JP2021103946A - 焙煎米糠麹の製造方法 - Google Patents

焙煎米糠麹の製造方法 Download PDF

Info

Publication number
JP2021103946A
JP2021103946A JP2019235756A JP2019235756A JP2021103946A JP 2021103946 A JP2021103946 A JP 2021103946A JP 2019235756 A JP2019235756 A JP 2019235756A JP 2019235756 A JP2019235756 A JP 2019235756A JP 2021103946 A JP2021103946 A JP 2021103946A
Authority
JP
Japan
Prior art keywords
rice bran
roasted rice
roasted
rice
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019235756A
Other languages
English (en)
Other versions
JP6937456B2 (ja
Inventor
昭博 関口
Akihiro Sekiguchi
昭博 関口
紀夫 長壁
Norio Osakabe
紀夫 長壁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furusato Shokuhin Co Ltd
Gunma Prefecture
Original Assignee
Furusato Shokuhin Co Ltd
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furusato Shokuhin Co Ltd, Gunma Prefecture filed Critical Furusato Shokuhin Co Ltd
Priority to JP2019235756A priority Critical patent/JP6937456B2/ja
Publication of JP2021103946A publication Critical patent/JP2021103946A/ja
Application granted granted Critical
Publication of JP6937456B2 publication Critical patent/JP6937456B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cereal-Derived Products (AREA)

Abstract

【課題】風味を良くし、さらに、品質の改善ができるようにした焙煎米糠麹の製造方法の提供。【解決手段】米糠を焙煎して焙煎米糠粉末を製造する第一の工程と、前記焙煎米糠粉末10質量部に対して、水分を3〜9質量部の割合で、添加混合し、前記焙煎米糠粉末を焙煎米糠粒子にする第二の工程と、前記焙煎米糠粉末もしくは前記焙煎米糠粒子5〜8質量部に対して、0.02cm3〜3.38cm3の大きさである残部の固形物を5〜2質量部を添加混合して、全体を10質量部とする第三の工程と、前記焙煎米糠粉末もしくは前記焙煎米糠粒子に麹菌を植え付ける第四の工程と、前記第二の工程から前記第四の工程までを順序不同の工程とし、これら前記第二の工程から前記第四の工程までを終了した後、温度が20℃〜45℃、湿度が70%〜99%の範囲の環境下で24時間以上培養する第五の工程と、を含む焙煎米糠麹の製造方法。【選択図】図3

Description

本発明は、焙煎米糠麹の製造方法に関するものである。
玄米の精米時に排出される米糠は、たんぱく質や脂質、ビタミン等を豊富に含んでいるものの、農畜産の飼肥料、菓子の原材料の一部に使用されることはあったが、その栄養価が有効に利用されることは少なかった。そこで、米糠の付加価値を高め、食品として様々な利用方法が考えられる麹にすることを目的に、特許文献1の米糠麹の製造方法が発明された。この発明は、製法が極めてシンプルで容易であること。特別な装置を使用することなく、恒温恒湿環境さえ用意できれば、製造できること。また、製造された米糠麹は、酵素力価が高いこと。通常の白米の米麹に比べ、複数あるデンプン分解酵素がいずれも2倍以上、酵素の種類によっては高い酵素力価を具備するようになる可能性を含んでいる。
特許文献1は、粉体状の米糠を粉状のまま、製造するもので、pHを酸性側に調製した水を加えて、麹菌を接種した後に、容器内に入れ、恒温恒湿環境下で培養して米糠麹を製造する方法についての発明である。特許文献1の発明で製造される米糠麹は、それを喫食用とする場合、米糠特有の臭いが残り、風味に問題があるため商品化は困難であった。この課題は、米糠を焙煎することによって、解消できると考え、実用化の研究を進めてきた。
しかし、焙煎米糠麹を量産試作する過程において、実験室レベルの少量の試作では問題とならなかった次の二つの問題が新たな課題として顕在化してきた。
まず、焙煎で米糠の臭いは一旦改善されたことを前述した。しかし、焙煎した米糠を原料に製造を開始しても、スケールアップしてできた焙煎米糠麹は、一般的な白米麹と比較して麹特有の臭いで風味が悪くなることが浮上してきた。ここで言う「風味」とは、香味とほぼ同義で、香りとともに感じる味として表現している。また、焙煎米糠麹の生産をスケールアップすると酵素力価などの品質のバラツキが大きくなるという問題も浮上してきた。
特許第3858068号公報
上述したように、本発明の発明者らの喫食するための米糠麹の製造方法の開発において、米糠独特の臭いを焙煎することで一応の解決になった。しかし、焙煎米糠麹の製造をスケールアップすると、焙煎米糠麹は、風味に問題が出てくるようになり、さらに、高い酵素力価、すなわち品質の改善ができるようにすることも求められるようになってきた。
本発明は、上述の課題を解決しようとするものであり、風味を良くし、さらに、品質の改善ができるようにした焙煎米糠麹の製造方法の提供することを目的とする。
上記の目的を達成するための手段1では、
まず、米糠を焙煎して焙煎米糠粉末を第一の工程で製造する。
前述の焙煎米糠粉末10質量部に対して、水分を3〜9質量部の割合で、添加混合し、前記焙煎米糠粉末を第二の工程で焙煎米糠粒子にする。(本発明では該第二の工程で得られた焙煎米糠を焙煎米糠粒子と呼ぶ。)
前記焙煎米糠粉末もしくは前記焙煎米糠粒子5〜8質量部に対して、0.02cm〜3.38cmの大きさである残部の固形物5〜2質量部を第三の工程で添加混合して、全体を10質量部とする。
前述の焙煎米糠粉末もしくは前記焙煎米糠粒子に第四の工程で麹菌を植え付ける。
上述の第二の工程から前述の第四の工程までを順序不同の工程でよく、これら第二の工程から第四の工程までを終了した後に、温度が20℃〜45℃、湿度が70%〜99%の範囲の環境下で24時間以上培養する。なお、順序不同の工程には、第二の工程から第四の工程を同時に行うことを含む。
以上の様に焙煎米糠麹を製造する方法を提供する。
焙煎米糠にすることで、米糠独特の臭いを焙煎することで、黄な粉風の臭いになり、ある程度の問題解決にはなった。しかし、量産のためにスケールアップを図ろうとすると、新たな臭いが発生し、喫食するには風味の改善が必要であることが指摘された。
そこで、その原因は製造用の容器の嵩が増すことにより、容器中の麹菌が植え付けられた焙煎米糠粉末もしくは焙煎米糠粒子が、上層部分のものに比較し下層になればなるほど酸素不足になることが原因であることを突き止めた。
手段1において、麹菌を植え付け培養する際に、空気が供給できる様に2、3mm角(0.02cm)程度〜15mm角(3.38cm)程度の固形物を混入させることにより、空気中の酸素の供給ができ、改善ができるようになった。同時に焙煎米糠粉末あるいは焙煎米糠粒子中に形の大きい固形物が入ることにより、焙煎米糠粉末あるいは焙煎米糠粒子間の所々に隙間を作り、空気が入り込むことになる。このような隙間の空気によって、麹菌の培養中に必要な酸素を供給することができるようになった。このことが、スケールアップした場合でも風味の改善が可能になり、酵素力価などの品質を安定させる。
安定しなかった米糠麹の品質が、焙煎米糠粉末あるいは焙煎米糠粒子と固形物の混合により、米糠麹の風味の改善や酵素力価などの品質も安定した焙煎米糠麹の製造方法を提供するができる。
また、風味にクセがあり、喫食用としてはやや難点があった米糠麹を、米糠の焙煎処理により糠臭を低減し、その焙煎米糠にデンプン質を多く含む固体食材を加える事で、麹の栄養バランスを改善し、結果として酵素力価などの品質や風味を大幅に改善できる焙煎米糠麹の製造方法を提供するができる。
(課題を解決するためのその他の手段)
上述の手段1の下位概念である手段2として、固形物は焙煎米糠粉末あるいは焙煎米糠粒子に分散できる密度のものであればよく、手軽に入手可能な一般的な合成樹脂製のダミーでもよい。空気中の酸素の供給手段として、焙煎米糠粉末や焙煎米糠粒子中に、これらより形の大きい固形物のダミーを、麹菌の培養工程の前に混入させることで、風味の改善が可能になり酵素力価などの品質も安定させることが可能になった。
上述の手段2の下位概念である手段3として、酸素供給手段である焙煎米糠粉末あるいは焙煎米糠粒子に分散させたダミーの固形物は、食べることができないので、焙煎米糠麹が出来上がった後に、乾燥した後に取り除くことが必要である。このようにして喫食できる焙煎米糠麹ができる。
ダミーの固形物を入れて製造された焙煎米糠麹は、風味も品質も一応の改善できた。しかし、麹菌の増殖過程で発生する風味は、原料の組成に由来し、その影響でやや好ましくない風味を醸成している。一般的な米麹は、白米なので、ほとんどがデンプン質であり、焙煎米糠麹に感じられる臭いは全くない。風味の問題は、米糠にデンプン質を添加することでより改善できると考えたのが、上述の手段1の下位概念である手段4である。ダミーの固形物は、製造方法に取り入れても、焙煎米糠麹が出来上がった後に、取り除くことが必要である。上述のような理由から、固形物をデンプン質の食用の固形物、すなわち固形食材に変更することで、取り除き工程を一つ減らし、同時に、風味も酵素力価などの品質の安定もさらに改善が可能である。
なお、手段4の下位概念として手段5がある。すなわち、固形食材は、単に必要な大きさに切りそろえただけではなく、蒸煮することによって、固形食材のデンプンがα化され、酵素の影響を受けやすくし、短時間で麹の栄養バランスを整えることが可能になるため、添加混合する前に蒸煮工程を設けることが好ましい。
本発明の焙煎米糠麹の製造工程を示す図である。 本発明の固形食材を用いた場合の本発明の焙煎米糠麹の製造工程を示す図である。 本発明の焙煎米糠麹を炊飯用として利用する場合を示す図である。 特許文献1の製造方法による焙煎米糠麹と本発明で製造した焙煎米糠麹のガスクロマトグラフ質量分析のクロマトグラムを示す図である。
以下に本発明の実施の形態を、図1を参照しながら説明する。
(本発明における米糠)
本発明に使用する焙煎米糠麹の製造方法においては、原料として、玄米を精米した時に発生する米糠を使用する。すなわち、図1に示す米糠は、後述する本発明の焙煎米糠麹の利用方法の一つである炊飯方法において、玄米に近い栄養価を白米に付与できると考えている。たとえば、たんぱく質、脂質、ミネラル、食物繊維などが豊富な米糠を使用することが好ましい。このような米糠は、家畜の飼料、米油の原料、漬物用の糠などにも使用されているが、このような米糠を本発明で使用することである。
米糠の種類は特に限定するものではない。たとえば、玄米の表層から重量で約10%削った精白米、約7%削った7分搗き米、約5%削った5分搗き米、約3%削った3分搗き米の精米によって排出される米糠を用いることができる。このような米糠を単独でも複数混ぜ合わせても構わない。
原料にする米糠の一般的な成分は、第七訂日本食品標準成分表によれば、タンパク質13.4%、水分10.3%、脂質19.6%、炭水化物48.8%(うち食物繊維20.5%)、灰分7.9%、等を含有している。
(米糠の焙煎工程)
上述の焙煎米糠麹の製造方法における図1に示す焙煎工程を説明する。ご飯と共にそのまま喫食するので、雑菌を殺菌することが必要不可欠である。同時に、米糠由来のいやな臭いを香ばしさに変化させることが重要になる。この目的のために、フライパンなどの表面温度は、80℃以上、250℃以下とすることが風味向上に寄与するために好ましい。特に好ましいのは110℃以上、220℃以下、更に好ましくは140℃以上、180℃以下で焙煎を行うことが望ましい。上記に示した米糠の焙煎は、火力、電熱器など、焙煎が可能な方法であれば、どの熱源であってもよい。
上述の米糠の焙煎において、米糠の焙煎時間は上記の温度範囲で1分間以上、15分間以下とすることが風味向上に寄与するために好ましい。特に好ましいのは3分間以上、12分間以下、更に好ましくは5分間以上、10分間以下で焙煎を行うことが望ましい。焙煎は、火力の場合は、5〜10分間行い、水分が5〜10%に収まる程度に加熱して、少し茶色がかった焙煎米糠ができる。温度が高ければ時間は短く、温度が低ければ時間は多少長めになる。また、焙煎を行う米糠の量によっても時間の調整が必要である。必要なことは、色合いで判断し、水分含有量で確認する。
(添加する固形物)
次に図1に記載した固形物について説明する。製造工程中の焙煎米糠粉末層に空隙を確保するために、0.02cm〜3.38cmの固形物を、焙煎米糠粉末10質量部に対して、2〜10質量部を加える。0.02cm未満の固形物の場合では、空隙の形成が促進されず、3.38cm以上では、空隙が大きくなって、その空隙に焙煎米糠粉末が入ってしまうため、結果的に空隙を確保できない。また3.38cm以上の固形物の場合にはもう一つ問題があり、それは、特許文献1の米糠麹の製造方法には、米糠重量あたりの表面積を増やして、麹菌の生育面積を確保し、結果的に酵素力価を高めるという効果があったのだが、3.38cm以上の固形物では、その効果があがらず、むしろ減少してしまう。以上の理由から固形物の大きさは0.02cm〜3.38cmが望ましい。特に好ましいのは0.064cm〜1.728cm、さらに好ましくは、0.075cm〜1cmが望ましい。後述する直径6mmのダミービーズの体積は、0.113cmである。
固形物の形状は、その固形物が重なったときに隙間ができるものならどのような形状でも構わない。立方体などの形状の固形物は、それのみであれば、正確に積み上げれば隙間はできないが、本発明では、固形物の間には焙煎米糠が存在し、立方体があったとしても、それらが整然と重なる事はほとんどない。よって、形状を限定する要素はなく、立方体の他、球状、円柱状、円錐状などであれば、なんら問題はない。なお、体積があるといっても、それが細い紐状や、薄い膜状では意味がない。
固形物の密度は、0.3〜1.5g/cmが望ましい。焙煎米糠の密度は正確には求められないものの、白米の密度が約0.8g/cmであることから、それを基準に考えると、0.3g/cm未満の場合、混合・攪拌中に焙煎米糠の上層部のみに分散する可能性がある。逆に1.5g/cm以上の場合、焙煎米糠の下層のみに分散する可能性が有り、いずれの場合も均一に分散させることが難しくなる。以上の理由から、特に好ましいのは0.4〜1.2g/cm、さらに好ましいのは0.5〜1.0g/cmである。
固形物の材質は、食品衛生上の問題がないものを用いる。例えば、食品用途として、ボトル、トレー、食器、弁当箱、密封容器などに用いられているポリプロピレン(PP)が適材である。ポリプロピレンの耐熱性は100℃〜120℃とされており、本発明での使用条件は、50℃以下なので、溶解の心配は全くない。PP以外でもポリカーボネート(PC)など、食品用途としての実績があり、耐熱温度が120℃〜130℃とされているものなどでも構わない。
(焙煎米糠粉末と固形物の混合工程)
次に、焙煎米糠粉末に固形物を添加し、混合する工程を説明する。混合する順番や方法は問わない。ヘラや素手でも構わない。固形物が分散するように混合すれば良い。
(焙煎米糠への水分添加による焙煎米糠粒子の製造工程)
次に、焙煎米糠粉末に水分を加える工程を説明する。図1に示すように、水分添加の目的は、粉体状態の焙煎米糠粉末を粉体状態よりも多少大きな塊にすることによって、麹菌の菌糸が成長するための足場を提供することと、カビにとって生育に必要な水分を付与することである。焙煎米糠への水分添加は、水道水を用い、焙煎米糠10質量部に対し、水道水を3〜9質量部の範囲で添加する。好ましい範囲は4〜7質量部の範囲である。前工程の焙煎によって、水分が抜ける。このため、加水量を多めにしている。9質量部を超えると、大きな塊(ほぼ5cm程度)になって、よい麹にならない。先行発明の米糠麹の特徴は、表面積を大きくすることによって、麹菌体量が増え、結果的に、酵素もたくさん作ることができる。大きな塊になると、同一重量あたりの表面積も小さく、麹菌体量も増えず、結果的に、酵素力の弱い麹になる。逆に水分が3質量部未満になると、先に述べたように、足場としての小さな塊ができにくくなること。それから麹菌が利用する水分が少なくて、麹菌体の成長が鈍くなり、結果的に酵素力の弱い麹になる。水分添加が3質量部以下、または9質量部以上でも、麹の生育は可能であるが、上記の理由で、徐々に弱い麹になってしまう。また4〜7質量部が好ましいのは、この水分添加量が、麹菌の足場となる小さな塊ができること。塊が小さい(ほぼ1mm程度)ため、同一重量当たりの表面積が大きくなること。当然水分添加3質量部より、水分が多いため、麹菌の生育に必要な水分が確保されていることが理由である。以上のような水分を添加しながら混合し、焙煎米糠粒子にする。
焙煎米糠に添加する水分の種類について、麹菌の生育を阻害するものでなければ、純水や水道水に限らない。ただpHが2以下(強酸性)になると、麹菌の生育が阻害される。逆にpHが11(アルカリ性)以上の場合も麹菌の生育が阻害される。結果的にpH2〜11に限定される。また、高塩濃度、高糖濃度も、多少阻害要因になるかも知れない。いずれにしても、人間が食べられる液体であれば、何を添加しても問題はない。
(麹菌の選択)
焙煎米糠を麹にするために使用する麹菌は、アスペルギルス(Aspergillus)属の糸状菌(カビ)、例えばアスペルギルス・オリゼー(Aspergillus Oryzae)、アスペルギルス・ソーヤ(Aspergillus sojae)、アスペルギルス・カワチ(Aspergillus kawachii)、アスペルギルス・アワモリ(Aspergillus awamori)、アスペルギルス・サイトイ(Aspergillus saitoi)、アスペルギルス・ニガー(Aspergillus niger)などが使用できる。またクモノスカビ(Monascus)属、例えば紅コウジカビ(Monascus purpureus)やクモノスカビ(Rizopus)、ケカビ(Mucor)属の糸状菌(カビ)も使用できる。並びに、これら糸状菌の自然変異株、人工的突然変異株、及び遺伝子操作による変異株から成る群から選択される少なくとも一種の麹菌を使用する。また複数同時に使用しても問題ない。
これらのうち、特に、アスペルギルス(Aspergillus)に属する糸状菌(カビ)および紅コウジカビ(Monascus)に属する糸状菌(カビ)が望ましい。さらに望ましい麹菌は、アスペルギルス・オリゼー(Aspergillus Oryzae)、アスペルギルス・ソーヤ(Aspergillus sojae)、アスペルギルス・カワチ(Aspergillus kawachii)、アスペルギルス・アワモリ(Aspergillus awamori)、アスペルギルス・ニガー(Aspergillus niger)の中から一種以上を選択するのが好ましい。複数選択しても問題ない。
また、アスペルギルス・オリゼー(Aspergillus Oryzae)は、清酒、味噌、醤油といった日本を代表する発酵食品の製造に用いられる麹菌として知られている。アスペルギルス・ソーヤ(Aspergillus sojae)は、味噌、醤油に使われている。アスペルギルス・アワモリ(Aspergillus awamori)およびアスペルギルス・サイトイ(Aspergillus saitoi)、アスペルギルス・ニガー(Aspergillus niger)は、泡盛の製造等に用いられる黒麹菌として知られおり、これらも使用することができる。
また、アスペルギルス・カワチ(Aspergillus kawachii)は、前記アスペルギルス・アワモリ(Aspergillus awamori)より分離された白色変異菌であり、焼酎の製造に用いられる白麹菌として知られており、使用できる。紅コウジカビ(Monascus purpureus)は、日本では、赤色の天然色素製造に用いられている。またクモノスカビ(Rizopus)属やケカビ(Mucor)属は、中国や東南アジアで製造される発酵食品のテンペの製造に使用されることで知られているが、これらも使用できる。
(焙煎米糠を麹にする工程)
図1に示された焙煎米糠麹の製造は、たとえば、焙煎米糠粉末5〜8質量部に対して、固形物を5〜2質量部を添加して混合する。焙煎米糠粉末と固形物は全体としては10質量部になるようにする。例えば焙煎米糠粉末が5質量部なら固形物は5質量部を添加する。次に焙煎米糠粉末10質量部に対して水分を3〜9質量部の割合で添加して、水分が分散するように混合する。水分との混合によって、焙煎米糠粉末は、粉末同士が小さな塊となった焙煎米糠粒子となる。そこに、焙煎米糠粉末1質量部に対して1/5000質量部の粉状の麹菌を添加して、よく混合する。焙煎米糠粉末への固形物、水分、麹菌の添加の順番は問わない。これを35℃、90%の雰囲気に放置し、24時間後に一度攪拌し、引き続き同条件で、さらに24時間放置して完成される。
(麹菌の植え付け)
麹菌の植え付けは、粉状の麹菌を焙煎米糠に添加して、よく混合して行う。麹菌が焙煎米糠中に、よく分散されればよく、添加方法、添加回数は、限定されるものではない。また、植え付けのタイミングも、焙煎米糠への水分添加の前後も限定されるものではない。しかし、常識的な工程として、焙煎米糠に、水を添加してよく混合し、その後に、必要量の粉状の麹菌を3回程度に分けて、ヘラなどで混合しながら、添加する方法が望ましい。なお、麹菌の植え付けには、上記の粉状の麹菌のほかに、玄米に麹菌を繁殖させた麹菌もあるが、麹菌の形態は問わない。
(麹菌を植え付けた後の室温・湿度・培養時間)
最適な温度は35℃である。45℃を超えると、麹菌の生育に影響する。すなわち、暑くて「へばる」というイメージになる。低い方は、20℃以下でも、麹菌は生育するが、成長のスピードは、遅く、酵素も弱くなる。つまり、45℃以上では、酵素の弱い麹となり、20℃以下では、酵素が弱いばかりでなく、製造日数が伸びてしまい、製造コストが高くなってしまう。
湿度は、90%以上が理想である。90%未満になると、徐々に弱い麹になるので、最低でも70%以上でなければならない。培養時間は、温度、湿度の理想条件としては、48時間でよい麹になる。酵素は24時間以降に、特に32時間以降に急速に作られる。逆に48時間以降は、さほど、酵素力の増加は見込めない。せいぜいプラス6時間、つまり54時間まですれば、充分となる。
焙煎米糠を焙煎米糠麹にする過程における加水工程、使用する種麹菌の種類について述べたが、それ以降の製造工程は、上記に述べた温度および湿度環境があれば特別な設備が必要でなく、本発明を完成させるのに最も適した製造方法を提供する。特に、コストパフォーマンスに至っては、他の追随を許さないくらい簡素な工程で製造が可能である。
(焙煎米糠麹の乾燥工程)
次に、保存性および風味の向上を目的とした図1に示された乾燥工程は、熱風乾燥、加熱乾燥、減圧乾燥、真空凍結乾燥など、水分を減少させる効果が期待できる手法であれば、単独でも、組み合わせても構わない。いずれかの方法で焙煎米糠麹を乾燥する。
上述の乾燥工程に於いて、乾燥温度は、麹の酵素が失活しない程度の温度で乾燥することが望ましい。そこで、1℃から60℃で乾燥させるのが望ましいが、より望ましいのは20℃から55℃、さらに望ましいのは30℃から40℃である。乾燥時間は、目標の水分が5〜10%になれば良いので、限定されるものではないが、目標水分に達したなら、すみやかに工程を終了する。
乾燥は、水分が10%以下になれば、どんな方法を用いてもかまわないが、その際、60℃以上の熱が加わることと、時間がかかりすぎることは、酵素を弱めることになる。また60℃程度の温度では問題ないが、乾燥温度の上昇は、固形物からの不要な溶出のリスクが高まるので望ましくない。コスト、酵素および固形物のことを考えると、減圧乾燥法が適している。40℃で8時間程度あれば乾燥できる。温度を高くすれば、乾燥時間は短くて済むが、酵素が少しずつ弱くなる。温度を低くすれば、酵素の失活は防げるが、乾燥時間が長くなる。
(焙煎米糠麹の乾燥における水分調整)
上記の乾燥工程に於いて、焙煎米糠麹の水分は、保存性の向上の観点から、ある程度低い方がのぞましいが、乾燥時間の増加は、コストの上昇につながり、また、過乾燥による食品成分の劣化、たとえば脂質の酸化が促進されるなどの問題もあり、一概に、低ければ良いという問題ではない。そこで、焙煎米糠麹の乾燥後の水分含有量としては、望ましくは、1%〜40%、より望ましいのは3%〜20%、さらにより望ましいのは5%〜10%である。また乾燥によって、次の分別工程を容易にする効果もある。
(固形物の分別・除去工程)
固形物と焙煎米糠麹が分別できれば方法は問わない。ただ、焙煎米糠麹の形状や性状等を考えると、篩を用いる方法が、簡便、効率的であり、適している。篩のメッシュサイズは固形物の大きさによる。基本的には固形物のサイズよりもメッシュサイズの細かい篩を使用する。篩による分別で、固形物が取り除かれた焙煎米糠麹となる。
(焙煎米糠麹の粒径調整)
次に、図1に示した乾燥焙煎米糠麹の粒度調整をする工程、すなわち粒径を均一にする工程を説明する。上記乾燥焙煎米糠麹を均一にする工程に於いて、使用される道具は、上記乾燥焙煎米糠麹より硬度が高いものであれば、形状等は問わないが、うどんやそば打ちで用いられる手延べ棒など、円柱状のものが、簡便で効率よく、粒径を均一にすることができる。工業的にはロールミルなどを使用することができる。
上記乾燥焙煎米糠麹を均一にする工程において、粒度については、3mm以下にするのが望ましい。より望ましいのは2mm以下、さらにより望ましいのは1mm以下である。下限については、1mmよりさらに細かくしてもよいが、後述する本発明品の利用方法の一つである炊飯方法での効果、つまり、白米と共に乾燥焙煎米糠麹を水に浸漬した際の酵素の溶出を期待しているので、その効果は、粒径が1mm程度であれば十分である。粒径がそろった時点で、粒径調整の作業は完了である。また以上述べた粒径調整の作業は、本発明において必須の作業ではないが、焙煎米糠麹の利用形態を考えた時に必要な作業であると判断している。
(固形物がデンプンを含む固形食材である焙煎米糠麹の製造工程)
固形物を、デンプンを含む固形食材にした場合の製造方法を、図2を参照して説明する。固形食材には、実に様々なものを用いることが可能である。実質的には、すでに述べてきた大きさ、形、密度、デンプンや糖質を含むことなどの条件を満たせばよく、一般的には穀類、豆類、いも類、野菜類、果実類、種実類などが該当する。例えば、大豆、小豆、発芽玄米、大麦、赤米、はと麦、とうもろこし、サツマイモ、ジャガイモ、枝豆、かぼちゃ、ニンジン、りんご、なし、アーモンド、カシューナッツ、クルミなどを利用することができる。上記に挙げた固形食材のうち、りんご、なしなどは、果糖などの糖類が主成分である。またアーモンド、カシューナッツ、クルミなどは、デンプンは数%以下のため、デンプン供給の効果は期待できないが、食材であるため、ダミーと違い、分別工程が不要という点で、利用価値が大きい。
また、もともと大きな食材、例えばサツマイモやジャガイモなどは条件を満たす大きさにカットすればよい。サツマイモを例にカット工程を説明する。大きさが0.02cm〜3.38cmであれば、形状、カットに用いる方法は問わない。また、大きさはそろえる必要もない。0.02cm以下の場合、固形食材による空隙を確保する効果が減少し、また、カットに要する時間や労力が増すため、好ましくない。また3.38cm以上の場合、焙煎米糠の層への分散効果が減るので、0.02cm以下と同様に、空隙を確保する効果が少なくなるので好ましくない。
次に、デンプンを含む固形食材の蒸煮工程を説明する。方法については限定されるものではなく、通常我々が小豆やサツマイモを調理、摂食する際に用いる方法で構わない。例えば小豆なら蒸すまたは沸騰水中で煮る、サツマイモなら蒸かし器や電子レンジでも構わない。この工程により、殺菌とデンプンのα化が行われ、食品製造の衛生面の確保と、デンプンのα化によって麹菌がデンプンを利用しやすい状態になる。
次に焙煎米糠に蒸煮後のデンプンを含む固形食材を添加して混合する工程を説明する。混合する順番や方法は問わず、両者が均一になればよい。例えば、パンやうどんなどの生地を練る時の電動撹拌機などを用いると効率的である。その際の電動撹拌機の攪拌速度なども規定されるものではない。当然ヘラや素手でもよい。
固形物に固形食材を用いた焙煎米糠麹の製造方法では、焙煎米糠粉末と固形食材、水分および麹菌の混合工程以後の工程は、分別工程以外は、図1と同じであるので、説明は省略する。固形食材は除く必要がなく、さらに言えば、固形食材も麹になっているので、米糠以外の栄養素を含んだ焙煎米糠麹となる。また必要に応じて乾燥しても構わない。その場合は、図1に記載の通り乾燥させる。
上述したような焙煎米糠麹の製造工程によれば、米糠の独特の臭いを香ばしい臭いに変化させ、結果的に風味が改善される。また、乾燥工程があれば保存性も高くなり、食物繊維等の有用成分を多く含む焙煎米糠麹を製造することが可能となる。
上述のようにして得られた焙煎米糠麹の利用例として焙煎米糠麹を使用した白米の炊飯方法を以下に説明する。ここで使用する焙煎米糠麹は、上記の乾燥工程および粒経調整工程を経た乾燥焙煎米糠麹の粉末を使用する。
(白米の炊飯方法)
白米の炊飯方法について、図3に従って説明する。白米の炊飯方法は、一般家庭で行う方法と基本的に同じであるが、少し異なるのは、白米を水洗いし、炊飯に必要な水分を加えた後に、本発明で製造した乾燥焙煎米糠麹の粉末を投入混合して、ただ炊飯するだけである。それ以外に手を煩わせることはない。この炊飯方法では、焙煎米糠麹自体がもつデンプン質の糖化と焙煎米糠麹の酵素によって白米のデンプン質の糖化による甘味の増加および消化吸収の良い白米ご飯の提供が可能となる。
(水分の添加の説明)
図3における水分の添加は、一般家庭で日常的に行われている方法と、なんら変わらない。すなわち、炊飯したい分量の白米を水道水でゴミや糠などを洗い落とす程度に洗い、白米の分量に見合った水分である水道水を加える。水道水が一般的だが、水道水以外に、浄化装置で浄化した水でもよいし、販売されているミネラルウォーターでもよい。要するに、飲料できる水分であれば、全く問題ない。
(粉末状の乾燥焙煎米糠麹の投入と浸漬)
その後、図3に示される段階で、乾燥した焙煎米糠麹の栄養価を考慮した量を後述するように投入する。その後、白米と乾燥焙煎米糠麹と水分とをかき混ぜて、乾燥焙煎米糠麹を分散させることのほうが好ましが、その状態で放置しても構わない。すなわち、放置する時間を設けず、すぐに炊飯器のスイッチを入れても全く問題ない。白米を水洗いした後であれば、本発明の乾燥焙煎米糠麹を投入する順番は問わない。図3に示した順序は一例である。また、浸漬のために加える水の量も、常識的な範囲内で加減することは問わないが、一般的には炊飯に適切な量が望ましい。浸漬工程中に、本発明の乾燥焙煎米糠麹から酵素が溶け出し、時間と共に白米を徐々に糖化していく。時間が短ければ、糖化範囲が部分的になるし、時間が長ければ、糖化範囲が広がることになる。
白米を糖化させるとは、白米のデンプンを、本発明の乾燥焙煎米糠麹から出る糖化酵素によって、低分子に分解し、最終的にブドウ糖に変化させることである。白米と本発明の乾燥焙煎米糠麹と接触する時間、つまり浸漬時間が長いほど、酵素がより作用して、デンプンがブドウ糖に変化するため、炊きあがったご飯に甘味を感じるようになる。糖化を制限する場合、時間を短くすれば、調整が可能になる。また、糖化と同時に、本発明の乾燥焙煎米糠麹のたんぱく質分解酵素なども働いて、たんぱく質がアミノ酸に変化するなど、消化吸収の良い白米ご飯を提供することが可能になるのである。
本発明の乾燥焙煎米糠麹の投入量は、白米10質量部に対して0.2質量部を投入すれば、玄米に対して、最も少ないビタミンB1で22%、次に少ない食物繊維で29%の充足率になる。白米10質量部に対して2質量部を投入すれば、玄米に対して、最も少ないビタミンB1で42%、食物繊維は125%の充足率になる。このように投入量を増やせば、充足率は高まっていく。白米10質量部に対して1質量部を投入すれば、ビタミンB1以外は玄米と同程度の充足率になる。投入量が少なすぎても意味がなく、白米10質量部に対して0.2質量部以上を投入することが好ましく、上限的には玄米の栄養価を大きく超える必要はないので、白米10質量部に対して2質量部が妥当である。2質量部であれば、ビタミンB2が、玄米の約7倍になる以外は、問題ない数値である。いっぺんに多くの栄養価を吸収するのではなく、ある限度を保ちながら、長く喫食することが優先される。なお、充足率は、食物繊維を基準に考えており、この基準から見ると、繰り返しになるがビタミンB1は少なく、ビタミンB2は多くなる。以上の栄養素の数値は、固形物にダミーを使用した場合、つまり、原料が焙煎米糠麹のみの場合である。固形食材を使用した場合、その混合割合および固形食材が持っている栄養素により、多少変化する。
自動電気炊飯器を使用して朝食を作る場合、たとえば、炊き上げる時間の8時間前に、白米を水洗いし、炊飯に必要な水分を加えた後に、本発明で製造した乾燥焙煎米糠麹の粉末を投入混合して、タイマーモードのスイッチを入れてセットすればよいのである。朝、目覚める頃には、玄米と同等の栄養価(玄米戻し)の白飯が炊き上がるのである。
この発明の炊飯用に製造された乾燥焙煎米糠麹の粉末は、炊飯用の水分中に白米とともに浸漬しておくと、焙煎米糠麹の酵素が作用し、白米のタンパク質や脂質を分解する。この分解作用により、炊飯した白米ご飯を喫食した際の消化を助けることになる。また栄養成分として白米に比べ食物繊維やビタミンB1、B2の増加が後述のように確認できた。
上述の炊飯方法において、本発明で製造した乾燥焙煎米糠麹の粉末を白米と一緒に浸漬させる時間は、乾燥焙煎米糠麹の酵素を白米に作用させることが目的の一つであるため、一定時間以上は必要であるが、長すぎる場合、食生活のリズムや食べるタイミングが崩れることや、白米および乾燥焙煎米糠麹の腐敗の危険が増加すること、また、酵素が作用しすぎると白米の糖化が進みすぎて、炊飯後にご飯が団子状になってしまうので、ある程度の時間で炊飯器のスイッチを入れることになる。その浸漬時間は、より望ましいのは、3時間から12時間であり、さらにより望ましいのは、5時間から8時間である。5時間から8時間とは、一般の家庭の夜に自動電気炊飯器のタイマーをセットして、一晩おいて翌朝炊飯器のスイッチが入る時間に近い時間幅となっており、より簡便に利用できる利点がある。ただし、投入直後に炊飯を開始しても全く問題ない。浸漬時間が数時間に比べると少ないが、糖化作用は期待できる。
ここで投入直後でも糖化の効果があることを説明する。固形食材を用いた焙煎米糠麹の乾燥粉末を投入した場合の説明をする。固形食材中にはデンプンが豊富に含まれている。製造工程で固形食材を蒸煮するので、固形食材のデンプンがα化され、酵素の影響を受けやすくなっている。投入直後に炊飯器のスイッチを入れても炊飯器中の釜温度が酵素の失活温度である60℃に到達するまでの間は、酵素によって糖化が進むことになる。よって、投入直後に炊飯器のスイッチを入れても焙煎米糠麹による糖化効果が期待できるのである。ちなみに固形食材がない場合でも、酵素失活温度に達するまでは、酵素が作用し続けるので、浸漬時間を長くした場合よりは少ないが、焙煎米糠麹自身のデンプン、白米中のデンプンの糖化が進むことになる。
上記炊飯方法に於いて、浸漬中の温度は、本来は酵素の最適温度が望ましいが、本製品のコンセプトは、家庭で簡単に玄米と同じ栄養価の白米ご飯が食べられることであるため、室温で充分である。ただ、白米等の腐敗が進まない温度の低いところで24時間浸漬するということも可能であるが、室温を基準にした場合、3〜12時間が適切である。
ただ、夏場は、腐敗の危険が高まること、酵素が働きすぎてご飯が団子状になってしまうことがあるので、夏場の室温25℃で8時間以内、冬場の室温10℃なら12時間以内が適切である。
これまで述べてきた炊飯方法は、図1(焙煎米糠麹の製造工程)の工程で製造した乾燥焙煎米糠麹を一般家庭に普及している自動電気炊飯器で白米と一緒にタイマーをセットするだけで、玄米の栄養価を補うとともに麹の酵素作用でご飯の味、風味を改良する両方の効果を実現するものである。
自動電気炊飯器でなくても、土鍋で炊飯する場合でも、圧力釜で炊飯する場合でも、ご飯を炊ける状態にして、乾燥焙煎米糠麹の酵素を白米に作用させる一工程を加える手間のみで、一般的家庭の生活様式による白米ご飯中心の食生活を変えず、玄米の栄養価を吸収しながら美味しいご飯を喫食することが可能になり、日本人の食生活を大きく改善する効果がある。
実験例
以下、本発明を実験例に基づき、より具体的に説明する。
(焙煎米糠麹の製造方法についての実験例1)
(米糠の焙煎)
原料として、精白米を得るときに排出される米糠を使用した。その米糠を24cmのフライパンに約300gをとり、ガスコンロの強火で、木ベラでよくかき混ぜながら、約8分間、煙が少しでて、糠全体が、薄い茶色になるまで焙煎した。焙煎後は、そのまま別容器に移して、そのまま放置し、室温に戻ったところで、ビニールをかぶせ、次の工程(焙煎米糠麹の製造)まで、室温で保管した。色の程度は、元々の色を反映して、黄粉の色より茶色味が強い色になった。
(サツマイモのカット)
包丁を使用し、約0.5cm角のサイコロ大になるようにカットした。薄皮もそのままにした。
(小豆およびサツマイモの蒸煮工程)
蒸し器を使って、小豆は50分間、サツマイモは20分間蒸かした。その際の煮汁は取っておいて、製造工程中の水分添加時に水分とともに原料に加えてもいいのだが、実験例では使用しなかった。いずれもキッチンペーパー上で一晩おいて、水気を切った。
(原料の混合および混合比)
焙煎米糠粉末、いずれも蒸した小豆とサツマイモを、適当な容器に入れた。なお、小豆とサツマイモの質量については、今後、蒸し後の質量を意味するものとする。混合比は、焙煎米糠粉末5〜8質量部に対して、小豆とサツマイモともに1〜2.5質量部を加え、全体が10質量部になるようにした。小豆とサツマイモは常に1:1になるようにした。サツマイモは加えず、小豆のみの試験区も行った。具体的には、試験区1(焙煎米糠粉末5:小豆2.5:サツマイモ2.5)、試験区2(焙煎米糠粉末6.5:小豆1.75:サツマイモ1.75)、試験区3(焙煎米糠粉末8:小豆1:サツマイモ1)、試験区4(焙煎米糠粉末8:小豆2)とした。いずれも合計100gで実施した。試験区1〜4は、材料の混合には家庭用の電動撹拌機を利用した。また、固形食材による2つの効果、すなわち、焙煎米糠を収納した容器の層内での空隙の確保とデンプン供給の効果のうち、デンプン供給の効果を検証する目的で、固形食材の代わりにダミーを焙煎米糠粉末に添加する試験区も用意した。試験区5(焙煎米糠粉末5:ダミービーズ5)、試験区6(焙煎米糠粉末5:ダミー米5)とした。ダミー添加試験区の配合比は容積比とした。焙煎米糠は50gとした。焙煎米糠50gが170cmだったので、いずれのダミーも170cmを加えた。ダミーを入れた試験区5および試験区6は、電動撹拌機は使わず、ヘラを使って攪拌した。ダミービーズは、直径6mmの球状(ABS樹脂、株式会社大創産業製)を、ダミー米は白米を模した形状かつ白米と同程度の大きさのポリプロピレン樹脂(商品名「三井ポリプロ」、三井化学株式会社製)を用いた。ダミービーズの体積は0.113cm、ダミー米は0.020cm程度である。対照として先行特許の方法を試験区7とした。ダミービーズのABS樹脂は、実際の使用では想定していないが、実験例の使用方法においては、不要な溶出物の心配はない。
(原料への水分添加)
添加する水分は、水道水を使用した。添加量は、試験区1が20mL(焙煎米糠粉末重量に対して40%)、試験区2が28mL(同43%)、試験区3が36mL(同45%)、試験区4が42mL(同53%)とした。試験区5および試験区6は、いずれも30mL(同60%)とした。試験区7は70mL(同70%)とした。いずれの試験区も水分添加をしながら、攪拌した。
(麹菌の添加)
試験区1〜4および7は焙煎米糠粉末および固形食材の合計に対して1/5000量の粉状の麹菌を添加した。試験区5および試験区6は焙煎米糠粉末に対して1/5000量の粉状の麹菌を添加した。麹菌は、黄麹菌(アスペルギルス・オリゼー:Aspergillus Oryzae)であり、株式会社樋口松之助商店製の液化仕込用を用いた。この黄麹菌を添加後、さらによく混合した。
(培養温度)
麹菌添加後、温度35℃、湿度90%の恒温恒湿器に入れて静置した。層の厚さはいずれの試験区も約1cmだった。24時間後に一度、かたまりをほぐすように混合し、再び温度35℃、湿度90%の恒温恒湿器で静置し、さらに24時間おいて、焙煎米糠麹を製造した。荒熱を取った後、ビニール袋に移して密封し、分析時まで冷凍保存した。
24時間後の各試験区の様子は、試験区1〜3に関しては、固形食材比率の高い試験区1の表面が最も麹菌が繁殖しており、全体的にやや白みがかっていた。その麹菌の繁殖の程度と白みがかっている程度は、試験区2、試験区3の順で、少なくなっていた。さらに、容器の底側についても試験区1が最も白みがかっており、試験区2、試験区3の順で、その程度は少なくなっていた。試験区4は、試験区2と試験区3の中間程度だった。ダミーの入った試験区5および6については、試験区1〜4でみられた麹菌の繁殖や、白みがかった様子などは、ダミーの影響か、あまり判別が付かなかったが、容器の底側は試験区1〜4と同様に麹菌が繁殖しており、白みがかっていた。試験区5と試験区6に見た目の差はなかった。対照の試験区7が最も麹菌の繁殖が少なかった。
(焙煎米糠麹の製造方法についての実験例2)
実験例1で行った試験区1〜7の結果を受けて、あらためて以下の製造実験を行い、発明の効果を検証した。実験例1では、固形物の効果があり、その比率が高いほど、また、固形物が食材であるほど酵素力価が高い結果(後述)が得られたことから、固形物の比率を50%、また固形物としては固形食材を用いることとした。固形食材は前記同様に蒸し、配合比の質量は、蒸し後の質量を意味するのは、実験例1と同様である。具体的には、試験区8(焙煎米糠粉末:押麦=50:50)、試験区9(焙煎米糠粉末:丸麦=50:50)、試験区10(焙煎米糠粉末:雑穀=50:50)とし、いずれも全量100gとした。雑穀は、株式会社はくばく製の商品名「十六穀ごはん」を用いた。また、実験例1で確認できた効果がスケールアップした場合でも得られるのかを検証するために、1kgにスケールアップして試験を行った。具体的には、試験区11(焙煎米糠:小豆=500g:500g)とした。層の厚さは試験区8〜10は約1cm、試験区11は約3cmだった。水分添加量は、試験区8〜10がいずれも20mL(焙煎米糠に対して40%)、試験区11は180mL(同38%)とした。培養工程以降は、実験例1と同様に実施した。麹菌の繁殖の様子は、試験区8および試験区9は、同程度に白みがかっており、麹菌がよく繁殖していたが、それに比べると試験区10は、その程度がやや弱かった。試験区11はスケールアップしたため全体の見た目が変わってくるので比較が難しいのだが、印象としては、試験区10程度には繁殖していた。
(炊飯方法の実験例)
(焙煎米糠麹の乾燥)
焙煎米糠麹を減圧乾燥法40℃で24時間乾燥した。
(乾燥焙煎米糠麹の粒度調整)
乾燥焙煎米糠麹は、粒径が不揃いなため、商品としての見栄えを考慮して、粒径の調整を行った。そばやうどんで使用する手延べ棒で1mm以下になるように、粉砕した。この際、とくに粒径を気にすることなく、大きな塊をつぶすようにするだけで、ほぼ均一な3mm以下の粒径になった。形態としては、顆粒状よりやや細かい粒状といった状態となる。
(炊飯調理の実験例)
次に、顆粒状よりやや細かい粒状になった乾燥焙煎米糠麹を調理する方法について述べる。まず、白米1合を水洗いする。ここに先に製造した乾燥焙煎米糠麹の粉末を15g振りかける。ここで15gというのは、1合(150g)の約1割を意味している。そこに、白米1合に必要な水を加えて混合し、そのまま放置する。今回は、一般家庭で通常行われている方法、すなわち、前の晩に洗米して、水を加え、一晩おいて、翌朝、炊飯器のスイッチを入れることを想定し、21時に上記の操作で、白米が入った釜に水道水を目盛りに合わせていれ、本発明の乾燥焙煎米糠麹の粉末15gを添加し、翌朝6時に炊飯器のスイッチが入るようにセットした。炊飯は通常のモードにおいて約50分で炊きあがった。炊いている間、炊飯器から立ち上る湯気から、白米にはない、やや香ばしい香りがでていた。
(炊きあがり時の状態および食味)
炊きあがりの白米ご飯は、全体的に茶褐色になっており、一見、炊き込みご飯のようである。食べてみても玄米ご飯のような食べづらさや、食味の悪さは、一切感じられず、炊き込みご飯と違い、たとえば、納豆や、生卵などと一緒に食べても、白米の時と変わらず、違和感なく食べられた。
本発明の効果を確認するため、以下の通り分析を行った。
(焙煎米糠麹の分析)
(焙煎米糠麹の酵素力価)
次にデータ取得方法および分析結果について記述する。
α−アミラーゼおよびグルコアミラーゼの2種類のデンプン分解系の酵素力価を、キッコーマンバイオケミファ株式会社のα−アミラーゼ測定キットおよび糖化力分別定量キットを用いて測定した。焙煎米糠麹の製造方法についての実験例1の試験区1〜7の結果を表1に、焙煎米糠麹の製造方法についての実験例2の試験区8〜11の結果を表2に示した。
表1 実験例1の試験区1〜7で製造した焙煎米糠麹の酵素力価測定結果
(固形食材の割合およびダミーによる比較)(U/g麹)
Figure 2021103946
表1に示されるように、固形食材の配合が高いほど、α-アミラーゼ、グルコアミラーゼともに酵素力価が高くなった。またダミーを加えた試験区も、対照区である試験区7に比べ、酵素力価が増加した。つまり、固形物を加えることによって、焙煎米糠層内の固形物の周囲に発生する隙間に存在する空気中の酸素が供給され、麹菌の生育を促したと考えられる。よって、固形物を加える一つ目の効果が確認できた。加えたデンプン質の効果に関しては、ダミーだけよりも、固形食材を加えた場合に酵素力価が増える傾向にあったことから、デンプン質を有する固形食材は、酸素の供給を確保する効果と、デンプンを供給する効果と、を持ち合わせていることが確認できた。
表2 実験例2の試験区8〜11で製造した焙煎米糠麹の酵素力価測定結果
(固形食材比率50%およびスケールアップの検証)
Figure 2021103946
いずれの試験区も、実験例1の試験区7、つまり従来法よりも酵素力価が高かった。実験例1の試験区1〜4に比べると、やや低かった。加えた固形食材やその配合比率など、様々な要因によって酵素力価に違いがでたが、ここで強調したいのは、固形部を加えない先行発明の方法に比べ、固形物として固形食材を加えたことで酵素力価が高まったことである。さらに本発明の固形物の添加は、試験区11の結果にも表れているように、スケールアップしても効果があることが確認できた。
(焙煎米糠麹の香気成分分析)
焙煎米糠麹の香気成分をガスクロマトグラフ質量分析計で測定した。検体3gおよび純水1mLを専用バイアルに封入して分析を行った。
分析装置は、ヘッドスペースサンプラーガスクロマトグラフ四重極型質量分析計(HP7694/6980 Plus GC / 5973N MSD,Agilent製)を用い、以下の条件で行った。
<ヘッドスペースサンプリング条件>
加熱温度:80 ℃ 加熱時間:30 min
<ガスクロマトグラフ条件>
分離カラム:DB−WAX[60 m × 0.25 mmID , 0.5μm, J&W Scientific製]
昇温条件:35 ℃(5分)→ 5 ℃/分 → 240 ℃(4分)
<質量分析条件>
イオン化法:電子イオン化(EI) 測定質量範囲:m/z 29〜350
図4に焙煎米糠麹のガスクロマトグラフ質量分析の比較結果を示した。図4のAが試験区1(固形食材添加区)、Bが試験区6(ダミー添加区)、Cが試験区7(先行発明の方法)のクロマトグラムである。この結果から明らかなように、Cの先行発明の方法では様々な臭い成分が検出された。特にアセトアルデヒド(図中丸1)が強く検出されていた。アセトアルデヒドは、例えば清酒においては木香様臭と表現され、嫌われる臭いである。ウイスキーなどではあえて木の香りをつけるが、本発明品では、避けたい臭いである。また酢酸エチル(図中丸3)も検出されていた。酢酸エチルはセメダインの臭いであり、やはり食品では避けたい臭いである。一方、固形物を添加した場合、臭い成分が検出されないか、検出されてもごくわずかだった。つまり固形物の添加は、本発明の課題であった先行発明で製造した米糠麹の風味の改善にも効果があることが確認できた。
(栄養成分の分析)
本発明で使用する粉末状の焙煎米糠麹の栄養成分分析及び水分活性を測定した。栄養成分のうち、水分は70℃−減圧乾燥法により測定した。灰分は550℃−直接灰化法により測定した。たんぱく質はケルダール法により測定した。脂質は酸分解法により測定した。食物繊維はプロスキー法(酵素-重量法)で測定した。糖質は以下の計算で求めた。すなわち糖質=100−(水分+灰分+たんぱく質+脂質+食物繊維)によって算出した。エネルギーは計算で求めた。エネルギー換算係数は、たんぱく質:4、脂質:9、糖質:4、炭水化物:4、食物繊維:2としてそれぞれの分析値に乗じて計算した。ナトリウムは希酸抽出法により調製した試料について原子吸光分光光度計(株式会社島津製作所AA−6300)を用いて測定した。食塩相当量はナトリウムの分析値に2.54を乗じ、単位をg/100gに換算して表示した。水分活性(Aw)はrotronic ag製のAW−ラボを用いて測定した。ビタミンB1は、塩酸分解後に、タカジアスターゼで酵素処理したのち、蛍光検出-液体クロマトグラフ法により分析した。ビタミンB2は、B1と同様の前処理ののち、フェリシアン化カリウムを反応液に用いた蛍光検出-ポストカラム液体クロマトグラフ法により分析した。結果を表3に示した。参考に、玄米及び90%精白米の栄養成分分析値を第七訂日本食品標準成分表より抜粋して併記した。特徴的な点として。本発明の乾燥焙煎米糠麹単独では、食物繊維とビタミンB1、B2が、90%精白米はもとより、玄米よりも大幅に増えていることがわかる。
表3 本発明の乾燥焙煎米糠麹の栄養成分分析結果
Figure 2021103946
(栄養成分の比較と本発明の乾燥焙煎米糠麹の栄養成分充足寄与)
実験例で行った炊飯方法を行った場合、本発明の乾燥焙煎米糠麹が白米に付与する栄養素の寄与率について考えてみた。実験例では白米1合(150g)に対して本発明の乾燥焙煎米糠麹を15g(10%)添加したが、ここでも10:1で計算してある。結果を表4に示した。
表4 栄養成分の比較と本発明の乾燥焙煎米糠麹の栄養成分充足率算出表
(90%精白米と本発明の粉末状焙煎米糠麹を10:1で混合した場合の栄養成分の計算値およびその混合物の90%精白米と玄米に対する相対比率)
Figure 2021103946
表4に示すように、白米に本発明の乾燥焙煎米糠麹を添加(混合比は白米:乾燥焙煎米糠麹=10:1)すると、90%精白米に比べミネラル分を示す灰分が約3倍、たんぱく質15%、脂質が2倍強、食物繊維が4倍強、ビタミンB1が約1.6倍、ビタミンB2にいたっては、8倍近くの増加となり、ビタミンB1を除いては、ほぼ玄米の栄養成分と匹敵するようになる。
以上の実験例を通じて、検証した結果で、本発明の焙煎米糠麹の製造方法によれば、酵素力価が向上すること、風味が改善することを確認し、本発明の目的が達成できていることを明確にした。また焙煎米糠麹の利用方法の一つとして玄米戻しを可能とする炊飯方法も提供できた。
以下に本発明の要点をまとめると
(1) 先行発明の製法に加え、米糠に固形物を加えて混合したのち、製造を開始することで、酵素力価が向上することが確認できた。またスケールアップした場合でも高品質の麹が製造できることが確認できた。
(2) さらに同じ固形物でも、デンプン質や糖質を有する固形食材を用いることで酵素力価が向上することおよび風味の改善が確認できた。
(3) デンプン質や糖質を含む固形食材としては、小豆、サツマイモ、麦などの穀物やイモ類を実験例で確認したが、その他、野菜類、種実類、果実類もデンプン質や糖質を有するので、ほぼ同様の効果が期待できる。
(4) 実験例において、本発明による焙煎米糠麹を用いた炊飯方法を示した。この方法により、栄養価が玄米に近くなったご飯が提供できた。
(5) 商品形態としては、様々なものが考えられる。先に示した炊飯方法以外にも、例えば、炊き込みご飯の素、漬物の素、甘酒、酵素入り野菜ジュース、菓子類などに含ませることにより、栄養価の高い食品になる効果が期待できる。
(6) 本発明は、焙煎米糠麹の製造方法を提供するものであるが、米糠の中でも栄養価の高い赤糠にも応用できる。赤糠には糠臭が特に強く感じられるため、製麹工程の前段階で焙煎処理を行っている。これにより糠臭がなくなり、黄な粉のような香りになる。焙煎工程は殺菌も兼ねているため、先行発明が殺菌を目的に使用していた乳酸水は必要なくなったのも大きな点である。
以上のことから、本発明の米糠麹は、焙煎工程によって、糠の雑菌をすべて殺菌するとともに、糠臭さを低減し、香ばしい香りを付与した。その焙煎米糠を麹にする工程では、固形物を混合することで酵素力価が向上した。さらに固形物をデンプン質や糖質を有する固形食材にすることによってさらに酵素力価が向上した。またビタミンB1、B2が麹菌によって生産されるので、本発明の米糠麹は、酵素及びビタミン豊富な食材となった。さらに原料に栄養価の高い赤糠を使用した場合、白米にはない栄養価も持つことになる。そこで、その焙煎米糠麹を乾燥して完成した乾燥焙煎米糠麹は、白米にはない豊富な栄養素を含んでおり、その乾燥焙煎米糠麹を白米と一緒に炊飯した後の栄養素は、玄米に近くなり、酵素作用によって消化吸収の良い白米ご飯を提供できる。そして上述のような特徴を生かした様々な食品素材としての利用が期待できる。
本発明は、
(1)米糠を焙煎してから麹にしたこと、米糠臭を著しく減少させたこと。
(2)焙煎米糠麹を乾燥して粉末状にしたことで、白米の分量(合)に合わせて、袋詰めが可能であること、および白米の粒に酵素力価を作用させやすくなること、
(3)白米を炊飯するとき、白米の量にあわせて、乾燥焙煎米糠麹を好みの量だけ添加することが可能であること、
(4)袋詰めした乾燥焙煎米糠麹で、携帯性が良くなること、
(5)袋詰めした乾燥焙煎米糠麹で、白米の炊飯以外の調理にも使用が可能であること、
(6)本発明の炊飯方法によれば、米糠臭がなく、玄米の栄養価を取り戻したように、おいしい白米ご飯にして食べられること、
以上のような効果を合わせ持っていることを付記する。

Claims (4)

  1. 米糠を焙煎して焙煎米糠粉末を製造する第一の工程と、
    前記焙煎米糠粉末10質量部に対して、水分を3〜9質量部の割合で、添加混合し、前記焙煎米糠粉末を焙煎米糠粒子にする第二の工程と、
    前記焙煎米糠粉末もしくは前記焙煎米糠粒子5〜8質量部に対して、0.02cm〜3.38cmの大きさである残部の固形物を5〜2質量部を添加混合して、全体を10質量部とする第三の工程と、
    前記焙煎米糠粉末もしくは前記焙煎米糠粒子に麹菌を植え付ける第四の工程と、
    前記第二の工程から前記第四の工程までを順序不同の工程とし、これら前記第二の工程から前記第四の工程までを終了した後、温度が20℃〜45℃、湿度が70%〜99%の範囲の環境下で24時間以上培養する第五の工程と、
    を含む焙煎米糠麹の製造方法。
  2. 前記固形物がダミーである請求項1に記載の焙煎米糠麹の製造方法。
  3. 前記焙煎米糠粒子に粉末状の麹菌を植え付けて培養した後、前記ダミーである固形物を取り除く工程を追加した請求項2に記載の焙煎米糠麹の製造方法。
  4. 前記固形物がデンプンを含む食材である請求項1に記載の焙煎米糠麹の製造方法。


JP2019235756A 2019-12-26 2019-12-26 焙煎米糠麹の製造方法 Active JP6937456B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019235756A JP6937456B2 (ja) 2019-12-26 2019-12-26 焙煎米糠麹の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019235756A JP6937456B2 (ja) 2019-12-26 2019-12-26 焙煎米糠麹の製造方法

Publications (2)

Publication Number Publication Date
JP2021103946A true JP2021103946A (ja) 2021-07-26
JP6937456B2 JP6937456B2 (ja) 2021-09-22

Family

ID=76918361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019235756A Active JP6937456B2 (ja) 2019-12-26 2019-12-26 焙煎米糠麹の製造方法

Country Status (1)

Country Link
JP (1) JP6937456B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621878A (zh) * 2022-03-24 2022-06-14 劲牌有限公司 一种绿衣红心小曲及其在提升小曲白酒中乙酸乙酯含量的应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417912B2 (ja) * 2022-05-20 2024-01-19 群馬県 米糠みその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621878A (zh) * 2022-03-24 2022-06-14 劲牌有限公司 一种绿衣红心小曲及其在提升小曲白酒中乙酸乙酯含量的应用

Also Published As

Publication number Publication date
JP6937456B2 (ja) 2021-09-22

Similar Documents

Publication Publication Date Title
Ray et al. Traditional and novel fermented foods and beverages from tropical root and tuber crops
KR100747787B1 (ko) 송이버섯이 포함된 된장의 제조방법
CN106360360A (zh) 一种调味专用新型豆瓣发酵工艺
JP6937456B2 (ja) 焙煎米糠麹の製造方法
Nout et al. Indigenous fermented foods
Sharma et al. An insight into traditional foods of north-western area of Himachal Pradesh
Panda et al. Fermented foods and beverages from tropical roots and tubers
Dangal et al. Review on: Uses of cereals in traditional foods of Nepal and their preparation process
Soro-Yao et al. Microbiology of Ivorian fermented products: A review
Hema et al. Millet food products
KR101329026B1 (ko) 쌀눈엿의 제조방법
CN111328979A (zh) 一种即食型米酿糍粑及其制造方法
KR102337313B1 (ko) 두류 가공식품의 제조방법 및 그 조성물
Okorie et al. The comparative analysis of sprouted legume and cereal based composite diet
KR100497657B1 (ko) 생청국장과 그 제조방법
KR100943070B1 (ko) 양파효소액을 이용한 인삼고추장 및 그 제조방법
KR100915456B1 (ko) 단호박 청국장의 제조 방법
KR100328479B1 (ko) 현미호박죽의 조성물
JP6713111B2 (ja) 乾燥焙煎米糠麹を使用した白米の炊飯方法
Pierson et al. Other legume-based fermented foods
KR20140125510A (ko) 효소를 이용한 강정 제조방법
KR101403522B1 (ko) 된장잼의 제조방법 및 이로 제조된 된장잼
CN103907825A (zh) 一种纯天然低温烘焙熟的全玉米粉及其制作方法
KR102233215B1 (ko) 종자 장을 이용한 장류 및 그 제조방법
CN106942698A (zh) 一种竹笋酱及其制备方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210112

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210112

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210520

R150 Certificate of patent or registration of utility model

Ref document number: 6937456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150