JP2021095609A - Film deposition device, film deposition method, and method for manufacturing electronic device - Google Patents

Film deposition device, film deposition method, and method for manufacturing electronic device Download PDF

Info

Publication number
JP2021095609A
JP2021095609A JP2019227890A JP2019227890A JP2021095609A JP 2021095609 A JP2021095609 A JP 2021095609A JP 2019227890 A JP2019227890 A JP 2019227890A JP 2019227890 A JP2019227890 A JP 2019227890A JP 2021095609 A JP2021095609 A JP 2021095609A
Authority
JP
Japan
Prior art keywords
wiring
film forming
vacuum chamber
arm
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019227890A
Other languages
Japanese (ja)
Inventor
岩崎 達哉
Tatsuya Iwasaki
達哉 岩崎
敏治 内田
Toshiharu Uchida
敏治 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Priority to JP2019227890A priority Critical patent/JP2021095609A/en
Priority to KR1020200172939A priority patent/KR20210078412A/en
Priority to CN202011507274.1A priority patent/CN113005422A/en
Publication of JP2021095609A publication Critical patent/JP2021095609A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3423Shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

To provide a technology that can stably deposit a film with excellent reproductivity without obstructing movement of a film deposition source, and to improve durability of a film deposition device.SOLUTION: A film deposition device transfers power between wires in a wireless power feeding manner in at least any one of a connection part (21) between a vacuum chamber (10) and a first arm (31), a connection part (22) between the first arm (31) and a second arm (32) and a connection part (23) between the second arm (32) and an ambient air box (230).SELECTED DRAWING: Figure 1

Description

本発明は、成膜装置、成膜方法、及び電子デバイスの製造方法に関し、具体的には、外部から真空チャンバ内へ電力を供給するための構造に関するものである。 The present invention relates to a film forming apparatus, a film forming method, and a method for manufacturing an electronic device, and specifically, relates to a structure for supplying electric power from the outside into a vacuum chamber.

最近、フラットパネルディスプレイとして有機電界発光ディスプレイ(OLED)が脚光を浴びている。有機電界発光ディスプレイは自発光ディスプレイで、応答速度、視野角、薄型化などの特性が液晶パネルディスプレイより優れており、モニタ、テレビ、スマートフォンに代表される各種の携帯端末などで、既存の液晶パネルディスプレイを急速に代替している。また、自動車用のディスプレイ等にも、その応用分野が広がっている。 Recently, organic electroluminescent displays (OLEDs) have been in the limelight as flat panel displays. Organic electric field light emitting displays are self-luminous displays that are superior to liquid crystal panel displays in terms of response speed, viewing angle, thinning, etc., and are used in various mobile terminals such as monitors, televisions, and smartphones. It is rapidly replacing the display. In addition, its application fields are expanding to displays for automobiles and the like.

従来の成膜装置としては、たとえば、特許文献1に記載のようなものが知られている。すなわち、真空チャンバ内に、基板(成膜対象物)と、基板と対向して配置される蒸着源(成膜源)と、が配置され、蒸着源から材料を蒸発させて基板に成膜するようになっている。真空チャンバ内には、蒸着源が搭載される移動可能な接続ボックス(大気ボックス)が設けられると共に、真空チャンバ外部から大気ボックス内に導入される電気配線等を収容する移送装置が設けられている。 As a conventional film forming apparatus, for example, the one described in Patent Document 1 is known. That is, a substrate (object to be deposited) and a vapor deposition source (deposition source) arranged to face the substrate are arranged in the vacuum chamber, and the material is evaporated from the vapor deposition source to form a film on the substrate. It has become like. Inside the vacuum chamber, a movable connection box (atmosphere box) on which the vapor deposition source is mounted is provided, and a transfer device for accommodating electrical wiring and the like introduced into the atmosphere box from outside the vacuum chamber is provided. ..

この移送装置は、内部が大気圧に保たれた中空構造で、3つの連結部(接続部)と回動可能に連接される2つの中空のアーム(移動体)を備え、電気配線は、真空チャンバの外部から、各連結部の内部及び各アームの内部を通じて大気ボックスに導入されている。大気ボックスが移動すると、移送装置は、各連結部にてアームの角度が変化して大気ボックスの移動に追随し、変形しながら移動する。 This transfer device has a hollow structure whose inside is maintained at atmospheric pressure, and is equipped with two hollow arms (moving bodies) that are rotatably connected to three connecting parts (connecting parts), and the electrical wiring is a vacuum. It is introduced into the air box from the outside of the chamber, through the inside of each connection and the inside of each arm. When the atmospheric box moves, the transfer device moves while deforming, following the movement of the atmospheric box by changing the angle of the arm at each connecting portion.

特開2009−299176号公報Japanese Unexamined Patent Publication No. 2009-299176

従来の構造では、電気配線が、接続部およびその近傍において方向転換しており、この部分において局所的に屈曲やねじれが発生する。大気ボックスが移動し、アームが回動することに伴い、接続部内を通る配線部分において、ねじれや屈曲の程度が変動する。回動角度が大きくなると、ねじれ変形や屈曲が大きくなり、配線の方向転換部に力が集中する。配線の変形は、アームの回動の度に繰り返し作用するので、配線の劣化の原因となる。 In the conventional structure, the electrical wiring changes direction at the connection portion and its vicinity, and bending or twisting occurs locally at this portion. As the atmospheric box moves and the arm rotates, the degree of twisting and bending varies in the wiring portion passing through the connection portion. When the rotation angle becomes large, the twisting deformation and bending become large, and the force is concentrated on the turning portion of the wiring. The deformation of the wiring repeatedly acts every time the arm rotates, which causes deterioration of the wiring.

また、成膜源や成膜源を駆動する駆動機構等が高性能化、大型化すると、内部に配置される配線の数が増えたり、配線が太くなる傾向がある。そうなると、配線や配線束の変形(屈曲、ねじれ)が困難になり、接続部の回動抵抗が大きくなって成膜源の移動を阻害するおそれがある。 Further, as the film forming source and the drive mechanism for driving the film forming source become higher in performance and larger in size, the number of wirings arranged inside tends to increase and the wirings tend to become thicker. In that case, deformation (bending, twisting) of the wiring or the wiring bundle becomes difficult, and the rotation resistance of the connecting portion increases, which may hinder the movement of the film forming source.

本発明は、上記した従来技術の問題点を解決するためになされたもので、その目的は、成膜源の移動を阻害することなく、安定して再現良く成膜をすることができる成膜装置、成膜方法及び電子デバイスの製造方法を提供することにある。また、本発明のさらなる目的は、成膜装置の耐久性の向上を図ることにある。 The present invention has been made to solve the above-mentioned problems of the prior art, and an object of the present invention is to form a film that can stably and reproducibly form a film without hindering the movement of the film forming source. It is an object of the present invention to provide an apparatus, a film forming method, and a method for manufacturing an electronic device. Further, an object of the present invention is to improve the durability of the film forming apparatus.

本発明は、真空チャンバと、前記真空チャンバ内に配置され、成膜源が搭載され移動可能である大気ボックスと、前記真空チャンバの壁と前記大気ボックスとを連結し、前記真空チャンバの外部から前記成膜源に電力を供給するための配線を収容する配線収容部と、を備える成膜装置において、前記配線収容部の内部は、大気圧環境からなり、前記配線収容部は、第1アームと、第2アームと、前記第1アームと前記第2アームとを回動可能に接続する接続部と、を有し、前記第1アーム内の配線は、送信側コイルを有し、前記第2アーム内の配線は、受信側コイルを有し、前記送信側コイルと前記受信側コイルとは、前記接続部内で対向して配置され、前記第1アーム内の配線から前記第2アーム内の配線への電力の伝送がワイヤレス給電によって行われることを特徴とする成膜装置を提供する。 The present invention connects a vacuum chamber, an atmosphere box arranged in the vacuum chamber and on which a film forming source is mounted and movable, a wall of the vacuum chamber, and the atmosphere box, and from the outside of the vacuum chamber. In a film forming apparatus including a wiring accommodating portion for accommodating wiring for supplying electric power to the film forming source, the inside of the wiring accommodating portion is composed of an atmospheric pressure environment, and the wiring accommodating portion is a first arm. And a second arm, and a connecting portion for rotatably connecting the first arm and the second arm, and the wiring in the first arm has a transmitting side coil, and the first arm is provided. The wiring in the two arms has a receiving side coil, and the transmitting side coil and the receiving side coil are arranged so as to face each other in the connecting portion, and from the wiring in the first arm to the second arm. Provided is a film forming apparatus characterized in that electric power is transmitted to wiring by wireless power supply.

本発明は、真空チャンバと、前記真空チャンバ内に配置され、成膜源が搭載され移動可能である大気ボックスと、前記真空チャンバの壁と前記大気ボックスとを連結し、前記真空チャンバの外部から前記成膜源に電力を供給するための配線を収容する配線収容部と、を備える成膜装置において、前記配線収容部の内部は、大気圧環境からなり、前記配線収容部は、前記大気ボックスと前記配線収容部とを回動可能に接続する接続部を有し、前記配線収容部内の配線は、送信側コイルを有し、前記大気ボックス内の配線は、受信側コイルを有し、前記送信側コイルと前記受信側コイルとは、前記接続部内で対向して配置され、前記配線収容部内の配線から前記大気ボックス内の配線への電力の伝送がワイヤレス給電によって行われることを特徴とする成膜装置を提供する。 The present invention connects a vacuum chamber, an atmosphere box arranged in the vacuum chamber and on which a film forming source is mounted and movable, a wall of the vacuum chamber, and the atmosphere box, and from the outside of the vacuum chamber. In a film forming apparatus including a wiring accommodating portion for accommodating wiring for supplying power to the film forming source, the inside of the wiring accommodating portion is composed of an atmospheric pressure environment, and the wiring accommodating portion is the atmospheric box. The wiring in the wiring housing has a transmitting side coil, and the wiring in the atmosphere box has a receiving coil. The transmitting side coil and the receiving side coil are arranged so as to face each other in the connection portion, and power is transmitted from the wiring in the wiring accommodating portion to the wiring in the atmosphere box by wireless power supply. A film forming apparatus is provided.

本発明は、真空チャンバと、前記真空チャンバ内に配置され、成膜源が搭載され移動可能である大気ボックスと、前記真空チャンバの壁と前記大気ボックスとを連結し、前記真空チャンバの外部から前記成膜源に電力を供給するための配線を収容する配線収容部と、を備える成膜装置において、前記配線収容部の内部は、大気圧環境からなり、前記配線収容部は、前記真空チャンバの壁と前記配線収容部とを回動可能に接続する接続部を有し、前記真空チャンバの外部の配線は、送信側コイルを有し、前記配線収容部内の配線は、受信側コイルを有し、前記送信側コイルと前記受信側コイルとは、前記接続部内で対向して配置され、前記真空チャンバの外部の配線から前記配線収容部内の配線への電力の伝送がワイヤレス給電によって行われることを特徴とする成膜装置を提供する。 The present invention connects a vacuum chamber, an atmosphere box arranged in the vacuum chamber and on which a film forming source is mounted and movable, a wall of the vacuum chamber, and the atmosphere box, and from the outside of the vacuum chamber. In a film forming apparatus including a wiring accommodating portion for accommodating wiring for supplying power to the film forming source, the inside of the wiring accommodating portion is composed of an atmospheric pressure environment, and the wiring accommodating portion is the vacuum chamber. The wall and the wiring accommodating portion are rotatably connected to each other, the wiring outside the vacuum chamber has a transmitting side coil, and the wiring inside the wiring accommodating portion has a receiving side coil. The transmitting side coil and the receiving side coil are arranged so as to face each other in the connecting portion, and power is transmitted from the wiring outside the vacuum chamber to the wiring in the wiring accommodating portion by wireless power supply. Provided is a film forming apparatus characterized by the above.

本発明は、真空チャンバ内で、成膜対象物に対して、成膜源が搭載された大気ボックスを移動させ、前記成膜対象物に成膜する成膜方法であって、前記真空チャンバ内に、前記真空チャンバの壁と前記大気ボックスとを連結し、前記真空チャンバの外部から前記成膜源に電力を供給するための配線を収容する配線収容部が設けられ、前記配線収容部の内部は、大気圧環境からなり、前記配線収容部は、第1アームと、第2アームと、前記第1アームと前記第2アームとを回動可能に接続する接続部と、を有し、前記第1アーム内の配線に形成されている送信側コイルと前記第2アーム内の配線に形成されている受信側コイルとが、前記接続部内で対向して配置されており、前記成膜対象物に成膜を行う際に、前記第1アーム内の配線から前記第2アーム内の配線への電力の伝送がワイヤレス給電によって行われることを特徴とする成膜方法を提供する。 The present invention is a film forming method in which an atmospheric box on which a film forming source is mounted is moved with respect to a film forming object in a vacuum chamber to form a film on the film forming object, and the film is formed in the vacuum chamber. Is provided with a wiring accommodating portion for connecting the wall of the vacuum chamber and the atmospheric box and accommodating wiring for supplying electric power from the outside of the vacuum chamber to the film forming source, and inside the wiring accommodating portion. Consists of an atmospheric pressure environment, and the wiring accommodating portion includes a first arm, a second arm, and a connecting portion that rotatably connects the first arm and the second arm. The transmitting side coil formed in the wiring in the first arm and the receiving side coil formed in the wiring in the second arm are arranged to face each other in the connection portion, and the film forming object is formed. Provided is a film forming method characterized in that electric power is transmitted from the wiring in the first arm to the wiring in the second arm by wireless power feeding when the film is formed.

本発明は、真空チャンバ内で、成膜対象物に対して、成膜源が搭載された大気ボックスを移動させ、前記成膜対象物に成膜する成膜方法であって、前記真空チャンバ内に、前記真空チャンバの壁と前記大気ボックスとを連結し、前記真空チャンバの外部から前記成膜源に電力を供給するための配線を収容する配線収容部が設けられ、前記配線収容部の内部は、大気圧環境からなり、前記配線収容部は、前記大気ボックスと前記配線収容部とを回動可能に接続する接続部を有し、前記配線収容部内の配線に形成されている送信側コイルと前記大気ボックス内の配線に形成されている受信側コイルとが、前記接続部内で対向して配置されており、前記成膜対象物に成膜を行う際に、前記配線収容部内の配線から前記大気ボックス内の配線への電力の伝送がワイヤレス給電によって行われることを特徴とす
る成膜方法を提供する。
The present invention is a film forming method in which an atmospheric box on which a film forming source is mounted is moved with respect to a film forming object in a vacuum chamber to form a film on the film forming object, and the film is formed in the vacuum chamber. Is provided with a wiring accommodating portion for connecting the wall of the vacuum chamber and the atmospheric box and accommodating wiring for supplying power to the film forming source from the outside of the vacuum chamber, and inside the wiring accommodating portion. Consists of an atmospheric pressure environment, the wiring accommodating portion has a connecting portion for rotatably connecting the atmospheric box and the wiring accommodating portion, and a transmitting side coil formed in the wiring in the wiring accommodating portion. And the receiving side coil formed in the wiring in the atmosphere box are arranged so as to face each other in the connection portion, and when the film is formed on the film-forming object, the wiring in the wiring accommodating portion is used. Provided is a film forming method characterized in that power is transmitted to the wiring in the atmosphere box by wireless power supply.

本発明は、真空チャンバ内で、成膜対象物に対して、成膜源が搭載された大気ボックスを移動させ、前記成膜対象物に成膜する成膜方法であって、前記真空チャンバ内に、前記真空チャンバの壁と前記大気ボックスとを連結し、前記真空チャンバの外部から前記成膜源に電力を供給するための配線を収容する配線収容部が設けられ、前記配線収容部の内部は、大気圧環境からなり、前記配線収容部は、前記真空チャンバの壁と前記配線収容部とを回動可能に接続する接続部を有し、前記真空チャンバの外部の配線に形成されている送信側コイルと前記配線収容部内の配線に形成されている受信側コイルとが、前記接続部内で対向して配置され、前記成膜対象物に成膜を行う際に、前記真空チャンバの外部の配線から前記配線収容部内の配線への電力の伝送がワイヤレス給電によって行われることを特徴とする成膜方法を提供する。 The present invention is a film forming method in which an atmospheric box on which a film forming source is mounted is moved with respect to a film forming object in a vacuum chamber to form a film on the film forming object, and the film is formed in the vacuum chamber. Is provided with a wiring accommodating portion for connecting the wall of the vacuum chamber and the atmospheric box and accommodating wiring for supplying power to the film forming source from the outside of the vacuum chamber, and inside the wiring accommodating portion. Consists of an atmospheric pressure environment, the wiring accommodating portion has a connecting portion for rotatably connecting the wall of the vacuum chamber and the wiring accommodating portion, and is formed in wiring outside the vacuum chamber. The transmitting side coil and the receiving side coil formed in the wiring in the wiring accommodating portion are arranged so as to face each other in the connecting portion, and when the film is formed on the film forming object, the outside of the vacuum chamber is formed. Provided is a film forming method characterized in that power is transmitted from a wiring to a wiring in the wiring accommodating portion by wireless power supply.

また、本発明は、上記した成膜方法によって電子デバイスを製造することを特徴とする電子デバイスの製造方法を提供する。 The present invention also provides a method for manufacturing an electronic device, which comprises manufacturing an electronic device by the above-mentioned film forming method.

本発明によると、成膜源の移動を阻害することなく、安定して再現良く成膜をすることができる。さらに、装置の耐久性の向上を図ることができる。 According to the present invention, a stable and well-reproducible film can be formed without hindering the movement of the film source. Further, the durability of the device can be improved.

図1は、本発明の実施形態に係る成膜装置の概略断面図。FIG. 1 is a schematic cross-sectional view of a film forming apparatus according to an embodiment of the present invention. 図2は、図1の平面図。FIG. 2 is a plan view of FIG. 図3は、回転ターゲットユニットの一例を示す概略断面図。FIG. 3 is a schematic cross-sectional view showing an example of a rotating target unit. 図4は、第1接続部の構成例を示す概略断面図。FIG. 4 is a schematic cross-sectional view showing a configuration example of the first connection portion. 図5は、電源とターゲットユニットの電気的接続を模式的に示す回路図。FIG. 5 is a circuit diagram schematically showing the electrical connection between the power supply and the target unit. 図6は、本発明の実施形態に係る成膜装置で製造される電子デバイスの一例を示す断面図。FIG. 6 is a cross-sectional view showing an example of an electronic device manufactured by the film forming apparatus according to the embodiment of the present invention.

以下に、本発明の実施形態について詳細に説明する。ただし、以下の実施形態は本発明の好ましい構成を例示的に示すものにすぎず、本発明の範囲はそれらの構成に限定されない。また、以下の説明における、装置のハードウェア構成及びソフトウェア構成、処理フロー、製造条件、寸法、材質、形状などは、特に特定的な記載がない限りは、本発明の範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, embodiments of the present invention will be described in detail. However, the following embodiments merely illustrate preferred configurations of the present invention, and the scope of the present invention is not limited to those configurations. Further, the hardware configuration and software configuration, processing flow, manufacturing conditions, dimensions, materials, shapes, etc. of the apparatus in the following description are limited to those of the present invention unless otherwise specified. It is not the purpose.

<成膜装置の構成>
まず、図1及び図2を参照して、本発明の実施形態に係る成膜装置1の基本的な構成について説明する。本実施形態に係る成膜装置1は、半導体デバイス、磁気デバイス、電子部品などの各種電子デバイスや、光学部品などの製造において成膜対象物2(基板上に積層体が形成されているものも含む)上に薄膜を堆積形成するために用いられる。より具体的には、成膜装置1は、発光素子や光電変換素子、タッチパネルなどの電子デバイスの製造において好ましく用いられる。中でも、本実施形態に係る成膜装置1は、有機EL(ElectroLuminescence)素子などの有機発光素子や、有機薄膜太陽電池などの有機光電変換素子の製造において特に好ましく適用可能である。なお、本発明における電子デバイスは、発光素子を備えた表示装置(例えば有機EL表示装置)や照明装置(例えば有機EL照明装置)、光電変換素子を備えたセンサ(例えば有機CMOSイメージセンサ)も含むものである。
<Structure of film forming equipment>
First, the basic configuration of the film forming apparatus 1 according to the embodiment of the present invention will be described with reference to FIGS. 1 and 2. The film forming apparatus 1 according to the present embodiment includes various electronic devices such as semiconductor devices, magnetic devices, and electronic components, and a film forming object 2 (a laminate having a laminate formed on a substrate) in the manufacture of optical components and the like. Used to deposit and form a thin film on (including). More specifically, the film forming apparatus 1 is preferably used in the manufacture of electronic devices such as light emitting elements, photoelectric conversion elements, and touch panels. Above all, the film forming apparatus 1 according to the present embodiment is particularly preferably applicable to the production of an organic light emitting element such as an organic EL (Electroluminescence) element and an organic photoelectric conversion element such as an organic thin-film solar cell. The electronic device in the present invention also includes a display device (for example, an organic EL display device) and a lighting device (for example, an organic EL lighting device) equipped with a light emitting element, and a sensor (for example, an organic CMOS image sensor) equipped with a photoelectric conversion element. It is a device.

図6は、有機EL素子の一般的な層構成を模式的に示している。図6に示すとおり、有
機EL素子は、基板に陽極、正孔注入層、正孔輸送層、有機発光層、電子輸送層、電子注入層、陰極の順番に成膜される構成が一般的である。本実施形態に係る成膜装置1は、有機膜上に、スパッタリングによって、電子注入層や電極(陰極や陽極)に用いられる金属や金属酸化物等の積層被膜を成膜する際に好適に用いられる。また、有機膜上への成膜に限定されず、金属材料や酸化物材料等のスパッタで成膜可能な材料の組み合わせであれば、多様な面に積層成膜が可能である。
FIG. 6 schematically shows a general layer structure of an organic EL element. As shown in FIG. 6, the organic EL element generally has a configuration in which an anode, a hole injection layer, a hole transport layer, an organic light emitting layer, an electron transport layer, an electron injection layer, and a cathode are formed in this order on a substrate. is there. The film forming apparatus 1 according to the present embodiment is suitably used when forming a laminated film of a metal, a metal oxide, or the like used for an electron injection layer or an electrode (cathode or anode) on an organic film by sputtering. Be done. Further, the film formation is not limited to the organic film, and a layered film formation can be performed on various surfaces as long as it is a combination of materials that can be formed by sputtering such as a metal material and an oxide material.

成膜装置1は、図1に示すように、真空チャンバ10を有し、真空チャンバ10の内部には、成膜対象物2と、マスク7と、成膜対象物2に向かって成膜材料であるスパッタ粒子を飛翔させて成膜対象物2に成膜する成膜源としての回転ターゲットユニット3(以下、単に「ターゲットユニット3」とも称する。)と、が配置されている。本実施形態では、成膜対象物2は固定しているが、適宜、移動させても良い。 As shown in FIG. 1, the film forming apparatus 1 has a vacuum chamber 10, and inside the vacuum chamber 10, a film forming object 2, a mask 7, and a film forming material toward the film forming object 2 are formed. A rotating target unit 3 (hereinafter, also simply referred to as “target unit 3”) as a film forming source for forming a film on the film forming object 2 by flying sputtered particles is arranged. In the present embodiment, the film-forming object 2 is fixed, but it may be moved as appropriate.

真空チャンバ10には、不図示のガス導入手段及び排気手段が接続され、内部を所定の圧力に維持することができる構成となっている。すなわち、真空チャンバ10の内部には、スパッタガス(アルゴン等の不活性ガスや酸素や窒素等の反応性ガス)が、ガス導入手段により導入され、また、真空チャンバ10の内部からは、真空ポンプ等の排気手段によって排気が行われ、真空チャンバ10の内部の圧力は所定の圧力に調圧される。 A gas introduction means and an exhaust means (not shown) are connected to the vacuum chamber 10 so that the inside can be maintained at a predetermined pressure. That is, a sputter gas (an inert gas such as argon or a reactive gas such as oxygen or nitrogen) is introduced into the vacuum chamber 10 by a gas introducing means, and a vacuum pump is introduced from the inside of the vacuum chamber 10. The gas is exhausted by an exhaust means such as, and the pressure inside the vacuum chamber 10 is adjusted to a predetermined pressure.

ターゲットユニット3は、図2に示すように、移動方向に所定間隔を隔てて平行に配置された一対のターゲットユニット3A,3Bを備えている。第1のターゲットユニット3A及び第2のターゲットユニット3Bはともに、両端が大気ボックス(移動台)230上に固定されたサポートブロック210とエンドブロック220によって支持されている。第1のターゲットユニット3Aは、図3に示すように、円筒形状の第1のターゲット4とその内周に配置される電極であるカソード5と、さらに内部に配置される磁石ユニット6を有する。同様に、第2のターゲットユニット3Bは、円筒形状の第2のターゲット4とその内周に配置される電極であるカソード5と、さらに内部に配置される磁石ユニット6を有する。第1のターゲット4と第2のターゲット4は異なる材料であってもよいし、同じ材料であってもよい。サポートブロック210とエンドブロック220によってターゲット4は回転自在に支持されており、磁石ユニット6は固定状態で支持されている。ここではターゲットとカソードを別部品として記したが、ターゲット材料が導電性材料である場合には一体化した単一部品として構成もよい。 As shown in FIG. 2, the target unit 3 includes a pair of target units 3A and 3B arranged in parallel at predetermined intervals in the moving direction. Both the first target unit 3A and the second target unit 3B are supported by a support block 210 and an end block 220 whose ends are fixed on the atmospheric box (moving table) 230. As shown in FIG. 3, the first target unit 3A has a cylindrical first target 4, a cathode 5 which is an electrode arranged on the inner circumference thereof, and a magnet unit 6 which is further arranged inside. Similarly, the second target unit 3B has a cylindrical second target 4, a cathode 5 which is an electrode arranged on the inner circumference thereof, and a magnet unit 6 which is further arranged inside. The first target 4 and the second target 4 may be made of different materials or may be made of the same material. The target 4 is rotatably supported by the support block 210 and the end block 220, and the magnet unit 6 is supported in a fixed state. Here, the target and the cathode are described as separate parts, but when the target material is a conductive material, it may be configured as an integrated single part.

ここでは、第1のターゲットユニット3Aの磁石ユニット6と第2のターゲットユニット3Bの磁石ユニット6とを互いに逆方向に傾けている。これによりターゲット粒子が第1のターゲットユニット3Aと第2のターゲットユニット3Bとで異なる方向に飛散するため、成膜対象物2の成膜面上で、第1のターゲットユニット3Aからのターゲット粒子の飛散領域と第2のターゲットユニット3Bからのターゲット粒子の飛散領域とが重ならないようにすることができる。この構成は、たとえば、第1のターゲットユニット3Aと第2のターゲットユニット3Bとで異なるターゲット材料を用いる場合に有利である。ただし、磁石ユニット6,6を反対方向に傾斜させる構成は必須ではない。一方の磁石ユニット6のみを傾斜させてもよいし、磁石ユニット6を傾斜させない構成でもよい。なお、ここでは磁石ユニット6は回転しないものとしたが、これに限定はされず、磁石ユニット6も回転または揺動してもよい。本実施態様では、円筒状のターゲットユニットを用いているが、これに限定されず板状のターゲットユニットを用いてもよい。 Here, the magnet unit 6 of the first target unit 3A and the magnet unit 6 of the second target unit 3B are tilted in opposite directions. As a result, the target particles are scattered in different directions in the first target unit 3A and the second target unit 3B, so that the target particles from the first target unit 3A are scattered on the film formation surface of the film formation target 2. The scattering region and the scattering region of the target particles from the second target unit 3B can be prevented from overlapping. This configuration is advantageous, for example, when different target materials are used for the first target unit 3A and the second target unit 3B. However, a configuration in which the magnet units 6 and 6 are tilted in opposite directions is not essential. Only one magnet unit 6 may be tilted, or the magnet unit 6 may not be tilted. Although it is assumed here that the magnet unit 6 does not rotate, the present invention is not limited to this, and the magnet unit 6 may also rotate or swing. In this embodiment, a cylindrical target unit is used, but the present invention is not limited to this, and a plate-shaped target unit may be used.

大気ボックス230は、リニアベアリング等の搬送ガイドを介して一対の案内レール250に沿って成膜対象物2の成膜面と平行な方向(ここでは水平方向)に移動自在に支持されている。図中、案内レール250と平行な方向をX軸、垂直な方向をZ軸、水平面で案内レール250と直交する方向をY軸とすると、ターゲットユニット3は、その回転軸
をY軸方向に平行にした状態で、回転軸を中心に回転しながら、成膜対象物2に対して平行に、すなわちXY平面上をX軸方向に移動する。本実施態様では、ターゲットユニット3が水平方向に移動する例であるが、ターゲットユニット3が垂直方向に移動する構造であってもよい。この場合は、成膜対象物2は直立した状態に支持され、成膜対象物2の成膜面と平行な方向にターゲットユニット3は移動する。また、大気ボックス230の内部は大気圧環境となっており、前述の大気ボックス230自身の駆動機構や、ターゲットの回転移動機構や配線や冷却水配管やガス配管や電子回路やセンサなどを、大気ボックス230の内部に設置することができる。
The atmospheric box 230 is movably supported along a pair of guide rails 250 in a direction parallel to the film forming surface (here, the horizontal direction) of the film forming object 2 via a transport guide such as a linear bearing. In the figure, assuming that the direction parallel to the guide rail 250 is the X-axis, the direction perpendicular to the guide rail 250 is the Z-axis, and the direction orthogonal to the guide rail 250 in the horizontal plane is the Y-axis, the target unit 3 has its rotation axis parallel to the Y-axis direction. In this state, while rotating around the rotation axis, the film moves in parallel with the film-forming object 2, that is, in the X-axis direction on the XY plane. In this embodiment, the target unit 3 moves in the horizontal direction, but the target unit 3 may move in the vertical direction. In this case, the film-forming object 2 is supported in an upright state, and the target unit 3 moves in a direction parallel to the film-forming surface of the film-forming object 2. In addition, the inside of the atmosphere box 230 is in an atmospheric pressure environment, and the above-mentioned drive mechanism of the atmosphere box 230 itself, the rotation movement mechanism of the target, wiring, cooling water piping, gas piping, electronic circuits, sensors, etc. are used in the atmosphere. It can be installed inside the box 230.

ターゲット4は、駆動機構12によって回転駆動される。駆動機構12は、たとえば、モータ等の駆動源を有し、動力伝達機構を介してターゲット4に動力が伝達される一般的な駆動機構が適用され、本実施形態では、大気ボックス230に配置される。一方、大気ボックス230は、搬送ガイドに接続された駆動機構によって、X軸方向に直線駆動される。搬送ガイド及び搬送ガイドに接続された駆動機構についても、特に図示していないが、回転モータの回転運動を直線運動に変換するボールねじ等を用いたねじ送り機構、リニアモータ等、公知の種々の直線運動機構を用いることができる。 The target 4 is rotationally driven by the drive mechanism 12. The drive mechanism 12 has, for example, a drive source such as a motor, and a general drive mechanism in which power is transmitted to the target 4 via the power transmission mechanism is applied. In the present embodiment, the drive mechanism 12 is arranged in the atmosphere box 230. To. On the other hand, the atmosphere box 230 is linearly driven in the X-axis direction by a drive mechanism connected to the transport guide. Although the transfer guide and the drive mechanism connected to the transfer guide are not particularly shown, various known screw feed mechanisms such as a screw feed mechanism using a ball screw or the like that converts the rotational motion of the rotary motor into a linear motion, a linear motor, and the like are known. A linear motion mechanism can be used.

真空チャンバ10内には、上記したターゲットユニット3が搭載される移動可能な大気ボックス230と、真空チャンバ10の底壁10aと大気ボックス230とを連結する大気アーム30とが設けられる。大気アーム30は、真空チャンバ10の外部から大気ボックス230内に電力を供給するための配線Lを収容する配線収容部である。配線Lは、ターゲットユニット3に電力を供給する電力配線やターゲットを駆動する駆動装置のモータに電力を供給する電力配線などを含んでもよい。さらに、通信、制御信号用の制御配線などを含んでもよい。 In the vacuum chamber 10, a movable atmosphere box 230 on which the target unit 3 is mounted and an atmosphere arm 30 for connecting the bottom wall 10a of the vacuum chamber 10 and the atmosphere box 230 are provided. The atmosphere arm 30 is a wiring accommodating portion for accommodating the wiring L for supplying electric power from the outside of the vacuum chamber 10 into the atmosphere box 230. The wiring L may include a power wiring that supplies power to the target unit 3, a power wiring that supplies power to the motor of the drive device that drives the target, and the like. Further, control wiring for communication and control signals may be included.

この大気アーム30は、中空構造の第1アーム(第1移動体)31及び第2アーム(第2移動体)32と、真空チャンバ10の底壁10aと第1アーム31とを回動可能に接続する第1接続部21と、第1アーム31と第2アーム32とを回動可能に接続する第2接続部22と、第2アーム32と大気ボックス(第3移動体)230とを回動可能に接続する第3接続部23とを有する。すなわち、第1アーム31の一端が、真空チャンバ10の底壁10aに、第1接続部21を介して回動自在に連結されており、他端が第2接続部22を介して第2アーム32の一端に回動自在に連結されている。また、第2アーム32の他端が、第3接続部23を介して大気ボックス230に回動自在に連結されている。なお、大気アーム30を構成するアームの数は2つに限られず、1つでもよいし、3つ以上でもよい。 The atmospheric arm 30 can rotate the first arm (first moving body) 31 and the second arm (second moving body) 32 having a hollow structure, and the bottom wall 10a and the first arm 31 of the vacuum chamber 10. The first connecting portion 21 to be connected, the second connecting portion 22 for rotatably connecting the first arm 31 and the second arm 32, the second arm 32, and the atmosphere box (third moving body) 230 are rotated. It has a third connecting portion 23 that is movably connected. That is, one end of the first arm 31 is rotatably connected to the bottom wall 10a of the vacuum chamber 10 via the first connecting portion 21, and the other end is rotatably connected to the bottom wall 10a of the vacuum chamber 10 via the second connecting portion 22. It is rotatably connected to one end of the 32. Further, the other end of the second arm 32 is rotatably connected to the atmosphere box 230 via the third connecting portion 23. The number of arms constituting the atmospheric arm 30 is not limited to two, and may be one or three or more.

第1接続部21、第2接続部22及び第3接続部23は、真空チャンバ10の底壁10aに対して直交するZ軸方向に平行に延び、第1アーム31は、第1接続部21を介して底壁10aと所定距離離間した位置で、第1接続部21に対して直交方向に延び、底壁10aと平行な面で回動する。第2アーム32は、第2接続部22に対して直交方向に延び、第1アーム31に対して、さらに所定高さ隔てた平行な面で回動する。また、第2アーム32は第3接続部23を介して、大気ボックス230に対して所定距離離間している。 The first connection portion 21, the second connection portion 22, and the third connection portion 23 extend parallel to the bottom wall 10a of the vacuum chamber 10 in the Z-axis direction, and the first arm 31 is the first connection portion 21. At a position separated from the bottom wall 10a by a predetermined distance, it extends in a direction orthogonal to the first connecting portion 21 and rotates in a plane parallel to the bottom wall 10a. The second arm 32 extends in a direction orthogonal to the second connecting portion 22, and rotates in a parallel plane further separated by a predetermined height with respect to the first arm 31. Further, the second arm 32 is separated from the atmosphere box 230 by a predetermined distance via the third connecting portion 23.

第1接続部21、第1アーム31、第2接続部22、第2アーム32及び第3接続部23は、中空の部材で、内部が互いに連通しており、第1接続部21が真空チャンバ10の外部空間(例えば大気圧環境)に開放され、第3接続部23は大気ボックス230に連通し、連通した内部空間が外部空間と略同一の圧力環境に保持されている。本実施態様において、大気アーム30や大気ボックス230の内部は空気としたが、窒素をはじめとした不活性ガス雰囲気や乾燥空気の環境であってもよい。圧力は制御が必要ない大気圧環境が好ましいが、真空チャンバ10内部よりは圧力が高ければよく、任意の負圧や陽圧の環境
であってもよい。
The first connection portion 21, the first arm 31, the second connection portion 22, the second arm 32, and the third connection portion 23 are hollow members, and the insides communicate with each other, and the first connection portion 21 is a vacuum chamber. It is open to 10 external spaces (for example, atmospheric pressure environment), and the third connection portion 23 communicates with the atmosphere box 230, and the communicated internal space is maintained in a pressure environment substantially the same as the external space. In the present embodiment, the inside of the atmosphere arm 30 and the atmosphere box 230 is air, but it may be an inert gas atmosphere such as nitrogen or an environment of dry air. The pressure is preferably an atmospheric pressure environment that does not require control, but the pressure may be higher than the inside of the vacuum chamber 10 and may be an environment of arbitrary negative pressure or positive pressure.

第1接続部21、第2接続部22及び第3接続部23は、回転継手を構成する部分で、たとえば、円筒状の第1の継手部と、第1継手部の内側に嵌合する円筒状の第2の継手部とが、軸受を介して互いに回転自在に組み付けられ、シール部材によってシールされている。シール部材としては、周囲の真空に対して漏れないように、真空用のシール、たとえば、磁性流体シールが用いられる。図4は、第1アーム31と真空チャンバ10の底壁10aとの間の第1接続部21の構成例を模式的に示している(配線Lは図示していない)。図4の例では、円筒状の第1の継手部21aが真空チャンバ10の底壁10aの開口に対しZ方向に移動自在に嵌め込まれ、第1の継手部21aと開口の間の隙間が第1シール部材S1(たとえばOリング)によってシールされている。また、第1アーム31に形成された円筒状の第2の継手部21bが第1の継手部21aの内側に回転自在に嵌め込まれ、第1の継手部21aと第2の継手部21bの間の隙間が第2シール部材S2(たとえば磁性流体シール)によってシールされている。 The first connection portion 21, the second connection portion 22, and the third connection portion 23 are portions that constitute a rotary joint, for example, a cylindrical first joint portion and a cylinder that fits inside the first joint portion. The second joint portion of the shape is rotatably assembled to each other via a bearing and sealed by a sealing member. As the seal member, a vacuum seal, for example, a magnetic fluid seal is used so as not to leak to the surrounding vacuum. FIG. 4 schematically shows a configuration example of the first connection portion 21 between the first arm 31 and the bottom wall 10a of the vacuum chamber 10 (wiring L is not shown). In the example of FIG. 4, the cylindrical first joint portion 21a is fitted so as to be movable in the Z direction with respect to the opening of the bottom wall 10a of the vacuum chamber 10, and the gap between the first joint portion 21a and the opening is the first. 1 Sealed by a sealing member S1 (for example, an O-ring). Further, the cylindrical second joint portion 21b formed on the first arm 31 is rotatably fitted inside the first joint portion 21a, and is between the first joint portion 21a and the second joint portion 21b. The gap is sealed by the second sealing member S2 (for example, a magnetic fluid seal).

<配線の構成>
次に、図1及び図5を参照して、本実施形態の成膜装置1の特徴の一つである配線Lの構成について説明する。
<Wiring configuration>
Next, the configuration of the wiring L, which is one of the features of the film forming apparatus 1 of the present embodiment, will be described with reference to FIGS. 1 and 5.

配線Lは、真空チャンバ10の底壁10aの開口から外部に引き出されている第1配線L1、第1アーム31の内部に配置されている第2配線L2、第2アーム32の内部に配置されている第3配線L3、及び、大気ボックス230の内部に配置されている第4配線L4から構成されている。第1配線L1、第2配線L2、第3配線L3、第4配線L4は、物理的に接続されていない、独立した配線である。配線は、柔軟性を有したケーブルでもよいし、剛性を有したロッド状金属材であってもよい。 The wiring L is arranged inside the first wiring L1 drawn out from the opening of the bottom wall 10a of the vacuum chamber 10, the second wiring L2 arranged inside the first arm 31, and the second arm 32. It is composed of a third wiring L3 and a fourth wiring L4 arranged inside the atmosphere box 230. The first wiring L1, the second wiring L2, the third wiring L3, and the fourth wiring L4 are independent wirings that are not physically connected. The wiring may be a flexible cable or a rigid rod-shaped metal material.

第1配線L1は、第1接続部21の内部又はその近傍に固定される第1送信側コイルTC1を有し、第1送信側コイルTC1の両端から延びる2本のラインが電源8に接続されている。第2配線L2は、第1接続部21の内部又はその近傍に固定される第2受信側コイルRC2と、第2接続部22の内部又はその近傍に固定される第2送信側コイルTC2と、第2受信側コイルRC2と第2送信側コイルTC2を接続する2本のラインとで構成されている。第3配線L3は、第2接続部22の内部又はその近傍に固定される第3受信側コイルRC3と、第3接続部23の内部又はその近傍に固定される第3送信側コイルTC3と、第3受信側コイルRC3と第3送信側コイルTC3を接続する2本のラインとで構成されている。第4配線L4は、第3接続部23の内部又はその近傍に固定される第4受信側コイルRC4を有し、第4受信側コイルRC4の両端から延びる2本のラインはターゲットユニット3のカソード5に電気的に接続されている。 The first wiring L1 has a first transmitting side coil TC1 fixed inside or near the first connecting portion 21, and two lines extending from both ends of the first transmitting side coil TC1 are connected to the power supply 8. ing. The second wiring L2 includes a second receiving coil RC2 fixed inside or near the first connecting portion 21, and a second transmitting coil TC2 fixed inside or near the second connecting portion 22. It is composed of two lines connecting the second receiving side coil RC2 and the second transmitting side coil TC2. The third wiring L3 includes a third receiving coil RC3 fixed inside or near the second connecting portion 22, a third transmitting coil TC3 fixed inside or near the third connecting portion 23, and the like. It is composed of two lines connecting the third receiving side coil RC3 and the third transmitting side coil TC3. The fourth wiring L4 has a fourth receiving coil RC4 fixed inside or near the third connecting portion 23, and two lines extending from both ends of the fourth receiving coil RC4 are cathodes of the target unit 3. It is electrically connected to 5.

第1配線L1の第1送信側コイルTC1と、第2配線L2の第2受信側コイルRC2とは、第1接続部21の内部において、非接触な状態で近接して対向配置されている。電源8から第1配線L1に電圧が印加され、第1送信側コイルTC1に電流が流れると、電磁誘導や磁界共鳴によって第2受信側コイルRC2に電流が流れる。このようなワイヤレス給電の方式によって、真空チャンバ10の外部の第1配線L1から第1アーム31内の第2配線L2への電力の伝送が実現される。本発明において、ワイヤレス給電とは、電磁誘導もしくは磁界共鳴の方法を用いて、物理的に非接触な物体(配線)の間で電力を伝送することである。 The first transmitting side coil TC1 of the first wiring L1 and the second receiving side coil RC2 of the second wiring L2 are arranged close to each other in a non-contact state inside the first connecting portion 21. When a voltage is applied from the power supply 8 to the first wiring L1 and a current flows through the first transmitting side coil TC1, a current flows through the second receiving side coil RC2 due to electromagnetic induction or magnetic field resonance. By such a wireless power feeding method, electric power is transmitted from the first wiring L1 outside the vacuum chamber 10 to the second wiring L2 in the first arm 31. In the present invention, wireless power feeding means transmitting electric power between physically non-contact objects (wiring) by using a method of electromagnetic induction or magnetic field resonance.

同様に、第2配線L2の第2送信側コイルTC2と、第3配線L3の第3受信側コイルRC3とは、第2接続部22の内部において、非接触な状態で近接して対向配置されている。第2受信側コイルRC2に生じた誘導起電力によって第2送信側コイルTC2に電流
が流れると、電磁誘導によって第3受信側コイルRC3に電流が流れる。このようなワイヤレス給電によって、第1アーム31内の第2配線L2から第2アーム32内の第3配線L3への電力の伝送が実現される。
Similarly, the second transmitting side coil TC2 of the second wiring L2 and the third receiving side coil RC3 of the third wiring L3 are arranged close to each other in a non-contact state inside the second connecting portion 22. ing. When a current flows through the second transmitting side coil TC2 due to the induced electromotive force generated in the second receiving side coil RC2, a current flows through the third receiving side coil RC3 by electromagnetic induction. By such wireless power supply, power transmission from the second wiring L2 in the first arm 31 to the third wiring L3 in the second arm 32 is realized.

同様に、第3配線L3の第3送信側コイルTC3と、第4配線L4の第4受信側コイルRC4とは、第3接続部23の内部において、わずかな隙間をあけて対向配置されている。第3受信側コイルRC3に生じた誘導起電力によって第3送信側コイルTC3に電流が流れると、電磁誘導によって第4受信側コイルRC4に電流が流れる。このようなワイヤレス給電によって、第2アーム32内の第3配線L3から大気ボックス230内の第4配線L4への電力の伝送が実現される。 Similarly, the third transmitting side coil TC3 of the third wiring L3 and the fourth receiving side coil RC4 of the fourth wiring L4 are arranged to face each other with a slight gap inside the third connecting portion 23. .. When a current flows through the third transmitting side coil TC3 due to the induced electromotive force generated in the third receiving side coil RC3, a current flows through the fourth receiving side coil RC4 by electromagnetic induction. By such wireless power supply, power transmission from the third wiring L3 in the second arm 32 to the fourth wiring L4 in the atmosphere box 230 is realized.

すなわち、電源8の出力は、ワイヤレス給電を利用して、第1配線L1、第2配線L2、第3配線L3、第4配線L4へと順に伝送され、ターゲットユニット3のカソード5へと供給される。コイルは、ソレノイドコイルやスパイラルコイルや積層コイルや単層コイルや馬蹄状のコイルなどを用いることができる。コイルは空芯コイルであってもよいし、磁心付きコイルであってもよい。コイルの中心軸は、接続部における継手の中心軸と一致して配置することが好ましい。このような配置とすることで、アームの回動に伴って2つのコイル間の位置ずれが起きにくくなるので、大気ボックスを移動させている際にも安定した電力伝送が可能となる。 That is, the output of the power supply 8 is sequentially transmitted to the first wiring L1, the second wiring L2, the third wiring L3, and the fourth wiring L4 by using the wireless power supply, and is supplied to the cathode 5 of the target unit 3. To. As the coil, a solenoid coil, a spiral coil, a laminated coil, a single layer coil, a horseshoe-shaped coil, or the like can be used. The coil may be an air-core coil or a coil with a magnetic core. The central axis of the coil is preferably arranged so as to coincide with the central axis of the joint at the connection portion. With such an arrangement, the position shift between the two coils is less likely to occur due to the rotation of the arm, so that stable power transmission is possible even when the atmospheric box is being moved.

ここで、電源8としては、AC電源やバイポーラ電源やパルスDC電源を用いることができる。特に、パルス電圧波形の形状やデューティ比や昇圧レートなどを任意に制御可能なバイポーラ電源を用いることが好ましい。この際、パルスの繰り返し周波数としては、1kHz以上100kHz以下の周波数を用いることが好ましい。このような周波数を用いることで、異常放電が少なく、安定したスパッタ放電が可能となるとともに、ワイヤレス伝送部において比較的に高い伝送効率を実現することができる。これに伴い、比較的に良質な薄膜を低消費電力で成膜することが可能となる。このように本発明のワイヤレス給電を用いた電力供給においては、適切な周波数帯を選定することで、プラズマ安定と高い送電効率の両立を実現することができる。 Here, as the power supply 8, an AC power supply, a bipolar power supply, or a pulse DC power supply can be used. In particular, it is preferable to use a bipolar power supply capable of arbitrarily controlling the shape of the pulse voltage waveform, the duty ratio, the boost rate, and the like. At this time, it is preferable to use a frequency of 1 kHz or more and 100 kHz or less as the pulse repetition frequency. By using such a frequency, abnormal discharge is small, stable sputtering discharge is possible, and relatively high transmission efficiency can be realized in the wireless transmission unit. Along with this, it becomes possible to form a relatively high-quality thin film with low power consumption. As described above, in the power supply using the wireless power supply of the present invention, it is possible to realize both plasma stability and high power transmission efficiency by selecting an appropriate frequency band.

図5に記すように、第4受信側コイルRC4の両端から延びる2本のラインのうちの一方を第1のターゲットユニット3Aに電気的に接続し、他方のラインを第2のターゲットユニット3Bに電気的に接続する配線構造を採用することは好ましい構成である。図5において、プラズマ51は抵抗成分と容量成分で記されている。このような電気接続を用いることで、安定した電力を供給し、放電を維持することが可能である。このような構成によれば、制御手段(不図示)によってバイポーラ電源8から出力する電圧波形を制御することによって、成膜に利用するターゲットユニット(カソード)を高速に切り替えて使用することができる(マイナスの電圧が印加された側のターゲットユニットがスパッタに用いられる)。なお、このとき、一方のターゲットユニットをカソードとして機能させる際に、他方のターゲットユニットをアノードとして機能させることができる。このような装置構成においては、カソードの近傍に広い面積のアノードを配置できるため、安定したプラズマを形成することができ、長時間にわたり安定した成膜を行うことが可能となる。さらに、カソードとして機能した際に生じたターゲット表面への影響(材料付着や凸凹形成など)が、アノードとして機能した際に除去(緩和)されるために、安定したターゲット表面を維持することが可能になると考えられる。また、上記のような配線構造によれば、2つのターゲットユニット3A,3Bに対する配線を、コイルの両端に接続された2本のラインだけで構成することができるため、配線の数を可及的に少なくし、配線の配置スペースをコンパクトにできるという利点もある。スパッタ成膜の安定性と高い電力伝送効率の観点、さらには電気接続の簡便性の観点から、図5に示すように、2本のカソードを有したスパッタ装置へ適用することは、好ましい構成である。図5の電気接続には、適宜、
抵抗成分や容量成分を直列や並列に追加してもよい。配線L1からL4に、抵抗成分や容量成分を追加することで、ワイヤレス伝送部における伝送効率を改善できる場合がある。抵抗や容量を可変抵抗や可変容量として、伝送効率が高くなるように調整して使用してもよい。
As shown in FIG. 5, one of the two lines extending from both ends of the fourth receiving coil RC4 is electrically connected to the first target unit 3A, and the other line is connected to the second target unit 3B. It is a preferable configuration to adopt a wiring structure that connects electrically. In FIG. 5, the plasma 51 is represented by a resistance component and a capacitance component. By using such an electrical connection, it is possible to supply stable power and maintain discharge. According to such a configuration, the target unit (cathode) used for film formation can be switched at high speed and used by controlling the voltage waveform output from the bipolar power source 8 by the control means (not shown) (not shown). The target unit on the side to which the negative voltage is applied is used for sputtering). At this time, when one target unit functions as a cathode, the other target unit can function as an anode. In such an apparatus configuration, since the anode having a wide area can be arranged in the vicinity of the cathode, stable plasma can be formed, and stable film formation can be performed over a long period of time. Furthermore, since the influence on the target surface (material adhesion, unevenness formation, etc.) that occurs when functioning as a cathode is removed (relaxed) when functioning as an anode, it is possible to maintain a stable target surface. Is thought to be. Further, according to the wiring structure as described above, the wiring for the two target units 3A and 3B can be configured by only two lines connected to both ends of the coil, so that the number of wirings is as large as possible. There is also an advantage that the wiring can be arranged in a compact space. From the viewpoint of stability of sputtering film formation, high power transmission efficiency, and convenience of electrical connection, it is preferable to apply it to a sputtering apparatus having two cathodes as shown in FIG. is there. As appropriate for the electrical connection in FIG.
Resistor and capacitance components may be added in series or in parallel. By adding a resistance component or a capacitance component to the wirings L1 to L4, the transmission efficiency in the wireless transmission unit may be improved. The resistor or capacitance may be used as a variable resistor or variable capacitor, adjusted so as to increase the transmission efficiency.

<成膜方法>
真空チャンバ内を所定のガス雰囲気状態にし、制御手段(不図示)によって、大気ボックス230を所定の速度で移動させながら、ターゲットユニット3のカソード5に電圧波形を印加すると、プラズマの生成とともにスパッタリングによりターゲット材料が飛散する。その材料がマスク7を通過して成膜対象物2に到達することで、成膜対象物2の表面にターゲット材料を含有した膜が形成される。カソード5がX方向に移動(走査)されることで、X方向の広い領域にわたり成膜が可能である。必要であれば、カソード5は複数回走査したり、往復走査したりすることができる。
<Film formation method>
When a voltage waveform is applied to the cathode 5 of the target unit 3 while the atmosphere box 230 is moved at a predetermined speed by a control means (not shown) while the inside of the vacuum chamber is in a predetermined gas atmosphere state, plasma is generated and sputtering is performed. The target material scatters. When the material passes through the mask 7 and reaches the film-forming object 2, a film containing the target material is formed on the surface of the film-forming object 2. By moving (scanning) the cathode 5 in the X direction, it is possible to form a film over a wide area in the X direction. If necessary, the cathode 5 can be scanned a plurality of times or reciprocally scanned.

大気ボックス230が移動すると、大気ボックス230の移動に追従して、第1アーム31及び第2アーム32が、第1接続部21、第2接続部22及び第3接続部23において回動する。本実施形態の成膜装置1では、第1接続部21、第2接続部22及び第3接続部23において、配線が物理的に接続されていないため、従来のような配線のねじれや変形が発生しない。したがって、配線によって大気ボックス230や大気アーム30の移動が阻害されることがなく、成膜源であるターゲットユニット3を所望の速度でスムースに移動させることができるため、安定して再現良く成膜をすることができる。また、配線の劣化がほとんど生じないため、装置の耐久性の向上を図ることができる。 When the atmosphere box 230 moves, the first arm 31 and the second arm 32 rotate at the first connection portion 21, the second connection portion 22, and the third connection portion 23, following the movement of the atmosphere box 230. In the film forming apparatus 1 of the present embodiment, since the wiring is not physically connected in the first connection portion 21, the second connection portion 22, and the third connection portion 23, the wiring is twisted or deformed as in the conventional case. Does not occur. Therefore, the movement of the atmospheric box 230 and the atmospheric arm 30 is not hindered by the wiring, and the target unit 3 which is the film forming source can be smoothly moved at a desired speed, so that the film formation is stable and reproducible. Can be done. Further, since the wiring is hardly deteriorated, the durability of the device can be improved.

<変形例>
上述した実施形態は本発明の構成の一例を示したものにすぎない。本発明は、上記実施形態の構成に限られず、その技術思想の範囲内においてさまざまな構成を採用し得る。
<Modification example>
The above-described embodiment is merely an example of the configuration of the present invention. The present invention is not limited to the configuration of the above embodiment, and various configurations may be adopted within the scope of the technical idea.

たとえば、上記実施形態では、第1接続部21、第2接続部22、第3接続部23の3つの接続部のすべてにおいてワイヤレス給電構造を設けているが、ワイヤレス給電構造は一部の接続部にのみ設けてもよい。すなわち、一か所のみワイヤレス給電構造を設けてもよく、二か所にワイヤレス給電構造を設けてもよい。それ以外の部分では、従来同様、接続部内に配線を通せばよい。例えば、第2の接続部22のみをワイヤレス給電構造にし、第1と第3の接続部は従来どおりの配線引き回しとする構成は、配線が均等に分割されることで配線の長さを均等に短くすることができることや、配線が複数の接続部22を連続して経由する必要がなくなることの観点から、有効な手法と言える。また、上記実施形態では、大気アーム30が2つのアーム31、32から構成されているが、アームの数は1つでもよいし、3つ以上でもよい。この場合、アームの数に応じて接続部の数も変わるが、前述のように、すべての接続部にワイヤレス給電構造を設けてもよいし、一部の接続部にのみワイヤレス給電構造を設けてもよい。要するに、真空チャンバ10の外部の電源8から大気ボックス230まで電力を供給するための配線において、少なくとも一か所以上、ワイヤレス給電構造が設けられていればよい。なお、ワイヤレス給電構造は、屈曲角度や屈曲頻度が大きい接続部に対し優先的に設けることが好ましい。 For example, in the above embodiment, the wireless power supply structure is provided in all three connection portions of the first connection portion 21, the second connection portion 22, and the third connection portion 23, but the wireless power supply structure is a part of the connection portions. It may be provided only in. That is, the wireless power supply structure may be provided at only one place, or the wireless power supply structure may be provided at two places. In other parts, wiring may be passed through the connection portion as in the conventional case. For example, in a configuration in which only the second connection portion 22 has a wireless power supply structure and the first and third connection portions have the same wiring routing as before, the wiring is evenly divided to make the wiring length uniform. It can be said that it is an effective method from the viewpoint that it can be shortened and that the wiring does not need to pass through a plurality of connecting portions 22 continuously. Further, in the above embodiment, the atmospheric arm 30 is composed of two arms 31 and 32, but the number of arms may be one or three or more. In this case, the number of connection portions varies depending on the number of arms, but as described above, a wireless power supply structure may be provided for all the connection portions, or a wireless power supply structure may be provided for only some of the connection portions. May be good. In short, at least one wireless power supply structure may be provided in the wiring for supplying electric power from the external power source 8 of the vacuum chamber 10 to the atmospheric box 230. It is preferable that the wireless power feeding structure is preferentially provided for the connection portion having a large bending angle and bending frequency.

上記実施形態では、成膜装置の例として、成膜源としてスパッタリングターゲットを用いるスパッタ装置を説明したが、本発明の適用範囲はスパッタ装置に限られない。たとえば、成膜材料を蒸着する真空蒸着装置における成膜源(蒸発源)の配線構造に対しても、本発明を好ましく適用することができる。上記実施形態のワイヤレス給電構造は、成膜源への電力供給に加えて、大気ボックスの駆動機構やカソードの回転駆動機構などの駆動機構への電力供給や、大気ボックス内の電子回路やセンサなどの部品への電力供給や信号伝送に用いてもよい。 In the above embodiment, as an example of the film forming apparatus, a sputtering apparatus using a sputtering target as a film forming source has been described, but the scope of application of the present invention is not limited to the sputtering apparatus. For example, the present invention can be preferably applied to the wiring structure of the film forming source (evaporation source) in the vacuum vapor deposition apparatus for depositing the film forming material. In the wireless power supply structure of the above embodiment, in addition to supplying electric power to the film forming source, electric power is supplied to a drive mechanism such as an atmospheric box drive mechanism and a cathode rotation drive mechanism, and electronic circuits and sensors in the atmospheric box and the like. It may be used for power supply or signal transmission to the parts of the above.

1:成膜装置
2:成膜対象物
3:ターゲットユニット
10:真空チャンバ
10a:真空チャンバの底壁
21,22,23:接続部
30:大気アーム
31:第1アーム
32:第2アーム
230:大気ボックス
L,L1,L2,L3,L4:配線
TC1,TC2,TC3:送信側コイル
RC2,RC3,RC4:受信側コイル
1: Film formation device 2: Film formation object 3: Target unit 10: Vacuum chamber 10a: Bottom wall of vacuum chamber 21, 22, 23: Connection part 30: Atmospheric arm 31: First arm 32: Second arm 230: Atmospheric box L, L1, L2, L3, L4: Wiring TC1, TC2, TC3: Transmission side coil RC2, RC3, RC4: Reception side coil

Claims (13)

真空チャンバと、
前記真空チャンバ内に配置され、成膜源が搭載され移動可能である大気ボックスと、
前記真空チャンバの壁と前記大気ボックスとを連結し、前記真空チャンバの外部から前記成膜源に電力を供給するための配線を収容する配線収容部と、を備える成膜装置において、
前記配線収容部の内部は、大気圧環境からなり、
前記配線収容部は、第1アームと、第2アームと、前記第1アームと前記第2アームとを回動可能に接続する接続部と、を有し、
前記第1アーム内の配線は、送信側コイルを有し、
前記第2アーム内の配線は、受信側コイルを有し、
前記送信側コイルと前記受信側コイルとは、前記接続部内で対向して配置され、
前記第1アーム内の配線から前記第2アーム内の配線への電力の伝送がワイヤレス給電によって行われる
ことを特徴とする成膜装置。
With a vacuum chamber
An atmospheric box located in the vacuum chamber, equipped with a film source and movable,
In a film forming apparatus including a wiring accommodating portion for connecting the wall of the vacuum chamber and the atmospheric box and accommodating wiring for supplying electric power to the film forming source from the outside of the vacuum chamber.
The inside of the wiring accommodating part is composed of an atmospheric pressure environment.
The wiring accommodating portion includes a first arm, a second arm, and a connecting portion that rotatably connects the first arm and the second arm.
The wiring in the first arm has a transmitting side coil and has a transmitting side coil.
The wiring in the second arm has a receiving coil and has a receiving coil.
The transmitting side coil and the receiving side coil are arranged so as to face each other in the connecting portion.
A film forming apparatus characterized in that electric power is transmitted from the wiring in the first arm to the wiring in the second arm by wireless power supply.
真空チャンバと、
前記真空チャンバ内に配置され、成膜源が搭載され移動可能である大気ボックスと、
前記真空チャンバの壁と前記大気ボックスとを連結し、前記真空チャンバの外部から前記成膜源に電力を供給するための配線を収容する配線収容部と、を備える成膜装置において、
前記配線収容部の内部は、大気圧環境からなり、
前記配線収容部は、前記大気ボックスと前記配線収容部とを回動可能に接続する接続部を有し、
前記配線収容部内の配線は、送信側コイルを有し、
前記大気ボックス内の配線は、受信側コイルを有し、
前記送信側コイルと前記受信側コイルとは、前記接続部内で対向して配置され、
前記配線収容部内の配線から前記大気ボックス内の配線への電力の伝送がワイヤレス給電によって行われる
ことを特徴とする成膜装置。
With a vacuum chamber
An atmospheric box located in the vacuum chamber, equipped with a film source and movable,
In a film forming apparatus including a wiring accommodating portion for connecting the wall of the vacuum chamber and the atmospheric box and accommodating wiring for supplying electric power to the film forming source from the outside of the vacuum chamber.
The inside of the wiring accommodating part is composed of an atmospheric pressure environment.
The wiring accommodating portion has a connecting portion that rotatably connects the atmospheric box and the wiring accommodating portion.
The wiring in the wiring accommodating portion has a transmitting side coil and has a transmitting side coil.
The wiring in the atmosphere box has a receiving coil and
The transmitting side coil and the receiving side coil are arranged so as to face each other in the connecting portion.
A film forming apparatus characterized in that electric power is transmitted from the wiring in the wiring accommodating portion to the wiring in the atmospheric box by wireless power supply.
真空チャンバと、
前記真空チャンバ内に配置され、成膜源が搭載され移動可能である大気ボックスと、
前記真空チャンバの壁と前記大気ボックスとを連結し、前記真空チャンバの外部から前記成膜源に電力を供給するための配線を収容する配線収容部と、を備える成膜装置において、
前記配線収容部の内部は、大気圧環境からなり、
前記配線収容部は、前記真空チャンバの壁と前記配線収容部とを回動可能に接続する接続部を有し、
前記真空チャンバの外部の配線は、送信側コイルを有し、
前記配線収容部内の配線は、受信側コイルを有し、
前記送信側コイルと前記受信側コイルとは、前記接続部内で対向して配置され、
前記真空チャンバの外部の配線から前記配線収容部内の配線への電力の伝送がワイヤレス給電によって行われる
ことを特徴とする成膜装置。
With a vacuum chamber
An atmospheric box located in the vacuum chamber, equipped with a film source and movable,
In a film forming apparatus including a wiring accommodating portion for connecting the wall of the vacuum chamber and the atmospheric box and accommodating wiring for supplying electric power to the film forming source from the outside of the vacuum chamber.
The inside of the wiring accommodating part is composed of an atmospheric pressure environment.
The wiring accommodating portion has a connecting portion that rotatably connects the wall of the vacuum chamber and the wiring accommodating portion.
The wiring outside the vacuum chamber has a transmitting coil.
The wiring in the wiring accommodating portion has a receiving coil and has a receiving side coil.
The transmitting side coil and the receiving side coil are arranged so as to face each other in the connecting portion.
A film forming apparatus characterized in that electric power is transmitted from a wiring outside the vacuum chamber to a wiring inside the wiring accommodating portion by wireless power supply.
前記成膜源は、スパッタリングターゲットであることを特徴とする請求項1から3のいずれか1項に記載の成膜装置。 The film forming apparatus according to any one of claims 1 to 3, wherein the film forming source is a sputtering target. 前記成膜源は、第1のターゲットを有する第1のターゲットユニットと、第2のターゲットを有する第2のターゲットユニットと、を有し、
前記受信側コイルの一端に電気的に接続されている配線が前記第1のターゲットユニットに電気的に接続されており、
前記受信側コイルの他端に電気的に接続されている配線が前記第2のターゲットユニットに電気的に接続されている
ことを特徴とする請求項4に記載の成膜装置。
The film forming source includes a first target unit having a first target and a second target unit having a second target.
The wiring electrically connected to one end of the receiving coil is electrically connected to the first target unit.
The film forming apparatus according to claim 4, wherein the wiring electrically connected to the other end of the receiving coil is electrically connected to the second target unit.
前記送信側コイルの一端に電気的に接続されている配線と前記送信側コイルの他端に電気的に接続されている配線とに逆極性の電圧を印加可能なバイポーラ電源を有する
ことを特徴とする請求項5に記載の成膜装置。
It is characterized by having a bipolar power supply capable of applying a voltage of opposite polarity to a wiring electrically connected to one end of the transmitting coil and a wiring electrically connected to the other end of the transmitting coil. The film forming apparatus according to claim 5.
前記第1のターゲットユニット及び前記第2のターゲットユニットは、回転駆動される円筒形状の部材である
ことを特徴とする請求項5又は6に記載の成膜装置。
The film forming apparatus according to claim 5 or 6, wherein the first target unit and the second target unit are rotationally driven cylindrical members.
前記第1のターゲットユニットと前記第2のターゲットユニットは、平行に配置されている
ことを特徴とする請求項7に記載の成膜装置。
The film forming apparatus according to claim 7, wherein the first target unit and the second target unit are arranged in parallel.
前記成膜源は、成膜材料を蒸着する蒸発源である請求項1から3のいずれか1項に記載の成膜装置。 The film forming apparatus according to any one of claims 1 to 3, wherein the film forming source is an evaporation source for depositing a film forming material. 真空チャンバ内で、成膜対象物に対して、成膜源が搭載された大気ボックスを移動させ、前記成膜対象物に成膜する成膜方法であって、
前記真空チャンバ内に、前記真空チャンバの壁と前記大気ボックスとを連結し、前記真空チャンバの外部から前記成膜源に電力を供給するための配線を収容する配線収容部が設けられ、
前記配線収容部の内部は、大気圧環境からなり、
前記配線収容部は、第1アームと、第2アームと、前記第1アームと前記第2アームとを回動可能に接続する接続部と、を有し、
前記第1アーム内の配線に形成されている送信側コイルと前記第2アーム内の配線に形成されている受信側コイルとが、前記接続部内で対向して配置されており、
前記成膜対象物に成膜を行う際に、前記第1アーム内の配線から前記第2アーム内の配線への電力の伝送がワイヤレス給電によって行われる
ことを特徴とする成膜方法。
A film forming method in which an atmospheric box equipped with a film forming source is moved with respect to a film forming object in a vacuum chamber to form a film on the film forming object.
In the vacuum chamber, a wiring accommodating portion for connecting the wall of the vacuum chamber and the air box and accommodating wiring for supplying electric power from the outside of the vacuum chamber to the film forming source is provided.
The inside of the wiring accommodating part is composed of an atmospheric pressure environment.
The wiring accommodating portion includes a first arm, a second arm, and a connecting portion that rotatably connects the first arm and the second arm.
The transmitting side coil formed in the wiring in the first arm and the receiving side coil formed in the wiring in the second arm are arranged so as to face each other in the connecting portion.
A film forming method characterized in that when a film is formed on an object to be formed of a film, electric power is transmitted from the wiring in the first arm to the wiring in the second arm by wireless power supply.
真空チャンバ内で、成膜対象物に対して、成膜源が搭載された大気ボックスを移動させ、前記成膜対象物に成膜する成膜方法であって、
前記真空チャンバ内に、前記真空チャンバの壁と前記大気ボックスとを連結し、前記真空チャンバの外部から前記成膜源に電力を供給するための配線を収容する配線収容部が設けられ、
前記配線収容部の内部は、大気圧環境からなり、
前記配線収容部は、前記大気ボックスと前記配線収容部とを回動可能に接続する接続部を有し、
前記配線収容部内の配線に形成されている送信側コイルと前記大気ボックス内の配線に形成されている受信側コイルとが、前記接続部内で対向して配置されており、
前記成膜対象物に成膜を行う際に、前記配線収容部内の配線から前記大気ボックス内の配線への電力の伝送がワイヤレス給電によって行われる
ことを特徴とする成膜方法。
A film forming method in which an atmospheric box equipped with a film forming source is moved with respect to a film forming object in a vacuum chamber to form a film on the film forming object.
In the vacuum chamber, a wiring accommodating portion for connecting the wall of the vacuum chamber and the air box and accommodating wiring for supplying electric power from the outside of the vacuum chamber to the film forming source is provided.
The inside of the wiring accommodating part is composed of an atmospheric pressure environment.
The wiring accommodating portion has a connecting portion that rotatably connects the atmospheric box and the wiring accommodating portion.
The transmitting side coil formed in the wiring in the wiring accommodating portion and the receiving side coil formed in the wiring in the atmospheric box are arranged so as to face each other in the connecting portion.
A film-forming method characterized in that, when a film is formed on the film-forming object, electric power is transmitted from the wiring in the wiring accommodating portion to the wiring in the atmospheric box by wireless power supply.
真空チャンバ内で、成膜対象物に対して、成膜源が搭載された大気ボックスを移動させ、前記成膜対象物に成膜する成膜方法であって、
前記真空チャンバ内に、前記真空チャンバの壁と前記大気ボックスとを連結し、前記真空チャンバの外部から前記成膜源に電力を供給するための配線を収容する配線収容部が設けられ、
前記配線収容部の内部は、大気圧環境からなり、
前記配線収容部は、前記真空チャンバの壁と前記配線収容部とを回動可能に接続する接続部を有し、
前記真空チャンバの外部の配線に形成されている送信側コイルと前記配線収容部内の配線に形成されている受信側コイルとが、前記接続部内で対向して配置され、
前記成膜対象物に成膜を行う際に、前記真空チャンバの外部の配線から前記配線収容部内の配線への電力の伝送がワイヤレス給電によって行われる
ことを特徴とする成膜方法。
A film forming method in which an atmospheric box equipped with a film forming source is moved with respect to a film forming object in a vacuum chamber to form a film on the film forming object.
In the vacuum chamber, a wiring accommodating portion for connecting the wall of the vacuum chamber and the air box and accommodating wiring for supplying electric power from the outside of the vacuum chamber to the film forming source is provided.
The inside of the wiring accommodating part is composed of an atmospheric pressure environment.
The wiring accommodating portion has a connecting portion that rotatably connects the wall of the vacuum chamber and the wiring accommodating portion.
The transmitting side coil formed in the wiring outside the vacuum chamber and the receiving side coil formed in the wiring in the wiring accommodating portion are arranged so as to face each other in the connecting portion.
A film forming method characterized in that when a film is formed on an object to be formed of a film, electric power is transmitted from an external wiring of the vacuum chamber to a wiring in the wiring accommodating portion by wireless power supply.
請求項10から12のうちいずれか1項に記載の成膜方法によって、電子デバイスを製造することを特徴とする電子デバイスの製造方法。 A method for manufacturing an electronic device, which comprises manufacturing an electronic device by the film forming method according to any one of claims 10 to 12.
JP2019227890A 2019-12-18 2019-12-18 Film deposition device, film deposition method, and method for manufacturing electronic device Pending JP2021095609A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019227890A JP2021095609A (en) 2019-12-18 2019-12-18 Film deposition device, film deposition method, and method for manufacturing electronic device
KR1020200172939A KR20210078412A (en) 2019-12-18 2020-12-11 Film forming apparatus
CN202011507274.1A CN113005422A (en) 2019-12-18 2020-12-18 Film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019227890A JP2021095609A (en) 2019-12-18 2019-12-18 Film deposition device, film deposition method, and method for manufacturing electronic device

Publications (1)

Publication Number Publication Date
JP2021095609A true JP2021095609A (en) 2021-06-24

Family

ID=76383459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019227890A Pending JP2021095609A (en) 2019-12-18 2019-12-18 Film deposition device, film deposition method, and method for manufacturing electronic device

Country Status (3)

Country Link
JP (1) JP2021095609A (en)
KR (1) KR20210078412A (en)
CN (1) CN113005422A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230076772A (en) 2021-11-24 2023-05-31 캐논 톡키 가부시키가이샤 Film forming apparatus
JP2023108238A (en) * 2022-01-25 2023-08-04 キヤノントッキ株式会社 Film deposition apparatus and method for inspecting the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012514544A (en) * 2009-01-11 2012-06-28 アプライド マテリアルズ インコーポレイテッド System, apparatus, and method for electrically connecting to robot and electrical end effector of robot
JP2019026932A (en) * 2017-07-26 2019-02-21 キヤノントッキ株式会社 Moving body support device, and vacuum deposition device including the same and vapor deposition method
JP2019068088A (en) * 2011-09-16 2019-04-25 パーシモン テクノロジーズ コーポレイションPersimmon Technologies, Corp. Robot linear drive thermal conduction
JP2019116644A (en) * 2017-12-26 2019-07-18 キヤノントッキ株式会社 Sputtering film deposition apparatus and sputtering film deposition method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100271767B1 (en) * 1998-06-09 2001-02-01 윤종용 Semiconductor device manufacturing equipment using plasma
JP2007088011A (en) * 2005-09-20 2007-04-05 Yaskawa Electric Corp Transformer for noncontact power feed
KR20090130559A (en) 2008-06-16 2009-12-24 삼성모바일디스플레이주식회사 Transfer apparatus and organic deposition device with the same
JP5470770B2 (en) * 2008-08-07 2014-04-16 シンフォニアテクノロジー株式会社 Vacuum processing equipment
JP2012038779A (en) * 2010-08-03 2012-02-23 Tokyo Electron Ltd Transport device and substrate processing apparatus
JP2013135490A (en) * 2011-12-26 2013-07-08 Nichiei Intec Co Ltd Vacuum chamber
JP6425184B2 (en) * 2012-11-22 2018-11-21 株式会社クリエイティブテクノロジー Power supply system
JP6008731B2 (en) * 2012-12-18 2016-10-19 キヤノントッキ株式会社 Deposition equipment
WO2016129638A1 (en) * 2015-02-10 2016-08-18 株式会社ExH Electric power supply system
JP6579434B2 (en) * 2015-08-21 2019-09-25 シンフォニアテクノロジー株式会社 Non-contact power supply device and processing device provided with non-contact power supply device
KR101821926B1 (en) * 2017-06-02 2018-01-24 캐논 톡키 가부시키가이샤 Vacuum deposition apparatus and device manufacturing method using the same
KR101870579B1 (en) * 2017-07-27 2018-06-22 캐논 톡키 가부시키가이샤 Display manufacturing apparatus and display manufacturing method using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012514544A (en) * 2009-01-11 2012-06-28 アプライド マテリアルズ インコーポレイテッド System, apparatus, and method for electrically connecting to robot and electrical end effector of robot
JP2019068088A (en) * 2011-09-16 2019-04-25 パーシモン テクノロジーズ コーポレイションPersimmon Technologies, Corp. Robot linear drive thermal conduction
JP2019026932A (en) * 2017-07-26 2019-02-21 キヤノントッキ株式会社 Moving body support device, and vacuum deposition device including the same and vapor deposition method
JP2019116644A (en) * 2017-12-26 2019-07-18 キヤノントッキ株式会社 Sputtering film deposition apparatus and sputtering film deposition method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230076772A (en) 2021-11-24 2023-05-31 캐논 톡키 가부시키가이샤 Film forming apparatus
JP2023108238A (en) * 2022-01-25 2023-08-04 キヤノントッキ株式会社 Film deposition apparatus and method for inspecting the same
JP7534343B2 (en) 2022-01-25 2024-08-14 キヤノントッキ株式会社 Film forming apparatus and inspection method thereof

Also Published As

Publication number Publication date
CN113005422A (en) 2021-06-22
KR20210078412A (en) 2021-06-28

Similar Documents

Publication Publication Date Title
JP4987014B2 (en) Substrate processing equipment
CN104342635B (en) The manufacturing method of film deposition apparatus and method and organic light-emitting display device
JP2021095609A (en) Film deposition device, film deposition method, and method for manufacturing electronic device
CN103160789A (en) Organic layer deposition apparatus, organic light emitting display device and manufacturing method thereof
JP2019116679A (en) Film deposition apparatus, film deposition method, and method of manufacturing electronic device
CN109957774A (en) The manufacturing method of film formation device, film build method and organic EL display device
TW202008627A (en) Holding device for holding a carrier or a component in a vacuum chamber and method of producing the same, use of a holding device for holding a carrier or a component in a vacuum chamber, apparatus for handling a carrier in a vacuum chamber, and vacuum deposition system
US20110135426A1 (en) Vacuum transfer apparatus
TWI407614B (en) Linear plasma source for dynamic (moving substrate) plasma processing
WO2023277163A1 (en) Sputtering apparatus and electronic device manufacturing method
JP2021098879A (en) Film deposition apparatus, film deposition method, and manufacturing method of electronic device
JP2020056054A (en) Film deposition device, film deposition method, and electronic device manufacturing method
JP7170016B2 (en) Deposition equipment
JP7229015B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
JP2020105568A (en) Film deposition apparatus, film deposition method, and method of manufacturing electronic device
CN111378945A (en) Film forming apparatus, film forming method, and method for manufacturing electronic device
TWI393162B (en) Transmission bias mechanism of vacuum continuous carrier
JP2020518122A (en) Apparatus for operating a carrier in a vacuum chamber, vacuum deposition system, and method of operating a carrier in a vacuum chamber
WO2024180949A1 (en) Sputtering deposition source and deposition device
TW202111139A (en) Film deposition apparatus and film deposition method
JP2022126050A (en) Film deposition apparatus, manufacturing method for electronic device, and maintenance method for film deposition source
KR20230106530A (en) 3D driving magnet apparatus for transferring semiconductor light emitting device and an Intelligent assembling and transferring integrated apparatus including the same
KR100697699B1 (en) Apparatus for continuous metal deposition process in OLED manufacturing
CN110872690A (en) Film forming apparatus, film forming method, and method for manufacturing electronic device
KR20200025988A (en) Film forming apparatus, film forming method and manufacturing method of electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231114