JP2021098759A - ゴム組成物およびタイヤ - Google Patents

ゴム組成物およびタイヤ Download PDF

Info

Publication number
JP2021098759A
JP2021098759A JP2019229730A JP2019229730A JP2021098759A JP 2021098759 A JP2021098759 A JP 2021098759A JP 2019229730 A JP2019229730 A JP 2019229730A JP 2019229730 A JP2019229730 A JP 2019229730A JP 2021098759 A JP2021098759 A JP 2021098759A
Authority
JP
Japan
Prior art keywords
conjugated diene
mass
diene polymer
carbon atoms
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019229730A
Other languages
English (en)
Inventor
崇浩 齊藤
Takahiro Saito
崇浩 齊藤
健太郎 熊木
Kentaro Kumaki
健太郎 熊木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2019229730A priority Critical patent/JP2021098759A/ja
Publication of JP2021098759A publication Critical patent/JP2021098759A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】ウェット制動性とドライ操縦安定性と低転がり抵抗とを高度にバランスさせたゴム組成物を提供すること。【解決手段】共役ジエン系重合体(A)と補強性充填剤(B)と熱可塑性樹脂(C)とを含み、(A)は、(A)の総量に対して特定の変性共役ジエン系重合体(A1)を特定量含み、伸展油の量が(A1)100質量部に対して10質量部以下であり、(B)は、BET比表面積が、350m2/g以下であり、かつシリカおよびカーボンブラックを含み、(C)は、熱可塑性樹脂(C1)および(C2)を含み、(C1)は、スチレン・アルキレンブロック共重合体であり、(C2)は、C5系樹脂、C5〜C9系樹脂、C9系樹脂および水素添加C9系樹脂からなる群より選択される1種以上であり、(C1)および(C2)を、それぞれ、(A)100質量部に対して0.5〜40質量部含む、ゴム組成物。【選択図】なし

Description

本発明は、ゴム組成物およびタイヤに関する。
従来、シリカなどの無機充填剤によって、湿潤路面での制動性(以下、「ウェット制動性」という)を向上させている。しかし、そのような充填剤ではエネルギーロスも上昇してしまい、転がり抵抗を低減することが難しい。
また、氷雪路面および湿潤路面でのグリップ性能を向上させるために、例えば、特許文献1では、天然ゴム、ポリイソプレンゴム、スチレン−ブタジエン共重合体ゴム、ポリブタジエンゴム及びイソブチレン−イソプレン共重合体ゴムからなる群から選択される少なくとも一種のジエン系ゴムを含み、天然ゴム及び/又はポリイソプレンゴムを合計30質量%以上含むゴム成分100質量部に対して、C5系樹脂を5〜50質量部配合してなるゴム組成物をトレッドゴムに用いる手法を提案している。しかし、この場合、乾燥路面における操縦安定性(以下、「ドライ操縦安定性」という)は改善の余地があり、ウェット制動性とドライ操縦安定性との高度な両立が求められていた。
特開2009−256540号公報
そこで、本発明は、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とを高度にバランスさせたゴム組成物を提供することを目的とする。また、本発明は、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とを高度にバランスさせたタイヤを提供することを目的とする。
本発明に係るゴム組成物は、共役ジエン系重合体(A)と、補強性充填剤(B)と、熱可塑性樹脂(C)と、を含み、
前記共役ジエン系重合体(A)は、共役ジエン系重合体(A)の総量に対して、変性共役ジエン系重合体(A1)を18質量%以上含み、
前記変性共役ジエン系重合体(A1)は、重量平均分子量が20×104〜300×104であり、該変性共役ジエン系重合体(A1)の総量に対して、分子量が200×104〜500×104である当該変性共役ジエン系重合体を、0.25〜30質量%含み、収縮因子(g’)が0.64未満であり、
前記変性共役ジエン系重合体(A1)に添加されている伸展油の量が、前記変性共役ジエン系重合体(A1)100質量部に対して、10質量部以下であり、
前記補強性充填剤(B)は、BET比表面積が、350m2/g以下であり、かつシリカおよびカーボンブラックを含み、
前記熱可塑性樹脂(C)は、熱可塑性樹脂(C1)および熱可塑性樹脂(C2)を含み、
前記熱可塑性樹脂(C1)は、スチレン・アルキレンブロック共重合体であり、
前記熱可塑性樹脂(C2)は、C5系樹脂、C5〜C9系樹脂、C9系樹脂および水素添加C9系樹脂からなる群より選択される1種以上であり、
前記熱可塑性樹脂(C1)および前記熱可塑性樹脂(C2)を、それぞれ、前記共役ジエン系重合体(A)100質量部に対して、0.5〜40質量部含む、ゴム組成物である。
これにより、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とを高度にバランスさせることができる。
本発明に係るゴム組成物は、前記スチレン・アルキレンブロック共重合体のアルキレンブロックが、−(CH2−CH(C25))−単位(CA)と−(CH2−CH2)−単位(CB)とを有し、単位(CA)の合計含量が、単位(CA)+単位(CB)の総質量に対して、40質量%以上であることが好ましい。
これにより、低転がり抵抗性を悪化させずに良好なドライ操縦安定性を確保することができる。
本発明に係るゴム組成物は、前記補強性充填剤(B)のシリカおよびカーボンブラックの総量が、前記共役ジエン系重合体(A)100質量部に対して、60〜100質量部であり、
前記補強性充填剤(B)におけるシリカの比率が、75質量%以上であることが好ましい。
これにより、ウェット制動性がより高まることに加えて、変性共役ジエン系重合体(A1)の効果をより高度に発揮することができる。
本発明に係るゴム組成物は、前記共役ジエン系重合体(A)が、前記共役ジエン系重合体(A)の総量に対して、前記変性共役ジエン系重合体(A1)を70質量%以上含み、
軟化剤(D)をさらに含み、
前記軟化剤(D)を、前記共役ジエン系重合体(A)100質量部に対して、1質量部以上含むことが好ましい。
これにより、変性共役ジエン系重合体(A1)を多く含みながら、弾性率を制御して良好なウェット制動性を確保することができる。
本発明に係るゴム組成物は、平均粒径が0.05〜5μmである無機充填剤(E)をさらに含み、
前記無機充填剤(E)を、前記共役ジエン系重合体(A)100質量部に対して、5〜40質量部含むことが好ましい。
これにより、ウェット制動性がより高まる。
本発明に係るゴム組成物は、前記変性共役ジエン系重合体(A1)が、分岐を有し、かつ、1以上のカップリング残基と、該カップリング残基に対して結合する共役ジエン系重合体鎖と、を有し、
前記分岐は、1の前記カップリング残基に対して5以上の前記共役ジエン系重合体鎖が結合している分岐を含むことが好ましい。
これにより、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とをより高度にバランスさせることができる。
本発明に係るゴム組成物は、前記変性共役ジエン系重合体(A1)が、下記一般式(I):
Figure 2021098759
[一般式(I)中、Dは、共役ジエン系重合体鎖を示し、R1、R2及びR3は、それぞれ独立して単結合又は炭素数1〜20のアルキレン基を示し、R4及びR7は、それぞれ独立して炭素数1〜20のアルキル基を示し、R5、R8、及びR9は、それぞれ独立して水素原子又は炭素数1〜20のアルキル基を示し、R6及びR10は、それぞれ独立して炭素数1〜20のアルキレン基を示し、R11は、水素原子又は炭素数1〜20のアルキル基を示し、m及びxは、それぞれ独立して1〜3の整数を示し、x≦mであり、pは、1又は2を示し、yは、1〜3の整数を示し、y≦(p+1)であり、zは、1又は2を示し、それぞれ複数存在する場合のD、R1〜R11、m、p、x、y、及びzは、それぞれ独立しており、iは、0〜6の整数を示し、jは、0〜6の整数を示し、kは、0〜6の整数を示し、(i+j+k)は、3〜10の整数であり、((x×i)+(y×j)+(z×k))は、5〜30の整数であり、Aは、炭素数1〜20の炭化水素基、又は、酸素原子、窒素原子、ケイ素原子、硫黄原子及びリン原子からなる群より選ばれる少なくとも1種の原子を有し、かつ、活性水素を有しない有機基を示す]で表されることが好ましい。
これにより、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とをより高度にバランスさせることができる。
本発明に係るゴム組成物は、前記一般式(I)において、Aが、下記一般式(II)〜(V):
Figure 2021098759
[一般式(II)中、B1は、単結合又は炭素数1〜20の炭化水素基を示し、aは、1〜10の整数を示し、複数存在する場合のB1は、各々独立している;
一般式(III)中、B2は、単結合又は炭素数1〜20の炭化水素基を示し、B3は、炭素数1〜20のアルキル基を示し、aは、1〜10の整数を示し、それぞれ複数存在する場合のB2及びB3は、各々独立している;
一般式(IV)中、B4は、単結合又は炭素数1〜20の炭化水素基を示し、aは、1〜10の整数を示し、複数存在する場合のB4は、各々独立している;
一般式(V)中、B5は、単結合又は炭素数1〜20の炭化水素基を示し、aは、1〜10の整数を示し、複数存在する場合のB5は、各々独立している]のいずれかで表されることが好ましい。
これにより、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とをより高度にバランスさせることができる。
本発明に係るゴム組成物は、前記変性共役ジエン系重合体(A1)が、共役ジエン系重合体を、下記一般式(VI):
Figure 2021098759
[一般式(VI)中、R12、R13及びR14は、それぞれ独立して単結合又は炭素数1〜20のアルキレン基を示し、R15、R16、R17、R18及びR20は、それぞれ独立して炭素数1〜20のアルキル基を示し、R19及びR22は、それぞれ独立して炭素数1〜20のアルキレン基を示し、R21は、炭素数1〜20の、アルキル基又はトリアルキルシリル基を示し、mは、1〜3の整数を示し、pは、1又は2を示し、R12〜R22、m及びpは、複数存在する場合、それぞれ独立しており、i、j及びkは、それぞれ独立して0〜6の整数を示し、但し、(i+j+k)は、3〜10の整数であり、Aは、炭素数1〜20の炭化水素基、又は、酸素原子、窒素原子、ケイ素原子、硫黄原子及びリン原子からなる群から選択される少なくとも一種の原子を有し、かつ、活性水素を有しない有機基を示す]で表されるカップリング剤と反応させてなることが好ましい。
これにより、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とをより高度にバランスさせることができる。
本発明に係るゴム組成物は、前記スチレン・アルキレンブロック共重合体のアルキレンブロックが、−(CH2−CH(C25))−単位(CA)と−(CH2−CH2)−単位(CB)とを有し、単位(CA)の合計含量が、単位(CA)+単位(CB)の総質量に対して、50〜90質量%であることが好ましい。
これにより、低転がり抵抗性を悪化させずに良好なドライ操縦安定性を確保することができる。
本発明に係るゴム組成物は、前記スチレン・アルキレンブロック共重合体の合計スチレン含量が40質量%以上であることが好ましい。
これにより、ドライ操縦安定性をさらに高めることができる。
本発明に係るタイヤは、上記いずれかに記載のゴム組成物をトレッドゴムに用いた、タイヤである。
これにより、タイヤのウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とをより高度にバランスさせることができる。
本発明によれば、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とを高度にバランスさせたゴム組成物を提供することができる。本発明によれば、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とを高度にバランスさせたタイヤを提供することができる。
以下、本発明の実施形態について説明する。これらの記載は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。
本明細書において、数値範囲は、別段の記載がない限り、その範囲の下限値および上限値を含むことを意図している。例えば、0.25〜30質量%は、0.25質量%以上30質量%以下を意味する。
以下の説明では、共役ジエン系重合体(A)、補強性充填剤(B)、熱可塑性樹脂(C)などを、成分(A)、成分(B)、成分(C)などと表すことがある。
(ゴム組成物)
本発明に係るゴム組成物は、共役ジエン系重合体(A)と、補強性充填剤(B)と、熱可塑性樹脂(C)と、を含み、
前記共役ジエン系重合体(A)は、共役ジエン系重合体(A)の総量に対して、変性共役ジエン系重合体(A1)を18質量%以上含み、
前記変性共役ジエン系重合体(A1)は、重量平均分子量が20×104〜300×104であり、該変性共役ジエン系重合体(A1)の総量に対して、分子量が200×104〜500×104である当該変性共役ジエン系重合体を、0.25〜30質量%含み、収縮因子(g’)が0.64未満であり、
前記変性共役ジエン系重合体(A1)に添加されている伸展油の量が、前記変性共役ジエン系重合体(A1)100質量部に対して、10質量部以下であり、
前記補強性充填剤(B)は、BET比表面積が、350m2/g以下であり、かつシリカおよびカーボンブラックを含み、
前記熱可塑性樹脂(C)は、熱可塑性樹脂(C1)および熱可塑性樹脂(C2)を含み、
前記熱可塑性樹脂(C1)は、スチレン・アルキレンブロック共重合体であり、
前記熱可塑性樹脂(C2)は、C5系樹脂、C5〜C9系樹脂、C9系樹脂および水素添加C9系樹脂からなる群より選択される1種以上であり、
前記熱可塑性樹脂(C1)および前記熱可塑性樹脂(C2)を、それぞれ、前記共役ジエン系重合体(A)100質量部に対して、0.5〜40質量部含む、ゴム組成物である。
これにより、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とを高度にバランスさせることができる。
<共役ジエン系重合体(A)>
本発明に係るゴム組成物は、ゴム成分として共役ジエン系重合体(A)を含む。共役ジエン系重合体(A)は、1種の共役ジエン化合物の重合体、または2種以上の共役ジエン化合物の共重合体である。また、共役ジエン系重合体(A)は、共役ジエン化合物と芳香族ビニル化合物との共重合体であってもよい。また、共役ジエン系重合体(A)は、後述する変性共役ジエン系重合体(A1)を所定量含むものであれば、変性共役ジエン系重合体のみであってもよいし、変性共役ジエン系重合体と未変性共役ジエン系重合体の組み合わせであってもよい。共役ジエン系重合体(A)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
共役ジエン化合物としては、例えば、1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチル−1,3−ブタジエン、2−フェニル−1,3−ブタジエン、3−メチル−1,3−ペンタジエン、1,3−ヘキサジエン、1,3−ヘプタジエンなどの炭素数4〜12の化合物が挙げられる。共役ジエン化合物としては、工業的入手の容易さの観点から、1,3−ブタジエン、及びイソプレンが好ましい。
芳香族ビニル化合物としては、例えば、スチレン、p−メチルスチレン、α−メチルスチレン、ビニルキシレン、ビニルナフタレン、ジフェニルエチレン1−ビニルナフタレン、3−ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4−シクロへキシルスチレン、2,4,6−トリメチルスチレンなどが挙げられる。芳香族ビニル化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。芳香族ビニル化合物としては、工業的入手の容易さの観点から、スチレンが好ましい。
成分(A)としては、例えば、天然ゴム(NR)、ポリブタジエン(BR)、合成ポリイソプレン(IR)、スチレンブタジエン共重合体、イソプレンブタジエン共重合体、エチレンブタジエン共重合体、プロピレンブタジエン共重合体などが挙げられる。
・変性共役ジエン系重合体(A1)
共役ジエン系重合体(A)は、共役ジエン系重合体(A)の総量に対して、以下の変性共役ジエン系重合体(A1)を18質量%以上含む。
本発明では、成分(A1)と、成分(C1)と、成分(C2)とを組み合わせて用いることにより、成分(B)のシリカの分散性が高まり、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とを高度にバランスさせることができるものと推測される。
変性共役ジエン系重合体(A1)は、重量平均分子量が20×104〜300×104であり、該変性共役ジエン系重合体(A1)の総量に対して、分子量が200×104〜500×104である当該変性共役ジエン系重合体を、0.25〜30質量%含み、収縮因子(g’)が0.64未満である。
成分(A1)の重量平均分子量(Mw)は、20×104〜300×104である。上記Mwは、好ましくは、50×104以上、64×104以上、または80×104以上である。また、上記Mwは、好ましくは、250×104以下、180×104以下、または150×104以下である。Mwが20×104以上であれば、タイヤの低転がり抵抗性と、ウェット制動性とを高度に両立することができる。また、Mwが300×104以下であれば、ゴム組成物の加工性が向上する。
共役ジエン系重合体及び成分(A1)についての、数平均分子量、重量平均分子量、分子量分布、後述する特定の高分子量成分の含有量は、以下のように測定する。共役ジエン系重合体又は変性共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC(ゲルパーミエーションクロマトグラフィー)測定装置(東ソー社製の商品名「HLC−8320GPC」)を使用して、RI検出器(東ソー社製の商品名「HLC−8020」)を用いてクロマトグラムを測定し、標準ポリスチレンを使用して得られる検量線に基づいて、重量平均分子量(Mw)と数平均分子量(Mn)と分子量分布(Mw/Mn)と、変性共役ジエン系重合体のピークトップ分子量(Mp1)と共役ジエン系重合体のピークトップ分子量(Mp2)とその比率(Mp1/Mp2)と、分子量200×104〜500×104の変性共役ジエン系重合体の割合と、を求める。溶離液は5mmol/Lのトリエチルアミン入りTHF(テトラヒドロフラン)を使用する。カラムは、東ソー社製の商品名「TSKgel SuperMultiporeHZ−H」を3本接続し、その前段にガードカラムとして東ソー社製の商品名「TSKguardcolumn SuperMP(HZ)−H」を接続して使用する。測定用の試料10mgを10mLのTHFに溶解して測定溶液とし、測定溶液10μLをGPC測定装置に注入して、オーブン温度40℃、THF流量0.35mL/分の条件で測定する。
ピークトップ分子量(Mp1及びMp2)は、次のようにして求める。測定して得られるGPC曲線において、最も高分子量の成分として検出されるピークを選択する。その選択したピークについて、そのピークの極大値に相当する分子量を算出し、ピークトップ分子量とする。
変性共役ジエン系重合体(A1)は、変性共役ジエン系重合体(A1)の総量(100質量%)に対して、分子量が200×104〜500×104である当該変性共役ジエン系重合体(本明細書において、「特定の高分子量成分」ともいう。)を、0.25〜30質量%含む。該特定の高分子量成分の含有量がこの範囲内であれば、タイヤの低転がり抵抗性と、ウェット制動性とを高度に両立することができる。
また、分子量200×104〜500×104の変性共役ジエン系重合体の割合は、積分分子量分布曲線から分子量500×104以下が全体に占める割合から分子量200×104未満が占める割合を差し引くことで算出する。
一例では、成分(A1)は、特定の高分子量成分を、1.0質量%以上、1.4質量%以上、1.75質量%以上、2.0質量%以上、2.15質量%以上、または2.5質量%以上含む。一例では、成分(A1)は、特定の高分子量成分を、28質量%以下、25質量%以下、20質量%以下、または18質量%以下含む。
本明細書において「分子量」とは、GPCによって得られる、標準ポリスチレン換算分子量である。特定の高分子量成分の含有量がこのような範囲にある成分(A1)を得るためには、後述する重合工程と反応工程とにおける反応条件を制御することが好ましい。例えば、重合工程においては、後述する有機モノリチウム化合物の重合開始剤としての使用量を調整すればよい。また、重合工程において、連続式、及び回分式のいずれの重合様式においても、滞留時間分布を有する方法を用いる、すなわち、成長反応の時間分布を広げるとよい。
一例では、成分(A1)の分子量分布(Mw/Mn)は、1.6〜3.0である。
変性共役ジエン系重合体(A1)の収縮因子(g’)は0.64未満である。一般に、分岐を有する重合体は、同一の絶対分子量である直鎖状の重合体と比較した場合に、分子の大きさが小さくなる傾向にあり、前記収縮因子(g’)は、想定上同一の絶対分子量である直鎖状重合体に対する、分子の占める大きさの比率の指標である。即ち、重合体の分岐度が大きくなれば、収縮因子(g’)は小さくなる傾向にある。本実施形態では、分子の大きさの指標として固有粘度を用い、直鎖状の重合体は、固有粘度[η]=−3.883M0.771の関係式に従うものとして用いる。変性共役ジエン系重合体の各絶対分子量のときの収縮因子(g’)を算出し、絶対分子量が100×104〜200×104のときの収縮因子(g’)の平均値を、その変性共役ジエン系重合体の収縮因子(g’)とする。ここで、「分岐」とは、1つの重合体に対して、他の重合体が直接的又は間接的に結合することにより形成されるものである。また、「分岐度」は、1の分岐に対して、直接的又は間接的に互いに結合している重合体の数である。例えば、後述するカップリング残基を介して間接的に、後述の5つの共役ジエン系重合体鎖が互いに結合している場合には、分岐度は5である。なお、カップリング残基とは、共役ジエン系重合体鎖に結合される、変性共役ジエン系重合体の構成単位であり、例えば、後述する共役ジエン系重合体とカップリング剤とを反応させることによって生じる、カップリング剤由来の構造単位である。また、共役ジエン系重合体鎖は、変性共役ジエン系重合体の構成単位であり、例えば、後述する共役ジエン系重合体とカップリング剤とを反応させることによって生じる、共役ジエン系重合体由来の構造単位である。
収縮因子(g’)は、例えば、0.63以下、0.60以下、0.59以下、または0.57以下である。また、収縮因子(g’)の下限は特に限定されず、検出限界値以下であってもよく、例えば、0.30以上、0.33以上、0.35以上、0.45以上、0.57以上、または0.59以上である。収縮因子(g’)がこの範囲である成分(A1)を使用することで、ゴム組成物の加工性が向上する。
収縮因子(g’)は分岐度に依存する傾向にあるため、例えば、分岐度を指標として収縮因子(g’)を制御することができる。具体的には、分岐度が6である変性共役ジエン系重合体とした場合には、その収縮因子(g’)は0.59〜0.63となる傾向にあり、分岐度が8である変性共役ジエン系重合体とした場合には、その収縮因子(g’)は0.45〜0.59となる傾向にある。
収縮因子(g’)の測定方法は、以下のとおりである。変性共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置(Malvern社製の商品名「GPCmax VE−2001」)を使用して、光散乱検出器、RI検出器、粘度検出器(Malvern社製の商品名「TDA305」)の順番に接続されている3つの検出器を用いて測定し、標準ポリスチレンに基づいて、光散乱検出器とRI検出器の結果から絶対分子量を、RI検出器と粘度検出器の結果から固有粘度を求める。直鎖ポリマーは、固有粘度[η]=−3.883M0.771に従うものとして用い、各分子量に対応する固有粘度の比としての収縮因子(g’)を算出する。溶離液は5mmol/Lのトリエチルアミン入りTHFを使用する。カラムは、東ソー社製の商品名「TSKgel G4000HXL」、「TSKgel G5000HXL」、及び「TSKgel G6000HXL」を接続して使用する。測定用の試料20mgを10mLのTHFに溶解して測定溶液とし、測定溶液100μLをGPC測定装置に注入して、オーブン温度40℃、THF流量1mL/分の条件で測定する。
成分(A1)に添加されている伸展油の量は、成分(A1)100質量部に対して、10質量部以下である。好ましくは、0質量部より多く、10質量部以下である。伸展油の量が10質量部以下であることにより、ドライ操縦安定性と、低転がり抵抗性とを高度にバランスさせることができる。
伸展油としては、例えば、アロマ油、ナフテン油、パラフィン油、アロマ代替油などが挙げられる。これらの中でも、環境安全上の観点、並びにオイルのブリード防止及びウェット制動性の観点から、IP346法による多環芳香族(PCA)成分が3質量%以下であるアロマ代替油が好ましい。アロマ代替油としては、Kautschuk Gummi Kunststoffe52(12)799(1999)に示されるTDAE(Treated Distillate Aromatic Extracts)、MES(Mild Extraction Solvate)等の他、RAE(Residual Aromatic Extracts)が挙げられる。
成分(A1)は、成分(A1)100質量部に対して、添加されている伸展油の量が10質量部以下であれば、伸展油を加えた油展重合体とすることができ、非油展であっても、油展であってもよい。
成分(A1)は、分岐を有し、分岐度が5以上であることが好ましい。また、成分(A1)は、1以上のカップリング残基と、該カップリング残基に対して結合する共役ジエン系重合体鎖とを有し、さらに、上記分岐が、1の当該カップリング残基に対して5以上の当該共役ジエン系重合体鎖が結合している分岐を含むことがより好ましい。分岐度が5以上であること、及び、分岐が、1のカップリング残基に対して5以上の共役ジエン系重合体鎖が結合している分岐を含むよう、変性共役ジエン系重合体の構造を特定することにより、より確実に収縮因子(g’)を0.64未満にすることができる。なお、1のカップリング残基に対して結合している共役ジエン系重合体鎖の数は、収縮因子(g’)の値から確認することができる。
また、成分(A1)は、分岐を有し、分岐度が6以上であることがより好ましい。また、成分(A1)は、1以上のカップリング残基と、該カップリング残基に対して結合する共役ジエン系重合体鎖とを有し、さらに、上記分岐が、1の当該カップリング残基に対して6以上の当該共役ジエン系重合体鎖が結合している分岐を含むことが、さらに好ましい。分岐度が6以上であること、及び、分岐が、1のカップリング残基に対して6以上の共役ジエン系重合体鎖が結合している分岐を含むよう、変性共役ジエン系重合体の構造を特定することにより、収縮因子(g’)を0.63以下にすることができる。
更に、成分(A1)は、分岐を有し、分岐度が7以上であることがさらに好ましく、分岐度が8以上であることがより一層好ましい。分岐度の上限は特に限定されないが、18以下であることが好ましい。また、成分(A1)は、1以上のカップリング残基と、該カップリング残基に対して結合する共役ジエン系重合体鎖とを有し、さらに、上記分岐が、1の当該カップリング残基に対して7以上の当該共役ジエン系重合体鎖が結合している分岐を含むことが、より一層好ましく、1の当該カップリング残基に対して8以上の当該共役ジエン系重合体鎖が結合している分岐を含むことが、特に好ましい。分岐度が8以上であること、及び、分岐が、1のカップリング残基に対して8以上の共役ジエン系重合体鎖が結合している分岐を含むよう、変性共役ジエン系重合体の構造を特定することにより、収縮因子(g’)を0.59以下にすることができる。
本発明に係るゴム組成物は、前記変性共役ジエン系重合体(A1)が、分岐を有し、かつ、1以上のカップリング残基と、該カップリング残基に対して結合する共役ジエン系重合体鎖と、を有し、
前記分岐は、1の前記カップリング残基に対して5以上の前記共役ジエン系重合体鎖が結合している分岐を含むことが好ましい。
これにより、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とをより高度にバランスさせることができる。
本発明に係るゴム組成物は、前記変性共役ジエン系重合体(A1)が、下記一般式(I):
Figure 2021098759
[一般式(I)中、Dは、共役ジエン系重合体鎖を示し、R1、R2及びR3は、それぞれ独立して単結合又は炭素数1〜20のアルキレン基を示し、R4及びR7は、それぞれ独立して炭素数1〜20のアルキル基を示し、R5、R8、及びR9は、それぞれ独立して水素原子又は炭素数1〜20のアルキル基を示し、R6及びR10は、それぞれ独立して炭素数1〜20のアルキレン基を示し、R11は、水素原子又は炭素数1〜20のアルキル基を示し、m及びxは、それぞれ独立して1〜3の整数を示し、x≦mであり、pは、1又は2を示し、yは、1〜3の整数を示し、y≦(p+1)であり、zは、1又は2を示し、それぞれ複数存在する場合のD、R1〜R11、m、p、x、y、及びzは、それぞれ独立しており、iは、0〜6の整数を示し、jは、0〜6の整数を示し、kは、0〜6の整数を示し、(i+j+k)は、3〜10の整数であり、((x×i)+(y×j)+(z×k))は、5〜30の整数であり、Aは、炭素数1〜20の炭化水素基、又は、酸素原子、窒素原子、ケイ素原子、硫黄原子及びリン原子からなる群より選ばれる少なくとも1種の原子を有し、かつ、活性水素を有しない有機基を示す]で表されることが好ましい。
これにより、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とをより高度にバランスさせることができる。
一例では、一般式(I)中、Dで示される共役ジエン系重合体鎖の重量平均分子量は、10×104〜100×104である。該共役ジエン系重合体鎖は、変性共役ジエン系重合体の構成単位であり、例えば、共役ジエン系重合体とカップリング剤とを反応させることによって生じる、共役ジエン系重合体由来の構造単位である。
一般式(I)中、Aが示す炭化水素基は、飽和、不飽和、脂肪族、及び芳香族の炭化水素基を包含する。上記活性水素を有しない有機基としては、例えば、水酸基(−OH)、第2級アミノ基(>NH)、第1級アミノ基(−NH2)、スルフヒドリル基(−SH)等の活性水素を有する官能基、を有しない有機基が挙げられる。
本発明に係るゴム組成物は、一般式(I)において、Aが、下記一般式(II)〜(V):
Figure 2021098759
[一般式(II)中、B1は、単結合又は炭素数1〜20の炭化水素基を示し、aは、1〜10の整数を示し、複数存在する場合のB1は、各々独立している;
一般式(III)中、B2は、単結合又は炭素数1〜20の炭化水素基を示し、B3は、炭素数1〜20のアルキル基を示し、aは、1〜10の整数を示し、それぞれ複数存在する場合のB2及びB3は、各々独立している;
一般式(IV)中、B4は、単結合又は炭素数1〜20の炭化水素基を示し、aは、1〜10の整数を示し、複数存在する場合のB4は、各々独立している;
一般式(V)中、B5は、単結合又は炭素数1〜20の炭化水素基を示し、aは、1〜10の整数を示し、複数存在する場合のB5は、各々独立している]のいずれかで表されることが好ましい。
これにより、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とをより高度にバランスさせることができる。
一例では、前記一般式(I)において、Aは、前記一般式(II)又は(III)で表され、kは、0を示す。別の一例では、前記一般式(I)において、Aは、前記一般式(II)又は(III)で表され、kは、0を示し、前記一般式(II)又は(III)において、aは、2〜10の整数を示す。さらに別の一例では、前記一般式(I)において、Aは、前記一般式(II)で表され、kは、0を示し、前記一般式(II)において、aは、2〜10の整数を示す。
一般式(II)〜(V)中のB1、B2、B4、B5に関して、炭素数1〜20の炭化水素基としては、炭素数1〜20のアルキレン基等が挙げられる。
成分(A1)は、窒素原子と、ケイ素原子とを有することが好ましい。この場合、ゴム組成物の加工性が良好となり、また、タイヤに適用した際に、タイヤのウェット制動性及び耐摩耗性を向上させつつ、低転がり抵抗性を更に向上することができる。なお、成分(A1)が窒素原子を有することについては、後述する変性率の測定方法で、算出された変性率が10%以上であった場合、窒素原子を有していると判断する。
成分(A1)がケイ素原子を有することは、以下の方法により判断する。変性共役ジエン系重合体0.5gを試料として、JIS K 0101 44.3.1に準拠して、紫外可視分光光度計(島津製作所社製の商品名「UV−1800」)を用いて測定し、モリブデン青吸光光度法により定量する。これにより、ケイ素原子が検出された場合(検出下限10質量ppm)、ケイ素原子を有していると判断する。
一例では、共役ジエン系重合体鎖は、少なくともその1つの末端が、それぞれカップリング残基が有するケイ素原子と結合している。この場合、複数の共役ジエン系重合体鎖の末端が、1のケイ素原子と結合していてもよい。また、共役ジエン系重合体鎖の末端と炭素数1〜20のアルコキシ基又は水酸基とが、一つのケイ素原子に結合し、その結果として、その1つのケイ素原子が炭素数1〜20のアルコキシシリル基又はシラノール基を構成していてもよい。
前記共役ジエン系重合体又は成分(A1)中の結合共役ジエン量は、例えば、40〜100質量%であり、または55〜80質量%である。結合共役ジエン量が上記範囲であると、ゴム組成物をタイヤに適用した際に、低転がり抵抗性と、ウェット制動性と、耐摩耗性とを、より高度にバランスすることが可能となる。
また、前記共役ジエン系重合体又は成分(A1)中の結合芳香族ビニル量は、例えば、0質量%以上、20質量%以上、または35質量%以上である。また、前記共役ジエン系重合体又は成分(A1)中の結合芳香族ビニル量は、例えば、60質量%以下、または45質量%以下である。結合芳香族ビニル量が上記範囲であると、ゴム組成物をタイヤに適用した際に、低転がり抵抗性と、ウェット制動性と、耐摩耗性とを、より高度にバランスすることが可能となる。
結合芳香族ビニル量は、フェニル基の紫外吸光によって測定でき、ここから結合共役ジエン量も求めることができる。具体的には、以下に準じて測定する。変性共役ジエン系重合体を試料として、試料100mgを、クロロホルムで100mLにメスアップし、溶解して測定サンプルとする。スチレンのフェニル基による紫外線吸収波長(254nm付近)の吸収量により、試料100質量%に対しての結合スチレン量(質量%)を測定する(島津製作所社製の分光光度計「UV−2450」)。
前記共役ジエン系重合体又は成分(A1)において、共役ジエン結合単位中のビニル結合量は、例えば、10〜75モル%、または20〜65モル%である。
成分(A1)がブタジエンとスチレンとの共重合体である場合には、ハンプトンの方法[R.R.Hampton,Analytical Chemistry,21,923(1949)]により、ブタジエン結合単位中のビニル結合量(1,2−結合量)を求めることができる。具体的には、以下のとおりである。変性共役ジエン系重合体を試料として、試料50mgを、10mLの二硫化炭素に溶解して測定サンプルとする。溶液セルを用いて、赤外線スペクトルを600〜1000cm-1の範囲で測定して、所定の波数における吸光度により上記ハンプトンの方法の計算式に従い、ブタジエン部分のミクロ構造、すなわち、1,2−ビニル結合量(mol%)を求める(日本分光社製のフーリエ変換赤外分光光度計「FT−IR230」)。
成分(A1)は、Tgが−50℃より高いことが好ましく、−45〜−15℃であることが更に好ましい。成分(A1)のTgが−45〜−15℃の範囲にあると、ゴム組成物をタイヤに適用した際に、低転がり抵抗性と、ウェット制動性とを更に高度に両立することができる。
Tgについては、ISO 22768:2006に従い、所定の温度範囲で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をTgとする。具体的には、以下のとおりである。変性共役ジエン系重合体を試料として、ISO 22768:2006に準拠して、マックサイエンス社製の示差走査熱量計「DSC3200S」を用い、ヘリウム50mL/分の流通下、−100℃から20℃/分で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をTgとする。
成分(A1)は、100℃で測定されるムーニー粘度が、例えば、20〜100、または30〜80である。
ムーニー粘度の測定方法は、以下のとおりである。共役ジエン系重合体又は変性共役ジエン系重合体を試料として、ムーニー粘度計(上島製作所社製の商品名「VR1132」)を用い、JIS K6300に準拠し、L形ローターを用いてムーニー粘度を測定する。測定温度は、共役ジエン系重合体を試料とする場合には110℃とし、変性共役ジエン系重合体を試料とする場合には100℃とする。まず、試料を1分間試験温度で予熱した後、ローターを2rpmで回転させ、4分後のトルクを測定してムーニー粘度(ML(1+4))とする。
・変性共役ジエン系重合体(A1)の合成方法
成分(A1)の合成方法は、特に限定されるものではなく、例えば、有機モノリチウム化合物を重合開始剤として用い、少なくとも共役ジエン化合物を重合し、共役ジエン系重合体を得る重合工程と、該共役ジエン系重合体の活性末端に対して、5官能以上の反応性化合物(以下、「カップリング剤」ともいう。)を反応させる反応工程と、を有する合成方法などが挙げられる。
重合工程は、例えば、リビングアニオン重合反応による成長反応による重合などが挙げられる。これにより、活性末端を有する共役ジエン系重合体を得ることができ、高変性率の成分(A1)を得ることができる。
重合開始剤としての有機モノリチウム化合物の使用量は、目標とする共役ジエン系重合体又は変性共役ジエン系重合体の分子量に応じて調整することができる。重合開始剤を減らすと、分子量は増大し、一方、重合開始剤を増やすと、分子量は低下する。
有機モノリチウム化合物は、工業的入手の容易さ及び重合反応の制御の容易さの観点から、好ましくは、アルキルリチウム化合物である。この場合、重合開始末端にアルキル基を有する、共役ジエン系重合体が得られる。
アルキルリチウム化合物としては、例えば、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、n−ヘキシルリチウム、ベンジルリチウム、フェニルリチウム、及びスチルベンリチウムが挙げられる。これらの有機モノリチウム化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
重合工程では、回分式、連続式の重合反応様式を適宜選択して用いることができる。
重合工程では、不活性溶媒を使用してもよい。
不活性溶媒としては、例えば、ブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などが挙げられる。不活性溶媒は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
重合反応に不活性溶媒を使用する前に、不活性溶媒中の不純物であるアレン類、及びアセチレン類を除去するために、有機金属化合物で処理してもよい。
重合工程では、極性化合物を用いてもよい。極性化合物を用いることで、芳香族ビニル化合物を共役ジエン化合物とランダムに共重合させることができる。また、極性化合物は、共役ジエン部のミクロ構造を制御するためのビニル化剤としても用いることができる。
極性化合物としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、ジメトキシベンゼン、2,2−ビス(2−オキソラニル)プロパン等のエーテル類;テトラメチルエチレンジアミン、ジピペリジノエタン、トリメチルアミン、トリエチルアミン、ピリジン、キヌクリジン等の第3級アミン化合物;カリウム−tert−アミラート、カリウム−tert−ブチラート、ナトリウム−tert−ブチラート、ナトリウムアミラート等のアルカリ金属アルコキシド化合物;トリフェニルホスフィン等のホスフィン化合物等が挙げられる。極性化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
重合工程の重合温度は、適宜調節すればよく、重合終了後の活性末端に対するカップリング剤の反応量を十分に確保する観点から、例えば、0〜120℃、または50〜100℃である。
カップリング剤は、例えば、窒素原子とケイ素原子とを有する5官能以上の反応性化合物などが挙げられる。当該反応性化合物は、少なくとも3個のケイ素含有官能基を有していることが好ましい。カップリング剤は、好ましくは、少なくとも1のケイ素原子が、炭素数1〜20のアルコキシシリル基又はシラノール基を構成するものであり、より好ましくは、後述する一般式(VI)で表される化合物である。カップリング剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
カップリング剤が有するアルコキシシリル基は、例えば、共役ジエン系重合体が有する活性末端と反応して、アルコキシリチウムが解離し、共役ジエン系重合体鎖の末端とカップリング残基のケイ素との結合を形成する傾向にある。カップリング剤1分子が有するSiORの総数から、反応により減じたSiOR数を差し引いた値が、カップリング残基が有するアルコキシシリル基の数となる。また、カップリング剤が有するアザシラサイクル基は、>N−Li結合及び共役ジエン系重合体末端とカップリング残基のケイ素との結合を形成する。なお、>N−Li結合は、仕上げ時の水等により容易に>NH及びLiOHとなる傾向にある。また、カップリング剤において、未反応で残存したアルコキシシリル基は、仕上げ時の水等により容易にシラノール(Si−OH基)となり得る。
本発明に係るゴム組成物は、前記変性共役ジエン系重合体(A1)が、共役ジエン系重合体を、下記一般式(VI):
Figure 2021098759
[一般式(VI)中、R12、R13及びR14は、それぞれ独立して単結合又は炭素数1〜20のアルキレン基を示し、R15、R16、R17、R18及びR20は、それぞれ独立して炭素数1〜20のアルキル基を示し、R19及びR22は、それぞれ独立して炭素数1〜20のアルキレン基を示し、R21は、炭素数1〜20の、アルキル基又はトリアルキルシリル基を示し、mは、1〜3の整数を示し、pは、1又は2を示し、R12〜R22、m及びpは、複数存在する場合、それぞれ独立しており、i、j及びkは、それぞれ独立して0〜6の整数を示し、但し、(i+j+k)は、3〜10の整数であり、Aは、炭素数1〜20の炭化水素基、又は、酸素原子、窒素原子、ケイ素原子、硫黄原子及びリン原子からなる群から選択される少なくとも一種の原子を有し、かつ、活性水素を有しない有機基を示す]で表されるカップリング剤と反応させてなることが好ましい。
これにより、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とをより高度にバランスさせることができる。
一般式(VI)中、Aが示す炭化水素基は、飽和、不飽和、脂肪族、及び芳香族の炭化水素基を包含する。活性水素を有しない有機基としては、例えば、水酸基(−OH)、第2級アミノ基(>NH)、第1級アミノ基(−NH2)、スルフヒドリル基(−SH)等の活性水素を有する官能基、を有しない有機基が挙げられる。
一例では、前記一般式(VI)において、Aは、前記一般式(II)又は(III)で表され、kは、0を示す。別の一例では、前記一般式(VI)において、Aは、前記一般式(II)又は(III)で表され、kは、0を示し、前記一般式(II)又は(III)において、aは、2〜10の整数を示す。さらに別の一例では、前記一般式(VI)において、Aは、前記一般式(II)で表され、kは、0を示し、前記一般式(II)において、aは、2〜10の整数を示す。
このようなカップリング剤としては、例えば、テトラキス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−プロパンジアミン、テトラキス(3−トリメトキシシリルプロピル)−1,3−プロパンジアミン、テトラキス(3−トリメトキシシリルプロピル)−1,3−ビスアミノメチルシクロヘキサン、ビス(3−トリメトキシシリルプロピル)−[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]アミン、トリス(3−トリメトキシシリルプロピル)アミン、トリス(3−トリエトキシシリルプロピル)アミン、トリス(3−トリメトキシシリルプロピル)−[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−プロパンジアミン、トリス(3−トリメトキシシリルプロピル)−メチル−1,3−プロパンジアミン、ビス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−トリスメトキシシリルプロピル)−メチル−1,3−プロパンジアミン等が挙げられる。
カップリング剤としての一般式(VI)で表される化合物の添加量は、共役ジエン系重合体のモル数対カップリング剤のモル数が、所望の化学量論的比率で反応させるよう調整することができ、そのことにより所望の分岐度が達成される傾向にある。具体的な重合開始剤のモル数は、カップリング剤のモル数に対して、例えば、5.0倍モル以上、または6.0倍モル以上である。この場合、一般式(VI)において、カップリング剤の官能基数((m−1)×i+p×j+k)は、5〜10の整数であり、または6〜10の整数である。
反応工程における反応温度は、適宜調節すればよく、例えば、0〜120℃、または50〜100℃である。また、重合工程後からカップリング剤が添加されるまでの温度変化は、例えば、10℃以下であり、または5℃以下である。
反応工程における反応時間は、適宜調節すればよく、例えば、10秒以上、または30秒以上である。重合工程の終了時から反応工程の開始時までの時間は、カップリング率の観点から、より短い方が好ましく、例えば、5分以内である。
反応工程における混合は、機械的な撹拌、スタティックミキサーによる撹拌等のいずれでもよい。
前記特定の高分子量成分を有する成分(A1)を得るためには、共役ジエン系重合体の分子量分布(Mw/Mn)を、1.5〜2.5、または1.8〜2.2とするとよい。また、得られる成分(A1)は、GPCによる分子量曲線が一山のピークが検出されることが好ましい。
一例では、成分(A1)のGPCによるピーク分子量をMp1、共役ジエン系重合体のピーク分子量をMp2とした場合、以下の式が成り立つ。
(Mp1/Mp2)<1.8×10−12×(Mp2−120×1042+2
一例では、Mp2は、20×104〜80×104であり、Mp1は、30×104〜150×104である。
成分(A1)の変性率は、例えば、30質量%以上、50質量%以上、または70質量%以上である。変性率が30質量%以上であることで、ゴム組成物をタイヤに適用した際に、タイヤの耐摩耗性を向上させつつ、低転がり抵抗性をさらに向上することができる。
変性率の測定方法は、以下のとおりである。変性共役ジエン系重合体を試料として、シリカ系ゲルを充填剤としたGPCカラムに、変性した塩基性重合体成分が吸着する特性を応用することにより測定する。試料及び低分子量内部標準ポリスチレンを含む試料溶液を、ポリスチレン系カラムで測定したクロマトグラムと、シリカ系カラムで測定したクロマトグラムと、の差分よりシリカ系カラムへの吸着量を測定し、変性率を求める。具体的には、以下に示すとおりである。
試料溶液の調製:試料10mg及び標準ポリスチレン5mgを20mLのTHFに溶解させて、試料溶液とする。
ポリスチレン系カラムを用いたGPC測定条件:東ソー社製の商品名「HLC−8320GPC」を使用して、5mmol/Lのトリエチルアミン入りTHFを溶離液として用い、試料溶液10μLを装置に注入し、カラムオーブン温度40℃、THF流量0.35mL/分の条件で、RI検出器を用いてクロマトグラムを得る。カラムは、東ソー社製の商品名「TSKgel SuperMultiporeHZ−H」を3本接続し、その前段にガードカラムとして東ソー社製の商品名「TSKguardcolumn SuperMP(HZ)−H」を接続して使用する。
シリカ系カラムを用いたGPC測定条件:東ソー社製の商品名「HLC−8320GPC」を使用して、THFを溶離液として用い、試料溶液50μLを装置に注入し、カラムオーブン温度40℃、THF流量0.5ml/分の条件で、RI検出器を用いてクロマトグラムを得る。カラムは、商品名「Zorbax PSM−1000S」、「PSM−300S」、「PSM−60S」を接続して使用し、その前段にガードカラムとして商品名「DIOL 4.6×12.5mm 5micron」を接続して使用する。
変性率の計算方法:ポリスチレン系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP1、標準ポリスチレンのピーク面積をP2、シリカ系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP3、標準ポリスチレンのピーク面積をP4として、下記式より変性率(%)を求める。
変性率(%)=[1−(P2×P3)/(P1×P4)]×100
(ただし、P1+P2=P3+P4=100)
反応工程の後、共重合体溶液に、必要に応じて、失活剤、中和剤等を添加してもよい。失活剤としては、例えば、水;メタノール、エタノール、イソプロパノール等のアルコール等が挙げられる。中和剤としては、例えば、ステアリン酸、オレイン酸、バーサチック酸(炭素数9〜11個で、10個を中心とする、分岐の多いカルボン酸混合物)等のカルボン酸;無機酸の水溶液、炭酸ガス等が挙げられる。
成分(A1)は、重合後のゲル生成を防止する観点、及び加工時の安定性を向上させる観点から、例えば、2,6−ジ−tert−ブチル−4−ヒドロキシトルエン(BHT)、n−オクタデシル−3−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェノール)プロピネート、2−メチル−4,6−ビス[(オクチルチオ)メチル]フェノール等の酸化防止剤を添加することが好ましい。
成分(A1)の加工性をより改善するために、必要に応じて、伸展油を変性共役ジエン系共重合体に添加してもよい。伸展油を変性共役ジエン系重合体に添加する方法としては、例えば、伸展油を重合体溶液に加え、混合して、油展共重合体溶液としたものを脱溶媒する方法などが挙げられる。
成分(A1)を、重合体溶液から取得する方法としては、公知の方法を用いることができる。その方法として、例えば、スチームストリッピング等で溶媒を分離した後、重合体を濾別し、さらにそれを脱水及び乾燥して重合体を取得する方法、フラッシングタンクで濃縮し、さらにベント押出し機等で脱揮する方法、ドラムドライヤー等で直接脱揮する方法などが挙げられる。
成分(A)中の、成分(A1)の含有率は、成分(A)の総量に対して、18質量%以上であり、例えば、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、または70質量%以上である。また、成分(A1)の含有率は、成分(A)の総量に対して、例えば、100質量%以下、90質量%以下、80質量%以下、70質量%以下、60質量%以下である。
本発明に係るゴム組成物のゴム成分は、成分(A1)以外の、変性SBRなどのその他の変性共役ジエン系重合体を含んでいてもよい。例えば、その他の変性SBRとしては、国際公開第2017/077712号のポリマー成分P2としての変性(共)重合体および実施例に記載の変性重合体C、変性重合体Dなどが挙げられる。
本発明に係るゴム組成物は、ゴム成分として成分(A)を含めばよく、非ジエン系ゴム成分を含んでいてもよいし、含まなくてもよい。非ジエン系ゴム成分としては、例えば、ブチルゴム(IIR)、エチレン・プロピレンゴム(EPM)、エチレン・プロピレン・ジエンゴム(EPDM)、ウレタンゴム、シリコーンゴム、フッ素ゴムなどが挙げられる。EPDMはジエンの量が極少量であるため、非ジエン系ゴム成分とする。非ジエン系ゴム成分は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<補強性充填剤(B)>
本発明に係るゴム組成物は、補強性充填剤(B)を含み、補強性充填剤(B)は、BET比表面積が、350m2/g以下であり、かつシリカおよびカーボンブラックを含む。
BET比表面積は、BET法により求めた比表面積のことであり、本発明では、ASTM D4820−93に準拠して測定した値を指す。
シリカとしては、上記BET比表面積を満たせば、特に限定されない。シリカは、目的に応じて適宜選択することができ、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウムなどが挙げられる。シリカは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
シリカのBET比表面積は、350m2/g以下であればよく、例えば、40〜350m2/g、または80〜300m2/gであり、150〜280m2/gが好ましい。
成分(B)中のシリカの割合は、適宜調節すればよく、例えば、成分(B)の総質量に対して、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、または95質量%以上である。また、例えば、成分(B)中のシリカの割合は、成分(B)の総質量に対して、100質量%未満、95質量%以下、90質量%以下、80質量%以下、70質量%以下、60質量%以下、または50質量%以下である。
カーボンブラックとしては、上記BET比表面積を満たせば、特に限定されない。カーボンブラックは、例えば、高、中または低ストラクチャーのSAF、ISAF、ISAF−HS、IISAF、N339、HAF、FEF、GPF、SRFグレードなどのカーボンブラックが挙げられる。カーボンブラックは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
カーボンブラックのBET比表面積は、350m2/g以下であればよく、例えば、10〜350m2/g、または60〜180m2/gである。
成分(B)中のカーボンブラックの割合は、適宜調節すればよく、例えば、成分(B)の総質量に対して、1質量%以上、5質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、または50質量%以上である。また、例えば、成分(B)中のカーボンブラックの割合は、成分(B)の総質量に対して、100質量%未満、50質量%以下、40質量%以下、30質量%以下、20質量%以下、10質量%以下、または5質量%以下である。
一例では、成分(B)は、シリカおよびカーボンブラックである。
シリカ、カーボンブラック以外の成分(B)としては、例えば、BET比表面積が350m2/g以下である、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウムなどが挙げられる。シリカ、カーボンブラック以外の成分(B)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
成分(B)の配合量としては、適宜調節すればよいが、例えば、成分(B)の総量が、成分(A)100質量部に対して、50〜120質量部である。
一例では、成分(B)のシリカおよびカーボンブラックの総量が、成分(A)100質量部に対して、60質量部以上、75質量部以上または85質量部以上であり、110質量部以下、100質量部以下、90質量部以下、または85質量部以下である。
本発明に係るゴム組成物は、前記補強性充填剤(B)のシリカおよびカーボンブラックの総量が、前記共役ジエン系重合体(A)100質量部に対して、60〜100質量部であり、
前記補強性充填剤(B)におけるシリカの比率が、75質量%以上であることが好ましい。
これにより、ウェット制動性がより高まることに加えて、変性共役ジエン系重合体(A1)の効果をより高度に発揮することができる。
<熱可塑性樹脂(C)>
熱可塑性樹脂(C)は、熱可塑性樹脂(C1)および熱可塑性樹脂(C2)を含み、熱可塑性樹脂(C1)および熱可塑性樹脂(C2)は、それぞれ、共役ジエン系重合体(A)100質量部に対して、0.5〜40質量部含まれる。一例では、熱可塑性樹脂(C)は、熱可塑性樹脂(C1)および熱可塑性樹脂(C2)である。
・熱可塑性樹脂(C1)
熱可塑性樹脂(C1)は、スチレン・アルキレンブロック共重合体である。スチレン・アルキレンブロック共重合体は、スチレン系モノマー由来のブロックと、アルキレンブロックとを有する共重合体である。スチレン・アルキレンブロック共重合体は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
スチレン・アルキレンブロック共重合体の合計スチレン含量(スチレン系モノマー由来のブロックの合計含量)は、例えば、30質量%以上であり、または30〜60質量%である。合計スチレン含量が30質量%以上であることにより、ドライ操縦安定性が高まる。
本発明に係るゴム組成物は、前記合計スチレン含量が、40質量%以上、または50質量%以上であることが好ましい。これにより、ドライ操縦安定性をさらに高めることができる。
本発明に係るゴム組成物は、前記スチレン・アルキレンブロック共重合体の合計スチレン含量が40質量%以上であることが好ましい。
これにより、ドライ操縦安定性をさらに高めることができる。
本発明において、スチレン・アルキレンブロック共重合体のスチレン含量と、後述するアルキレン単位の含量は、1H−NMRの積分比により求める。
スチレン・アルキレンブロック共重合体のスチレンブロックは、スチレン系モノマーに由来する(スチレン系モノマーを重合した)単位を有する。このようなスチレン系モノマーとしては、例えば、スチレン、α−メチルスチレン、p−メチルスチレン、ビニルトルエンなどが挙げられる。この中でも、スチレン系モノマーとしては、スチレンが好ましい。
スチレン・アルキレンブロック共重合体のアルキレンブロックは、アルキレン(二価の飽和炭化水素基)単位を有する。このようなアルキレン単位としては、例えば、炭素数1〜20のアルキレン基が挙げられる。アルキレン単位は、直鎖構造でもよいし、分岐構造でもよいし、これらの組み合わせでもよい。直鎖構造のアルキレン単位としては、例えば、−(CH2−CH2)−単位(エチレン単位)、−(CH2−CH2−CH2−CH2)−単位(ブチレン単位)などが挙げられる。分岐構造のアルキレン単位としては、例えば、−(CH2−CH(C25))−単位(ブチレン単位)などが挙げられる。これらのうち、アルキレン単位としては、−(CH2−CH(C25))−単位を有することが好ましい。
アルキレン単位の合計含量は適宜調節すればよいが、例えば、スチレン・アルキレンブロック共重合体の総質量に対して、40〜70質量%である。
本発明に係るゴム組成物は、前記スチレン・アルキレンブロック共重合体のアルキレンブロックが、−(CH2−CH(C25))−単位(CA)と−(CH2−CH2)−単位(CB)とを有し、単位(CA)の合計含量が、単位(CA)+単位(CB)の総質量に対して、40質量%以上であることが好ましく、50質量%以上がより好ましく、60質量%以上がより好ましく、65質量%以上が更に好ましい。また、90質量%以下が好ましく、80質量%以下がより好ましい。これにより、低転がり抵抗性を悪化させずに良好なドライ操縦安定性を確保することができる。
本発明に係るゴム組成物は、前記スチレン・アルキレンブロック共重合体のアルキレンブロックが、−(CH2−CH(C25))−単位(CA)と−(CH2−CH2)−単位(CB)とを有し、単位(CA)の合計含量が、単位(CA)+単位(CB)の総質量に対して、50〜90質量%であることが好ましい。
これにより、低転がり抵抗性を悪化させずに良好なドライ操縦安定性を確保することができる。
本発明に係るゴム組成物の一例では、前記スチレン・アルキレンブロック共重合体が、スチレン・エチレンブチレン・スチレンブロック共重合体(SEBS)、スチレン・エチレンプロピレン・スチレンブロック共重合体(SEPS)およびスチレン・エチレン−エチレンプロピレン・スチレンブロック共重合体(SEEPS)からなる群より選択される1種以上である。
本発明に係るゴム組成物は、前記スチレン・アルキレンブロック共重合体が、スチレン・エチレンブチレン・スチレンブロック共重合体であることが好ましい。これにより、ドライ操縦安定性に優れながら、低転がり抵抗性と、ウェット制動性とを両立することができる。このスチレン・エチレンブチレン・スチレンブロック共重合体のエチレンブチレンブロックは、上述したエチレン単位とブチレン単位を有するブロックである。
スチレン・アルキレンブロック共重合体は、上記スチレンブロックとアルキレンブロック以外のその他の構成単位を含んでいてもよい。このようなその他の構成単位としては、例えば、−(CH2−CH(CH=CH2))−単位などの不飽和結合を有する構成単位などが挙げられる。
スチレン・アルキレンブロック共重合体の調製方法は特に限定されず、公知の方法を用いることができる。例えば、スチレンなどのスチレン系モノマーと、1,3−ブタジエンなどの共役ジエン化合物またはブテンなどのオレフィンとを共重合させ、前駆共重合体を得て、この前駆共重合体を水素添加することによって、スチレン・アルキレンブロック共重合体を得ることができる。
スチレン・アルキレンブロック共重合体は、市販品を用いてもよい。このような市販品としては、例えば、JSR社のJSR DYNARON(登録商標)8903P、9901Pなどが挙げられる。
ゴム組成物における成分(C1)の配合量は、成分(A)100質量部に対して、0.5〜40質量部である。ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とをより高度にバランスさせる観点から、成分(C1)の配合量は、成分(A)100質量部に対して、5〜40質量部であることが好ましい。
・熱可塑性樹脂(C2)
熱可塑性樹脂(C2)は、C5系樹脂、C5〜C9系樹脂、C9系樹脂および水素添加C9系樹脂からなる群より選択される1種以上である。
−C5系樹脂−
5系樹脂は、C5系合成石油樹脂を指し、C5留分を、AlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる樹脂を意味する。具体的には、イソプレン、シクロペンタジエン、1,3−ペンタジエン及び1−ペンテンなどを主成分とする共重合体、2−ペンテンとジシクロペンタジエンとの共重合体、1,3−ペンタジエンを主体とする重合体などが挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
−C5〜C9系樹脂および水素添加C5〜C9系樹脂−
5〜C9系樹脂は、C5〜C9系合成石油樹脂を指し、C5〜C11留分を、AlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる樹脂を意味する。例えば、スチレン、ビニルトルエン、α−メチルスチレン、インデン等を主成分とする共重合体などが挙げられる。これらの中でも、C9以上の成分の少ないC5〜C9系樹脂は、成分(A)との相溶性が優れるため好ましい。具体的には、C5〜C9系樹脂におけるC9以上の成分の割合が50質量%未満の樹脂が好ましく、40質量%以下の樹脂がより好ましい。また、これらを一部水添したもの(例えば、荒川化学工業社製のアルコン(登録商標))なども挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
−C9系樹脂および水素添加C9系樹脂−
9系樹脂は、C9系合成石油樹脂を指し、C9留分をAlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる樹脂を意味する。例えば、インデン、メチルインデン、α−メチルスチレン、ビニルトルエンなどを主成分とする共重合体などが挙げられる。水素添加C9系樹脂は、これらを一部水添したものである。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
ゴム組成物における成分(C2)の配合量は、成分(A)100質量部に対して、0.5〜40質量部である。ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とをより高度にバランスさせる観点から、成分(C2)の配合量は、成分(A)100質量部に対して、5〜40質量部であることが好ましい。
本発明に係るゴム組成物には、成分(A)、成分(B)、成分(C)に加えて、軟化剤(D)、および無機充填剤(E)からなる群より選択される1種以上をさらに含んでいてもよい。
<軟化剤(D)>
軟化剤(D)は、ゴム組成物の作業性、加工性、ウェット制動性を高める働きを有する。
成分(D)としては、例えば、鉱物由来のミネラルオイル、石油由来のアロマチックオイル、パラフィンオイル、ナフテンオイル、天然物由来のパームオイル等が挙げられる。成分(D)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
成分(D)として、軟化点が0℃以下、または−10℃以下の低温軟化剤を用いてもよい。低温軟化剤としては、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどのプロセス油、重合した高沸点強芳香族系オイル、流動パラフィン、ホワイトオイルなどの鉱物系軟化剤、ひまし油、綿実油、あまに油、なたね油、大豆油、やし油、落花生油、トール油などの植物系軟化剤などが挙げられる。
成分(A1)の配合量が多い場合、低温軟化剤を併用することで、ウェット制動性をバランスさせることができる。
成分(D)の配合量は、適宜調節すればよいが、例えば、成分(A)100質量部に対して、1〜20質量部である。
本発明に係るゴム組成物は、前記共役ジエン系重合体(A)が、前記共役ジエン系重合体(A)の総量に対して、前記変性共役ジエン系重合体(A1)を70質量%以上含み、
軟化剤(D)をさらに含み、
前記軟化剤(D)を、前記共役ジエン系重合体(A)100質量部に対して、1質量部以上含むことが好ましい。
これにより、変性共役ジエン系重合体(A1)を多く含みながら、弾性率を制御してよりウェット制動性を確保することができる。
一例では、成分(A)が、成分(A)の総量に対して、成分(A1)を70質量%以上含む場合、低温軟化剤を成分(A)100質量部に対して、1質量部以上含むことが好ましい。別の一例では、低温軟化剤の配合量は、成分(A1)を70質量%以上含む成分(A)100質量部に対して、1〜10質量部である。
<無機充填剤(E)>
無機充填剤(E)は、平均粒径0.05〜5μmである無機充填剤である。無機充填剤(E)は、ウェット制動性を高める働きを有する。
成分(E)としては、例えば、シリカ、カーボンブラック、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウムなどが挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
成分(E)の平均粒径は、0.05〜5μmであり、例えば、0.1〜3.0μmである。
成分(E)の配合量は、適宜調節すればよい。例えば、成分(A)100質量部に対して、1〜50質量部、または5〜40質量部である。
本発明に係るゴム組成物は、平均粒径が0.05〜5μmである無機充填剤(E)をさらに含み、
前記無機充填剤(E)を、前記共役ジエン系重合体(A)100質量部に対して、5〜40質量部含むことが好ましい。
これにより、ウェット制動性がより高まる。
<その他の成分>
本発明に係るゴム組成物は、上述した成分以外に、ゴム工業界で通常使用される成分、例えば、加硫促進剤、シランカップリング剤、加硫剤、グリセリン脂肪酸エステル、老化防止剤、加硫促進助剤、有機酸化合物などを、本発明の趣旨に反しない範囲で適宜選択して含有することができる。
(ゴム組成物の調製方法)
本発明に係るゴム組成物の調製方法は特に限定されず、公知の混練方法を用いて、成分(A)、成分(B)、成分(C)などの成分を混練すればよい。
本発明に係るゴム組成物は、好適にはタイヤ用、より好適にはタイヤのトレッド用である。
(タイヤ)
本発明に係るタイヤは、上記いずれかに記載のゴム組成物をトレッドゴムに用いた、タイヤである。
これにより、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とを高度にバランスさせることができる。
以下、実施例を挙げて本発明をさらに詳しく説明するが、これらの実施例は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。
実施例における材料は以下のとおりである。
成分(A)
天然ゴム
スチレンブタジエンゴム(1):JSR社製の商品名「HP755B」
スチレンブタジエンゴム(2):JSR社製の商品名「JSR 1500」
ブタジエンゴム:JSR社製の商品名「JSR BR01」
成分(B)
シリカ1:BET比表面積=250m2/g
シリカ2:BET比表面積=210m2/g
シリカ3:BET比表面積=100m2/g
カーボンブラック:東海カーボン社製の商品名「シースト(登録商標)7H」、BET比表面積=126m2/g
成分(C1)
スチレン・アルキレンブロック共重合体(合計スチレン含量53質量%)、SEBS:JSR社製の「DYNARON(登録商標)9901P」、単位CAの単位CA+単位CB単位に対する割合70質量%
成分(C2)
5系樹脂:東燃化学合同会社製の商品名「T−REZ RA100」
5〜C9系樹脂:日本ゼオン社製の商品名「クイントン(登録商標)G100B」
9系樹脂:JXTGエネルギー社製の商品名「日石ネオポリマー(登録商標)140」
水添C9系樹脂:
成分(D)
低温軟化剤1:オレイン酸エステル含有オイル、花王社製の商品名「スプレンダー(登録商標)」
低温軟化剤2:トリス(2−エチルヘキシル)ホスフェート、大八化学工業社製の商品名「TOP」
低温軟化剤3:ヒマワリ油、昭和産業社製の商品名「オレインリッチ(登録商標)」
成分(E)
シリカ4:東ソー・シリカ社製の商品名「Nipsil EL」、粒径0.06μm
水酸化アルミニウム:昭和電工社製の商品名「ハイジライト」、粒径1.0μm
(その他)
老化防止剤(6PPD):N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン、大内新興化学工業社製の商品名「ノクラック 6C」
老化防止剤(TMDQ):2,2,4−トリメチル−1,2−ジヒドロキノリン重合体、大内新興化学工業社製の商品名「ノクラック 224」
WAX:マイクロクリスタリンワックス、日本精蝋社製の商品名「オゾエース0701」
シランカップリング剤:エトキシ(3−メルカプトプロピル)ビス(3,6,9,12,15−ペンタオキサオクタコサン−1−イルオキシ)シラン、エボニック・デグサ社製の商品名「Si363」(登録商標)
加硫促進剤(DPG):1,3−ジフェニルグアニジン、住友化学社製の商品名「ソクシノール(登録商標)D−G」
加硫促進剤(MBTS):ジ(2−ベンゾチアゾリル)ペルスルフィド、大内新興化学工業社製の商品名「ノクセラー(登録商標)DM−P」
加硫促進剤(CBS):N−シクロヘキシルベンゾチアゾール−2−スルフェンアミド、大内新興化学工業社製の商品名「ノクセラー(登録商標)CZ−G」
変性共役ジエン系重合体(A1)の、結合スチレン量、ブタジエン部分のミクロ構造、分子量、収縮因子(g')、ムーニー粘度、Tg、変性率、窒素原子の有無、ケイ素原子の有無は上述の方法で分析する。
<変性SBR(1)の合成>
内容積が10Lで、内部の高さ(L)と直径(D)との比(L/D)が4.0であり、底部に入口、頂部に出口を有し、撹拌機付槽型反応器である撹拌機及び温度制御用のジャケットを有する槽型圧力容器を重合反応器とする。予め水分除去した、1,3−ブタジエンを17.9g/分、スチレンを9.8g/分、n−ヘキサンを145.3g/分の条件で混合する。この混合溶液を反応基の入口に供給する配管の途中に設けたスタティックミキサーにおいて、残存不純物不活性処理用のn−ブチルリチウムを0.117mmol/分で添加、混合した後、反応基の底部に連続的に供給する。更に、極性物質として2,2−ビス(2−オキソラニル)プロパンを0.0194g/分の速度で、重合開始剤としてn−ブチルリチウムを0.242mmol/分の速度で、撹拌機で激しく混合する重合反応器の底部へ供給し、連続的に重合反応を継続する。反応器頂部出口における重合溶液の温度が75℃となるように温度を制御する。重合が十分に安定したところで、反応器頂部出口より、カップリング剤添加前の重合体溶液を少量抜出し、酸化防止剤(BHT)を重合体100gあたり0.2gとなるように添加した後に溶媒を除去し、110℃のムーニー粘度及び各種の分子量を測定する。次に、反応器の出口より流出した重合体溶液に、カップリング剤として2.74mmol/Lに希釈したテトラキス(3−トリメトキシシリルプロピル)−1,3−プロパンジアミンを0.0302mmol/分(水分5.2ppm含有n−ヘキサン溶液)の速度で連続的に添加し、カップリング剤を添加された重合体溶液はスタティックミキサーを通ることで混合されカップリング反応する。このとき、反応器の出口より流出した重合溶液にカップリング剤が添加されるまでの時間は4.8分、温度は68℃であり、重合工程における温度と、変性剤を添加するまでの温度との差は7℃である。カップリング反応した重合体溶液に、酸化防止剤(BHT)を重合体100gあたり0.2gとなるように0.055g/分(n−ヘキサン溶液)で連続的に添加し、カップリング反応を終了する。酸化防止剤と同時に、重合体100gに対してオイル(JX日鉱日石エネルギー社製の商品名「JOMOプロセスNC140」)が6gとなるように連続的に添加し、スタティックミキサーで混合する。スチームストリッピングにより溶媒を除去して、成分(A1)としての変性SBR(1)を得る。
変性SBR(1)を上記の方法で分析すると、各値は以下のとおりであり、成分(A1)に該当する。
結合スチレン量=35質量%、
ビニル結合量(1,2−結合量)=42mol%、
Mw=85.2×104g/mol、
Mn=38.2×104g/mol、
Mw/Mn=2.23、
ピークトップ分子量(Mp1)=96.8×104g/mol、
ピークトップ分子量の比率(Mp1/Mp2)=3.13、
「特定の高分子量成分」の割合=4.6%、
収縮因子(g')=0.57、
ムーニー粘度(100℃)=65、
Tg=−24℃、および
変性率=80%。
また、変性SBR(1)は窒素原子を有し、ケイ素原子を有する。
変性SBR(1)は、カップリング剤の官能基数と添加量から想定される分岐数に相当する「分岐度」は8であり(収縮因子の値からも確認できる)、カップリング剤1分子が有するSiORの総数から反応により減じたSiOR数を引いた値に相当する「SiOR残基数」は4である。
<変性SBR(2)の合成>
乾燥し、窒素置換した800mLの耐圧ガラス容器に、1,3−ブタジエンのシクロヘキサン溶液およびスチレンのシクロヘキサン溶液を、1,3−ブタジエン67.5gおよびスチレン7.5gになるように加え、2,2−ジテトラヒドロフリルプロパン0.6mmolを加え、0.8mmolのn−ブチルリチウムを加えた後、50℃で1.5時間重合を行う。この際の重合転化率がほぼ100%となった重合反応系に対し、[N,N−ビス(トリメチルシリル)−(3−アミノ−1−プロピル)](メチル)(ジエトキシ)シランを0.72mmol添加し、50℃で30分間変性反応を行う。その後、2,6−ジ−t−ブチル−p−クレゾール(BHT)のイソプロパノール5質量%溶液2mLを加えて反応を停止させ、常法に従い乾燥して変性SBRを得る。変性SBRのミクロ構造は、結合スチレン量が10質量%、ブタジエン部分のビニル結合量が40%、ピーク分子量が200,000である。
<ゴム組成物の調製及び評価>
表1および表2に示す配合処方に従い、通常のバンバリーミキサーを用いて、ゴム組成物を製造する。また、得られたゴム組成物をトレッドゴムに用いて、サイズ195/65R15の乗用車用空気入りラジアルタイヤを作製する。ゴム組成物又はタイヤに対して、下記の方法で、ウェット制動性、低転がり抵抗性およびドライ操縦安定性を評価する。各評価を表1に示す。表2中、「伸展油」は、比較例1では、SBR(1)に添加される伸展油の量を表し、その他の実施例および比較例では、変性共役ジエン系重合体(A1)である変性SBR(1)に添加される伸展油の量を表す。
<ウェット制動性>
供試タイヤを試験車に装着し、湿潤路面での実車試験にて、テストコースにて80km/時の速度にて湿潤路面上での制動距離を測定し、距離の逆数を比較例1を100として指数値で表す。指数値が大きい程、ウェット制動性に優れることを示す。
<低転がり抵抗性>
供試タイヤを、回転ドラムにより80km/時の速度で回転させ、荷重を4.82kNとして、転がり抵抗を測定し、比較例1のタイヤの転がり抵抗の逆数を100として指数表示する。指数値が大きい程、転がり抵抗が低く、低転がり抵抗性に優れることを示す。
<ドライ操縦安定性>
供試タイヤを試験車に装着し、乾燥路面での実車試験にて、操縦安定性をドライバーのフィーリング評点で表し、比較例1のタイヤのフィーリング評点を100として指数表示する。指数値が大きい程、ドライ操縦安定性に優れることを示す。
Figure 2021098759
Figure 2021098759
表2に示すように、本発明に係るゴム組成物によって、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とを高度にバランスさせることができる。
本発明によれば、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とを高度にバランスさせたゴム組成物を提供することができる。本発明によれば、ウェット制動性と、ドライ操縦安定性と、低転がり抵抗性とを高度にバランスさせたタイヤを提供することができる。

Claims (12)

  1. 共役ジエン系重合体(A)と、補強性充填剤(B)と、熱可塑性樹脂(C)と、を含み、
    前記共役ジエン系重合体(A)は、共役ジエン系重合体(A)の総量に対して、変性共役ジエン系重合体(A1)を18質量%以上含み、
    前記変性共役ジエン系重合体(A1)は、重量平均分子量が20×104〜300×104であり、該変性共役ジエン系重合体(A1)の総量に対して、分子量が200×104〜500×104である当該変性共役ジエン系重合体を、0.25〜30質量%含み、収縮因子(g’)が0.64未満であり、
    前記変性共役ジエン系重合体(A1)に添加されている伸展油の量が、前記変性共役ジエン系重合体(A1)100質量部に対して、10質量部以下であり、
    前記補強性充填剤(B)は、BET比表面積が、350m2/g以下であり、かつシリカおよびカーボンブラックを含み、
    前記熱可塑性樹脂(C)は、熱可塑性樹脂(C1)および熱可塑性樹脂(C2)を含み、
    前記熱可塑性樹脂(C1)は、スチレン・アルキレンブロック共重合体であり、
    前記熱可塑性樹脂(C2)は、C5系樹脂、C5〜C9系樹脂、C9系樹脂および水素添加C9系樹脂からなる群より選択される1種以上であり、
    前記熱可塑性樹脂(C1)および前記熱可塑性樹脂(C2)を、それぞれ、前記共役ジエン系重合体(A)100質量部に対して、0.5〜40質量部含む、ゴム組成物。
  2. 前記スチレン・アルキレンブロック共重合体のアルキレンブロックが、−(CH2−CH(C25))−単位(CA)と−(CH2−CH2)−単位(CB)とを有し、単位(CA)の合計含量が、単位(CA)+単位(CB)の総質量に対して、40質量%以上である、請求項1に記載のゴム組成物。
  3. 前記補強性充填剤(B)のシリカおよびカーボンブラックの総量が、前記共役ジエン系重合体(A)100質量部に対して、60〜100質量部であり、
    前記補強性充填剤(B)におけるシリカの比率が、75質量%以上である、請求項1または2に記載のゴム組成物。
  4. 前記共役ジエン系重合体(A)が、前記共役ジエン系重合体(A)の総量に対して、前記変性共役ジエン系重合体(A1)を70質量%以上含み、
    軟化剤(D)をさらに含み、
    前記軟化剤(D)を、前記共役ジエン系重合体(A)100質量部に対して、1質量部以上含む、請求項1〜3のいずれか一項に記載のゴム組成物。
  5. 平均粒径が0.05〜5μmである無機充填剤(E)をさらに含み、
    前記無機充填剤(E)を、前記共役ジエン系重合体(A)100質量部に対して、5〜40質量部含む、請求項1〜4のいずれか一項に記載のゴム組成物。
  6. 前記変性共役ジエン系重合体(A1)が、分岐を有し、かつ、1以上のカップリング残基と、該カップリング残基に対して結合する共役ジエン系重合体鎖と、を有し、
    前記分岐は、1の前記カップリング残基に対して5以上の前記共役ジエン系重合体鎖が結合している分岐を含む、請求項1〜5のいずれか一項に記載のゴム組成物。
  7. 前記変性共役ジエン系重合体(A1)が、下記一般式(I):
    Figure 2021098759
    [一般式(I)中、Dは、共役ジエン系重合体鎖を示し、R1、R2及びR3は、それぞれ独立して単結合又は炭素数1〜20のアルキレン基を示し、R4及びR7は、それぞれ独立して炭素数1〜20のアルキル基を示し、R5、R8、及びR9は、それぞれ独立して水素原子又は炭素数1〜20のアルキル基を示し、R6及びR10は、それぞれ独立して炭素数1〜20のアルキレン基を示し、R11は、水素原子又は炭素数1〜20のアルキル基を示し、m及びxは、それぞれ独立して1〜3の整数を示し、x≦mであり、pは、1又は2を示し、yは、1〜3の整数を示し、y≦(p+1)であり、zは、1又は2を示し、それぞれ複数存在する場合のD、R1〜R11、m、p、x、y、及びzは、それぞれ独立しており、iは、0〜6の整数を示し、jは、0〜6の整数を示し、kは、0〜6の整数を示し、(i+j+k)は、3〜10の整数であり、((x×i)+(y×j)+(z×k))は、5〜30の整数であり、Aは、炭素数1〜20の炭化水素基、又は、酸素原子、窒素原子、ケイ素原子、硫黄原子及びリン原子からなる群より選ばれる少なくとも1種の原子を有し、かつ、活性水素を有しない有機基を示す]で表される、請求項1〜6のいずれか一項に記載のゴム組成物。
  8. 前記一般式(I)において、Aが、下記一般式(II)〜(V):
    Figure 2021098759
    [一般式(II)中、B1は、単結合又は炭素数1〜20の炭化水素基を示し、aは、1〜10の整数を示し、複数存在する場合のB1は、各々独立している;
    一般式(III)中、B2は、単結合又は炭素数1〜20の炭化水素基を示し、B3は、炭素数1〜20のアルキル基を示し、aは、1〜10の整数を示し、それぞれ複数存在する場合のB2及びB3は、各々独立している;
    一般式(IV)中、B4は、単結合又は炭素数1〜20の炭化水素基を示し、aは、1〜10の整数を示し、複数存在する場合のB4は、各々独立している;
    一般式(V)中、B5は、単結合又は炭素数1〜20の炭化水素基を示し、aは、1〜10の整数を示し、複数存在する場合のB5は、各々独立している]のいずれかで表される、請求項7に記載のゴム組成物。
  9. 前記変性共役ジエン系重合体(A1)が、共役ジエン系重合体を、下記一般式(VI):
    Figure 2021098759
    [一般式(VI)中、R12、R13及びR14は、それぞれ独立して単結合又は炭素数1〜20のアルキレン基を示し、R15、R16、R17、R18及びR20は、それぞれ独立して炭素数1〜20のアルキル基を示し、R19及びR22は、それぞれ独立して炭素数1〜20のアルキレン基を示し、R21は、炭素数1〜20の、アルキル基又はトリアルキルシリル基を示し、mは、1〜3の整数を示し、pは、1又は2を示し、R12〜R22、m及びpは、複数存在する場合、それぞれ独立しており、i、j及びkは、それぞれ独立して0〜6の整数を示し、但し、(i+j+k)は、3〜10の整数であり、Aは、炭素数1〜20の炭化水素基、又は、酸素原子、窒素原子、ケイ素原子、硫黄原子及びリン原子からなる群から選択される少なくとも一種の原子を有し、かつ、活性水素を有しない有機基を示す]で表されるカップリング剤と反応させてなる、請求項1〜8のいずれか一項に記載のゴム組成物。
  10. 前記スチレン・アルキレンブロック共重合体のアルキレンブロックが、−(CH2−CH(C25))−単位(CA)と−(CH2−CH2)−単位(CB)とを有し、単位(CA)の合計含量が、単位(CA)+単位(CB)の総質量に対して、50〜90質量%である、請求項1〜9のいずれかに記載のゴム組成物。
  11. 前記スチレン・アルキレンブロック共重合体の合計スチレン含量が40質量%以上である、請求項1〜10のいずれかに記載のゴム組成物。
  12. 請求項1〜11のいずれか一項に記載のゴム組成物をトレッドゴムに用いた、タイヤ。
JP2019229730A 2019-12-19 2019-12-19 ゴム組成物およびタイヤ Pending JP2021098759A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019229730A JP2021098759A (ja) 2019-12-19 2019-12-19 ゴム組成物およびタイヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019229730A JP2021098759A (ja) 2019-12-19 2019-12-19 ゴム組成物およびタイヤ

Publications (1)

Publication Number Publication Date
JP2021098759A true JP2021098759A (ja) 2021-07-01

Family

ID=76540860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019229730A Pending JP2021098759A (ja) 2019-12-19 2019-12-19 ゴム組成物およびタイヤ

Country Status (1)

Country Link
JP (1) JP2021098759A (ja)

Similar Documents

Publication Publication Date Title
WO2018186367A1 (ja) ゴム組成物及びタイヤ
CN110643094A (zh) 充气轮胎
EP3862371B1 (en) Conjugated diene-based polymer, branching agent, production method for conjugated diene-based polymer, extended conjugated diene-based polymer, rubber composition, and tire
JPWO2019117168A1 (ja) ゴム組成物及びタイヤ
JP7216012B2 (ja) ゴム組成物およびタイヤ
JP2020059778A (ja) ゴム組成物、トレッド及びタイヤ
JP7422674B2 (ja) ゴム組成物、トレッドゴムおよびタイヤ
KR20220041162A (ko) 공액 디엔계 중합체, 공액 디엔계 중합체의 제조 방법, 공액 디엔계 중합체 조성물, 및 고무 조성물
JPWO2019117214A1 (ja) ゴム組成物およびタイヤ
JP7316942B2 (ja) ゴム組成物およびタイヤ
WO2020075830A1 (ja) ゴム組成物、トレッド、ベーストレッド用ゴム組成物及びタイヤ
EP4310110A1 (en) Conjugated diene polymer and method for producing same, polymer composition, crosslinked product, and tire
JP2019104889A (ja) ゴム組成物およびタイヤ
KR20210125427A (ko) 공액 디엔계 중합체 및 그의 제조 방법, 그리고 고무 조성물
KR20210124053A (ko) 공액 디엔계 중합체, 공액 디엔계 중합체의 제조 방법, 공액 디엔계 중합체 조성물, 및 고무 조성물
WO2021124637A1 (ja) タイヤ
WO2020075829A1 (ja) ゴム組成物、トレッド及びタイヤ
JP2021098759A (ja) ゴム組成物およびタイヤ
WO2019244850A1 (ja) ゴム組成物およびタイヤ
JP2020059809A (ja) ベーストレッド用ゴム組成物およびタイヤ
JP7081879B2 (ja) タイヤ
JP2020059807A (ja) タイヤ
JP2021098760A (ja) ゴム組成物およびタイヤ
JP7402812B2 (ja) タイヤ
JP2021098758A (ja) ゴム組成物及びタイヤ