JP2021092358A - Heat pump system - Google Patents

Heat pump system Download PDF

Info

Publication number
JP2021092358A
JP2021092358A JP2019223863A JP2019223863A JP2021092358A JP 2021092358 A JP2021092358 A JP 2021092358A JP 2019223863 A JP2019223863 A JP 2019223863A JP 2019223863 A JP2019223863 A JP 2019223863A JP 2021092358 A JP2021092358 A JP 2021092358A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
temperature
side heat
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019223863A
Other languages
Japanese (ja)
Other versions
JP7390605B2 (en
Inventor
常子 今川
Tsuneko Imagawa
常子 今川
由樹 山岡
Yoshiki Yamaoka
由樹 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019223863A priority Critical patent/JP7390605B2/en
Priority to EP20206234.5A priority patent/EP3835687A1/en
Publication of JP2021092358A publication Critical patent/JP2021092358A/en
Application granted granted Critical
Publication of JP7390605B2 publication Critical patent/JP7390605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/171Speeds of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

To provide a heat pump system which can curb a reduction in a COP through appropriate control even with an increase in a temperature of a user side heat medium flowing into a user side heat exchanger.SOLUTION: A heat pump system comprises: a main refrigerant circuit 10 made up of a compressing mechanism 11, a user side heat exchanger 12, an intermediary heat exchanger 13, a first expansion device 14, a heat source side heat exchanger 15; a bypass refrigerant circuit 20 which branches a refrigerant from piping 16 between the user side heat exchanger 12 and the first expansion device 14, allows the branched refrigerant to undergo decompression with a second expansion device 21 and to exchange heat with the refrigerant flowing in the main refrigerant circuit 10 through the intermediary heat exchanger 13, and merges the same into the refrigerant in the middle of undergoing compression with a compressive rotary element; and a control device 60. When a temperature of a heat medium flowing into the user side heat exchanger 12 is increased, the control device 60 controls at least a valve opening of the second expansion device 21 so as to increase a ratio of a flow rate of the refrigerant flowing in the bypass refrigerant circuit 20 to the flow rate of the refrigerant flowing in the intermediary heat exchanger 13 at the side of the main refrigerant circuit 10.SELECTED DRAWING: Figure 3

Description

本発明は、高圧側が超臨界圧力で運転するヒートポンプシステムに関するものである。 The present invention relates to a heat pump system in which the high pressure side operates at a supercritical pressure.

従来、この種の冷凍サイクル装置には、高圧側が超臨界圧力となる冷媒を用い、2段圧縮式の圧縮機、温水を加熱する加熱用熱交換器、冷却器、第1電動膨張弁及び蒸発器を冷媒配管で環状に接続してなる冷媒回路と、前記加熱用熱交換器と前記冷却器との間の前記冷媒回路から分岐され、その途中に第2電動膨張弁及び前記冷却器を有し、前記加熱用熱交換器から吐出した冷媒の一部を前記圧縮機の低圧側と高圧側との中間に冷媒を戻す中間インジェクション回路とを備えているものがある。 Conventionally, this type of refrigeration cycle device uses a refrigerant having a supercritical pressure on the high pressure side, a two-stage compressor, a heat exchanger for heating hot water, a cooler, a first electric expansion valve, and evaporation. It is branched from the refrigerant circuit formed by connecting the vessels in a ring shape with a refrigerant pipe and the refrigerant circuit between the heating heat exchanger and the cooler, and has a second electric expansion valve and the cooler in the middle. Some of them are provided with an intermediate injection circuit that returns a part of the refrigerant discharged from the heating heat exchanger to the middle between the low pressure side and the high pressure side of the compressor.

そして、前記圧縮機の高圧側の冷媒吐出温度を検出する第1温度検出センサと、前記加熱用熱交換器出口の冷媒温度を検出する第2温度検出センサと、前記冷却器出口の冷媒温度を検出する第3温度検出センサと、前記第1温度検出センサの検出温度が第1の所定温度範囲内にある場合には前記第1電動膨張弁の開度を維持するように制御すると共に前記第2温度検出センサの検出温度と前記第3温度検出センサの検出温度との差が第2の所定温度範囲内にある場合には前記第2電動膨張弁の開度を維持するように制御することで、中間インジェクション回路に流れる冷媒循環量を一定の範囲内に抑え、想定した冷凍サイクルの形成の実現を図っている。 Then, the first temperature detection sensor that detects the refrigerant discharge temperature on the high pressure side of the compressor, the second temperature detection sensor that detects the refrigerant temperature at the outlet of the heating heat exchanger, and the refrigerant temperature at the outlet of the cooler are measured. When the detection temperature of the third temperature detection sensor to be detected and the detection temperature of the first temperature detection sensor is within the first predetermined temperature range, the opening degree of the first electric expansion valve is controlled to be maintained and the first is controlled. (2) When the difference between the detection temperature of the temperature detection sensor and the detection temperature of the third temperature detection sensor is within the second predetermined temperature range, control is performed so as to maintain the opening degree of the second electric expansion valve. Therefore, the amount of refrigerant circulating in the intermediate injection circuit is suppressed within a certain range to realize the formation of the assumed refrigeration cycle.

そして、暖房装置の暖房負荷が軽くなると、加熱用熱交換器への温水回路からの水の戻り温度が上昇し、高段側回転圧縮要素の冷媒吐出温度も上昇するため、第1電動膨張弁を開くことで、高段側回転圧縮要素の冷媒吐出温度を低下させる制御を行っている(例えば、特許文献1参照)。 When the heating load of the heating device becomes lighter, the return temperature of the water from the hot water circuit to the heating heat exchanger rises, and the refrigerant discharge temperature of the high-stage rotary compression element also rises, so that the first electric expansion valve Is opened to control the refrigerant discharge temperature of the high-stage rotary compression element (see, for example, Patent Document 1).

特開2008−008499号公報Japanese Unexamined Patent Publication No. 2008-008499

しかしながら、前記従来の構成では、温水を加熱する加熱用熱交換器と中間インジェクション回路とを備え、高圧側が超臨界圧力の冷凍サイクル装置において、加熱用熱交換器への水の戻り温度が上昇したときには、冷凍サイクル装置のCOPも低下するが、それを抑制する技術に関しては開示されていないという課題を有していた。 However, in the conventional configuration, in a refrigeration cycle apparatus having a heating heat exchanger for heating hot water and an intermediate injection circuit and having a supercritical pressure on the high pressure side, the return temperature of water to the heating heat exchanger has increased. Occasionally, the COP of the refrigeration cycle apparatus also decreases, but there is a problem that the technology for suppressing the COP is not disclosed.

本発明は、前記従来の課題を解決するもので、利用側熱交換器に流入する利用側熱媒体の温度が上昇しても、適切な制御を行うことでCOPの低下を抑制した高圧側が超臨界圧力で運転するヒートポンプシステムを提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and even if the temperature of the user-side heat medium flowing into the user-side heat exchanger rises, the high-pressure side that suppresses the decrease in COP by performing appropriate control is supercritical. It is an object of the present invention to provide a heat pump system that operates at a critical pressure.

前記従来の課題を解決するために、本発明のヒートポンプシステムは、圧縮回転要素から構成される圧縮機構、前記圧縮回転要素から吐出され臨界圧を超えた冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、前記利用側熱交換器から前記第1膨張装置までの間の前記配管から分岐され、分岐された冷媒が第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる冷媒と熱交換され、前記圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路と、制御装置と、を備え、前記制御装置は、前記利用側熱交換器に流入する前記利用側熱媒体の温度が上昇する場合、少なくとも前記第2膨張装置の弁開度を制御して、前記中間熱交換器の前記主冷媒回路側を流れる前記冷媒の量に対する前記バイパス冷媒回路を流れる前記冷媒の量の比率を増加させることを特徴とするものである。 In order to solve the above-mentioned conventional problems, the heat pump system of the present invention has a compression mechanism composed of a compression rotation element, and a utilization side that heats a heat medium on the utilization side with a refrigerant discharged from the compression rotation element and exceeding a critical pressure. A main refrigerant circuit formed by sequentially connecting a heat exchanger, an intermediate heat exchanger, a first expansion device, and a heat source side heat exchanger with pipes, and between the utilization side heat exchanger and the first expansion device. After the refrigerant branched from the pipe is decompressed by the second expansion device, the intermediate heat exchanger exchanges heat with the refrigerant flowing through the main refrigerant circuit and joins the refrigerant in the process of compression of the compression rotating element. A bypass refrigerant circuit and a control device are provided, and the control device is provided with at least a valve opening degree of the second expansion device when the temperature of the utilization side heat medium flowing into the utilization side heat exchanger rises. Is characterized by increasing the ratio of the amount of the refrigerant flowing through the bypass refrigerant circuit to the amount of the refrigerant flowing through the main refrigerant circuit side of the intermediate heat exchanger.

これにより、利用側熱交換器に流入する利用側熱媒体の温度が上昇する場合でも、バイパス冷媒回路、高段側圧縮回転要素、利用側熱交換器を循環する冷媒の量は増加するため、利用側熱交換器における加熱能力の低減を抑制できる。 As a result, even if the temperature of the utilization-side heat medium flowing into the utilization-side heat exchanger rises, the amount of the bypass refrigerant circuit, the high-stage compression rotating element, and the refrigerant circulating in the utilization-side heat exchanger increases. It is possible to suppress a decrease in the heating capacity of the heat exchanger on the user side.

また、利用側熱交換器に流入する利用側熱媒体の温度が上昇する場合でも、中間熱交換器における主冷媒回路を流れる高圧冷媒とバイパス冷媒回路を流れる中間圧冷媒との熱交換量は増加するため、利用側熱交換器における冷媒の出口と冷媒の入口とのエンタルピー差の減少を抑制することができる。 Further, even when the temperature of the utilization-side heat medium flowing into the utilization-side heat exchanger rises, the amount of heat exchange between the high-pressure refrigerant flowing through the main refrigerant circuit and the intermediate-pressure refrigerant flowing through the bypass refrigerant circuit in the intermediate heat exchanger increases. Therefore, it is possible to suppress a decrease in the enthalpy difference between the refrigerant outlet and the refrigerant inlet in the user-side heat exchanger.

このため、利用側熱交換器に流入する利用側熱媒体の温度が上昇しても、COPの低下を抑制した高圧側が超臨界圧力で運転するヒートポンプシステムを提供できる。 Therefore, even if the temperature of the heat medium on the user side flowing into the heat exchanger on the user side rises, it is possible to provide a heat pump system in which the high pressure side that suppresses the decrease in COP operates at supercritical pressure.

本発明によれば、利用側熱交換器に流入する利用側熱媒体の温度が上昇しても、適切な制御を行うことでCOPの低下を抑制した高圧側が超臨界圧力で運転するヒートポンプシステムを提供できる。 According to the present invention, even if the temperature of the heat medium on the user side flowing into the heat exchanger on the user side rises, a heat pump system in which the high pressure side, which suppresses the decrease in COP by performing appropriate control, operates at supercritical pressure is provided. Can be provided.

本発明の実施の形態1におけるヒートポンプシステムの構成図Configuration diagram of the heat pump system according to the first embodiment of the present invention 本発明の実施の形態1における冷凍サイクル装置の圧力―エンタルピー線図(P−h線図)Pressure-enthalpy diagram (Ph diagram) of the refrigeration cycle apparatus according to the first embodiment of the present invention. 本発明の実施の形態1におけるヒートポンプシステムにおいて、利用側熱交換器に流入する利用側熱媒体の温度が上昇する場合の、冷凍サイクル装置の圧力―エンタルピー線図(P−h線図)In the heat pump system according to the first embodiment of the present invention, the pressure-enthalpy diagram (Ph diagram) of the refrigeration cycle apparatus when the temperature of the utilization side heat medium flowing into the utilization side heat exchanger rises.

第1の発明は、圧縮回転要素から構成される圧縮機構、前記圧縮回転要素から吐出され臨界圧を超えた冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、前記利用側熱交換器から前記第1膨張装置までの間の前記配管から分岐され、分岐された冷媒が第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる冷媒と熱交換され、前記圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路と、制御装置と、を備え、前記制御装置は、前記利用側熱交換器に流入する前記利用側熱媒体の温度が上昇する場合、少なくとも前記第2膨張装置の弁開度を制御して、前記中間熱交換器の前記主冷媒回路側を流れる前記冷媒の量に対する前記バイパス冷媒回路を流れる前記冷媒の量の比率を増加させることを特徴とするヒートポンプシステムである。 The first invention is a compression mechanism composed of a compression rotation element, a utilization side heat exchanger that heats a utilization side heat medium with a refrigerant discharged from the compression rotation element and exceeding a critical pressure, an intermediate heat exchanger, and the first. The main refrigerant circuit formed by sequentially connecting the expansion device and the heat source side heat exchanger with pipes, and the refrigerant branched from the pipe between the utilization side heat exchanger and the first expansion device are branched. After the pressure is reduced by the second expansion device, the intermediate heat exchanger exchanges heat with the refrigerant flowing through the main refrigerant circuit, and the bypass refrigerant circuit joins the refrigerant in the process of compression of the compression rotating element, the control device, and the control device. When the temperature of the utilization-side heat medium flowing into the utilization-side heat exchanger rises, the control device controls at least the valve opening degree of the second expansion device to control the valve opening degree of the intermediate heat exchanger. The heat pump system is characterized in that the ratio of the amount of the refrigerant flowing through the bypass refrigerant circuit to the amount of the refrigerant flowing on the main refrigerant circuit side is increased.

これにより、利用側熱交換器に流入する利用側熱媒体の温度が上昇する場合でも、中間熱交換器における主冷媒回路を流れる高圧冷媒とバイパス冷媒回路を流れる中間圧冷媒との熱交換量は増加するため、利用側熱交換器における冷媒の出口と冷媒の入口とのエンタルピー差の減少を抑制することができる。 As a result, even if the temperature of the utilization-side heat medium flowing into the utilization-side heat exchanger rises, the amount of heat exchange between the high-pressure refrigerant flowing through the main refrigerant circuit and the intermediate-pressure refrigerant flowing through the bypass refrigerant circuit in the intermediate heat exchanger remains. Since the number increases, it is possible to suppress a decrease in the enthalpy difference between the refrigerant outlet and the refrigerant inlet in the user-side heat exchanger.

また、バイパス冷媒回路、高段側圧縮回転要素、利用側熱交換器を循環する冷媒の量は増加するため、利用側熱交換器における加熱能力の低減を抑制できる。 Further, since the amount of the refrigerant circulating in the bypass refrigerant circuit, the high-stage compression rotating element, and the utilization side heat exchanger increases, it is possible to suppress a decrease in the heating capacity of the utilization side heat exchanger.

このため、利用側熱交換器に流入する利用側熱媒体の温度が上昇しても、COPの低下を抑制した高圧側が超臨界圧力で運転するヒートポンプシステムを提供できる。 Therefore, even if the temperature of the heat medium on the user side flowing into the heat exchanger on the user side rises, it is possible to provide a heat pump system in which the high pressure side that suppresses the decrease in COP operates at supercritical pressure.

第2の発明は、特に、第1の発明において、前記利用側熱交換器に流入する前記利用側熱媒体の温度を検出する熱媒体入口温度サーミスタを備え、前記熱媒体入口温度サーミスタの検出温度が上昇する場合、前記制御装置は、前記第2膨張装置の弁開度を大きくすることを特徴とするものである。 The second invention, in particular, in the first invention, includes a heat medium inlet temperature thermistor for detecting the temperature of the user-side heat medium flowing into the user-side heat exchanger, and the detection temperature of the heat medium inlet temperature thermistor. When the temperature rises, the control device is characterized in that the valve opening degree of the second expansion device is increased.

これにより、利用側熱交換器に流入する利用側熱媒体の温度が上昇する場合でも、バイパス冷媒回路、高段側圧縮回転要素、利用側熱交換器を循環する冷媒の量は増加するため、利用側熱交換器における加熱能力の低減を抑制できる。 As a result, even if the temperature of the utilization-side heat medium flowing into the utilization-side heat exchanger rises, the amount of the bypass refrigerant circuit, the high-stage compression rotating element, and the refrigerant circulating in the utilization-side heat exchanger increases. It is possible to suppress a decrease in the heating capacity of the heat exchanger on the user side.

第3の発明は、特に、第2の発明において、前記制御装置は、前記第1膨張装置の弁開度を小さくすることを特徴とするものである。 A third invention, in particular, in the second invention, is characterized in that the control device reduces the valve opening degree of the first expansion device.

これにより、主冷媒回路の冷媒の高圧側の圧力が上昇するため、利用側熱交換器に流入する利用側熱媒体の温度が上昇しても、利用側熱交換器における冷媒の出口と冷媒の入口とのエンタルピー差の減少を抑制することができる。 As a result, the pressure on the high-pressure side of the refrigerant in the main refrigerant circuit rises, so even if the temperature of the use-side heat medium flowing into the use-side heat exchanger rises, the refrigerant outlet and the refrigerant in the use-side heat exchanger It is possible to suppress a decrease in the enthalpy difference from the entrance.

第4の発明は、特に、第3の発明において、前記圧縮回転要素から吐出される前記冷媒の温度を検出する吐出温度サーミスタを備え、前記制御装置は、前記第1膨張装置の弁開度と前記第2膨張装置の弁開度を調整することで、前記吐出温度サーミスタが検出する温度を目標値に近づけることを特徴とするものである。 A fourth invention, in particular, in the third invention, includes a discharge temperature thermistor that detects the temperature of the refrigerant discharged from the compression rotating element, and the control device is a valve opening degree of the first expansion device. By adjusting the valve opening degree of the second expansion device, the temperature detected by the discharge temperature thermistor is brought closer to the target value.

これにより、圧縮回転要素から吐出される冷媒の温度を検出する吐出温度の過度の上昇や低下を防止しつつ、中間熱交換器における主冷媒回路を流れる高圧冷媒とバイパス冷媒回路を流れる中間圧冷媒との熱交換量の増加や、バイパス冷媒回路、高段側圧縮回転要素、利用側熱交換器を循環する冷媒の量の増加を実現できる。 As a result, the high-pressure refrigerant flowing through the main refrigerant circuit and the intermediate-pressure refrigerant flowing through the bypass refrigerant circuit in the intermediate heat exchanger are prevented from being excessively increased or decreased by detecting the temperature of the refrigerant discharged from the compression rotating element. It is possible to increase the amount of heat exchange with and the amount of refrigerant circulating in the bypass refrigerant circuit, the high-stage compression rotating element, and the user-side heat exchanger.

このため、安定した冷媒の吐出温度を実現しつつ、利用側熱交換器に流入する利用側熱媒体の温度が上昇しても、利用側熱交換器における冷媒の出口と冷媒の入口とのエンタルピー差の減少や利用側熱交換器における加熱能力の低減を抑制できる。 Therefore, while achieving a stable refrigerant discharge temperature, even if the temperature of the user-side heat medium flowing into the user-side heat exchanger rises, the enthalpy between the refrigerant outlet and the refrigerant inlet in the user-side heat exchanger. It is possible to suppress the reduction of the difference and the reduction of the heating capacity in the heat exchanger on the user side.

第5の発明は、特に、第3の発明において、前記圧縮回転要素から吐出される前記冷媒の圧力を検出する高圧側圧力検出装置を備え、前記制御装置は、前記第1膨張装置の弁開度と前記第2膨張装置の弁開度を調整することで、前記高圧側圧力検出装置が検出する圧力値を目標値に近づけることを特徴とするものである。 A fifth invention, in particular, in the third invention, includes a high-pressure side pressure detecting device that detects the pressure of the refrigerant discharged from the compression rotating element, and the control device is a valve opening of the first expansion device. By adjusting the degree and the valve opening degree of the second expansion device, the pressure value detected by the high pressure side pressure detecting device is brought closer to the target value.

これにより、圧縮回転要素から吐出される冷媒の圧力の過度の上昇や低下を防止しつつ、利用側熱交換器に流入する利用側熱媒体の温度が上昇しても、利用側熱交換器における冷媒の出口と冷媒の入口とのエンタルピー差の減少を抑制することができる。 This prevents the pressure of the refrigerant discharged from the compression rotating element from rising or falling excessively, and even if the temperature of the heat medium on the user side flowing into the heat exchanger on the user side rises, the heat exchanger on the user side It is possible to suppress a decrease in the enthalpy difference between the refrigerant outlet and the refrigerant inlet.

第6の発明は、特に、第1から第5のいずれかの発明において、搬送装置を有し、前記搬送装置によって前記利用側熱媒体を循環させる利用側熱媒体回路を備えることを特徴とするヒートポンプシステムである。 The sixth invention is characterized in that, in particular, in any one of the first to fifth inventions, the transport device is provided, and the utilization side heat medium circuit for circulating the utilization side heat medium by the transfer device is provided. It is a heat pump system.

これによれば、利用側熱交換器に流入する利用側熱媒体の温度が上昇しても、COPの低下を抑制し、高温の利用側熱媒体を利用できる高圧側が超臨界圧力で運転するヒートポンプシステムを提供できる。 According to this, even if the temperature of the utilization side heat medium flowing into the utilization side heat exchanger rises, the decrease in COP is suppressed, and the high pressure side that can utilize the high temperature utilization side heat medium operates at supercritical pressure. Can provide a system.

第7の発明は、特に、第1から第6のいずれかの発明において、前記利用側熱媒体を水又は不凍液としたことを特徴とするものである。 The seventh invention is characterized in that, in any one of the first to sixth inventions, the heat medium on the utilization side is water or antifreeze.

これにより、例えば、貯湯タンクに高温水を貯めることができ、また、高温水を用いて暖房する高圧側が超臨界圧力で運転するヒートポンプシステムを提供できる。 This makes it possible to provide, for example, a heat pump system in which high-temperature water can be stored in a hot water storage tank, and the high-pressure side that heats using the high-temperature water operates at a supercritical pressure.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.

(実施の形態1)
図1は、本発明の実施の形態1におけるヒートポンプシステムの構成図である。ヒートポンプシステムは、超臨界蒸気圧縮式冷凍サイクルである冷凍サイクル装置9、利用側熱媒体回路30から構成されている。また、冷凍サイクル装置9は、主冷媒回路10、バイパス冷媒回路20から構成されている。
(Embodiment 1)
FIG. 1 is a configuration diagram of a heat pump system according to the first embodiment of the present invention. The heat pump system includes a refrigeration cycle apparatus 9 which is a supercritical vapor compression refrigeration cycle, and a heat medium circuit 30 on the user side. Further, the refrigeration cycle device 9 is composed of a main refrigerant circuit 10 and a bypass refrigerant circuit 20.

主冷媒回路10は、冷媒を圧縮する圧縮機構11、放熱器である利用側熱交換器12、中間熱交換器13、第1膨張装置14、蒸発器である熱源側熱交換器15が、配管16で順次接続されて形成され、冷媒として二酸化炭素(CO)を用いている。 In the main refrigerant circuit 10, the compression mechanism 11 for compressing the refrigerant, the utilization side heat exchanger 12 which is a radiator, the intermediate heat exchanger 13, the first expansion device 14, and the heat source side heat exchanger 15 which is an evaporator are connected to each other. It is formed by being sequentially connected at 16, and uses carbon dioxide (CO 2) as a refrigerant.

圧縮機構11は、低段側圧縮回転要素11aと高段側圧縮回転要素11bとで構成される。利用側熱交換器12は、高段側圧縮回転要素11bから吐出された冷媒により利用側熱媒体を加熱する。 The compression mechanism 11 is composed of a low-stage compression rotation element 11a and a high-stage compression rotation element 11b. The user-side heat exchanger 12 heats the user-side heat medium with the refrigerant discharged from the high-stage compression rotating element 11b.

なお、圧縮機構11を構成する低段側圧縮回転要素11aと高段側圧縮回転要素11bとの容積比は一定で、駆動軸(図示せず)を共通化させ、1つの容器内に配置した1台の圧縮機で構成されている。 The volume ratio of the low-stage compression rotation element 11a and the high-stage compression rotation element 11b constituting the compression mechanism 11 is constant, and the drive shafts (not shown) are shared and arranged in one container. It consists of one compressor.

なお、本実施の形態では、圧縮回転要素が、低段側圧縮回転要素11aと高段側圧縮回転要素11bとで構成される二段の圧縮機構11を用いて説明するが、低段側圧縮回転要素11aと高段側圧縮回転要素11bとに分かれてなく、単一の圧縮回転要素においても適用できる。 In the present embodiment, the compression rotation element will be described using the two-stage compression mechanism 11 composed of the low-stage side compression rotation element 11a and the high-stage side compression rotation element 11b. The rotation element 11a and the high-stage compression rotation element 11b are not separated, and can be applied to a single compression rotation element.

ここで、単一の圧縮回転要素の場合には、バイパス冷媒回路20からの冷媒が合流する位置を圧縮回転要素の圧縮途中とし、バイパス冷媒回路20からの冷媒が合流する位置までの圧縮回転要素を低段側圧縮回転要素11aとし、バイパス冷媒回路20からの冷媒が合流する位置以降の圧縮回転要素を高段側圧縮回転要素11bとして適用することができる。 Here, in the case of a single compression rotation element, the position where the refrigerant from the bypass refrigerant circuit 20 merges is in the middle of compression of the compression rotation element, and the compression rotation element up to the position where the refrigerant from the bypass refrigerant circuit 20 merges. Can be applied as the high-stage side compression rotation element 11b, and the compression rotation element after the position where the refrigerant from the bypass refrigerant circuit 20 merges can be applied as the high-stage side compression rotation element 11a.

また、低段側圧縮回転要素11aと高段側圧縮回転要素11bとが、それぞれが独立した2台の圧縮機から構成されている二段の圧縮機構11でもよい。 Further, the two-stage compression mechanism 11 in which the low-stage compression rotation element 11a and the high-stage compression rotation element 11b are each composed of two independent compressors may be used.

バイパス冷媒回路20は、利用側熱交換器12から第1膨張装置14までの間の配管16から分岐され、低段側圧縮回転要素11aと高段側圧縮回転要素11bとの間の配管16に接続されている。 The bypass refrigerant circuit 20 is branched from the pipe 16 between the heat exchanger 12 on the utilization side and the first expansion device 14, and is connected to the pipe 16 between the compression rotation element 11a on the low stage side and the compression rotation element 11b on the high stage side. It is connected.

バイパス冷媒回路20には、第2膨張装置21が設けられている。利用側熱交換器12を通過後の一部の高圧冷媒、又は、中間熱交換器13を通過後の一部の高圧冷媒は、第2膨張装置21により減圧されて中間圧冷媒となった後に、中間熱交換器13で主冷媒回路10を流れる高圧冷媒と熱交換され、低段側圧縮回転要素11aと高段側圧縮回転要素11bとの間の冷媒と合流される。 The bypass refrigerant circuit 20 is provided with a second expansion device 21. After the part of the high-pressure refrigerant after passing through the user-side heat exchanger 12 or the part of the high-pressure refrigerant after passing through the intermediate heat exchanger 13 is decompressed by the second expansion device 21 to become an intermediate-pressure refrigerant. , The intermediate heat exchanger 13 exchanges heat with the high-pressure refrigerant flowing through the main refrigerant circuit 10, and merges with the refrigerant between the low-stage compression rotating element 11a and the high-stage compression rotating element 11b.

利用側熱媒体回路30は、利用側熱交換器12、搬送ポンプである搬送装置31、暖房端末32aが熱媒体配管33で順次接続されて形成され、利用側熱媒体として、水又は不凍液を用いている。 The user-side heat medium circuit 30 is formed by sequentially connecting the user-side heat exchanger 12, the transfer device 31 as a transfer pump, and the heating terminal 32a with a heat medium pipe 33, and uses water or antifreeze as the user-side heat medium. ing.

本実施の形態における利用側熱媒体回路30は、暖房端末32aと並列に貯湯タンク32bを備えており、第1切替弁34、第2切替弁35の切り替えによって利用側熱媒体を、暖房端末32a又は貯湯タンク32bに循環させる。なお、利用側熱媒体回路30は、暖房端末32a及び貯湯タンク32bのいずれかを備えていればよい。 The user-side heat medium circuit 30 in the present embodiment includes a hot water storage tank 32b in parallel with the heating terminal 32a, and by switching between the first switching valve 34 and the second switching valve 35, the user-side heat medium is switched to the heating terminal 32a. Alternatively, it is circulated in the hot water storage tank 32b. The user-side heat medium circuit 30 may include either the heating terminal 32a or the hot water storage tank 32b.

利用側熱交換器12で生成された高温水は、暖房端末32aで放熱して暖房に利用され、暖房端末32aで放熱された低温水は再び利用側熱交換器12で加熱される。 The high-temperature water generated by the user-side heat exchanger 12 is radiated by the heating terminal 32a and used for heating, and the low-temperature water radiated by the heating terminal 32a is heated again by the user-side heat exchanger 12.

また、利用側熱交換器12で生成された高温水は、貯湯タンク32bの上部から貯湯タンク32bに導入され、貯湯タンク32bの下部から低温水が導出されて利用側熱交換器12で加熱される。 Further, the high temperature water generated by the user side heat exchanger 12 is introduced into the hot water storage tank 32b from the upper part of the hot water storage tank 32b, and the low temperature water is derived from the lower part of the hot water storage tank 32b and heated by the user side heat exchanger 12. To.

給湯用熱交換器42は、貯湯タンク32b内に配置され、給水配管43からの給水と貯湯タンク32b内の高温水との間で熱交換させる。すなわち、給湯栓41が開栓されると、給水配管43から給湯用熱交換器42内に給水され、給湯用熱交換器42で加熱されて、給湯栓41で所定温度になるように調整され、給湯栓41からから給湯される。 The hot water supply heat exchanger 42 is arranged in the hot water storage tank 32b, and heats are exchanged between the water supply from the water supply pipe 43 and the high temperature water in the hot water storage tank 32b. That is, when the hot water supply plug 41 is opened, water is supplied from the water supply pipe 43 into the hot water supply heat exchanger 42, heated by the hot water supply heat exchanger 42, and adjusted to reach a predetermined temperature by the hot water supply plug 41. , Hot water is supplied from the hot water tap 41.

なお、給水配管43から給水され、給湯用熱交換器42で加熱されて、給湯栓41から給湯される湯水と、貯湯タンク32b内の高温水とは、互いに混ざり合うことがない間接加熱である。 The hot water supplied from the water supply pipe 43, heated by the hot water heat exchanger 42, and supplied from the hot water tap 41 and the high temperature water in the hot water storage tank 32b are indirect heating that do not mix with each other. ..

給湯用熱交換器42は、伝熱管として銅管あるいはステンレス管を使用する水熱交換器であって、図1に示すように、給水源(水道)から延びる給水配管43と、給湯栓41とが接続されている。給水配管43は、常温の水を、給湯用熱交換器42の下端、すなわち、貯湯タンク32b内の下方に入れる。 The hot water supply heat exchanger 42 is a water heat exchanger that uses a copper pipe or a stainless steel pipe as a heat transfer pipe, and as shown in FIG. 1, a water supply pipe 43 extending from a water supply source (water supply) and a hot water tap 41. Is connected. The water supply pipe 43 puts water at room temperature into the lower end of the hot water supply heat exchanger 42, that is, below the inside of the hot water storage tank 32b.

給水配管43より給湯用熱交換器42に入った常温水は、貯湯タンク32b内を下方から上方に移動しながら、貯湯タンク32b内の高温水から熱を奪い、加熱された高温の加熱水となって給湯栓41から給湯される。 The room temperature water that has entered the hot water supply heat exchanger 42 from the water supply pipe 43 moves from the bottom to the top in the hot water storage tank 32b, removes heat from the high temperature water in the hot water storage tank 32b, and becomes the heated high temperature heated water. Hot water is supplied from the hot water tap 41.

貯湯タンク32bには、複数の異なる高さ位置において温水の温度を計測する目的で、例えば、複数の第1貯湯タンク温度サーミスタ55a、第2貯湯タンク温度サーミスタ55b、第3貯湯タンク温度サーミスタ55cが設けられている。 The hot water storage tank 32b includes, for example, a plurality of first hot water storage tank temperature thermistors 55a, a second hot water storage tank temperature thermistor 55b, and a third hot water storage tank temperature thermistor 55c for the purpose of measuring the temperature of hot water at a plurality of different height positions. It is provided.

給水配管43より給湯用熱交換器42に入った常温水は、貯湯タンク32b内を下方から上方に移動しながら貯湯タンク32b内の高温水から熱を奪う構成のため、貯湯タンク32b内の温水は、自然と、上部が高温、下部が低温となる。 The room temperature water that has entered the hot water supply heat exchanger 42 from the water supply pipe 43 moves from the bottom to the top in the hot water storage tank 32b and takes heat from the high temperature water in the hot water storage tank 32b. Naturally, the upper part becomes hot and the lower part becomes cold.

主冷媒回路10には、高段側圧縮回転要素11bの吐出側の配管16に、高圧側圧力検出装置51、吐出温度サーミスタ52が設けられている。 In the main refrigerant circuit 10, a high-pressure side pressure detection device 51 and a discharge temperature thermistor 52 are provided in a pipe 16 on the discharge side of the high-stage compression rotation element 11b.

なお、高圧側圧力検出装置51は、高段側圧縮回転要素11bの吐出側から、第1膨張装置14の上流側までの、主冷媒回路10に設けられていて、主冷媒回路10の高圧冷媒の圧力を検出できればよい。 The high-pressure side pressure detection device 51 is provided in the main refrigerant circuit 10 from the discharge side of the high-stage side compression rotation element 11b to the upstream side of the first expansion device 14, and the high-pressure refrigerant in the main refrigerant circuit 10 is provided. It is only necessary to be able to detect the pressure of.

また、吐出温度サーミスタ52も、高段側圧縮回転要素11bの吐出側から、第1膨張装置14の上流側までの、主冷媒回路10に設けられていて、主冷媒回路10の高圧冷媒の温度を検出できればよい。 Further, the discharge temperature thermistor 52 is also provided in the main refrigerant circuit 10 from the discharge side of the high-stage compression rotation element 11b to the upstream side of the first expansion device 14, and the temperature of the high-pressure refrigerant in the main refrigerant circuit 10 is also provided. Should be detected.

利用側熱媒体回路30には、利用側熱交換器12に流入する利用側熱媒体の温度を検出する熱媒体入口温度サーミスタ54が設けられている。 The user-side heat medium circuit 30 is provided with a heat medium inlet temperature thermistor 54 that detects the temperature of the user-side heat medium flowing into the user-side heat exchanger 12.

また、制御装置60は、高圧側圧力検出装置51からの検出圧力、吐出温度サーミスタ52の検出温度、熱媒体入口温度サーミスタ54の検出温度によって、低段側圧縮回転要素11a及び高段側圧縮回転要素11bの運転周波数、第1膨張装置14の弁開度、第2膨張装置21の弁開度、搬送装置31による利用側熱媒体の搬送量を制御する。 Further, the control device 60 determines the low-stage compression rotation element 11a and the high-stage compression rotation according to the detection pressure from the high-pressure side pressure detection device 51, the detection temperature of the discharge temperature thermistor 52, and the detection temperature of the heat medium inlet temperature thermistor 54. The operating frequency of the element 11b, the valve opening degree of the first expansion device 14, the valve opening degree of the second expansion device 21, and the transfer amount of the heat medium on the utilization side by the transfer device 31 are controlled.

図2は、本実施の形態における冷凍サイクル装置について、理想条件での圧力―エンタルピー線図(P−h線図)である。 FIG. 2 is a pressure-enthalpy diagram (Ph diagram) under ideal conditions for the refrigeration cycle apparatus according to the present embodiment.

図2のa〜e点、およびA〜B点は、図1に示す冷凍サイクル装置における各ポイントに相当する。 Points a to e and points A to B in FIG. 2 correspond to points in the refrigeration cycle apparatus shown in FIG.

まず、高段側圧縮回転要素11bから吐出される高圧冷媒(a点)は、利用側熱交換器12で放熱した後の冷媒分岐点(A点)で主冷媒回路10から分岐し、第2膨張装置21により中間圧まで減圧されて中間圧冷媒(e点)となり、中間熱交換器13にて熱交換する。 First, the high-pressure refrigerant (point a) discharged from the high-stage compression rotating element 11b branches from the main refrigerant circuit 10 at the refrigerant branch point (point A) after heat is dissipated by the utilization side heat exchanger 12, and the second The expansion device 21 reduces the pressure to the intermediate pressure to become the intermediate pressure refrigerant (point e), and the intermediate heat exchanger 13 exchanges heat.

利用側熱交換器12で放熱した後の主冷媒回路10を流れる高圧冷媒は、バイパス冷媒回路20を流れる中間圧冷媒(e点)によって冷却され、エンタルピーが低減された状態(b点)で第1膨張装置14にて減圧される。 The high-pressure refrigerant flowing through the main refrigerant circuit 10 after heat is dissipated by the user-side heat exchanger 12 is cooled by the intermediate-pressure refrigerant (point e) flowing through the bypass refrigerant circuit 20, and the enthalpy is reduced (point b). 1 The pressure is reduced by the expansion device 14.

これにより、第1膨張装置14にて減圧された後に、熱源側熱交換器15に流入する冷媒(c点)の冷媒エンタルピーも低減される。熱源側熱交換器15に流入する時点での冷媒乾き度(全冷媒に対して気相成分が占める重量比率)が低下して冷媒の液成分が増大するため、熱源側熱交換器15において蒸発に寄与し、冷媒比率が増大して外気からの吸熱量が増大され、低段側圧縮回転要素11aの吸入側(d点)に戻る。 As a result, the refrigerant enthalpy of the refrigerant (point c) flowing into the heat source side heat exchanger 15 after being depressurized by the first expansion device 14 is also reduced. Since the dryness of the refrigerant (the weight ratio of the gas phase component to the total refrigerant) at the time of flowing into the heat source side heat exchanger 15 decreases and the liquid component of the refrigerant increases, the heat source side heat exchanger 15 evaporates. The refrigerant ratio is increased, the amount of heat absorbed from the outside air is increased, and the heat is returned to the suction side (point d) of the low-stage compression rotating element 11a.

一方、熱源側熱交換器15において蒸発に寄与しない気相成分に相当する量の冷媒は、バイパス冷媒回路20にバイパスされて低温の中間圧冷媒(e点)となり、中間熱交換器13にて主冷媒回路10を流れる高圧冷媒によって加熱されて冷媒エンタルピーが高まった状態で、低段側圧縮回転要素11aと高段側圧縮回転要素11bとの間にある冷媒合流点Bに至る。 On the other hand, in the heat source side heat exchanger 15, the amount of refrigerant corresponding to the gas phase component that does not contribute to evaporation is bypassed by the bypass refrigerant circuit 20 to become a low-temperature intermediate pressure refrigerant (point e), and the intermediate heat exchanger 13 In a state where the refrigerant enthalpy is increased by being heated by the high-pressure refrigerant flowing through the main refrigerant circuit 10, the refrigerant confluence point B between the low-stage side compression rotation element 11a and the high-stage side compression rotation element 11b is reached.

従って、高段側圧縮回転要素11bの吸入側(B点)では、低段側圧縮回転要素11aの吸入側(d点)より冷媒圧力が高いため冷媒密度も高く、かつ、低段側圧縮回転要素11aから吐出した冷媒と合流した冷媒が吸入され、高段側圧縮回転要素11bで更に圧縮されて吐出されるため、利用側熱交換器12に流入する冷媒流量が大幅に増大し、利用側熱媒体である水を加熱する能力が大幅に増大する。 Therefore, on the suction side (point B) of the high-stage compression rotation element 11b, the refrigerant pressure is higher than that on the suction side (point d) of the low-stage compression rotation element 11a, so that the refrigerant density is high and the low-stage compression rotation Since the refrigerant that has merged with the refrigerant discharged from the element 11a is sucked in and further compressed and discharged by the high-stage compression rotating element 11b, the flow rate of the refrigerant flowing into the heat exchanger 12 on the user side is significantly increased, and the flow rate on the user side is significantly increased. The ability to heat water, which is the heat carrier, is greatly increased.

以下、利用側熱媒体回路30に貯湯タンク32bを用いる場合について説明する。 Hereinafter, a case where the hot water storage tank 32b is used for the heat medium circuit 30 on the user side will be described.

複数の貯湯タンク温度サーミスタのうち、例えば、貯湯タンク32bの最も高い位置に配置されている第1貯湯タンク温度サーミスタ55aの検出温度が所定値未満の場合、貯湯タンク32b内に高温水が足りないと、制御装置60は判断する。 Of the plurality of hot water storage tank temperature thermistors, for example, when the detection temperature of the first hot water storage tank temperature thermistor 55a arranged at the highest position of the hot water storage tank 32b is less than a predetermined value, the high temperature water is insufficient in the hot water storage tank 32b. The control device 60 determines.

そして、制御装置60は、低段側圧縮回転要素11a及び高段側圧縮回転要素11bを動作させ、利用側熱交換器12で低温水を加熱するが、その加熱生成温度である熱媒体出口温度サーミスタ53の検出温度が目標温度となるように、搬送装置31を動作させる。 Then, the control device 60 operates the low-stage compression rotation element 11a and the high-stage compression rotation element 11b to heat the low-temperature water in the utilization-side heat exchanger 12, and the heat medium outlet temperature which is the heating generation temperature thereof. The transport device 31 is operated so that the detected temperature of the thermistor 53 becomes the target temperature.

これにより、貯湯タンク32bの下部から低温水が導出されて利用側熱交換器12で加熱生成された高温水は、貯湯タンク32bの上部から貯湯タンク32bに導入される。 As a result, the low-temperature water is derived from the lower part of the hot water storage tank 32b, and the high-temperature water generated by heating in the user-side heat exchanger 12 is introduced into the hot water storage tank 32b from the upper part of the hot water storage tank 32b.

そして、貯湯タンク32b内には上部から次第に高温水が貯湯されていくため、熱媒体入口温度サーミスタ54の検出温度は次第に上昇していく。 Then, since high-temperature water is gradually stored in the hot water storage tank 32b from the upper part, the detection temperature of the heat medium inlet temperature thermistor 54 gradually rises.

利用側熱媒体回路30に暖房端末32aを用いる場合について説明する。 A case where the heating terminal 32a is used for the heat medium circuit 30 on the user side will be described.

制御装置60は、低段側圧縮回転要素11a及び高段側圧縮回転要素11bを動作させ、利用側熱交換器12で循環水を加熱するが、その循環水の温度差である熱媒体出口温度サーミスタ53の検出温度と熱媒体入口温度サーミスタ54の検出温度との温度差が目標温度差となるように、搬送装置31を動作させる。 The control device 60 operates the low-stage compression rotation element 11a and the high-stage compression rotation element 11b to heat the circulating water with the utilization side heat exchanger 12, and the heat medium outlet temperature which is the temperature difference of the circulating water. The transfer device 31 is operated so that the temperature difference between the detection temperature of the thermistor 53 and the detection temperature of the heat medium inlet temperature thermistor 54 becomes the target temperature difference.

これにより、利用側熱交換器12で生成された高温水は、暖房端末32aで放熱して暖房に利用され、暖房端末32aで放熱された低温水は、再び利用側熱交換器12で加熱される。このときには、熱媒体出口温度サーミスタ53の検出温度と熱媒体入口温度サーミスタ54の検出温度との温度差が目標温度差となるように制御される。 As a result, the high-temperature water generated by the user-side heat exchanger 12 is radiated by the heating terminal 32a and used for heating, and the low-temperature water radiated by the heating terminal 32a is heated again by the user-side heat exchanger 12. To. At this time, the temperature difference between the detection temperature of the heat medium outlet temperature thermistor 53 and the detection temperature of the heat medium inlet temperature thermistor 54 is controlled to be the target temperature difference.

そして、次第に暖房負荷が小さくなるため、熱媒体出口温度サーミスタ53の検出温度と熱媒体入口温度サーミスタ54の検出温度との温度差が目標温度差となるように制御している関係上、熱媒体出口温度サーミスタ53の検出温度及び熱媒体入口温度サーミスタ54の検出温度は次第に上昇していく。 Since the heating load gradually decreases, the heat medium is controlled so that the temperature difference between the detection temperature of the heat medium outlet temperature thermista 53 and the detection temperature of the heat medium inlet temperature thermista 54 becomes the target temperature difference. The detection temperature of the outlet temperature thermistor 53 and the detection temperature of the heat medium inlet temperature thermistor 54 gradually increase.

以下、図3を用いて、利用側熱媒体回路30において、利用側熱交換器12に流入する利用側熱媒体の温度が上昇する場合、すなわち、熱媒体入口温度サーミスタ54の検出温度が上昇する場合について、以下に説明する。 Hereinafter, using FIG. 3, in the utilization side heat medium circuit 30, when the temperature of the utilization side heat medium flowing into the utilization side heat exchanger 12 rises, that is, the detection temperature of the heat medium inlet temperature thermistor 54 rises. The case will be described below.

図3において、実線は、破線に対して、利用側熱交換器12に流入する利用側熱媒体の温度が上昇した場合の圧力―エンタルピー線図である。 In FIG. 3, the solid line is a pressure-enthalpy diagram when the temperature of the heat medium on the user side flowing into the heat exchanger 12 on the user side rises with respect to the broken line.

図3において、利用側熱交換器12に流入する利用側熱媒体の温度が上昇していくと、利用側熱交換器12への冷媒の入口温度(a点)はエンタルピー増加の方向(a‘点)へ移動する。また、利用側熱交換器12からの冷媒の出口温度(A点)はエンタルピー増加の方向(A‘点)へ移動する。 In FIG. 3, as the temperature of the utilization-side heat medium flowing into the utilization-side heat exchanger 12 rises, the inlet temperature (point a) of the refrigerant to the utilization-side heat exchanger 12 increases in the direction of increasing enthalpy (a'. Move to point). Further, the outlet temperature (point A) of the refrigerant from the user-side heat exchanger 12 moves in the direction of increasing enthalpy (point A').

同様に、中間熱交換器13のバイパス冷媒回路20からの冷媒の出口温度(B点)もエンタルピー増加の方向(B‘点)へ移動する。また、中間熱交換器13のバイパス冷媒回路20への冷媒の入口温度(e点)もエンタルピー増加の方向(e’点)へ移動する。 Similarly, the outlet temperature (point B) of the refrigerant from the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 also moves in the direction of increasing enthalpy (point B'). Further, the inlet temperature (point e) of the refrigerant to the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 also moves in the direction of increasing enthalpy (point e').

なお、圧力が臨界圧を超えた状態において、エンタルピー増加の方向へ移動していくと、圧力に対する等温線の傾きも急になっていく。 When the pressure exceeds the critical pressure and moves in the direction of increasing enthalpy, the slope of the isotherm with respect to the pressure also becomes steep.

このため、利用側熱交換器12に流入する利用側熱媒体の温度が上昇しても、冷凍サイクル装置9のCOPの低下を抑制するためには、中間熱交換器13において、中間熱交換器13のバイパス冷媒回路20からの冷媒の出口温度(B‘点)と、中間熱交換器13へのバイパス冷媒回路20への冷媒の入口温度(e’点)との温度差ができるだけ小さくならないように、制御装置60は、第2膨張装置21の弁開度を制御しなければならない。 Therefore, even if the temperature of the utilization-side heat medium flowing into the utilization-side heat exchanger 12 rises, in order to suppress a decrease in the COP of the refrigeration cycle apparatus 9, the intermediate heat exchanger 13 has an intermediate heat exchanger. The temperature difference between the outlet temperature of the refrigerant from the bypass refrigerant circuit 20 of 13 (point B') and the inlet temperature of the refrigerant to the bypass refrigerant circuit 20 to the intermediate heat exchanger 13 (point e') should not be as small as possible. In addition, the control device 60 must control the valve opening degree of the second expansion device 21.

また、利用側熱交換器12に流入する利用側熱媒体の温度が上昇しても、利用側熱交換器12において、高段側圧縮回転要素11bから吐出された冷媒により、利用側熱媒体を加熱能力ができるだけ低下しないようにしなければならない。 Further, even if the temperature of the utilization-side heat medium flowing into the utilization-side heat exchanger 12 rises, the utilization-side heat exchanger 12 uses the refrigerant discharged from the high-stage compression rotating element 11b to keep the utilization-side heat medium. The heating capacity should not be reduced as much as possible.

具体的には、中間熱交換器13の主冷媒回路10側を流れる冷媒の量に対するバイパス冷媒回路20を流れる冷媒の量の比率が増加させる。 Specifically, the ratio of the amount of refrigerant flowing through the bypass refrigerant circuit 20 to the amount of refrigerant flowing on the main refrigerant circuit 10 side of the intermediate heat exchanger 13 is increased.

すなわち、第2膨張装置21の弁開度を大きくして、主冷媒回路10を循環する冷媒の量に対する、バイパス冷媒回路20、高段側圧縮回転要素11b、利用側熱交換器12を循環する冷媒の量の比率を増加させる。 That is, the valve opening degree of the second expansion device 21 is increased to circulate the bypass refrigerant circuit 20, the high-stage compression rotation element 11b, and the utilization side heat exchanger 12 with respect to the amount of refrigerant circulating in the main refrigerant circuit 10. Increase the ratio of the amount of refrigerant.

これにより、利用側熱交換器12に流入する利用側熱媒体の温度が上昇する場合でも、中間熱交換器13における主冷媒回路10を流れる高圧冷媒とバイパス冷媒回路20を流れる中間圧冷媒との熱交換量は増加する。 As a result, even when the temperature of the utilization-side heat medium flowing into the utilization-side heat exchanger 12 rises, the high-pressure refrigerant flowing through the main refrigerant circuit 10 and the intermediate-pressure refrigerant flowing through the bypass refrigerant circuit 20 in the intermediate heat exchanger 13 The amount of heat exchange increases.

このため、利用側熱交換器12における冷媒の出口と冷媒の入口とのエンタルピー差(a‘点〜A‘点)の減少を抑制することができる。 Therefore, it is possible to suppress a decrease in the enthalpy difference (points a'to A') between the outlet of the refrigerant and the inlet of the refrigerant in the user-side heat exchanger 12.

なお、高段側圧縮回転要素11bから吐出される高圧冷媒(a‘点)と利用側熱交換器12で放熱した後の冷媒分岐点(A’点)とのエンタルピー差は、高段側圧縮回転要素11bの吸入側(B‘点)とバイパス冷媒回路20を流れる中間圧冷媒(e’点)とのエンタルピー差に高段側圧縮回転要素11bのエンタルピー差が付加されたものである。 The difference in enthalpy between the high-pressure refrigerant (point a') discharged from the high-stage compression rotating element 11b and the refrigerant branch point (point A') after heat is dissipated by the utilization-side heat exchanger 12 is the high-stage compression. The enthalpy difference of the high-stage compression rotating element 11b is added to the enthalpy difference between the suction side (point B') of the rotating element 11b and the intermediate pressure refrigerant (e'point) flowing through the bypass refrigerant circuit 20.

このため、利用側熱交換器12における冷媒の出口と冷媒の入口とのエンタルピー差(a‘点〜A‘点)を大きくするには、中間熱交換器13のバイパス冷媒回路20のエンタルピー差(B‘点〜e’点)を大きくすれば良い。 Therefore, in order to increase the enthalpy difference (points a'to A') between the refrigerant outlet and the refrigerant inlet in the user-side heat exchanger 12, the enthalpy difference (points a'to A') of the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 is increased. B'points to e'points) should be increased.

また、バイパス冷媒回路20、高段側圧縮回転要素11b、利用側熱交換器12を循環する冷媒の量は増加するため、利用側熱交換器12における加熱能力の低減を抑制できる。 Further, since the amount of the refrigerant circulating in the bypass refrigerant circuit 20, the high-stage compression rotating element 11b, and the utilization side heat exchanger 12 increases, it is possible to suppress the reduction of the heating capacity in the utilization side heat exchanger 12.

また、制御装置60は、第1膨張装置14の弁開度を小さくする。これにより、主冷媒回路10の冷媒の高圧側の圧力が上昇するため、利用側熱交換器12に流入する利用側熱媒体の温度が上昇しても、利用側熱交換器12における冷媒の出口と冷媒の入口とのエンタルピー差(a‘点〜A‘点)の減少を抑制することができる。 Further, the control device 60 reduces the valve opening degree of the first expansion device 14. As a result, the pressure on the high-pressure side of the refrigerant in the main refrigerant circuit 10 rises, so even if the temperature of the heat medium on the user side flowing into the heat exchanger 12 on the user side rises, the outlet of the refrigerant in the heat exchanger 12 on the user side It is possible to suppress a decrease in the enthalpy difference (points a'to A') between the air and the inlet of the refrigerant.

また、制御装置60は、第1膨張装置14の弁開度と前記第2膨張装置21の弁開度を調整することで、吐出温度サーミスタ52が検出する温度を目標値に近づける。なお、吐出温度の目標値は、制御装置60に予め設定してある値である。 Further, the control device 60 adjusts the valve opening degree of the first expansion device 14 and the valve opening degree of the second expansion device 21 to bring the temperature detected by the discharge temperature thermistor 52 closer to the target value. The target value of the discharge temperature is a value preset in the control device 60.

これにより、高段側圧縮回転要素11bから吐出される冷媒の温度を検出する吐出温度の過度の上昇や低下を防止しつつ、中間熱交換器13における主冷媒回路10を流れる高圧冷媒とバイパス冷媒回路20を流れる中間圧冷媒との熱交換量の増加や、バイパス冷媒回路20、高段側圧縮回転要素11b、利用側熱交換器12を循環する冷媒の量の増加を実現できる。 As a result, the high-pressure refrigerant and the bypass refrigerant flowing through the main refrigerant circuit 10 in the intermediate heat exchanger 13 are prevented from excessively rising or falling in the discharge temperature for detecting the temperature of the refrigerant discharged from the high-stage compression rotating element 11b. It is possible to increase the amount of heat exchange with the intermediate pressure refrigerant flowing through the circuit 20, and increase the amount of the refrigerant circulating in the bypass refrigerant circuit 20, the high-stage compression rotating element 11b, and the utilization side heat exchanger 12.

また、制御装置60は、第1膨張装置14の弁開度と第2膨張装置21の弁開度を調整することで、高圧側圧力検出装置51が検出する圧力値を目標値に近づけるようにしている。 Further, the control device 60 adjusts the valve opening degree of the first expansion device 14 and the valve opening degree of the second expansion device 21 so that the pressure value detected by the high pressure side pressure detecting device 51 approaches the target value. ing.

これにより、高段側圧縮回転要素11bから吐出される冷媒の圧力の過度の上昇や低下を防止しつつ、利用側熱交換器12に流入する利用側熱媒体の温度が上昇しても、利用側熱交換器12における冷媒の出口と冷媒の入口とのエンタルピー差(a‘点〜A‘点)の減少を抑制することができる。 This prevents the pressure of the refrigerant discharged from the high-stage compression rotating element 11b from rising or falling excessively, and is used even if the temperature of the heat medium on the user side flowing into the heat exchanger 12 on the user side rises. It is possible to suppress a decrease in the enthalpy difference (points a'to A') between the outlet of the refrigerant and the inlet of the refrigerant in the side heat exchanger 12.

なお、低段側圧縮回転要素11aと高段側圧縮回転要素11bとに分かれてなく、単一の圧縮回転要素であってもよく、単一の圧縮回転要素の場合には、バイパス冷媒回路20からの冷媒を圧縮回転要素の圧縮途中とする。 The low-stage compression rotation element 11a and the high-stage compression rotation element 11b are not separated and may be a single compression rotation element. In the case of a single compression rotation element, the bypass refrigerant circuit 20 The refrigerant from is in the process of compressing the compression rotating element.

また、利用側熱媒体を水又は不凍液とすることで、暖房端末32aに用い、又は貯湯タンク32bに高温水を貯えることができる。 Further, by using water or antifreeze as the heat medium on the user side, it is possible to use it in the heating terminal 32a or store high temperature water in the hot water storage tank 32b.

以上のように、本発明にかかる高圧側が超臨界圧力で運転するヒートポンプシステムは、利用側熱交換器に流入する利用側熱媒体の温度が上昇しても、適切な制御を行うことでCOPの低下を抑制するので、冷凍、空調、および、給湯、暖房機器のヒートポンプシステム等に有用である。 As described above, the heat pump system in which the high-pressure side according to the present invention operates at a supercritical pressure can control the COP by performing appropriate control even if the temperature of the heat medium on the user side flowing into the heat exchanger on the user side rises. Since it suppresses the decrease, it is useful for refrigeration, air conditioning, hot water supply, heat pump systems for heating equipment, and the like.

9 冷凍サイクル装置
10 主冷媒回路
11 圧縮機構
11a 低段側圧縮回転要素
11b 高段側圧縮回転要素
12 利用側熱交換器
13 中間熱交換器
14 第1膨張装置
15 熱源側熱交換器
16 配管
20 バイパス冷媒回路
21 第2膨張装置
30 利用側熱媒体回路
31 搬送装置
32a 暖房端末
32b 貯湯タンク
33 熱媒体配管
34 第1切替弁
35 第2切替弁
41 給湯栓
42 給湯用熱交換器
43 給水配管
51 高圧側圧力検出装置
52 吐出温度サーミスタ
54 熱媒体入口温度サーミスタ
55a 第1貯湯タンク温度サーミスタ
55b 第2貯湯タンク温度サーミスタ
55c 第3貯湯タンク温度サーミスタ
60 制御装置
9 Refrigerant cycle device 10 Main refrigerant circuit 11 Compression mechanism 11a Low-stage compression rotation element 11b High-stage compression rotation element 12 Utilization side heat exchanger 13 Intermediate heat exchanger 14 First expansion device 15 Heat source side heat exchanger 16 Piping 20 Bypass refrigerant circuit 21 2nd expansion device 30 User side heat medium circuit 31 Conveyor device 32a Heating terminal 32b Hot water storage tank 33 Heat medium piping 34 1st switching valve 35 2nd switching valve 41 Hot water tap 42 Hot water supply heat exchanger 43 Water supply piping 51 High-pressure side pressure detector 52 Discharge temperature thermistor 54 Heat medium inlet temperature thermistor 55a 1st hot water storage tank temperature thermistor 55b 2nd hot water storage tank temperature thermistor 55c 3rd hot water storage tank temperature thermistor 60 Control device

Claims (7)

圧縮回転要素から構成される圧縮機構、前記圧縮回転要素から吐出され臨界圧を超えた冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、
前記利用側熱交換器から前記第1膨張装置までの間の前記配管から分岐され、分岐された冷媒が第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる冷媒と熱交換され、前記圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路と、
制御装置と、
を備え、
前記制御装置は、
前記利用側熱交換器に流入する前記利用側熱媒体の温度が上昇する場合、
少なくとも前記第2膨張装置の弁開度を制御して、
前記中間熱交換器の前記主冷媒回路側を流れる前記冷媒の量に対する
前記バイパス冷媒回路を流れる前記冷媒の量の比率を増加させることを特徴とするヒートポンプシステム。
A compression mechanism composed of a compression rotation element, a utilization side heat exchanger that heats a utilization side heat medium with a refrigerant discharged from the compression rotation element and exceeding a critical pressure, an intermediate heat exchanger, a first expansion device, and heat source side heat. A main refrigerant circuit formed by connecting exchangers in sequence with pipes,
The refrigerant branched from the pipe between the utilization side heat exchanger and the first expansion device, and after the branched refrigerant is decompressed by the second expansion device, flows through the main refrigerant circuit in the intermediate heat exchanger. A bypass refrigerant circuit that exchanges heat with and joins the refrigerant in the process of compression of the compression rotating element.
Control device and
With
The control device is
When the temperature of the user-side heat medium flowing into the user-side heat exchanger rises,
At least by controlling the valve opening of the second expansion device,
A heat pump system comprising increasing the ratio of the amount of the refrigerant flowing through the bypass refrigerant circuit to the amount of the refrigerant flowing through the main refrigerant circuit side of the intermediate heat exchanger.
前記利用側熱交換器に流入する前記利用側熱媒体の温度を検出する熱媒体入口温度サーミスタを備え、前記熱媒体入口温度サーミスタの検出温度が上昇する場合、前記制御装置は、前記第2膨張装置の弁開度を大きくすることを特徴とする請求項1に記載のヒートポンプシステム。 A heat medium inlet temperature thermister for detecting the temperature of the user-side heat medium flowing into the user-side heat exchanger is provided, and when the detected temperature of the heat medium inlet temperature thermister rises, the control device expands to the second expansion. The heat pump system according to claim 1, wherein the valve opening degree of the apparatus is increased. 前記制御装置は、前記第1膨張装置の弁開度を小さくすることを特徴とする請求項2に記載のヒートポンプシステム。 The heat pump system according to claim 2, wherein the control device reduces the valve opening degree of the first expansion device. 前記圧縮回転要素から吐出される前記冷媒の温度を検出する吐出温度サーミスタを備え、前記制御装置は、前記第1膨張装置の弁開度と前記第2膨張装置の弁開度を調整することで、前記吐出温度サーミスタが検出する温度を目標値に近づけることを特徴とする請求項3に記載のヒートポンプシステム。 A discharge temperature thermistor for detecting the temperature of the refrigerant discharged from the compression rotation element is provided, and the control device adjusts the valve opening degree of the first expansion device and the valve opening degree of the second expansion device. The heat pump system according to claim 3, wherein the temperature detected by the discharge temperature thermistor is brought close to a target value. 前記圧縮回転要素から吐出される前記冷媒の圧力を検出する高圧側圧力検出装置を備え、前記制御装置は、前記第1膨張装置の弁開度と前記第2膨張装置の弁開度を調整することで、前記高圧側圧力検出装置が検出する圧力値を目標値に近づけることを特徴とする請求項3に記載のヒートポンプシステム。 A high-pressure side pressure detecting device for detecting the pressure of the refrigerant discharged from the compression rotating element is provided, and the control device adjusts the valve opening degree of the first expansion device and the valve opening degree of the second expansion device. The heat pump system according to claim 3, wherein the pressure value detected by the high-pressure side pressure detecting device is brought close to a target value. 搬送装置を有し、前記搬送装置によって前記利用側熱媒体を循環させる利用側熱媒体回路を備えることを特徴とする請求項1〜5のいずれか1項に記載の特徴とするヒートポンプシステム。 The heat pump system according to any one of claims 1 to 5, wherein the heat pump system includes a transfer device and includes a user-side heat medium circuit that circulates the user-side heat medium by the transfer device. 前記利用側熱媒体を水又は不凍液としたことを特徴とする請求項1〜6のいずれか1項に記載のヒートポンプシステム。 The heat pump system according to any one of claims 1 to 6, wherein the heat medium on the user side is water or antifreeze.
JP2019223863A 2019-12-11 2019-12-11 heat pump system Active JP7390605B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019223863A JP7390605B2 (en) 2019-12-11 2019-12-11 heat pump system
EP20206234.5A EP3835687A1 (en) 2019-12-11 2020-11-06 Heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019223863A JP7390605B2 (en) 2019-12-11 2019-12-11 heat pump system

Publications (2)

Publication Number Publication Date
JP2021092358A true JP2021092358A (en) 2021-06-17
JP7390605B2 JP7390605B2 (en) 2023-12-04

Family

ID=73172579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019223863A Active JP7390605B2 (en) 2019-12-11 2019-12-11 heat pump system

Country Status (2)

Country Link
EP (1) EP3835687A1 (en)
JP (1) JP7390605B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315558A (en) * 2004-03-29 2005-11-10 Mitsubishi Electric Corp Heat pump water heater
JP2008008499A (en) * 2006-06-27 2008-01-17 Sanyo Electric Co Ltd Refrigerating cycle device and heat pump type water heater
WO2017061233A1 (en) * 2015-10-05 2017-04-13 株式会社デンソー Refrigeration cycle device
JP2019173987A (en) * 2018-03-27 2019-10-10 株式会社富士通ゼネラル Air conditioner
WO2019230070A1 (en) * 2018-05-31 2019-12-05 パナソニックIpマネジメント株式会社 Supercritical steam compression-type refrigeration cycle and liquid heating device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130357A1 (en) * 2007-04-24 2008-10-30 Carrier Corporation Refrigerant vapor compression system and method of transcritical operation
EP2245387B1 (en) * 2008-01-17 2017-12-20 Carrier Corporation Capacity modulation of refrigerant vapor compression system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315558A (en) * 2004-03-29 2005-11-10 Mitsubishi Electric Corp Heat pump water heater
JP2008008499A (en) * 2006-06-27 2008-01-17 Sanyo Electric Co Ltd Refrigerating cycle device and heat pump type water heater
WO2017061233A1 (en) * 2015-10-05 2017-04-13 株式会社デンソー Refrigeration cycle device
JP2019173987A (en) * 2018-03-27 2019-10-10 株式会社富士通ゼネラル Air conditioner
WO2019230070A1 (en) * 2018-05-31 2019-12-05 パナソニックIpマネジメント株式会社 Supercritical steam compression-type refrigeration cycle and liquid heating device

Also Published As

Publication number Publication date
JP7390605B2 (en) 2023-12-04
EP3835687A1 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
JP4670329B2 (en) Refrigeration air conditioner, operation control method of refrigeration air conditioner, refrigerant amount control method of refrigeration air conditioner
JP5791785B2 (en) Air conditioner
JP5627713B2 (en) Air conditioner
JP5518089B2 (en) Air conditioner
JP5380226B2 (en) Air conditioning and hot water supply system and heat pump unit
US20120000237A1 (en) Heat pump system
US20060218948A1 (en) Cooling and heating system
JP4116645B2 (en) Heat pump water heater
JPWO2013111176A1 (en) Air conditioner
JP5893151B2 (en) Air conditioning and hot water supply complex system
JP2011069529A (en) Air-conditioning hot water supply system and heat pump unit
JP4258241B2 (en) Heat pump system, heat pump water heater
JP4407689B2 (en) Heat pump water heater
JP7012208B2 (en) Refrigeration cycle device and liquid heating device equipped with it
US20220090815A1 (en) Air-conditioning apparatus
JP4140625B2 (en) Heat pump water heater and control method of heat pump water heater
JP6986675B2 (en) Supercritical vapor compression refrigeration cycle and liquid heating device
JP2021092358A (en) Heat pump system
JP2009085479A (en) Hot water supply device
JP6964241B2 (en) Refrigeration cycle device and liquid heating device equipped with it
JP2017161164A (en) Air-conditioning hot water supply system
JP2020148381A (en) Refrigeration cycle device and liquid heating device including the same
JP2020003156A (en) Refrigeration cycle device and liquid heating device including the same
JP2021004687A (en) Refrigeration cycle device and fluid heater including the same
WO2021240800A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220905

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230614

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230619

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231108

R151 Written notification of patent or utility model registration

Ref document number: 7390605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151