JP2021102810A - Rotation drive device, film deposition device comprising the same, and method for producing electronic device - Google Patents

Rotation drive device, film deposition device comprising the same, and method for producing electronic device Download PDF

Info

Publication number
JP2021102810A
JP2021102810A JP2020196318A JP2020196318A JP2021102810A JP 2021102810 A JP2021102810 A JP 2021102810A JP 2020196318 A JP2020196318 A JP 2020196318A JP 2020196318 A JP2020196318 A JP 2020196318A JP 2021102810 A JP2021102810 A JP 2021102810A
Authority
JP
Japan
Prior art keywords
carrier
substrate
carrier mounting
transported
mounting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020196318A
Other languages
Japanese (ja)
Other versions
JP7033180B2 (en
Inventor
栽賢 金
Jaehyun Kim
栽賢 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Publication of JP2021102810A publication Critical patent/JP2021102810A/en
Application granted granted Critical
Publication of JP7033180B2 publication Critical patent/JP7033180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/682Mask-wafer alignment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

To enable the positional adjustment (alignment) of a substrate in a reverse chamber.SOLUTION: A rotation drive device in the present invention has a carrier mounting part for mounting thereon a carried body carrier having a holding face for holding a carried body, a rotation mechanism that rotates the carrier mounting part, and an alignment mechanism for adjusting a relative positional relation between the carried body carrier and the carried body mounted on the carried body carrier in a direction parallel to the holding face. The alignment mechanism has a stage part that is provided in the carrier mounting part and is movable in the direction parallel to the holding face.SELECTED DRAWING: Figure 2

Description

本発明は、基板に成膜を行う成膜装置において、基板を回転させるのに用いられる回転駆動装置に関するものである。 The present invention relates to a rotation driving device used to rotate a substrate in a film forming apparatus for forming a film on the substrate.

有機EL表示装置(有機ELディスプレイ)の製造においては、有機EL表示装置を構成する有機発光素子(有機EL素子;OLED)を形成する際に、成膜装置の蒸発源から蒸発した蒸着材料を、画素パターンが形成されたマスクを介して、基板に成膜することで、有機物層や金属層を形成する。 In the manufacture of an organic EL display device (organic EL display), when the organic light emitting element (organic EL element; OLED) constituting the organic EL display device is formed, the vapor deposition material evaporated from the evaporation source of the film forming apparatus is used. An organic layer or a metal layer is formed by forming a film on a substrate through a mask on which a pixel pattern is formed.

かかる成膜装置又はこれを含む成膜システムには、いわゆるクラスタ式のものとインライン式のものがある。 Such a film forming apparatus or a film forming system including the film forming apparatus includes a so-called cluster type and an in-line type.

クラスタ式の成膜システムでは、基板に成膜が行われる複数の成膜室が、搬送ロボットが設けられる搬送室の周りにクラスタ状に配置され、基板が搬送ロボットによって各成膜室に順に搬送され成膜されることで、有機発光素子を構成する複数層の膜が形成される。 In the cluster-type film formation system, a plurality of film forming chambers for forming a film on a substrate are arranged in a cluster around a transport chamber in which a transfer robot is provided, and the substrate is sequentially conveyed to each film formation chamber by the transfer robot. By forming a film, a plurality of layers of films constituting the organic light emitting element are formed.

一方、インライン式の成膜システムでは、成膜用の基板が搭載された搬送キャリアがライン状に配置された複数の成膜室にローラ式又は磁気浮上式の搬送機構によって搬送されながら成膜される。 On the other hand, in an in-line type film forming system, a transfer carrier on which a film forming substrate is mounted is conveyed to a plurality of film forming chambers arranged in a line by a roller type or a magnetic levitation type transfer mechanism to form a film. To.

インライン式の成膜システムは、基板が搬入されるローディング部、搬送キャリアに搭載された基板への成膜が行われる成膜部、および基板を搬出するアンローディング部を含む第1搬送路を有している。インライン式の成膜システムは、空の搬送キャリアを回収する第2搬送路を有している。 The in-line type film forming system has a first transport path including a loading section in which the substrate is carried in, a film forming section in which the film is formed on the substrate mounted on the transport carrier, and an unloading section in which the substrate is carried out. doing. The in-line film forming system has a second transport path for collecting empty transport carriers.

インライン式の成膜システムにおいて、基板は、成膜システムの外部から、第1搬送路のローディング部に搬入される。搬入された基板は、ロボットによって、第2搬送路からの空の搬送キャリアの上面に、成膜面が上方を向いた状態で載置される。搬送キャリアは、基板を吸着保持する。搬送キャリアに保持された基板は、搬送キャリアごと上下が反転され、成膜面が下方を向いた状態で、成膜部に搬送される。成膜部では、基板の下部に配置された成膜源により、成膜部に固定配置されたマスクを介して、基板が搬送されながら成膜が行われる。 In the in-line film forming system, the substrate is carried into the loading portion of the first transport path from the outside of the film forming system. The carried-in substrate is placed by a robot on the upper surface of an empty transport carrier from the second transport path with the film-forming surface facing upward. The transport carrier attracts and holds the substrate. The substrate held by the transport carrier is turned upside down together with the transport carrier, and is transported to the film-forming portion with the film-forming surface facing downward. In the film forming section, the film forming source is arranged at the lower part of the substrate, and the film is formed while the substrate is conveyed through the mask fixedly arranged on the film forming section.

成膜完了後、アンローディング室に搬送された搬送キャリアは、再度反転され、基板の成膜面が上方を向いた状態で、第2搬送路に搬送される。第2搬送路に移動した搬送キャリアは、基板の保持を解除する。続いて、搬出ロボットにより基板のみが排出室に搬送され、成膜システム外部に搬出される。基板の保持を解除した空の搬送キャリアは、第2搬送路に沿って搬送されて、第1搬送路のローディング部に対応する位置に戻り、新たな基板の保持に用いられる。 After the film formation is completed, the transport carrier transported to the unloading chamber is inverted again and transported to the second transport path with the film formation surface of the substrate facing upward. The transport carrier that has moved to the second transport path releases the holding of the substrate. Subsequently, only the substrate is conveyed to the discharge chamber by the carry-out robot, and is carried out to the outside of the film forming system. The empty transport carrier that has released the holding of the substrate is transported along the second transport path, returns to the position corresponding to the loading portion of the first transport path, and is used for holding a new substrate.

特許文献1(韓国公開実用新案第20−2019−0000162号)は、インライン式の成膜システムの反転室内で、基板を搬送キャリアに保持させた後、搬送キャリアを反転させる構成を開示している。 Patent Document 1 (Korea Public Utility Model No. 20-2019-000162) discloses a configuration in which a substrate is held by a transfer carrier and then the transfer carrier is inverted in an inversion chamber of an in-line film formation system. ..

韓国公開実用新案第20−2019−0000162号公報Korea Public Utility Model No. 20-2019-000162

反転室で基板を搬送キャリアに載置して吸着する構成においては、基板を搬送キャリアの基板載置面に搬送する搬送ロボットの搬送誤差のため、基板が搬送キャリア上の基準位置からずれた位置に載置されることがある。 In the configuration in which the substrate is placed on the transfer carrier and sucked in the reversing chamber, the position where the substrate deviates from the reference position on the transfer carrier due to the transfer error of the transfer robot that transfers the substrate to the substrate mounting surface of the transfer carrier. May be placed in.

しかし、特許文献1は、このような基板の搬送誤差によって基板が搬送キャリアのずれた位置に載置される場合、基板の位置を調整するためのアライメント機構について開示していない。 However, Patent Document 1 does not disclose an alignment mechanism for adjusting the position of the substrate when the substrate is placed at a position where the transfer carrier is displaced due to such a transfer error of the substrate.

また、反転室に基板の載置位置を調整するためのアライメント機構を設置する場合、アライメント機構は、搬送キャリアの反転に対応可能な構成にする必要があり、これによって、アライメント機構を含む反転室の構成が複雑になり得る。 Further, when an alignment mechanism for adjusting the mounting position of the substrate is installed in the reversing chamber, the alignment mechanism must be configured to be capable of reversing the transport carrier, whereby the reversing chamber including the alignment mechanism is provided. The configuration of can be complicated.

本発明は、反転室での基板の位置調整(アライメント)を可能とする回転駆動装置、これを含む成膜装置、電子デバイスの製造方法を提供することを目的とする。 An object of the present invention is to provide a rotary drive device capable of adjusting the position (alignment) of a substrate in a reversing chamber, a film forming apparatus including the rotary drive device, and a method for manufacturing an electronic device.

本発明の第1態様による回転駆動装置は、被搬送体を保持する保持面を有する被搬送体キャリアが載置されるキャリア載置部と、前記キャリア載置部を回転させる回転機構と、前記被搬送体キャリアと前記被搬送体キャリアに載置された被搬送体との前記保持面に平行な方向における相対位置を調整するためのアライメント機構と、を備え、前記アライメント機構は、前記キャリア載置部内に設けられ、前記保持面に平行な方向に移動可能なステージ部を有することを特徴とする。 The rotation drive device according to the first aspect of the present invention includes a carrier mounting portion on which a carrier to be transported having a holding surface for holding the transported body is mounted, a rotation mechanism for rotating the carrier mounting portion, and the above. The carrier is provided with an alignment mechanism for adjusting the relative position of the carrier to be transported and the body to be transported mounted on the carrier to be transported in a direction parallel to the holding surface, and the alignment mechanism is mounted on the carrier. It is characterized by having a stage portion provided in the placement portion and movable in a direction parallel to the holding surface.

本発明によれば、反転室内での基板の位置調整(アライメント)が可能となる。 According to the present invention, it is possible to adjust the position (alignment) of the substrate in the reversing chamber.

図1は、有機EL表示装置の成膜装置を示す概念図である。FIG. 1 is a conceptual diagram showing a film forming apparatus of an organic EL display apparatus. 図2の(a)は、本発明の一実施形態に係る回転駆動装置の断面模式図であり、図2の(b)は、回転駆動装置の上面模式図である。FIG. 2A is a schematic cross-sectional view of a rotary drive device according to an embodiment of the present invention, and FIG. 2B is a schematic top view of the rotary drive device. 図3は、本発明の一実施形態に係る回転駆動装置による基板アライメント動作を示す図面である。FIG. 3 is a drawing showing a substrate alignment operation by the rotary drive device according to the embodiment of the present invention. 図4は、本発明の一実施形態に係る回転駆動装置による基板の反転処理動作を示す図面である。FIG. 4 is a drawing showing a substrate reversal processing operation by the rotary drive device according to the embodiment of the present invention. 図5は、本発明の一実施形態に係る回転駆動装置による基板の追加搬入動作を示す図面である。FIG. 5 is a drawing showing an additional loading operation of the substrate by the rotary drive device according to the embodiment of the present invention. 図6は、電子デバイスを示す模式図である。FIG. 6 is a schematic view showing an electronic device.

以下に図面を参照しつつ、本発明の好適な実施の形態について説明する。ただし、以下に記載されている構成部品の寸法、材質、形状およびそれらの相対配置、あるいは装置のハードウェア構成及びソフトウェア構成、処理フロー、製造条件などは、発明が適用される装置の構成や各種条件により適宜変更することができ、本発明の範囲を以下の記載の実施形態に限定する趣旨のものではない。なお、同一の構成要素には原則として同一の参照番号を付して、説明を省略する。 A preferred embodiment of the present invention will be described below with reference to the drawings. However, the dimensions, materials, shapes and their relative arrangements of the components described below, or the hardware configuration and software configuration of the device, the processing flow, the manufacturing conditions, etc., are the configurations of the device to which the invention is applied and various types. It can be changed as appropriate depending on the conditions, and it is not intended to limit the scope of the present invention to the embodiments described below. In principle, the same components are given the same reference numbers, and the description thereof will be omitted.

本発明は、成膜対象物に蒸発による成膜を行う成膜装置に好適であり、典型的には有機ELパネルを製造するために基板に対して有機材料及び/又は金属性材料等を蒸着して成膜する電子デバイス製造用の成膜装置に適用できる。成膜対象物たる基板の材料は、チャッキング可能な材料であればよく、ガラス以外にも、高分子材料のフィルム、金属、シリコンなどの材料を選択することができる。基板は、例えば、ガラス基板上にポリイミドなどのフィルムが積層された基板またはシリコンウエハであってもよい。成膜材料としても、有機材料以外に、金属性材料(金属、金属酸化物など)などを選択してもよい。
<成膜装置の全体構成>
図1は、有機EL表示装置の成膜装置100の全体構成を示す概念図である。概略、成膜装置100は、成膜処理工程搬送路100aと、リターン搬送路100bとを含み、成膜処理工程搬送路100aとリターン搬送路100bとの間でマスクM及び搬送キャリアCを回収及び供給するための、マスク回収搬送路100c、キャリア回収搬送路100d、マスク供給搬送路100e、および、キャリア供給搬送路100fを備えることで、循環型搬送路を構成する。
The present invention is suitable for a film forming apparatus that deposits a film on a film forming object by evaporation, and typically deposits an organic material and / or a metallic material or the like on a substrate in order to manufacture an organic EL panel. It can be applied to a film forming apparatus for manufacturing an electronic device for forming a film. The material of the substrate to be the film-forming object may be any material that can be chucked, and in addition to glass, a polymer material such as a film, metal, or silicon can be selected. The substrate may be, for example, a substrate or a silicon wafer in which a film such as polyimide is laminated on a glass substrate. As the film-forming material, a metallic material (metal, metal oxide, etc.) or the like may be selected in addition to the organic material.
<Overall configuration of film forming equipment>
FIG. 1 is a conceptual diagram showing the overall configuration of the film forming apparatus 100 of the organic EL display apparatus. Generally, the film forming apparatus 100 includes a film forming process transport path 100a and a return transport path 100b, and collects the mask M and the transport carrier C between the film forming process transport path 100a and the return transport path 100b. A circulation type transport path is configured by including the mask recovery transport path 100c, the carrier recovery transport path 100d, the mask supply transport path 100e, and the carrier supply transport path 100f for supplying.

成膜装置100は、循環型搬送路を構成する各構成要素、例えば基板搬入/反転室101、アライメント室103、成膜室105、マスク分離室107、基板排出/反転室109を含む。 The film forming apparatus 100 includes each component constituting the circulation type transport path, for example, a substrate carry-in / reversing chamber 101, an alignment chamber 103, a film forming chamber 105, a mask separation chamber 107, and a substrate discharging / reversing chamber 109.

本実施形態による成膜装置100では、成膜装置の外部より基板Gが搬送方向(矢印A)に搬入され、基板GとマスクMが搬送キャリアC上に位置決めされて保持され、搬送キャリアCが成膜処理工程搬送路上100aを移動しながら基板Gに対して成膜処理を施された後、成膜済みの基板Gが排出される。リターン搬送路100bでは、成膜処理完了後に搬送キャリアCから分離されたマスクMと、成膜済みの基板Gが排出された後の空の搬送キャリアCが、基板搬入位置へ搬送される。 In the film forming apparatus 100 according to the present embodiment, the substrate G is carried in the transport direction (arrow A) from the outside of the film forming apparatus, the substrate G and the mask M are positioned and held on the transport carrier C, and the transport carrier C is Film-forming process After the film-forming process is performed on the substrate G while moving 100a on the transport path, the film-forming substrate G is discharged. In the return transport path 100b, the mask M separated from the transport carrier C after the film formation process is completed and the empty transport carrier C after the film-forming substrate G is discharged are transported to the substrate carry-in position.

以下、図1を参照して、成膜装置100に含まれる構成要素での動作および処理についてより詳細に説明する。 Hereinafter, the operation and processing of the components included in the film forming apparatus 100 will be described in more detail with reference to FIG.

成膜装置100の成膜処理工程搬送路100aでは、成膜装置の外部から基板Gが基板搬入/反転室101に搬入されて搬送キャリアC上に保持され、搬送キャリアCとともに上下反転(表裏反転)される。 In the film forming process transfer path 100a of the film forming apparatus 100, the substrate G is carried into the substrate loading / inverting chamber 101 from the outside of the film forming apparatus, held on the transport carrier C, and turned upside down (front and back inversion) together with the transport carrier C. ).

すなわち、外部の基板ストッカ(不図示)から、成膜処理工程搬送路100a上の基板搬入/反転室101に基板Gが搬入されて、先に搬入されていた空の搬送キャリアC上の所定の保持位置で、基板チャッキング手段(例えば、静電チャックまたは、粘着チャック)によりチャッキングされる。この時、搬送キャリアCは、基板保持面または、基板チャッキング面が上方にある姿勢である。基板Gは、搬送ロボット(不図示)により基板チャッキング面上側に搬入されて、基板チャッキング面に載置される。 That is, the substrate G is carried into the substrate carry-in / reversing chamber 101 on the film forming process transport path 100a from the external substrate stocker (not shown), and the predetermined substrate G is carried on the empty transport carrier C which has been carried in earlier. At the holding position, the board is chucked by a substrate chucking means (for example, an electrostatic chuck or an adhesive chuck). At this time, the transport carrier C is in a posture in which the substrate holding surface or the substrate chucking surface is upward. The substrate G is carried into the upper side of the substrate chucking surface by a transfer robot (not shown) and placed on the substrate chucking surface.

基板Gを保持した搬送キャリアCは、基板搬入/反転室101の回転駆動装置200(図2参照)により上下反転(表裏反転)される。例えば、回転駆動装置200は、基板Gを保持した搬送キャリアCを進行方向(A)を軸として180度回転させる。これにより、搬送キャリアCおよび基板Gの上下が反転し、基板Gが搬送キャリアCのチャッキング面の下方側になり、基板Gの成膜面は下方を向く。 The transport carrier C holding the substrate G is upside down (upside down) by the rotation drive device 200 (see FIG. 2) of the substrate carry-in / reversing chamber 101. For example, the rotation drive device 200 rotates the transport carrier C holding the substrate G by 180 degrees about the traveling direction (A). As a result, the transfer carrier C and the substrate G are turned upside down, the substrate G is on the lower side of the chucking surface of the transfer carrier C, and the film-forming surface of the substrate G faces downward.

本発明の一実施形態による回転駆動装置200は、基板搬入/反転室101に搬入された基板Gが反転する前に、基板Gが搬送キャリアCに載置される位置を調整するためのアライメント機構を含む。 The rotation drive device 200 according to an embodiment of the present invention is an alignment mechanism for adjusting the position where the substrate G is placed on the transport carrier C before the substrate G carried into the substrate carry-in / reversing chamber 101 is inverted. including.

反転した搬送キャリアCは、ローラ搬送または、磁気浮上搬送方式によって、アライメント室103に搬送され、マスクMとの相対位置が調整される。 The inverted transfer carrier C is conveyed to the alignment chamber 103 by roller transfer or magnetic levitation transfer method, and its relative position with respect to the mask M is adjusted.

アライメント室103内で、搬送キャリア302は、基板チャッキング手段によって保持された基板Gが下方にある状態で維持される。 In the alignment chamber 103, the transport carrier 302 is maintained with the substrate G held by the substrate chucking means downward.

搬送キャリアCとは別のルート(マスク供給搬送路100e)でアライメント室103に搬入されたマスクMは、搬送キャリアCの下方に設置されたマスクトレー(不図示)に載置される。マスクMは、マスクトレーの上昇によって搬送キャリアCに保持された基板Gに接近し、所定の近接距離(計測位置)になると、基板GとマスクMに対しアライメント動作が行われる。 The mask M carried into the alignment chamber 103 by a route different from the transport carrier C (mask supply transport path 100e) is placed on a mask tray (not shown) installed below the transport carrier C. The mask M approaches the substrate G held by the transport carrier C by raising the mask tray, and when a predetermined proximity distance (measurement position) is reached, an alignment operation is performed on the substrate G and the mask M.

アライメント動作では、アライメントカメラによって、基板GとマスクMに予め形成されているアライメントマークを撮像し、両者の位置ずれ量及び方向を計測する。 In the alignment operation, the alignment camera images the alignment marks formed in advance on the substrate G and the mask M, and measures the amount and direction of the misalignment between the two.

計測された位置ずれ量及び方向に基づいて、搬送キャリアCの搬送駆動系(例えば、磁気浮上搬送系)により搬送キャリアCの位置を移動することによって位置調整(アライメント)を行う。基板GとマスクMの相対位置ずれ量が所定の閾値内に収まると、搬送キャリアCに設置された磁力印加手段(不図示)によりマスクMが引き寄せられ、搬送キャリアCに保持される。 Based on the measured displacement amount and direction, the position adjustment (alignment) is performed by moving the position of the transfer carrier C by the transfer drive system (for example, magnetic levitation transfer system) of the transfer carrier C. When the relative positional deviation between the substrate G and the mask M falls within a predetermined threshold value, the mask M is attracted by the magnetic force applying means (not shown) installed in the transport carrier C and held by the transport carrier C.

アライメントが完了しアライメント室103から排出された搬送キャリアCは、成膜室105に搬入される。 The transport carrier C, which has been aligned and discharged from the alignment chamber 103, is carried into the film forming chamber 105.

成膜室105では、基板GおよびマスクMを保持した搬送キャリアCを所定の速度で移動させながら、成膜室105下部に配置された蒸発源から有機EL発光材料を蒸発させて上方の基板Gに真空成膜する。本実施形態では、マスクMが搬送キャリアCにより基板Gと共に保持されたまま搬送されて成膜処理が行われる構成について説明するが、本発明はこれに限らず、マスクMは各成膜室に設置されてもよい。 In the film forming chamber 105, the organic EL light emitting material is evaporated from the evaporation source arranged in the lower part of the film forming chamber 105 while moving the transport carrier C holding the substrate G and the mask M at a predetermined speed to evaporate the organic EL light emitting material to the upper substrate G. Vacuum film is formed. In the present embodiment, the configuration in which the mask M is transported while being held together with the substrate G by the transport carrier C to perform the film forming process will be described, but the present invention is not limited to this, and the mask M is placed in each film forming chamber. It may be installed.

成膜処理を終えて成膜室105から排出された搬送キャリアCは、マスク分離室107に搬送され、マスクMが搬送キャリアCから下方に分離される。搬送キャリアCから分離されたマスクMは、マスク分離室107からマスク回収搬送路100cに沿ってリターン搬送路100bに搬送される。 The transport carrier C discharged from the film forming chamber 105 after the film forming process is transported to the mask separation chamber 107, and the mask M is separated downward from the transport carrier C. The mask M separated from the transport carrier C is transported from the mask separation chamber 107 to the return transport path 100b along the mask recovery transport path 100c.

そして、リターン搬送路100b上のマスク受取位置に、後述の基板排出後の空の搬送キャリアCが移動してくると、マスクMは再び搬送キャリアCの磁力印加手段によって保持される。このようにマスクMだけを保持した搬送キャリアCは、リターン搬送路100bに沿ってマスク供給搬送路100eに搬送される。 Then, when the empty transport carrier C after discharging the substrate, which will be described later, moves to the mask receiving position on the return transport path 100b, the mask M is held again by the magnetic force applying means of the transport carrier C. The transport carrier C holding only the mask M in this way is transported to the mask supply transport path 100e along the return transport path 100b.

一方、マスク分離室107でマスクMが分離された搬送キャリアCは、基板Gだけを保持したまま基板反転/排出室109に移動する。基板反転/排出室109内では、回転駆動装置(不図示)が搬送キャリアCを進行方向を軸として180度回転させる。これによって、基板Gの成膜面が上方を向くことになる。本実施形態において、基板反転/排出室109内の回転駆動装置は、基板搬入/反転室101内の回転駆動装置200とは違って、アライメント機構を含まない。 On the other hand, the transport carrier C from which the mask M is separated in the mask separation chamber 107 moves to the substrate reversal / discharge chamber 109 while holding only the substrate G. In the substrate reversal / discharge chamber 109, a rotation drive device (not shown) rotates the transport carrier C by 180 degrees about the traveling direction. As a result, the film-forming surface of the substrate G faces upward. In the present embodiment, the rotation drive device in the substrate reversing / discharging chamber 109 does not include an alignment mechanism unlike the rotation driving device 200 in the substrate loading / reversing chamber 101.

続いて、基板Gが搬送キャリアCからチャッキング解除されて、基板Gは、図示していない排出機構によって次の工程に搬送される。 Subsequently, the substrate G is unchucked from the transport carrier C, and the substrate G is transported to the next step by a discharge mechanism (not shown).

基板反転/排出室109で基板Gを排出して空の状態になった搬送キャリアCは、キャリア回収搬送路100dに沿って、リターン搬送路100bの始点位置に搬送される。 The transport carrier C, which has been emptied by discharging the substrate G in the substrate reversal / discharge chamber 109, is transported along the carrier recovery transport path 100d to the start point position of the return transport path 100b.

空の搬送キャリアCは、リターン搬送路100bに沿って基板搬入/反転室101に搬送される。この際、空の搬送キャリアCは、前述の通り、マスク回収搬送路100cからリターン搬送路100bに搬送されてきたマスクMを受け取る。 The empty transport carrier C is transported to the substrate carry-in / reversing chamber 101 along the return transport path 100b. At this time, the empty transport carrier C receives the mask M transported from the mask recovery transport path 100c to the return transport path 100b as described above.

リターン搬送路100bに沿って搬送された搬送キャリアCは、マスク供給搬送路100eでマスクMと再び分離され、分離されたマスクMは、成膜処理工程搬送路100a上のマスク装着位置に搬送される。 The transport carrier C transported along the return transport path 100b is separated from the mask M again by the mask supply transport path 100e, and the separated mask M is transported to the mask mounting position on the film forming process transport path 100a. To.

キャリア供給搬送路100fでマスクMが分離された後の空の搬送キャリアCは、リターン搬送路100bから成膜処理工程搬送路100aの始点位置の基板搬入および反転位置に搬送される。 The empty transport carrier C after the mask M is separated in the carrier supply transport path 100f is transported from the return transport path 100b to the substrate carry-in and reversal positions at the start point position of the film forming process transport path 100a.

これによって、本発明の一実施形態による成膜装置100は、循環型の搬送路をなすこととなる。 As a result, the film forming apparatus 100 according to the embodiment of the present invention forms a circulation type transport path.

<基板搬入/反転室の回転駆動装置>
図2(a)は、本発明の一実施形態による基板搬入/反転室101に設置される回転駆動装置200の断面模式図で、図2の(b)は、回転駆動装置200上面模式図である。
<Rotating drive device for board loading / reversing chamber>
FIG. 2A is a schematic cross-sectional view of the rotary drive device 200 installed in the substrate loading / reversing chamber 101 according to the embodiment of the present invention, and FIG. 2B is a schematic view of the upper surface of the rotary drive device 200. is there.

本発明の一実施形態による回転駆動装置200は、搬送キャリアCが載置されるキャリア載置台(キャリア載置部)201と、キャリア載置台201を回転して上下反転させるための回転機構203と、キャリア載置台201と基板Gの相対位置を調整するためのアライメント機構205を含む。 The rotation drive device 200 according to an embodiment of the present invention includes a carrier mounting base (carrier mounting portion) 201 on which the transport carrier C is mounted, and a rotation mechanism 203 for rotating the carrier mounting base 201 and turning it upside down. Includes an alignment mechanism 205 for adjusting the relative positions of the carrier mounting table 201 and the substrate G.

キャリア載置台201は、キャリア供給搬送路100fに沿って基板搬入/反転室101に搬入された空の搬送キャリアCが載置される。本実施形態によるキャリア載置台201は、図2の(a)に示すように、キャリア載置台201の対向する二つの主面に搬送キャリアCを載置できる。すなわち、キャリア載置台201は、第1キャリア載置面201aと第2キャリア載置面201bを有する。 On the carrier mounting table 201, an empty transport carrier C carried into the substrate carry-in / reversing chamber 101 along the carrier supply transport path 100f is placed. As shown in FIG. 2A, the carrier mounting table 201 according to the present embodiment can mount the transport carrier C on two opposing main surfaces of the carrier mounting table 201. That is, the carrier mounting table 201 has a first carrier mounting surface 201a and a second carrier mounting surface 201b.

キャリア載置台201は、搬送キャリアCを第1キャリア載置面201aおよび第2キャリア載置面201bに固定するためのキャリア固定手段(不図示)をそれぞれ有する。キャリア載置台201の両載置面側にそれぞれ設置されるキャリア固定手段(第1キャリア固定手段及び第2キャリア固定手段)は、例えば、クランピング手段を含むことができる。 The carrier mounting table 201 has carrier fixing means (not shown) for fixing the transport carrier C to the first carrier mounting surface 201a and the second carrier mounting surface 201b, respectively. Carrier fixing means (first carrier fixing means and second carrier fixing means) installed on both mounting surfaces of the carrier mounting table 201 can include, for example, clamping means.

このような構成により、キャリア載置台201の第1キャリア載置面201a上に載置されて固定された搬送キャリアCを反転させた後(第1キャリア載置面201aは、下方を向くようになり、第2キャリア載置面201bは、上方を向くようになる)、キャリア載置台201を再び元の位置で戻さなくても、新たな搬送キャリアCを第2キャリア載置面201b上に載置できる。これにより、工程時間(Tact time)を短縮することができる。 With such a configuration, after the transport carrier C mounted and fixed on the first carrier mounting surface 201a of the carrier mounting table 201 is inverted (the first carrier mounting surface 201a faces downward). Therefore, the second carrier mounting surface 201b faces upward), and a new transport carrier C is mounted on the second carrier mounting surface 201b without returning the carrier mounting table 201 to its original position again. Can be placed. Thereby, the process time (Takt time) can be shortened.

回転機構203は、キャリア載置台201を180度回転させて上下を反転させる機構である。本実施形態による回転駆動装置200の回転機構203は、キャリア載置台201の対向する二つの側面の中央部を支持する支持部213と回転駆動力を付与する回転駆動部(不図示)を含む。 The rotation mechanism 203 is a mechanism that rotates the carrier mounting table 201 by 180 degrees and turns it upside down. The rotation mechanism 203 of the rotation drive device 200 according to the present embodiment includes a support portion 213 that supports the central portions of two opposite side surfaces of the carrier mounting table 201 and a rotation drive portion (not shown) that applies a rotation drive force.

アライメント機構205は、キャリア載置台201を上下反転させる前に、搬送キャリアC上に基板チャッキング手段によってチャッキングされる基板Gの載置位置を調整するための機構である。 The alignment mechanism 205 is a mechanism for adjusting the mounting position of the substrate G chucked by the substrate chucking means on the transport carrier C before the carrier mounting table 201 is turned upside down.

基板搬入/反転室101には、被搬送体としての基板Gが外部の基板ストッカから搬送ロボットによって搬入されて、キャリア載置台201の第1キャリア載置面201aまたは第2キャリア載置面201bに載置された搬送キャリアCのチャッキング面に載置される。しかしながら、搬送ロボットの搬送誤差によって、基板Gが搬送キャリアCのチャッキング面上の基準位置に載置できず、基準位置からずれた位置に載置されることがある。 The substrate G as the object to be transported is carried into the substrate loading / reversing chamber 101 from an external substrate stocker by a transport robot, and is brought onto the first carrier mounting surface 201a or the second carrier mounting surface 201b of the carrier mounting table 201. It is mounted on the chucking surface of the mounted transport carrier C. However, due to the transfer error of the transfer robot, the substrate G cannot be placed at the reference position on the chucking surface of the transfer carrier C, and may be placed at a position deviated from the reference position.

本発明の一実施形態によれば、基板搬入/反転室101に、基板Gの載置位置を搬送キャリアCのチャッキング面上の基準位置に対して相対的に調整できるアライメント機構205を設けることで、搬送誤差によってずれた基板Gの位置を調整することができ、成膜処理の精度を向上させることができる。 According to one embodiment of the present invention, the substrate carry-in / reversing chamber 101 is provided with an alignment mechanism 205 capable of adjusting the mounting position of the substrate G relative to the reference position on the chucking surface of the transport carrier C. Therefore, the position of the substrate G displaced due to the transport error can be adjusted, and the accuracy of the film forming process can be improved.

このため、アライメント機構205は、基板Gを一時的に受け取る基板受取部221と、基板受取部221をチャッキング面(基板保持面)に平行な方向(例えば、チャッキング面に平行な第1方向、チャッキング面に平行であり、第1方向と交差する第2方向および、チャッキング面に垂直である第3方向を中心とした回転方向のうち、少なくとも一つの方向)に移動させるためのステージ部223と、基板Gと搬送キャリアCに形成されたアライメントマークを撮像するためのカメラ部225とを含む。 Therefore, the alignment mechanism 205 has a substrate receiving portion 221 that temporarily receives the substrate G and a substrate receiving portion 221 in a direction parallel to the chucking surface (board holding surface) (for example, a first direction parallel to the chucking surface). , A stage for moving in at least one of the second direction parallel to the chucking surface and intersecting the first direction and the rotation direction centered on the third direction perpendicular to the chucking surface). A unit 223 and a camera unit 225 for imaging an alignment mark formed on the substrate G and the transport carrier C are included.

基板受取部221は、基板搬入/反転室101に搬入された基板Gを搬送ロボットのハンドから一時的に受け取るためのピン状の部材で、第1キャリア載置面201aまたは、第2キャリア載置面201b、または、搬送キャリアCのチャッキング面(基板保持面)に垂直の方向(第3方向)に移動可能に(例えば、図2の(a)では、Z方向に昇降可能に)設置される。基板受取部221を昇降させるための受取部駆動部は、後述のように、ステージ部223に搭載され、サーボモータおよびボールネジ、または、リニアガイドを含む。 The board receiving unit 221 is a pin-shaped member for temporarily receiving the board G carried into the board carrying / reversing chamber 101 from the hand of the transfer robot, and is mounted on the first carrier mounting surface 201a or the second carrier. It is installed so as to be movable in the direction (third direction) perpendicular to the surface 201b or the chucking surface (board holding surface) of the transport carrier C (for example, in FIG. 2A, it can be raised and lowered in the Z direction). To. The receiving unit driving unit for raising and lowering the substrate receiving unit 221 is mounted on the stage unit 223 and includes a servomotor and a ball screw, or a linear guide, as described later.

基板受取部221は、基板Gを受け取る際は、搬送キャリアCに設置された貫通孔250を通して、+Z方向に上昇し、搬送キャリアCのチャッキング面から突出し、搬送ロボットから基板Gを受け取る。続いて、搬送キャリアCのチャッキング面(基板保持面)に平行な方向において、基板受取部221に載置された基板Gと搬送キャリアCの相対位置調整が行われる。位置調整が完了したら、基板受取部221は、−Z方向で下降して基板Gを搬送キャリアCのチャッキング面上におろす。 When receiving the substrate G, the substrate receiving unit 221 rises in the + Z direction through the through hole 250 installed in the transport carrier C, protrudes from the chucking surface of the transport carrier C, and receives the substrate G from the transport robot. Subsequently, the relative positions of the substrate G mounted on the substrate receiving unit 221 and the transport carrier C are adjusted in a direction parallel to the chucking surface (board holding surface) of the transport carrier C. When the position adjustment is completed, the substrate receiving unit 221 descends in the −Z direction to lower the substrate G onto the chucking surface of the transport carrier C.

搬送キャリアCが第2キャリア載置面201bに載置されている場合(すなわち、キャリア載置台201が反転されている場合)にも同様に、基板受取部221は、第2キャリア載置面201b側に移動して、第2キャリア載置面201bに載置された搬送キャリアCのチャッキング面上に突出し、基板Gを受け取る。 Similarly, when the transport carrier C is mounted on the second carrier mounting surface 201b (that is, when the carrier mounting table 201 is inverted), the substrate receiving unit 221 also uses the second carrier mounting surface 201b. It moves to the side, projects onto the chucking surface of the transport carrier C mounted on the second carrier mounting surface 201b, and receives the substrate G.

このように、本実施形態の基板受取部221は、第1キャリア載置面201aおよび第2キャリア載置面201bに垂直である方向に、各載置面に載置された搬送キャリアCのチャッキング面から突出できるようにすることで、基板受取部221の構成をシンプルにできる。 As described above, the substrate receiving unit 221 of the present embodiment has a chuck of the transport carrier C mounted on each mounting surface in the direction perpendicular to the first carrier mounting surface 201a and the second carrier mounting surface 201b. By making it possible to project from the king surface, the configuration of the substrate receiving unit 221 can be simplified.

基板受取部221は、基板Gの複数個所を支持できるように設置される。例えば、基板受取部221は、図2の(b)に示すように、第1キャリア載置面201aまたは、第2キャリア載置面201bの周縁部(したがって、搬送キャリアCのチャッキング面の周縁部または、基板Gの周縁部)に沿って複数個が設けられる。 The substrate receiving unit 221 is installed so as to support a plurality of locations on the substrate G. For example, as shown in FIG. 2B, the substrate receiving portion 221 is a peripheral portion of the first carrier mounting surface 201a or the second carrier mounting surface 201b (thus, the peripheral edge of the chucking surface of the transport carrier C). A plurality of portions or a peripheral portion of the substrate G) are provided.

これにより、大型化された基板Gをより安定的に支持することができる。また、基板Gの周縁部を複数個の基板受取部221により支持すれば、基板Gは、自重によって中央部が下方に撓むようになり、基板受取部221の下降につれ搬送キャリアCのチャッキング面に基板Gの中央部から周縁部に順次触れるようになるので、基板チャッキング手段によるチャッキングの際、基板Gにシワが生じることを抑制できる。 As a result, the enlarged substrate G can be supported more stably. Further, if the peripheral edge portion of the substrate G is supported by a plurality of substrate receiving portions 221s, the central portion of the substrate G bends downward due to its own weight, and as the substrate receiving portion 221 descends, it becomes a chucking surface of the transport carrier C. Since the central portion to the peripheral portion of the substrate G are sequentially touched, it is possible to suppress the occurrence of wrinkles on the substrate G during chucking by the substrate chucking means.

ただし、本発明はこれに限らず、基板受取部221は、基板Gの撓みを低減させるために基板Gの中央部を支持できる位置に設けてもよい。これは、基板搬入/反転室101で搬送キャリアC上に載置される基板Gは、成膜面が上方に向かっていて、基板受取部221は基板Gの成膜面でない反対側面を支持するためである。 However, the present invention is not limited to this, and the substrate receiving portion 221 may be provided at a position where the central portion of the substrate G can be supported in order to reduce the deflection of the substrate G. This is because the substrate G placed on the transport carrier C in the substrate carry-in / reversing chamber 101 has a film-forming surface facing upward, and the substrate receiving portion 221 supports the opposite side surface of the substrate G that is not the film-forming surface. Because.

また、基板受取部221は、基板Gの一長辺側からこれと対向する他の長辺側に向かって順次に下降することができるように構成されても良い。すなわち、複数の基板受取部221は、それぞれ独立に昇降可能に構成されてもよい。 Further, the substrate receiving unit 221 may be configured so as to be able to sequentially descend from one long side side of the substrate G toward the other long side side facing the substrate G. That is, the plurality of substrate receiving units 221 may be configured to be able to move up and down independently.

本発明の一実施形態による成膜装置100に用いられる被搬送体キャリアとしての搬送キャリアCは、図2の(b)に示すように、基板受取部221が挿通可能にチャッキング面の周縁部に設置された複数の貫通孔250を有する。貫通孔250は、基板受取部221に載置された基板Gの搬送キャリアCに対する位置調整が行われる際、基板受取部221の移動を許容できるよう、搬送キャリアCのチャッキング面(基板保持面)に平行な方向または貫通孔250の半径方向において基板受取部221の断面直径より大きい直径を有するように設けられる。 As shown in FIG. 2B, the transport carrier C as the carrier to be transported used in the film forming apparatus 100 according to the embodiment of the present invention has a peripheral portion of a chucking surface so that the substrate receiving portion 221 can be inserted therethrough. It has a plurality of through holes 250 installed in. The through hole 250 has a chucking surface (board holding surface) of the transport carrier C so that the substrate receiving portion 221 can be moved when the position of the substrate G mounted on the substrate receiving portion 221 is adjusted with respect to the transport carrier C. ) Or in the radial direction of the through hole 250 so as to have a diameter larger than the cross-sectional diameter of the substrate receiving portion 221.

アライメント機構205のステージ部223は、基板受取部221に支持された基板Gを、搬送キャリアCに対して搬送キャリアCのチャッキング面に平行な方向(X方向、Y方向、およびZ軸を中心にした回転方向のうち少なくとも一つの方向;XYθ方向ともいう。)に移動させるための部材である。このため、ステージ部223は、例えば、ステージプレート(不図示)とステージプレートを+X方向および−X方向にそれぞれ移動させるための2個のサーボモータ(不図示)およびボールネジ(不図示)と、+Y方向および−Y方向にそれぞれ移動させるための2個のサーボモータ(不図示)およびボールネジ(不図示)を含む。ステージ部223のステージプレートには、基板受取部221およびこれをZ方向に駆動するための受取部駆動部(不図示)が搭載される。 The stage portion 223 of the alignment mechanism 205 centers the substrate G supported by the substrate receiving portion 221 in directions parallel to the chucking surface of the transport carrier C with respect to the transport carrier C (X direction, Y direction, and Z axis). It is a member for moving in at least one direction (also referred to as XYθ direction) in the direction of rotation. Therefore, the stage unit 223 includes, for example, a stage plate (not shown), two servomotors (not shown) and a ball screw (not shown) for moving the stage plate in the + X direction and the −X direction, respectively, and + Y. Includes two servomotors (not shown) and a ball screw (not shown) for movement in the directional and -Y directions, respectively. On the stage plate of the stage unit 223, a substrate receiving unit 221 and a receiving unit driving unit (not shown) for driving the substrate receiving unit 221 in the Z direction are mounted.

サーボモータおよびボールネジによってステージプレートをXYθ方向に移動させることで、ステージプレートに搭載された基板受取部221およびこれに支持された基板Gを搬送キャリアCに対して相対的にXYθ方向に移動させることができ、基板Gと搬送キャリアCの相対位置を調整することができる。 By moving the stage plate in the XYθ direction by the servomotor and the ball screw, the substrate receiving portion 221 mounted on the stage plate and the substrate G supported by the substrate receiving portion 221 are moved in the XYθ direction relative to the transport carrier C. The relative positions of the substrate G and the transport carrier C can be adjusted.

特に、本実施形態によれば、アライメント機構205のステージ部223がキャリア載置台201内に設置される。これによって、搬送キャリアCの上下反転処理を行う回転駆動装置200において、基板Gと搬送キャリアC間の相対位置の調整を行うアライメント機構が複雑にならない。 In particular, according to the present embodiment, the stage portion 223 of the alignment mechanism 205 is installed in the carrier mounting table 201. As a result, in the rotary drive device 200 that performs the upside-down processing of the transport carrier C, the alignment mechanism that adjusts the relative position between the substrate G and the transport carrier C is not complicated.

従来のアライメント機構は、通常、チャンバの外側にステージ部を設けて、基板を保持する基板ホルダとステージ部をシャフトによって接続してステージ部の駆動力を基板ホルダに伝える構造をとった。しかし、搬送キャリアCが反転処理される基板搬入/反転室101に従来の構成のアライメント機構を適用する場合、アライメント機構は非常に複雑になってしまう。 The conventional alignment mechanism usually has a structure in which a stage portion is provided on the outside of the chamber, the substrate holder for holding the substrate and the stage portion are connected by a shaft, and the driving force of the stage portion is transmitted to the substrate holder. However, when the alignment mechanism of the conventional configuration is applied to the substrate carry-in / reversing chamber 101 in which the transport carrier C is inverted, the alignment mechanism becomes very complicated.

本実施形態においては、アライメント機構205のステージ部223を基板搬入/反転室101の外部でなくキャリア載置台201内に設置することにより、キャリア載置台201が反転する構成においても、シンプルな構成でアライメント機構を実現できる。 In the present embodiment, the stage portion 223 of the alignment mechanism 205 is installed in the carrier mounting table 201 instead of outside the substrate loading / reversing chamber 101, so that the carrier mounting table 201 can be inverted even in a simple configuration. An alignment mechanism can be realized.

カメラ部225は、基板Gと搬送キャリアCのアライメントマークを撮像するための光学手段である。カメラ部225は、基板受取部221に支持された基板Gのアライメントマークと搬送キャリアCのアライメントマークを撮像して、これに基づいて(例えば、画像処理などにより)、基板Gが搬送キャリアCのチャッキング面上の基準位置からのずれ量および方向を計測する。 The camera unit 225 is an optical means for capturing an alignment mark between the substrate G and the transport carrier C. The camera unit 225 takes an image of the alignment mark of the substrate G supported by the substrate receiving unit 221 and the alignment mark of the transport carrier C, and based on this (for example, by image processing or the like), the substrate G is the transport carrier C. Measure the amount and direction of deviation from the reference position on the chucking surface.

基板Gが搬送キャリアCの基準位置から所定の閾値以上にずれている場合、そのずれ量に基づいて、基板受取部221が搭載されたステージ部223をXYθ方向に駆動することによって、基板Gと搬送キャリアCの相対位置を調整する。 When the substrate G deviates from the reference position of the transport carrier C by a predetermined threshold value or more, the stage portion 223 on which the substrate receiving unit 221 is mounted is driven in the XYθ direction based on the deviation amount, thereby causing the substrate G to deviate from the reference position. The relative position of the transport carrier C is adjusted.

カメラ部225は、図2の(a)に示すように、基板搬入/反転室101のハウジング280の上面外側に設置される。カメラ部225の位置に対応するハウジング280の部分には透明窓が設けられ、カメラ部225によってハウジング280内の基板Gと搬送キャリアCのアライメントマークを撮像できる。ただし、本発明はこれに限らず、カメラ部225は、ハウジング280の底面外側に設置されてもよい。 As shown in FIG. 2A, the camera unit 225 is installed on the outside of the upper surface of the housing 280 of the substrate carry-in / reversing chamber 101. A transparent window is provided in the portion of the housing 280 corresponding to the position of the camera unit 225, and the camera unit 225 can image the alignment mark between the substrate G and the transport carrier C in the housing 280. However, the present invention is not limited to this, and the camera unit 225 may be installed on the outside of the bottom surface of the housing 280.

<基板搬入/反転プロセス>
図3は、本発明の一実施形態に係る回転駆動装置200による基板の搬入およびアライメント動作を示す。
<Board loading / reversing process>
FIG. 3 shows a substrate loading and alignment operation by the rotary drive device 200 according to the embodiment of the present invention.

図3の(a)に示すように、空の搬送キャリアCが基板搬入/反転室101内に搬入されて、キャリア載置台201の、例えば、第1キャリア載置面201aに載置される。 As shown in FIG. 3A, the empty transport carrier C is carried into the substrate loading / reversing chamber 101 and mounted on the carrier mounting table 201, for example, the first carrier mounting surface 201a.

搬送キャリアCが第1キャリア載置面201aに載置されると、図3の(b)に示すように、基板受取部221が受取部駆動部によって第1キャリア載置面201a側に移動して(例えば、上昇して)、搬送キャリアCの貫通孔250を通して搬送キャリアCのチャッキング面から突出する。この際、基板受取部221が突出する高さは、搬送ロボットのハンドが基板Gを基板受取部221に載置するにおいて、搬送キャリアCのチャッキング面と干渉しない程度の高さであることが好ましい。 When the transport carrier C is mounted on the first carrier mounting surface 201a, the substrate receiving unit 221 moves to the first carrier mounting surface 201a side by the receiving unit driving unit as shown in FIG. 3B. (For example, ascending), it protrudes from the chucking surface of the transport carrier C through the through hole 250 of the transport carrier C. At this time, the height at which the substrate receiving portion 221 protrudes is such that the hand of the conveying robot does not interfere with the chucking surface of the conveying carrier C when the substrate G is placed on the substrate receiving portion 221. preferable.

被搬送体としての基板Gが外部ストッカから搬送ロボットによって基板搬入/反転室101内に搬入されて、基板受取部221上に載置される。この際、基板Gは、成膜面が上方となるよう基板受取部221上に載置される。 The substrate G as the object to be transported is carried into the substrate carry-in / reversing chamber 101 by a transfer robot from an external stocker and placed on the board receiving unit 221. At this time, the substrate G is placed on the substrate receiving unit 221 so that the film-forming surface faces upward.

続いて、図3の(c)に示すように、基板受取部221が下降し、基板受取部221に支持された基板Gと搬送キャリアCのチャッキング面の間の距離が所定の計測距離になったら、カメラ部225により、基板Gと搬送キャリアCのアライメントマークを撮像して、これに基づいて、XYθ方向においての相対位置ずれ量およびずれ方向を計測する。ただし、本発明はこれに限定されず、基板受取部221を下降させずに、基板Gを受け取った高さで、相対位置のずれを測定してもいい。つまり、基板受取部221が基板Gを受け取る高さが、計測高さであってもいい。 Subsequently, as shown in FIG. 3C, the substrate receiving portion 221 is lowered, and the distance between the substrate G supported by the substrate receiving portion 221 and the chucking surface of the transport carrier C becomes a predetermined measurement distance. Then, the camera unit 225 takes an image of the alignment mark between the substrate G and the transport carrier C, and based on this, measures the relative positional deviation amount and the deviation direction in the XYθ direction. However, the present invention is not limited to this, and the deviation of the relative position may be measured at the height at which the substrate G is received without lowering the substrate receiving portion 221. That is, the height at which the substrate receiving unit 221 receives the substrate G may be the measured height.

相対位置ずれ量が所定の閾値より大きい場合、計測された相対位置ずれとずれ方向に基づいて、アライメント機構205のステージ部223を移動させ、ステージ部223のステージプレートに搭載された基板受取部221を移動させることによって、基板Gの搬送キャリアCに対する位置を調整する。この過程は、基板Gと搬送キャリアCの相対位置ずれ量が所定の閾値内に収まるまで繰り返される。 When the relative misalignment amount is larger than a predetermined threshold value, the stage portion 223 of the alignment mechanism 205 is moved based on the measured relative misalignment and the displacement direction, and the substrate receiving portion 221 mounted on the stage plate of the stage portion 223 is moved. Adjusts the position of the substrate G with respect to the transport carrier C by moving the substrate G. This process is repeated until the relative positional deviation between the substrate G and the transport carrier C falls within a predetermined threshold value.

基板Gと搬送キャリアCの相対位置ずれ量が所定の閾値内に収まると、図3の(d)に示すように、基板受取部221を下降させ、基板Gを搬送キャリアCのチャッキング面に載置して、搬送キャリアCの基板チャッキング手段によってチャッキングする。後述の反転処理動作において、基板Gと搬送キャリアCが分離することをより確実に防ぐために、基板チャッキング手段以外に、別途のクランピング手段によって基板Gを搬送キャリアCに追加に固定してもよい
図4は、本発明の一実施形態に係る回転駆動装置200による基板の反前処理動作を示す図面である。
When the relative positional deviation between the substrate G and the transport carrier C falls within a predetermined threshold value, the substrate receiving portion 221 is lowered as shown in FIG. 3D, and the substrate G is brought onto the chucking surface of the transport carrier C. It is placed and chucked by the substrate chucking means of the transport carrier C. In order to more reliably prevent the substrate G and the transport carrier C from being separated in the reversing processing operation described later, the substrate G may be additionally fixed to the transport carrier C by a separate clamping means other than the substrate chucking means. A good FIG. 4 is a drawing showing an anti-pretreatment operation of the substrate by the rotation driving device 200 according to the embodiment of the present invention.

基板Gが搬送キャリアCのチャッキング面にチャッキングされ固定されると、キャリア固定手段(不図示)によって搬送キャリアCをキャリア載置台201に固定した状態で、回転機構203によりキャリア載置台201を180度回転して上下を反転させる。 When the substrate G is chucked and fixed to the chucking surface of the transport carrier C, the carrier mount 201 is moved by the rotation mechanism 203 while the transport carrier C is fixed to the carrier mount 201 by the carrier fixing means (not shown). Rotate 180 degrees and turn it upside down.

これによって、搬送キャリアCおよび基板Gの上下関係が反転し、基板Gの成膜面は下方を向く。 As a result, the vertical relationship between the transport carrier C and the substrate G is reversed, and the film-forming surface of the substrate G faces downward.

このように、本実施形態によれば、基板搬入/反転室101のアライメント機構205のステージ部223がキャリア載置台201内に設置されるので、基板Gの反転が行われる基板搬入/反転室101内においてのアライメント機構が実現できる。さらに、アライメント機構のステージ部が基板搬入/反転室101の外部に設置される場合に比べて、簡単な構造でアライメント機構を実現できる。 As described above, according to the present embodiment, since the stage portion 223 of the alignment mechanism 205 of the substrate loading / reversing chamber 101 is installed in the carrier mounting table 201, the substrate loading / reversing chamber 101 in which the substrate G is inverted is performed. An in-house alignment mechanism can be realized. Further, the alignment mechanism can be realized with a simple structure as compared with the case where the stage portion of the alignment mechanism is installed outside the substrate loading / inverting chamber 101.

図5は、本発明の一実施形態に係る回転駆動装置200による基板の追加搬入動作を示す。 FIG. 5 shows an additional loading operation of the substrate by the rotation driving device 200 according to the embodiment of the present invention.

基板Gの反転処理が完了すると、キャリア固定手段によって固定が解除され、搬送キャリアCは基板Gが下方を向いたまま、基板搬入/反転室101から搬出されてアライメント室103に搬送される。 When the reversing process of the substrate G is completed, the fixing is released by the carrier fixing means, and the transport carrier C is carried out from the substrate loading / inverting chamber 101 and transported to the alignment chamber 103 with the substrate G facing downward.

続いて、基板搬入/反転室101で他の空の搬送キャリアC’が搬入され、上方を向いているキャリア載置台201の第2キャリア載置面201bに載置される。本発明の一実施形態による回転駆動装置200は、キャリア載置台201が互いに対向する二つの載置面を有するので、新たな空の搬送キャリアC’を載置するために、キャリア載置台201を再び180度回転して元の位置に戻す必要がなく、以前に反転処理された搬送キャリアCが搬出された状態で、すぐに新たな空の搬送キャリアC’を受け入れることができる。これにより、全体工程のタクトタイムを低減することができる。 Subsequently, another empty transport carrier C'is carried in the substrate loading / reversing chamber 101 and mounted on the second carrier mounting surface 201b of the carrier mounting table 201 facing upward. In the rotary drive device 200 according to the embodiment of the present invention, since the carrier mounting base 201 has two mounting surfaces facing each other, the carrier mounting base 201 is mounted in order to mount a new empty transport carrier C'. It is not necessary to rotate 180 degrees again and return to the original position, and a new empty transport carrier C'can be immediately accepted in the state where the previously inverted transport carrier C has been carried out. As a result, the takt time of the entire process can be reduced.

キャリア載置台201の第2キャリア載置面201bに搬送キャリアC’が載置されれば、図3の(b)〜(d)に示した動作と同じ動作によって、搬送キャリアC’のチャッキング面に位置調整された新しい基板G’をチャッキングして保持し、図4に示したもの同様に、反転処理を行う。 If the transport carrier C'is mounted on the second carrier mounting surface 201b of the carrier mounting table 201, the transport carrier C'is chucked by the same operations as those shown in FIGS. 3 (b) to 3 (d). The new substrate G'position adjusted to the surface is chucked and held, and the inversion process is performed in the same manner as that shown in FIG.

<電子デバイスの製造方法>
次に、本実施形態の成膜装置を用いた電子デバイスの製造方法の一例を説明する。以下、電子デバイスの例として有機EL表示装置の構成及び製造方法を例示する。
<Manufacturing method of electronic devices>
Next, an example of a method for manufacturing an electronic device using the film forming apparatus of the present embodiment will be described. Hereinafter, the configuration and manufacturing method of the organic EL display device will be illustrated as an example of the electronic device.

図6(a)は、有機EL表示装置60の全体図、図6(b)は、1画素の断面構造を示している。 FIG. 6A shows an overall view of the organic EL display device 60, and FIG. 6B shows a cross-sectional structure of one pixel.

図6(a)に示すように、有機EL表示装置60の表示領域61には、発光素子を複数備える画素62がマトリクス状に複数配置されている。発光素子のそれぞれは、一対の電極に挟まれた有機層を備えた構造を有している。なお、ここでいう画素とは、表示領域61において所望の色の表示を可能とする最小単位を指している。本実施例にかかる有機EL表示装置の場合、互いに異なる発光を示す第1発光素子62R、第2発光素子62G、第3発光素子62Bの組合せにより画素62が構成されている。画素62は、赤色発光素子と緑色発光素子と青色発光素子の組合せで構成されることが多いが、黄色発光素子とシアン発光素子と白色発光素子の組み合わせでもよく、少なくとも1色以上であれば特に制限されるものではない。 As shown in FIG. 6A, a plurality of pixels 62 including a plurality of light emitting elements are arranged in a matrix in the display area 61 of the organic EL display device 60. Each of the light emitting elements has a structure including an organic layer sandwiched between a pair of electrodes. The pixel referred to here refers to the smallest unit that enables the display of a desired color in the display area 61. In the case of the organic EL display device according to this embodiment, the pixel 62 is composed of a combination of a first light emitting element 62R, a second light emitting element 62G, and a third light emitting element 62B that emit light differently from each other. The pixel 62 is often composed of a combination of a red light emitting element, a green light emitting element, and a blue light emitting element, but may be a combination of a yellow light emitting element, a cyan light emitting element, and a white light emitting element, and is particularly limited to at least one color. There are no restrictions.

図6(b)は、図6(a)のA−B線における部分断面模式図である。画素62は、基板63上に、陽極64と、正孔輸送層65と、発光層66R、66G、66Bのいずれかと、電子輸送層67と、陰極68と、を備える有機EL素子を有している。これらのうち、正孔輸送層65、発光層66R、66G、66B、電子輸送層67が有機層に当たる。また、本実施形態では、発光層66Rは赤色を発する有機EL層、発光層66Gは緑色を発する有機EL層、発光層66Bは青色を発する有機EL層である。発光層66R、66G、66Bは、それぞれ赤色、緑色、青色を発する発光素子(有機EL素子と記述する場合もある)に対応するパターンに形成されている。また、陽極64は、発光素子ごとに分離して形成されている。正孔輸送層65と電子輸送層67と陰極68は、複数の発光素子62R、62G、62Bに対して共通で形成されていてもよいし、発光素子毎に形成されていてもよい。なお、陽極64と陰極68とが異物によってショートするのを防ぐために、陽極64間に絶縁層69が設けられている。さらに、有機EL層は水分や酸素によって劣化するため、水分や酸素から有機EL素子を保護するための保護層70が設けられている。 FIG. 6B is a schematic partial cross-sectional view taken along the line AB of FIG. 6A. The pixel 62 has an organic EL element having an anode 64, a hole transport layer 65, any of the light emitting layers 66R, 66G, 66B, an electron transport layer 67, and a cathode 68 on the substrate 63. There is. Of these, the hole transport layer 65, the light emitting layers 66R, 66G, 66B, and the electron transport layer 67 correspond to the organic layer. Further, in the present embodiment, the light emitting layer 66R is an organic EL layer that emits red, the light emitting layer 66G is an organic EL layer that emits green, and the light emitting layer 66B is an organic EL layer that emits blue. The light emitting layers 66R, 66G, and 66B are formed in a pattern corresponding to a light emitting element (sometimes referred to as an organic EL element) that emits red, green, and blue, respectively. Further, the anode 64 is formed separately for each light emitting element. The hole transport layer 65, the electron transport layer 67, and the cathode 68 may be formed in common with the plurality of light emitting elements 62R, 62G, and 62B, or may be formed for each light emitting element. An insulating layer 69 is provided between the anode 64 in order to prevent the anode 64 and the cathode 68 from being short-circuited by foreign matter. Further, since the organic EL layer is deteriorated by moisture and oxygen, a protective layer 70 for protecting the organic EL element from moisture and oxygen is provided.

図6(b)では正孔輸送層65や電子輸送層67が一つの層で示されているが、有機EL表示素子の構造によって、正孔ブロック層や電子ブロック層を含む複数の層で形成されてもよい。また、陽極64と正孔輸送層65との間には陽極64から正孔輸送層65への正孔の注入が円滑に行われるようにすることのできるエネルギーバンド構造を有する正孔注入層を形成することもできる。同様に、陰極68と電子輸送層67の間にも電子注入層を形成することもできる。 In FIG. 6B, the hole transport layer 65 and the electron transport layer 67 are shown as one layer, but they are formed of a plurality of layers including the hole block layer and the electron block layer due to the structure of the organic EL display element. May be done. Further, between the anode 64 and the hole transport layer 65, a hole injection layer having an energy band structure capable of smoothly injecting holes from the anode 64 into the hole transport layer 65 is provided. It can also be formed. Similarly, an electron injection layer can be formed between the cathode 68 and the electron transport layer 67.

次に、有機EL表示装置の製造方法の例について具体的に説明する。 Next, an example of a method for manufacturing an organic EL display device will be specifically described.

まず、有機EL表示装置を駆動するための回路(不図示)および陽極64が形成された基板63を準備する。 First, a circuit board (not shown) for driving the organic EL display device and a substrate 63 on which the anode 64 is formed are prepared.

陽極64が形成された基板63の上にアクリル樹脂をスピンコートで形成し、アクリル樹脂をリソグラフィ法により、陽極64が形成された部分に開口が形成されるようにパターニングし絶縁層69を形成する。この開口部が、発光素子が実際に発光する発光領域に相当する。 An acrylic resin is formed by spin coating on the substrate 63 on which the anode 64 is formed, and the acrylic resin is patterned by a lithography method so that an opening is formed in the portion where the anode 64 is formed to form an insulating layer 69. .. This opening corresponds to a light emitting region where the light emitting element actually emits light.

絶縁層69がパターニングされた基板63を第1の有機材料成膜装置に搬入し、正孔輸送層65を、表示領域の陽極64の上に共通する層として成膜する。正孔輸送層65は真空蒸着により成膜される。実際には正孔輸送層65は表示領域61よりも大きなサイズに形成されるため、高精細なマスクは不要である。 The substrate 63 in which the insulating layer 69 is patterned is carried into the first organic material film forming apparatus, and the hole transport layer 65 is formed as a common layer on the anode 64 in the display region. The hole transport layer 65 is formed by vacuum deposition. In reality, the hole transport layer 65 is formed to have a size larger than that of the display region 61, so that a high-definition mask is unnecessary.

次に、正孔輸送層65までが形成された基板63を第2の有機材料成膜装置に搬入し、基板63の赤色を発する素子を配置する部分に、赤色を発する発光層66Rを成膜する。 Next, the substrate 63 on which the hole transport layer 65 is formed is carried into the second organic material film forming apparatus, and the light emitting layer 66R that emits red is formed on the portion of the substrate 63 on which the element that emits red is arranged. To do.

発光層66Rの成膜と同様に、第3の有機材料成膜装置により緑色を発する発光層66Gを成膜し、さらに第4の有機材料成膜装置により青色を発する発光層66Bを成膜する。発光層66R、66G、66Bの成膜が完了した後、第5の成膜装置により表示領域61の全体に電子輸送層67を成膜する。電子輸送層67は、3色の発光層66R、66G、66Bに共通の層として形成される。 Similar to the film formation of the light emitting layer 66R, the light emitting layer 66G that emits green is formed by the third organic material film forming apparatus, and the light emitting layer 66B that emits blue is further formed by the fourth organic material film forming apparatus. .. After the film formation of the light emitting layers 66R, 66G, and 66B is completed, the electron transport layer 67 is formed on the entire display region 61 by the fifth film forming apparatus. The electron transport layer 67 is formed as a layer common to the three color light emitting layers 66R, 66G, and 66B.

電子輸送層67まで形成された基板を金属性蒸着材料成膜装置で移動させて陰極68を成膜する。 The substrate formed up to the electron transport layer 67 is moved by a metallic thin-film deposition material film forming apparatus to form a cathode 68 film.

本発明によると、基板搬入/反転室で基板と搬送キャリアの相対位置を調整することができる。 According to the present invention, the relative positions of the substrate and the transport carrier can be adjusted in the substrate loading / inverting chamber.

その後、プラズマCVD装置に移動して保護層70を成膜して、有機EL表示装置60が完成する。 After that, the organic EL display device 60 is completed by moving to a plasma CVD device and forming a protective layer 70.

絶縁層69がパターニングされた基板63を成膜装置に搬入してから保護層70の成膜が完了するまでは、水分や酸素を含む雰囲気にさらしてしまうと、有機EL材料からなる発光層が水分や酸素によって劣化してしまうおそれがある。従って、本例において、成膜装置間の基板の搬入搬出は、真空雰囲気または不活性ガス雰囲気の下で行われる。 From the time when the substrate 63 in which the insulating layer 69 is patterned is carried into the film forming apparatus until the film formation of the protective layer 70 is completed, when the substrate 63 is exposed to an atmosphere containing moisture or oxygen, a light emitting layer made of an organic EL material is formed. It may be deteriorated by moisture and oxygen. Therefore, in this example, the loading and unloading of the substrate between the film forming apparatus is performed in a vacuum atmosphere or an inert gas atmosphere.

前記実施例は本発明の一例を現わしたことで、本発明は前記実施例の構成に限定されないし、その技術思想の範囲内で適切に変形しても良い。 Since the above-described embodiment shows an example of the present invention, the present invention is not limited to the configuration of the above-mentioned embodiment, and may be appropriately modified within the scope of the technical idea.

100:成膜装置、101:基板搬入/反転室、103:アライメント室、105:成膜室、200:回転駆動装置、201:キャリア載置台、201a:第1キャリア載置面、201b:第2キャリア載置面、203:回転機構、205:アライメント機構、221:基板受取部、223:ステージ部、225:カメラ部、250:貫通孔 100: film forming apparatus, 101: substrate loading / reversing chamber, 103: alignment chamber, 105: film forming chamber, 200: rotary drive device, 201: carrier mounting table, 201a: first carrier mounting surface, 201b: second Carrier mounting surface, 203: Rotation mechanism, 205: Alignment mechanism, 221: Substrate receiving part, 223: Stage part, 225: Camera part, 250: Through hole

Claims (12)

被搬送体を保持する保持面を有する被搬送体キャリアが載置されるキャリア載置部と、
前記キャリア載置部を回転させる回転機構と、
前記被搬送体キャリアと前記被搬送体キャリアに載置された被搬送体との前記保持面に平行な方向における相対位置を調整するためのアライメント機構と、を備え、
前記アライメント機構は、前記キャリア載置部内に設けられ、前記保持面に平行な方向に移動可能なステージ部を有することを特徴とする回転駆動装置。
A carrier mounting portion on which the carrier of the transported body having a holding surface for holding the transported body is mounted, and a carrier mounting portion.
A rotation mechanism for rotating the carrier mounting portion and
An alignment mechanism for adjusting the relative position of the carrier to be transported and the body to be transported mounted on the carrier to be transported in a direction parallel to the holding surface is provided.
The alignment mechanism is a rotary drive device provided in the carrier mounting portion and having a stage portion that can move in a direction parallel to the holding surface.
前記アライメント機構は、前記ステージ部に搭載され、前記被搬送体を受け取るための被搬送体受取部を有することを特徴とする請求項1に記載の回転駆動装置。 The rotation driving device according to claim 1, wherein the alignment mechanism is mounted on the stage portion and has a transported body receiving portion for receiving the transported body. 前記キャリア載置部は、第1キャリア載置面と、前記第1キャリア載置面と対向する第2キャリア載置面を有し、
前記被搬送体受取部は、前記第1キャリア載置面または前記第2キャリア載置面に垂直な方向に移動可能に設けられることを特徴とする請求項2に記載の回転駆動装置。
The carrier mounting portion has a first carrier mounting surface and a second carrier mounting surface facing the first carrier mounting surface.
The rotary drive device according to claim 2, wherein the transported body receiving unit is provided so as to be movable in a direction perpendicular to the first carrier mounting surface or the second carrier mounting surface.
前記アライメント機構は、前記被搬送体受取部を前記垂直な方向に移動させるための受取部駆動部を含み、
前記受取部駆動部は、前記ステージ部に搭載されることを特徴とする請求項3に記載の回転駆動装置。
The alignment mechanism includes a receiving unit driving unit for moving the transported body receiving unit in the vertical direction.
The rotary drive device according to claim 3, wherein the receiving unit drive unit is mounted on the stage unit.
前記被搬送体受取部は、少なくとも前記第1キャリア載置面または前記第2キャリア載置面の周縁部に沿って複数設けられることを特徴とする請求項3に記載の回転駆動装置。 The rotary drive device according to claim 3, wherein a plurality of the transported body receiving portions are provided along at least a plurality of the first carrier mounting surface or the peripheral edge portion of the second carrier mounting surface. 複数個の前記被搬送体受取部は、それぞれ独立的に前記垂直な方向に移動可能であることを特徴とする請求項5に記載の回転駆動装置。 The rotary drive device according to claim 5, wherein each of the plurality of recipients of the transported object can independently move in the vertical direction. 前記被搬送体受取部は、前記第1キャリア載置面または前記第2キャリア載置面から前記垂直な方向に突出可能に構成されることを特徴とする請求項3に記載の回転駆動装置。 The rotary drive device according to claim 3, wherein the transported body receiving unit is configured to be able to project from the first carrier mounting surface or the second carrier mounting surface in the vertical direction. 前記回転機構は、前記第1キャリア載置面または前記第2キャリア載置面のいずれかに前記被搬送体キャリアを載置するために、前記キャリア載置部を表裏反転することができることを特徴とする請求項3に記載の回転駆動装置。 The rotation mechanism is characterized in that the carrier mounting portion can be turned upside down in order to mount the carrier to be transported on either the first carrier mounting surface or the second carrier mounting surface. The rotary drive device according to claim 3. 前記被搬送体キャリアを前記第1キャリア載置面および前記第2キャリア載置面にそれぞれ固定する第1キャリア固定手段と第2キャリア固定手段とをさらに含むことを特徴とする請求項8に記載の回転駆動装置。 8. The eighth aspect of the present invention, further comprising a first carrier fixing means and a second carrier fixing means for fixing the carrier to be transported to the first carrier mounting surface and the second carrier mounting surface, respectively. Rotation drive device. 前記アライメント機構は、前記被搬送体と前記被搬送体キャリアに設けられたアライメントマークを撮影可能なカメラ部をさらに含み、
前記カメラ部によって撮像された画像に基づいて、前記ステージ部を駆動して、前記被搬送体受取部に支持された前記被搬送体を前記被搬送体キャリアに対して位置調整することを特徴とする請求項2に記載の回転駆動装置。
The alignment mechanism further includes a camera unit capable of photographing an alignment mark provided on the transported body and the carrier of the transported body.
Based on the image captured by the camera unit, the stage unit is driven to adjust the position of the transported body supported by the transported body receiving unit with respect to the transported body carrier. The rotary drive device according to claim 2.
請求項1〜請求項10のいずれか一項に記載の回転駆動装置と、
前記回転駆動装置によって回転された基板に成膜動作を行う成膜手段と、を備えることを特徴とする成膜装置。
The rotary drive device according to any one of claims 1 to 10.
A film forming apparatus including a film forming means for performing a film forming operation on a substrate rotated by the rotation driving device.
請求項11に記載の成膜装置を用いて電子デバイスを製造することを特徴とする電子デバイス製造方法。 A method for manufacturing an electronic device, which comprises manufacturing an electronic device using the film forming apparatus according to claim 11.
JP2020196318A 2019-12-24 2020-11-26 Manufacturing method of rotary drive device, film forming device including this, and electronic device Active JP7033180B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0174083 2019-12-24
KR1020190174083A KR20210081794A (en) 2019-12-24 2019-12-24 Rotation driving apparatus, film-forming system including the same, manufacturing method of electronic device and carrier for carrying subjectto be carried used in the film-forming apparatus

Publications (2)

Publication Number Publication Date
JP2021102810A true JP2021102810A (en) 2021-07-15
JP7033180B2 JP7033180B2 (en) 2022-03-09

Family

ID=76460466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020196318A Active JP7033180B2 (en) 2019-12-24 2020-11-26 Manufacturing method of rotary drive device, film forming device including this, and electronic device

Country Status (3)

Country Link
JP (1) JP7033180B2 (en)
KR (1) KR20210081794A (en)
CN (1) CN113025985B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113463056B (en) * 2021-07-01 2022-06-17 安徽工业大学 Vacuum coating does not have sample turning device that shelters from

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066090A (en) * 2009-09-15 2011-03-31 Nikon Corp Substrate transfer device, substrate aligning device, substrate transfer method, and method of manufacturing device
JP2012195427A (en) * 2011-03-16 2012-10-11 Ulvac Japan Ltd Substrate processing apparatus and substrate processing method
JP2018182093A (en) * 2017-04-14 2018-11-15 サムコ株式会社 Wafer processing device
KR20190000162U (en) * 2018-07-16 2019-01-16 주식회사 야스 Substrate flip equipment and management system for reducing tac time

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9082799B2 (en) * 2012-09-20 2015-07-14 Varian Semiconductor Equipment Associates, Inc. System and method for 2D workpiece alignment
WO2014114360A1 (en) * 2013-01-28 2014-07-31 Applied Materials, Inc. Substrate carrier arrangement and method for holding a substrate
CN106460164B (en) * 2014-02-20 2019-02-22 因特瓦克公司 The system and method for double treatment for substrate
SG10201906641WA (en) * 2015-10-01 2019-09-27 Intevac Inc Wafer plate and mask arrangement for substrate fabrication
CN206742197U (en) * 2017-03-28 2017-12-12 雷仲礼 Substrate turnover device and the base plate processing system comprising the substrate turnover device
KR101952521B1 (en) * 2017-10-31 2019-02-26 캐논 톡키 가부시키가이샤 Film forming apparatus, film forming method and manufacturing method of electronic device
KR20190140373A (en) * 2018-06-11 2019-12-19 캐논 톡키 가부시키가이샤 Substrate rotation apparatus, substrate rotation method and manufacturing method of electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066090A (en) * 2009-09-15 2011-03-31 Nikon Corp Substrate transfer device, substrate aligning device, substrate transfer method, and method of manufacturing device
JP2012195427A (en) * 2011-03-16 2012-10-11 Ulvac Japan Ltd Substrate processing apparatus and substrate processing method
JP2018182093A (en) * 2017-04-14 2018-11-15 サムコ株式会社 Wafer processing device
KR20190000162U (en) * 2018-07-16 2019-01-16 주식회사 야스 Substrate flip equipment and management system for reducing tac time

Also Published As

Publication number Publication date
JP7033180B2 (en) 2022-03-09
CN113025985B (en) 2023-06-02
KR20210081794A (en) 2021-07-02
CN113025985A (en) 2021-06-25

Similar Documents

Publication Publication Date Title
CN109837504B (en) Film forming apparatus, film forming method, and electronic device manufacturing method
JP7429723B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
JP7288336B2 (en) Alignment system, deposition apparatus, alignment method, deposition method, and electronic device manufacturing method
JP7244401B2 (en) Alignment apparatus, film formation apparatus, alignment method, film formation method, and electronic device manufacturing method
KR102128888B1 (en) Film forming apparatus, film forming method and manufacturing method of electronic device
CN113388806B (en) Mask mounting apparatus and method, film forming apparatus and method, and substrate loader
CN113106395B (en) Film forming apparatus, electronic device manufacturing apparatus, film forming method, and electronic device manufacturing method
JP7190997B2 (en) Adsorption and alignment method, adsorption system, film formation method, film formation apparatus, and electronic device manufacturing method
JP7159238B2 (en) Substrate carrier, deposition apparatus, and deposition method
CN114790538B (en) Film forming apparatus
CN112680696B (en) Film forming apparatus, electronic device manufacturing apparatus, film forming method, and electronic device manufacturing method
JP7033180B2 (en) Manufacturing method of rotary drive device, film forming device including this, and electronic device
JP2021080563A (en) Alignment device, alignment method, film deposition apparatus, film deposition method and method for manufacturing electronic device
KR102179271B1 (en) Film forming apparatus, manufacturing apparatus of electronic device, film forming method, and manufacturing method of electronic device
JP2020070492A (en) Adsorption system, film deposition device, adsorption method, film deposition method, and electronic device manufacturing method
JP7078694B2 (en) Film forming equipment, film forming method, and manufacturing method of electronic devices
CN113851406A (en) Alignment apparatus, film forming apparatus, alignment method, method for manufacturing electronic device, and storage medium
JP2020070491A (en) Alignment device, film deposition, alignment method, film deposition method, and electronic device manufacturing method
WO2023238478A1 (en) Film formation device, film formation method, alignment device, and alignment method
JP7271242B2 (en) Electrostatic chuck system, film forming apparatus, adsorption method, film forming method, and electronic device manufacturing method
JP2023178641A (en) Film formation device, film formation method, alignment device, and alignment method
JP2023178622A (en) Film formation device, film formation method, alignment device, and alignment method
CN116330309A (en) Operation setting device, operation setting method, and method for manufacturing electronic device
CN115831840A (en) Alignment apparatus, alignment method, film forming apparatus, film forming method, and method for manufacturing electronic device
JP2020070490A (en) Adsorption and alignment method, adsorption system, film deposition method, film deposition device, and electronic device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220225

R150 Certificate of patent or registration of utility model

Ref document number: 7033180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150