以下である場合は送電電力を制限しないと判断してもよいし、受信した第2較正基準値と受理した第1較正基準値の差が一定値以上である場合は送電電力を制限しないと判断してもよい。
本例では、受信した第2較正基準値のGPに占める割合が一定値以下であり、TXは送電電力を制限すると判断したとする(S504でYES)。この場合、TXは、受信した第2較正基準値を基に送電電力の上限である制限値を算出する(S505)。例えば、TXは、受信した第2較正基準値に一定値を加えた値(例えば、第2較正基準値6Wに5W加えた値である11W)を、制限値として算出する。なお、制限値の算出は第2較正基準値の大きさに一定値加えた値としているがこれに限らない。例えば、第2較正基準値の大きさが所定値以下(例えば5W以下)だった場合には、送電電力の制限値をその所定値(例えば5W)に固定するようにしてもよいし、第2較正基準値の大きさを一定の比率で増加させた値を制限値として用いてもよい。
次に、TXは、算出した制限値を基に送電電力を制限する(S506)。送電電力の制限は、TXがRXからControl Errorを受信した際、送電電力を制限値以上に上げないことにより行うがこれに限らない。例えば、GPを再度交渉し、GPを制限値に設定することにより制限してもよい。また、TXはRXに対し、送電が制限されたことを通知するようにしてもよい。送電が制限されたことを通知することにより、RXは較正に失敗したことを認識することができ、再度較正を行うなど、適切な処理を行うことができる。このように、較正に失敗した場合に送電電力を制限することにより、電力損失推定の精度が十分でない状態での送電を抑制することができ、安全に送電を続けることが可能になる。
その後、TXはRXにACKを送信する(S507、F922)。ACKの送信後、TXは、電力損失を較正し異物検出を開始する(S508〜S509)。第2較正基準値処理の終了後、RXはTXに対し、正の値を含む送電出力変更指示を送信する(F923)。TXはRXから正の値を含む送電出力変更指示を受信し、指示に従って送電出力を上げる(F924)。ここで、送電電力を上げる際、TXは送電電力が制限値以下となる範囲で送電電力を上げる。送電電力が制限値を上回る場合、TXは送電電力を上げない。
RXは、第2較正基準値が受理された後、所定の基準値送信時間が経過したことを契機に、拡張較正基準値としての受電電力値を含む受電電力情報をTXに送信する。図9の例では、RXは、受電電力=10Wである拡張較正基準値を送信する(F925)。TXはRXから拡張較正基準値を受信したことを契機に拡張較正基準値処理(図6)を開始する(F926)。拡張較正基準値処理において、TXは、自装置の送電状態が安定していると判断し、拡張較正基準値を受理する(S601でYES)。この場合、TXは、RXに対し受諾応答を送信し(S603、F927)、拡張較正基準値に基づいて再度の較正を行う(S604)。
TXは、送電電力を制限している場合(S605でYES)、受理した拡張較正基準値に基づいて送電電力の制限値を更新する(S606)。例えば、TXは、受理した拡張較正基準値に一定値を加えた値(例えば、拡張較正基準値=10Wに5Wを加えた値である15W)に制限値を更新する。ここで、制限値の更新は拡張較正基準値に一定値加えた値としているがこれに限らない。拡張較正基準値の大きさを一定の比率で増加させた値としてもよいし、これまでに受信した較正基準値から電力損失推定の誤差の大きさを算出し、算出した誤差の大きさに応じて制限値を増加させてもよい。このように、拡張較正基準値を受信し、電力損失推定の精度が向上した場合、精度の向上に応じて送電電力の上限を増加させることにより、送電効率を安全に向上することができる。なお、算出された更新後の制限値が、第2較正基準値処理(S501)で算出された閾値以上になった場合、送電電力の制限は解除される。
拡張較正基準値処理が終了すると、RXはTXに対し、正の値を含む送電出力変更指示を送信する(F928)。TXはRXから正の値を含む送電出力変更指示を受信し、指示に従って送電出力を上げる(F929)。以降、送電電力が制限値以下となる範囲で送電を継続する。また、RXは拡張較正基準値の送信を繰り返し行い、TXは拡張較正基準値を受信するごとに制限値を更新し続ける。そして、TXは送電の停止を判断するまで送電を続ける。
以上説明したように、上記実施形態によれば、GPが大きいほど第1較正基準値と第2較正基準値との差を大きく設定することができるので、異物検出の精度低下を防ぎ、異物の未検出や誤検出を抑制することができる。なお、第2較正基準値を用いるか否か(受理するか否か)の判定に用いる閾値を決定するため設定電力としてGPを用いたがこれに限られるものではない。WPCのConfigurationフェーズで取得されるRXの最大電力(WPCで定義されるMaximum power)が、閾値を決定するための設定電力として用いられてもよい。Maximum powerは、Configurationパケットに示される。
(その他の実施形態)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
101:受電装置、102:送電装置、103:充電台、301:制御部、302:電源部、303:送電部、304:検出部、305:送電コイル、306:通信部、307:表示部、308:操作部、309:メモリ、310:タイマ

Claims (22)

  1. 受電装置への無線電力伝送の開始から送電出力を上昇させていく間の、第1のタイミングにおいて第1の受電電力値を、前記第1のタイミングよりも後の第2のタイミングにおいて第2の受電電力値を、前記受電装置から取得する取得手段と、
    前記第1の受電電力値と前記第2の受電電力値を用いて送電出力と前記受電装置の受電電力との相関を較正する較正手段と、
    無線電力伝送において受電装置への供給を保証する送電電力または前記無線電力伝送における上限の送電電力を示す設定電力に基づいて閾値を決定する決定手段と、
    前記閾値と前記第2の受電電力値との比較に基づいて、前記第2の受電電力値を前記較正手段による前記較正に用いるか否かを判断する判断手段と、を有することを特徴とする送電装置。
  2. 前記決定手段は、前記設定電力の所定の割合を該設定電力から引いた値、または、前記設定電力から所定の値を引いた値を前記閾値に決定することを特徴とする請求項1に記載の送電装置。
  3. 前記設定電力と較正基準値とに基づいて算出される前記較正手段で生じる誤差の大きさが一定値以下になる較正基準値を、前記閾値に決定することを特徴とする請求項1に記載の送電装置。
  4. 前記無線電力伝送において受電装置への供給を保証する送電電力は、Wireless Power Consortiumの規格で定義されるGuaranteed Powerであることを特徴とする請求項1乃至3のいずれか1項に記載の送電装置。
  5. 前記無線電力伝送において受電装置への供給を保証する送電電力は、前記受電装置から前記送電装置へ要求される電力に基づくことを特徴とする請求項1乃至4のいずれか1項に記載の送電装置。
  6. 前記無線電力伝送における上限の送電電力は、Wireless Power Consortiumの規格で定義されるConfigurationパケットで示されるMaximum powerであることを特徴とする請求項1乃至3のいずれか1項に記載の送電装置。
  7. 前記判断手段は、前記取得手段により取得した前記第2の受電電力値が、前記決定手段により決定された閾値より大きい場合に、前記第2の受電電力値を前記較正手段による前記較正に用いると判断することを特徴とする請求項1乃至6のいずれか1項に記載の送電装置。
  8. 前記判断手段は、さらに、前記第1の受電電力値と前記第2の受電電力値の差に基づいて、前記第2の受電電力値を前記較正手段による前記較正に用いるか否かを判断することを特徴とする請求項1乃至3のいずれか1項に記載の送電装置。
  9. 前記判断手段は、前記第1の受電電力値と前記第2の受電電力値の差が所定の値以下である場合、前記第2の受電電力値を前記較正手段による前記較正に用いないと判断することを特徴とする請求項8に記載の送電装置。
  10. 前記第2の受電電力値が前記判断手段により前記較正に用いると判断されない場合、前記第1の受電電力値を取得してから所定時間が経過するまで、または、前記第2の受電電力値の所定回数の取得が行われるまで、前記第2の受電電力値の取得が繰り返されることを特徴とする請求項1乃至9のいずれか1項に記載の送電装置。
  11. 前記受電装置との交渉により、前記設定電力を設定する設定手段をさらに有することを特徴とする請求項1乃至10のいずれか1項に記載の送電装置。
  12. 前記較正に用いることのできる第2の受電電力値が得られなかった場合に、前記取得手段が取得した前記第2の受電電力値と前記設定電力とに基づいて前記無線電力伝送における送電電力を制限する制限手段を有することを特徴とする請求項1乃至11のいずれか1項に記載の送電装置。
  13. 前記制限手段は、前記取得手段により取得された前記第2の受電電力値と前記設定電力との差が一定値以下の場合は前記制限を行わないことを特徴とする請求項12に記載の送電装置。
  14. 前記制限手段は、前記取得手段により取得された前記第2の受電電力値の前記設定電力に対する割合が一定値以上の場合は前記制限を行わないことを特徴とする請求項12に記載の送電装置。
  15. 前記制限手段は、前記取得手段により取得された前記第2の受電電力値に基づいて制限値を算出し、前記制限値を前記設定電力として設定することを特徴とする請求項12乃至14のいずれか1項に記載の送電装置。
  16. 前記制限手段は、前記第2の受電電力値を所定の割合で増加させた値、または、前記第2の受電電力値に一定値を加えた値を前記制限値とすることを特徴とする請求項15に記載の送電装置。
  17. 前記制限手段は、前記取得手段により取得された前記第2の受電電力値が所定値以下の場合には、前記制限値を前記所定値に設定することを特徴とする請求項15または16に記載の送電装置。
  18. 前記制限値を前記受電装置に通知する通知手段をさらに有することを特徴とする請求項15乃至17のいずれか1項に記載の送電装置。
  19. 前記制限手段は、前記設定された送電電力を前記制限値に変更した後に前記受電装置から受信した受電電力値に基づいて、前記制限値を更新することを特徴とする請求項15乃至18のいずれか1項に記載の送電装置。
  20. 前記較正手段により較正された相関に基づいて推定される電力損失と、前記受電装置から受信される受電電力値に基づいて算出される電力損失とに基づいて異物検出を行う検出手段をさらに有することを特徴とする請求項1乃至19のいずれか1項に記載の送電装置。
  21. 受電装置への無線電力伝送の開始から送電出力を上昇させていく間の、第1のタイミングにおいて第1の受電電力値を、前記第1のタイミングよりも後の第2のタイミングにおいて第2の受電電力値を、前記受電装置から取得する取得工程と、
    前記第1の受電電力値と前記第2の受電電力値を用いて送電出力と前記受電装置の受電電力との相関を較正する較正工程と、
    無線電力伝送において受電装置への供給を保証する送電電力または前記無線電力伝送における上限の送電電力を示す設定電力に基づいて閾値を決定する決定工程と、
    前記閾値と前記第2の受電電力値との比較に基づいて、前記第2の受電電力値を前記較正工程による前記較正に用いるか否かを判断する判断工程と、を有することを特徴とする送電装置の制御方法。
  22. コンピュータを、請求項1乃至20のいずれか1項に記載された送電装置の各手段として機能させるためのプログラム。
JP2019236965A 2019-12-26 2019-12-26 送電装置、送電装置の制御方法およびプログラム Pending JP2021106463A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019236965A JP2021106463A (ja) 2019-12-26 2019-12-26 送電装置、送電装置の制御方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019236965A JP2021106463A (ja) 2019-12-26 2019-12-26 送電装置、送電装置の制御方法およびプログラム

Publications (1)

Publication Number Publication Date
JP2021106463A true JP2021106463A (ja) 2021-07-26

Family

ID=76919644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019236965A Pending JP2021106463A (ja) 2019-12-26 2019-12-26 送電装置、送電装置の制御方法およびプログラム

Country Status (1)

Country Link
JP (1) JP2021106463A (ja)

Similar Documents

Publication Publication Date Title
US11804735B2 (en) Power transmission apparatus, method for controlling power transmission apparatus, and recording medium
US20220181917A1 (en) Power receiving apparatus, power transmitting apparatus, control method, and storage medium
JP2016111791A (ja) 送電装置、送電装置の制御方法、プログラム
JP2017085716A (ja) 送電装置及びその制御方法
US20220181918A1 (en) Power transmission apparatus, control method, and computer-readable storage medium
US20220224166A1 (en) Power transmitting apparatus, control method for power transmitting apparatus, and storage medium
JP2024069510A (ja) 送電装置、送電装置が行う方法およびプログラム
WO2021199774A1 (ja) 送電装置および受電装置、それらの制御方法、プログラム
JP6632189B2 (ja) 情報処理装置、無線電力伝送装置、制御方法、プログラム
WO2021225048A1 (ja) 受電装置、送電装置、制御方法及びプログラム
JP7414501B2 (ja) 受電装置、送電装置、およびそれらの制御方法、プログラム
JP2017028948A (ja) 受電装置、判定方法、プログラム
JP7316885B2 (ja) 受電装置、受電装置の制御方法、およびプログラム
JP2021106463A (ja) 送電装置、送電装置の制御方法およびプログラム
JP2021129423A (ja) 送電装置、受電装置、送電装置が行う制御方法、受電装置が行う制御方法、及びプログラム
JP2020182294A (ja) 送電装置、送電装置が実行する制御方法、及びプログラム
JP2021093844A (ja) 送電装置、制御方法及びプログラム
JP2021040450A (ja) 受電装置、受電装置の制御方法、およびプログラム
US11509174B2 (en) Power receiving apparatus, power transmitting apparatus, control methods thereof, and non-transitory computer-readable storage medium
JP7449083B2 (ja) 送電装置、送信方法、およびプログラム
JP7493370B2 (ja) 送電装置およびその制御方法、プログラム
JP2016220394A (ja) 送電装置、送電装置の制御方法、プログラム
JP2022020085A (ja) 送電装置、送電装置の制御方法、およびプログラム

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113