WO2017061233A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2017061233A1
WO2017061233A1 PCT/JP2016/076611 JP2016076611W WO2017061233A1 WO 2017061233 A1 WO2017061233 A1 WO 2017061233A1 JP 2016076611 W JP2016076611 W JP 2016076611W WO 2017061233 A1 WO2017061233 A1 WO 2017061233A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
refrigerant
temperature
pressure refrigerant
heat exchanger
Prior art date
Application number
PCT/JP2016/076611
Other languages
French (fr)
Japanese (ja)
Inventor
昌宏 高津
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112016004544.1T priority Critical patent/DE112016004544T5/en
Priority to JP2017544427A priority patent/JP6477908B2/en
Publication of WO2017061233A1 publication Critical patent/WO2017061233A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/242Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to a refrigeration cycle apparatus.
  • a conventional refrigeration cycle apparatus As a conventional refrigeration cycle apparatus, there is a conventional refrigeration cycle apparatus that constitutes a two-stage compression / one-stage expansion cycle and a high-pressure refrigerant discharged from a two-stage compression type compression mechanism is operated in a supercritical state as in Patent Document 1.
  • a part of the high-pressure refrigerant passes through the internal heat exchanger, is depressurized by the first decompressor, and is absorbed by the evaporator. Then, it is sucked into the compression mechanism.
  • the remainder of the high-pressure refrigerant radiated by the radiator is decompressed by the second decompressor to become an intermediate-pressure refrigerant, heated by heat exchange with the high-pressure refrigerant by the internal heat exchanger, and injected into the compression mechanism (that is, introduced). Is done.
  • the temperature of the heat exchange medium that exchanges heat with the high-pressure refrigerant in the radiator may be higher than the critical temperature of the refrigerant (hereinafter referred to as the critical temperature).
  • the critical temperature the critical temperature of the refrigerant
  • the heat exchange medium temperature is a temperature before heat exchange with the refrigerant.
  • the enthalpy difference in the radiator is the enthalpy difference between the refrigerant on the inlet side and the outlet side of the radiator.
  • the enthalpy difference on the high pressure side of the internal heat exchanger is the enthalpy difference between the refrigerant on the inlet side and the outlet side of the high pressure side passage of the internal heat exchanger.
  • This disclosure aims to provide a refrigeration cycle apparatus that can improve the reliability of a compression mechanism while suppressing a decrease in heating performance of a radiator.
  • Refrigeration cycle equipment The refrigerant is compressed from a low pressure to a high pressure higher than the low pressure, and the high-pressure refrigerant in a supercritical state is discharged.
  • a compression mechanism for introducing a refrigerant A radiator that dissipates the high-pressure refrigerant by heat exchange between the high-pressure refrigerant discharged from the compression mechanism and the heat exchange medium;
  • a first pressure reducer that depressurizes a part of the high-pressure refrigerant flowing out of the radiator to a low pressure to form a low-pressure refrigerant;
  • An evaporator that evaporates the low-pressure refrigerant and sucks the low-pressure refrigerant after evaporation into the compression mechanism;
  • a second pressure reducer that reduces the other part of the high-pressure refrigerant flowing out of the radiator to an intermediate pressure to obtain an intermediate-pressure refrigerant;
  • An internal heat exchanger that exchanges heat between the high-pressure refrigerant that flows out
  • a control device for adjusting the pressure of the refrigerant and the flow rate of the intermediate pressure refrigerant When the detected temperature is higher than the critical temperature of the refrigerant, the control device adjusts the pressure of the high-pressure refrigerant so that the higher the detected temperature, the higher the pressure of the high-pressure refrigerant.
  • the flow rate of the intermediate pressure refrigerant is adjusted so that the flow rate increases.
  • the heat exchange medium temperature is higher than the critical temperature
  • the enthalpy difference on the high pressure side of the internal heat exchanger increases rapidly, and the higher the heat exchange medium temperature, the higher the heat exchange medium temperature.
  • the flow rate of the intermediate pressure refrigerant to be injected is increased.
  • coolant injected can be suppressed.
  • coolant of a compression mechanism can be suppressed, and the reliability of a compression mechanism can be improved.
  • FIG. 3 is a Mollier diagram of carbon dioxide refrigerant for explaining the target pressure determined in step S ⁇ b> 2 of FIG. 2. It is a figure which shows the relationship between the injection flow volume relevant to the passage opening degree of the 2nd expansion valve determined by step S4 of FIG. 2, and hot-water supply water temperature.
  • FIG. 13 is a diagram for explaining step S6-1 in FIG. 12, and is a Mollier diagram showing cycle balance when the hot water temperature on the inlet side of the water refrigerant heat exchanger in the refrigeration cycle apparatus shown in FIG. 1 is 37 ° C. It is. It is a flowchart which shows the control processing of the control apparatus in 3rd Embodiment.
  • FIG. 15 is a diagram for explaining step S6-2 in FIG. 14 and is a Mollier diagram showing the cycle balance when the hot water temperature on the inlet side of the water refrigerant heat exchanger in the refrigeration cycle apparatus shown in FIG. 1 is 37 ° C. It is.
  • the refrigeration cycle apparatus of the present disclosure is applied to a hot water heater.
  • the hot water heater 1 includes a hot water supply circuit 10 that circulates hot water in a hot water storage tank and a refrigeration cycle device 20 that circulates refrigerant.
  • the hot water supply circuit 10 includes a hot water storage tank 11 that stores hot water, a water pipe 12 that connects the water refrigerant heat exchanger 23 and the hot water storage tank 11 of the refrigeration cycle apparatus 20, and the water refrigerant heat exchanger 23 and the hot water storage tank 11. And a water circulation pump 13 for circulating water between them.
  • the hot water storage tank 11 is connected to the water passage 23 a of the water refrigerant heat exchanger 23. Hot water stored in the hot water storage tank 11 is heated by the water refrigerant heat exchanger 23. The heated hot water is supplied to a kitchen, a bath, or the like, or supplied to a heating device that heats the room using hot water.
  • the water circulation pump 13 is an electric pump.
  • the refrigeration cycle apparatus 20 mainly includes a first compressor 21a, a second compressor 21b, a water-refrigerant heat exchanger 23, an internal heat exchanger 24, a first expansion valve 25, an outdoor heat exchanger 26, and a second expansion valve 27. It is provided as a major component. Each component is connected by refrigerant piping. These components constitute a two-stage compression / single-stage expansion cycle.
  • the refrigeration cycle apparatus 20 uses carbon dioxide having a critical temperature of 31 ° C. as a refrigerant.
  • the first compressor 21a is a low-stage compressor that compresses the sucked-in low-pressure refrigerant and discharges an intermediate-pressure refrigerant having an intermediate pressure higher than that of the low-pressure refrigerant.
  • the second compressor 21b is a high-stage compressor that sucks and compresses the intermediate-pressure refrigerant discharged from the first compressor 21a and discharges high-pressure high-pressure refrigerant having a pressure higher than that of the intermediate-pressure refrigerant.
  • the pressure of the high-pressure refrigerant at this time is a pressure exceeding the critical pressure of the refrigerant, that is, a pressure at which the refrigerant becomes a supercritical state.
  • the first compressor 21a and the second compressor 21b are each an electric compressor driven by an electric motor.
  • the two-stage compression type compression mechanism 21 is configured using two single-stage compressors, ie, a first compressor 21a and a second compressor 21b.
  • the two-stage compression type compression mechanism 21 compresses the refrigerant from a low pressure to a high pressure higher than the low pressure, and also converts an intermediate pressure refrigerant that is an intermediate pressure between the low pressure and the high pressure in the middle of the compression process of the refrigerant from the low pressure to the high pressure.
  • the water refrigerant heat exchanger 23 has a water passage 23a through which hot water flows and a refrigerant passage 23b through which high-pressure refrigerant flows.
  • the inlet side of the refrigerant passage 23b is connected to the discharge port side of the second compressor 21b.
  • the water-refrigerant heat exchanger 23 is a radiator that radiates the high-pressure refrigerant and heats the hot-water supply by heat exchange between the high-pressure refrigerant discharged from the second compressor 21 b and the hot-water supply water in the hot water storage tank 11. Therefore, in the present embodiment, the hot water supply constitutes a heat exchange medium that exchanges heat with the high-pressure refrigerant. In other words, the hot water supply constitutes a cooling medium that cools the high-pressure refrigerant.
  • the internal heat exchanger 24 has a high-pressure side passage 24a through which high-pressure refrigerant flows and an intermediate-pressure side passage 24b through which intermediate-pressure refrigerant flows.
  • the inlet side of the high-pressure side passage 24a is connected to the refrigerant passage 23b.
  • the outlet side of the intermediate pressure side passage 24b is connected between the first compressor 21a and the second compressor 21b.
  • the internal heat exchanger 24 is a heat exchanger that exchanges heat between a part of the high-pressure refrigerant flowing out of the water refrigerant heat exchanger 23 and the intermediate-pressure refrigerant flowing out of the second expansion valve 27.
  • the inlet side of the first expansion valve 25 is connected to the outlet side of the high-pressure side passage 24a.
  • the first expansion valve 25 is a first pressure reducer that depressurizes the high-pressure refrigerant that has flowed out of the high-pressure side passage 24a into a low-pressure refrigerant.
  • the first expansion valve 25 is an electric expansion valve that is configured so that the passage opening is variable and the passage opening is electrically adjusted.
  • the inlet side of the outdoor heat exchanger 26 is connected to the outlet side of the first expansion valve 25.
  • the outdoor heat exchanger 26 is an evaporator that evaporates the low-pressure refrigerant by heat exchange between the low-pressure refrigerant decompressed by the first expansion valve 25 and the outside air.
  • the outlet side of the outdoor heat exchanger 26 is connected to the suction side of the first compressor 21a.
  • the second expansion valve 27 is a second pressure reducer that reduces the other part of the high-pressure refrigerant flowing out of the water-refrigerant heat exchanger 23 to an intermediate pressure to obtain an intermediate-pressure refrigerant.
  • the second expansion valve 27 is an electric expansion valve similar to the first expansion valve 25.
  • the inlet side of the second expansion valve 27 is connected to a branch point 28 provided in the middle of the refrigerant passage between the refrigerant passage 23 b of the water refrigerant heat exchanger 23 and the high-pressure side passage 24 a of the internal heat exchanger 24.
  • the refrigeration cycle apparatus 20 includes an injection circuit (that is, an injection passage) 29 that is a refrigerant passage extending from the branch point 28 between the first compressor 21a and the second compressor 21b.
  • an injection circuit that is, an injection passage
  • the second expansion valve 27 and the intermediate pressure side passage 24b of the internal heat exchanger 24 are arranged.
  • the low-pressure refrigerant is compressed in the order of the first compressor 21a and the second compressor 21b to become a high-pressure refrigerant.
  • the high-pressure refrigerant is radiated by the water refrigerant heat exchanger 23 and then branches at the branch point 28.
  • One of the branched high-pressure refrigerants is cooled by the internal heat exchanger 24 and then depressurized by the first expansion valve 25 to become a low-pressure refrigerant.
  • the low-pressure refrigerant is heated by the outdoor heat exchanger 26 and evaporated, and then sucked into the first compressor 21a.
  • the other high-pressure refrigerant branched at the branch point 28 is decompressed by the second expansion valve 27 and becomes an intermediate-pressure refrigerant.
  • the intermediate pressure refrigerant is heated by the internal heat exchanger 24 and then injected (that is, introduced) between the discharge port of the first compressor 21a and the suction port of the second compressor 21b.
  • the intermediate pressure refrigerant joins the refrigerant in the middle of the compression process from the low pressure to the high pressure in the first compressor 21a and the second compressor 21b.
  • the flow rate of the refrigerant injected between the first compressor 21a and the second compressor 21b is adjusted by adjusting the passage opening degree of the second expansion valve 27.
  • the refrigerant flow rate of the intermediate pressure refrigerant to be injected is referred to as an injection flow rate.
  • the intermediate pressure refrigerant is injected between the first compressor 21a and the second compressor 21b.
  • the heat circulation capacity is increased by increasing the refrigerant circulation amount of the water refrigerant heat exchanger 23, or the inlet refrigerant enthalpy of the outdoor heat exchanger 26 is lowered. The effect of increasing the cooling capacity can be obtained.
  • the refrigeration cycle apparatus 20 includes a control device 30.
  • the control device 30 includes a microcomputer and its peripheral circuits.
  • a water temperature sensor 31, a first refrigerant temperature sensor 32, a second refrigerant temperature sensor 33, and a refrigerant pressure sensor 34 are connected to the input side of the control device 30.
  • the water temperature sensor 31 is provided on the inlet side of the water passage 23 a of the water refrigerant heat exchanger 23.
  • the water temperature sensor 31 is a temperature detection unit that detects the temperature of hot water flowing into the water passage 23a.
  • the first refrigerant temperature sensor 32 is a first refrigerant temperature detector that detects the temperature of the intermediate pressure refrigerant on the inlet side of the intermediate pressure side passage 24b of the internal heat exchanger 24 (that is, a point A8 in FIG. 6 and the like described later). .
  • the second refrigerant temperature sensor 33 is a second refrigerant temperature detection unit that detects the temperature of the intermediate pressure refrigerant on the outlet side of the intermediate pressure side passage 24b of the internal heat exchanger 24 (that is, a point A9 in FIG. 6 and the like described later).
  • the refrigerant pressure sensor 34 is a pressure detection unit that detects the pressure of the high-pressure refrigerant.
  • the refrigerant pressure sensor 34 is provided for the refrigerant passage between the high-pressure side passage 24 a of the internal heat exchanger 24 and the first expansion valve 25. Sensor signals of these sensors 31, 32, 33, and 34 are input to the control device 30.
  • the output side of the control device 30 is connected to refrigeration cycle components such as the first compressor 21a, the second compressor 21b, the first expansion valve 25, and the second expansion valve 27.
  • the control device 30 controls the operation of the refrigeration cycle by controlling the first compressor 21a, the second compressor 21b, the first expansion valve 25, the second expansion valve 27, and the like.
  • control device 30 starts the operation of the refrigeration cycle by starting the operation of the first compressor 21a and the second compressor 21b. At this time, each rotation speed of the first compressor 21a and the second compressor 21b is set to a predetermined rotation speed.
  • control device 30 controls the operation of the refrigeration cycle and appropriately adjusts the pressure of the high-pressure refrigerant (hereinafter referred to as high-pressure pressure) and the injection flow rate.
  • high-pressure pressure the high-pressure refrigerant
  • injection flow rate the injection flow rate
  • step S1 the sensor signal of the water temperature sensor 31 is read. Thereby, the detected temperature of the water temperature sensor 31, that is, the hot water temperature on the inlet side of the water refrigerant heat exchanger 23 is read.
  • step S2 the target pressure of the high pressure is determined based on the temperature detected by the water temperature sensor 31.
  • the target pressure Px is determined so as to satisfy the relationship shown in FIG. That is, as shown in FIG. 3, when the hot water temperature is equal to or lower than the critical temperature of the refrigerant, the target pressure Px is made constant at a predetermined value P1 regardless of the hot water temperature.
  • the target pressure Px is set higher than the predetermined value P1, and the target pressure Px is increased as the hot water temperature is higher.
  • the target pressure Px increases linearly as the hot water temperature rises, but may increase in a curved line.
  • the target pressure when the hot water temperature is higher than the critical temperature is based on the pressure at the intersection of the 600 kg / m 3 isodensity line and the isothermal line in the Mollier diagram of the carbon dioxide refrigerant. Is preferably high.
  • the isotherm here is an isotherm having the same temperature as the temperature detected by the water temperature sensor 31 in the refrigerant isotherm in the Mollier diagram.
  • the target pressure in this case is preferably lower than the pressure at the intersection of the 700 kg / m 3 isodensity line and the isotherm. If the pressure is higher than this, the increase in the work amount of the compressors 21a and 21b becomes larger than the enthalpy difference increment in the water-refrigerant heat exchanger 23 and the efficiency is lowered, which is not desirable.
  • the target pressure in this case is particularly preferably the pressure at the intersection of the 650 kg / m 3 isodensity line and the isotherm, as shown in FIG.
  • step S2 constitutes a pressure determining unit that determines the target pressure of the high-pressure refrigerant.
  • step S3 the sensor signal of the refrigerant pressure sensor 34 is read.
  • the detected pressure of the refrigerant pressure sensor 34 that is, the pressure of the high-pressure refrigerant is read.
  • the pressure of the high-pressure refrigerant is also referred to as high-pressure.
  • step S4 the passage opening degree of the first expansion valve 25 is controlled based on the detected pressure of the refrigerant pressure sensor 34 so that the actual high pressure becomes the target pressure. Specifically, if the detected pressure is higher than the target pressure, the passage opening degree of the first expansion valve 25 is increased so that the actual high pressure is lowered. If the detected pressure is lower than the target pressure, the passage opening degree of the first expansion valve 25 is decreased and adjusted so that the actual high pressure is increased. In this way, the actual high pressure is brought close to the target pressure.
  • step S4 constitutes an opening degree control unit that controls the passage opening degree of the first pressure reducer.
  • step S5 the passage opening degree of the second expansion valve 27 is determined based on the temperature detected by the water temperature sensor 31. At this time, the passage opening degree of the second expansion valve 27 is determined so as to satisfy the relationship shown in FIG. That is, as shown in FIG. 5, the injection flow rate is increased as the hot-water supply temperature is higher, both in the case where the hot-water supply temperature is lower than the critical temperature of the refrigerant and in the case where the hot-water supply temperature is higher than the critical temperature of the refrigerant.
  • the rate of increase in the injection flow rate is made larger when the hot water temperature is higher than the critical temperature than when it is lower than the critical temperature.
  • the increase rate of the injection flow rate is the ratio of the increase amount of the injection flow rate to the increase amount of the hot water temperature.
  • the passage opening degree of the second expansion valve 27 is larger as the hot water temperature is higher, and the passage opening degree is higher when the hot water temperature is higher than the critical temperature than when the hot water temperature is lower than the critical temperature.
  • the increase rate is determined to be large.
  • the increase rate of the passage opening is the ratio of the increase amount of the passage opening to the increase amount of the hot water temperature.
  • step S6 the passage opening of the second expansion valve 27 is controlled so as to be the passage opening determined in step S5. Specifically, when the hot water temperature becomes high, the passage opening degree of the second expansion valve 27 is increased to increase the injection flow rate. On the other hand, when the hot water temperature is lowered, the passage opening degree of the second expansion valve 27 is reduced to reduce the injection flow rate.
  • Step S6 constitutes an opening degree control unit that controls the passage opening degree of the second pressure reducer.
  • the control device 30 increases the high pressure as the hot water temperature increases. Further, the control device 40 increases the injection flow rate as the hot water supply water temperature is higher, and increases the increase rate of the injection flow rate than when the hot water supply temperature is lower than the critical temperature of the refrigerant.
  • hot water flowing into the water-refrigerant heat exchanger 23 is generally within the temperature range of 5 ° C. or more and within 70 ° C., and is the critical temperature of the refrigerant 31. Temperature changes across °C.
  • the water refrigerant heat exchanger 23 when the hot water temperature on the inlet side of the water refrigerant heat exchanger 23 is higher than the critical temperature, the water refrigerant is lower than when the hot water temperature is lower than the critical temperature.
  • the decreasing rate of the enthalpy difference in the heat exchanger 23 increases.
  • the decreasing rate of the enthalpy difference in the water refrigerant heat exchanger 23 is a ratio of the decreasing amount of the enthalpy difference of the refrigerant in the water refrigerant heat exchanger 23 to the increasing amount of the hot water temperature. Also, as shown in FIGS.
  • the internal heat is higher than when the hot water temperature is lower than the critical temperature.
  • the increasing rate of the enthalpy difference in the high-pressure side passage 24a of the exchanger 24 becomes large.
  • the increase rate of the enthalpy difference in the high-pressure side passage 24a is the ratio of the increase amount of the enthalpy difference of the refrigerant in the high-pressure side passage 24a to the increase amount of the hot water temperature.
  • 6, 7, 8, and 9 show examples of cycle balance when the hot water temperature on the inlet side of the water-refrigerant heat exchanger 23 is 25 ° C., 30 ° C., 32 ° C., and 37 ° C., respectively.
  • 6 and 7 show cases where the hot water temperature is lower than the critical temperature.
  • 8 and 9 show the case where the hot water temperature is higher than the critical temperature.
  • points A1 to A9 in each figure indicate the state of the refrigerant at each position of the refrigeration cycle apparatus 20 shown in FIG.
  • Point A1 indicates the state of the refrigerant on the suction side of the first compressor 21a.
  • Point A2 shows the state of the refrigerant on the discharge side of the first compressor 21a.
  • Point A3 indicates the state of the refrigerant on the suction side of the second compressor 21b and after the intermediate pressure refrigerant merges.
  • Point A4 indicates the state of the refrigerant on the discharge side of the second compressor 21b.
  • Point A5 is the outlet side of the refrigerant passage 23b of the water refrigerant heat exchanger 23, and shows the state of the refrigerant on the inlet side of the high-pressure side passage 24a of the internal heat exchanger 24 and on the inlet side of the second expansion valve 27.
  • Point A6 indicates the state of the refrigerant on the outlet side of the high-pressure side passage 24a of the internal heat exchanger 24.
  • Point A ⁇ b> 7 indicates the state of the refrigerant on the outlet side of the first expansion valve 25.
  • Point A8 indicates the state of the refrigerant on the outlet side of the second expansion valve 27 and on the inlet side of the intermediate pressure side passage 24b of the internal heat exchanger 24.
  • Point A9 indicates the state of the refrigerant on the outlet side of the intermediate pressure side passage 24b of the internal heat exchanger 24 and before joining the refrigerant on the suction side of the second compressor 21b.
  • the high pressure (that is, the pressure at points A4, A5, and A6) is the same pressure.
  • the saturation temperature of the injected intermediate pressure refrigerant (that is, the temperature at the point A8) is set to the same temperature, specifically 15 ° C.
  • the refrigerant temperature on the outlet side of the water refrigerant heat exchanger 23 is equal to the hot water temperature on the inlet side of the water refrigerant heat exchanger 23. Therefore, in the following description, in FIGS. 6-9, it is assumed that the temperature at the point A5 is equal to the hot water temperature on the inlet side of the water-refrigerant heat exchanger 23. Similarly, theoretically, the temperature of the high-pressure refrigerant on the outlet side of the internal heat exchanger 24 is equal to the temperature of the intermediate-pressure refrigerant on the inlet side. Therefore, in the following description, in FIGS. 6-9, it is assumed that the temperature at point A6 is equal to the temperature at point A8.
  • the broken line in FIG. 7 indicates the cycle balance of FIG. 6 when the hot water temperature is 25 ° C.
  • the arrow D1a shown in FIG. 7 has shown the enthalpy difference in the water refrigerant
  • the arrow D2a shown in FIG. 7 has shown the enthalpy difference in the high voltage
  • the thick solid line in FIG. 7 indicates the cycle balance when the hot water temperature is 30 ° C.
  • An arrow D1b in FIG. 7 indicates the enthalpy difference in the water refrigerant heat exchanger 23 at this time.
  • An arrow D2b in FIG. 7 indicates the enthalpy difference on the high pressure side of the internal heat exchanger 24 at this time.
  • FIG. 9 shows the cycle balance of FIG. 8 when the hot water temperature is 32 ° C.
  • the arrow D1c shown in FIG. 9 has shown the enthalpy difference in the water refrigerant
  • An arrow D2c shown in FIG. 9 indicates the enthalpy difference on the high-pressure side of the internal heat exchanger 24 at this time.
  • the thick solid line in FIG. 9 indicates the cycle balance when the hot water temperature is 37 ° C.
  • An arrow D1d in FIG. 9 indicates the enthalpy difference in the water refrigerant heat exchanger 23 at this time.
  • An arrow D2d in FIG. 7 indicates the enthalpy difference on the high-pressure side of the internal heat exchanger 24 at this time.
  • the amount of decrease in the enthalpy difference in the water-refrigerant heat exchanger 23 when the amount of rising hot water temperature is the same at 5 ° C. is higher than the critical temperature when the hot water temperature rises in a temperature range higher than the critical temperature. Greater than when it rises in the lower temperature range.
  • the amount of increase in the enthalpy difference on the high pressure side of the internal heat exchanger 24 when the amount of the hot water temperature rises is the same 5 ° C. is higher when the hot water temperature rises in a temperature range higher than the critical temperature. It is larger than when it rises in a lower temperature range.
  • the internal heat is increased as compared with the case where the hot water temperature is lower than the critical temperature, contrary to the water refrigerant heat exchanger 23.
  • the enthalpy difference in the high-pressure side passage 24a of the exchanger 24 greatly increases.
  • the thick solid line in FIG. 10 indicates the cycle balance when the hot water temperature is 37 ° C. and the high pressure is higher than that in FIG.
  • the broken line in FIG. 10 shows the cycle balance of FIG. 8 when the hot water temperature is 32 ° C.
  • the injection flow rate is the same as when the hot water temperature is 32 ° C.
  • An arrow D1e in FIG. 10 indicates the enthalpy difference in the water refrigerant heat exchanger 23 at this time.
  • An arrow D2e in FIG. 10 indicates the enthalpy difference on the high pressure side of the internal heat exchanger 24 at this time.
  • the amount of heat that the intermediate pressure refrigerant receives from the high pressure refrigerant in the internal heat exchanger 24 increases, and the enthalpy of the intermediate pressure refrigerant injected between the first and second compressors 21a and 21b increases.
  • the temperature of the intermediate pressure refrigerant to be injected that is, the temperature at point A9 in FIG. 10) increases.
  • the injection effect is weakened, and the discharge refrigerant temperature of the second compressor 21b (that is, the temperature at point A4 in FIG. 10) increases.
  • the discharge refrigerant temperature becomes too high, and the reliability of the second compressor 21b is lowered.
  • the hot water temperature is higher than the critical temperature of the refrigerant
  • the higher the hot water temperature, the higher the high pressure, and the higher the hot water temperature the greater the injection flow rate. More specifically, regarding the injection flow rate, the rate of increase in the injection flow rate is greater when the hot water temperature is higher than the critical temperature of the refrigerant than when the hot water temperature is lower than the critical temperature of the refrigerant. I have to. An example of the cycle balance at this time is shown in FIG.
  • the thick solid line in FIG. 11 shows the cycle balance when the hot water temperature is 37 ° C. and the high pressure is made higher than in FIG. 9 and the injection flow rate is increased more than in FIG. ing.
  • the broken line in FIG. 11 shows the cycle balance of FIG. 8 when the hot water temperature is 32 ° C.
  • An arrow D1f in FIG. 10 indicates the enthalpy difference in the water refrigerant heat exchanger 23 at this time.
  • An arrow D2f in FIG. 10 indicates the enthalpy difference on the high pressure side of the internal heat exchanger 24 at this time.
  • the enthalpy difference in the high-pressure side passage 24a of the internal heat exchanger 24 increases sharply as compared with the case where the hot water temperature is equal to or lower than the critical temperature of the refrigerant. To do.
  • the injection flow rate is increased as the hot water temperature is higher. More specifically, when the hot water temperature is higher than the critical temperature of the refrigerant, the rate of increase of the injection flow rate is increased compared to the case where the hot water temperature is lower than the critical temperature of the refrigerant. This is because when the hot water temperature is higher than the critical temperature of the refrigerant, the rate of increase in the enthalpy difference in the high-pressure side passage 24a of the internal heat exchanger 24 is compared with the case where the hot water temperature is lower than the critical temperature of the refrigerant. Because is big.
  • the refrigeration cycle apparatus 20 of the present embodiment it is possible to suppress a decrease in the heating capacity of the water-refrigerant heat exchanger 23 and to improve the reliability of the second compressor 21b.
  • the target pressure is constant at a predetermined value regardless of the hot water temperature. This is because the influence on the heating capacity, COP, and discharge temperature rise is small even if it is constant.
  • the target pressure may be increased as the hot water temperature is higher.
  • the rate of increase of the target pressure is set to be larger when the hot water temperature is higher than the critical temperature than when it is lower than the critical temperature.
  • the increase rate of the target pressure is the ratio of the increase amount of the target pressure to the increase amount of the hot water temperature.
  • the rate of increase of the target pressure when the hot water temperature is below the critical temperature of the refrigerant is zero. Therefore, the rate of increase of the target pressure is greater when the hot water temperature is higher than the critical temperature than when it is lower than the critical temperature.
  • the injection flow rate is increased as the hot water temperature is higher.
  • the flow rate may be constant.
  • the increase rate of the injection flow rate when the hot water temperature is equal to or lower than the critical temperature of the refrigerant is zero. Accordingly, even at this time, the increase rate of the injection flow rate is larger when the hot water temperature is higher than the critical temperature than when it is lower than the critical temperature.
  • the opening degree control of the second expansion valve 27 is different from the first embodiment.
  • the control device 30 appropriately adjusts the pressure of the high-pressure refrigerant and the injection flow rate by executing the steps shown in FIG. 12 and controlling the operation of the refrigeration cycle. Steps S1 to S4 in FIG. 12 are the same as steps S1 to S4 in FIG.
  • step S5-1 sensor signals of the first refrigerant temperature sensor 32 and the second refrigerant temperature sensor 33 are read. Thereby, the temperature of the intermediate pressure refrigerant on the inlet side of the internal heat exchanger 24 (namely, point A8 in FIG. 13) and the temperature of the intermediate pressure refrigerant on the outlet side of the internal heat exchanger 24 (namely, point A9 in FIG. 13). ) Temperature and read.
  • step S5-2 based on the detected temperature of the first refrigerant temperature sensor 32 and the detected temperature of the second refrigerant temperature sensor 33, an intermediate is injected between the first compressor 21a and the second compressor 21b.
  • the enthalpy of the pressure refrigerant (that is, the point A9 in FIG. 13) is calculated.
  • the control device 30 has a map that shows the relationship between the detected temperature of the first refrigerant temperature sensor 32, the detected temperature of the second refrigerant temperature sensor 33, and the enthalpy of the intermediate pressure refrigerant. Calculate the enthalpy of the pressurized refrigerant. Note that the control device 30 calculates the pressure at points A8 and A9 in FIG.
  • step S5-2 constitutes an enthalpy calculation unit.
  • the temperature of the intermediate pressure refrigerant on each of the inlet side and the outlet side of the internal heat exchanger 24 is a physical quantity of the intermediate pressure refrigerant related to the enthalpy of the intermediate pressure refrigerant. Therefore, the first refrigerant temperature sensor 32 and the second refrigerant temperature sensor 33 constitute a physical quantity detection unit that detects the physical quantity of the intermediate pressure refrigerant related to the enthalpy of the intermediate pressure refrigerant. The temperature detected by the first refrigerant temperature sensor 32 and the temperature detected by the second refrigerant temperature sensor 33 are detected physical quantities detected by the physical quantity detector.
  • step S6-1 based on the calculated value calculated in step S5-2, as shown in FIG. 13, the enthalpy at the position of point A9 becomes a predetermined target value E1.
  • the passage opening degree of the second expansion valve 27 is controlled.
  • This target value E1 is a fixed value. Therefore, the control device 30 adjusts the injection flow rate so that the enthalpy becomes constant even when the hot water temperature changes.
  • the target value E1 is determined by experiment, experience, or the like.
  • step S6-1 constitutes an opening degree control unit that controls the passage opening degree of the second pressure reducer.
  • the enthalpy of the intermediate pressure refrigerant to be injected becomes larger as the enthalpy difference on the high pressure side of the internal heat exchanger 24 becomes larger. Therefore, keeping the enthalpy of the injected intermediate pressure refrigerant constant means that the injection flow rate is adjusted according to the change in the enthalpy difference on the high pressure side of the internal heat exchanger 24.
  • the injection flow rate is increased as the hot water temperature is higher. Further, when the hot water temperature is higher than the critical temperature of the refrigerant, the rate of increase of the injection flow rate is increased compared to the case where the hot water temperature is lower than the critical temperature of the refrigerant. Thereby, as shown by a point A9 in FIG. 11, an increase in the enthalpy of the injected intermediate pressure refrigerant is suppressed.
  • adjusting the injection flow rate so as to keep the enthalpy of the intermediate pressure refrigerant to be injected constant is the same as adjusting the injection flow rate so as to satisfy the relationship shown in FIG. Therefore, also in this embodiment, there exists an effect similar to 1st Embodiment.
  • the opening degree control of the second expansion valve 27 is different from the first embodiment.
  • the control device 30 appropriately adjusts the pressure of the high-pressure refrigerant and the injection flow rate by executing the steps shown in FIG. 14 and controlling the operation of the refrigeration cycle. Steps S1 to S4 in FIG. 14 are the same as steps S1 to S4 in FIG.
  • step S5-3 the sensor signals of the first refrigerant temperature sensor 32 and the second refrigerant temperature sensor 33 are read in the same manner as in step S5-1 of FIG. 12 of the second embodiment.
  • step S5-4 based on the detected temperature of the first refrigerant temperature sensor 32 and the detected temperature of the second refrigerant temperature sensor 33, an intermediate is injected between the first compressor 21a and the second compressor 21b.
  • the degree of superheat of the pressure refrigerant (that is, point A9 in FIG. 15) is calculated.
  • the degree of superheat of the intermediate pressure refrigerant is a difference Tsh between the temperature of the saturated gas line of the intermediate pressure refrigerant and the temperature at point A9 in the Mollier diagram shown in FIG.
  • step S5-4 constitutes a superheat degree calculation unit that calculates the superheat degree.
  • the temperature of the saturated gas line of the intermediate pressure refrigerant that is, the temperature of the intermediate pressure refrigerant on the inlet side of the internal heat exchanger 24 and the temperature of the intermediate pressure refrigerant on the outlet side of the internal heat exchanger 24 are the intermediate pressure. It is a physical quantity of intermediate pressure refrigerant related to the degree of superheat of the refrigerant. Therefore, the 1st refrigerant
  • the detected temperature of the first refrigerant temperature sensor 32 and the detected temperature of the second refrigerant temperature sensor 33 are detected physical quantities detected by the physical quantity detector.
  • step S6-2 based on the calculated value calculated in step S5-4, as shown in FIG. 15, the superheat degree Tsh at point A9 is set to a predetermined target value Tsh1.
  • the passage opening degree of the second expansion valve 27 is controlled.
  • This target value Tsh1 is a fixed value. Therefore, the control device 30 adjusts the injection flow rate so that the degree of superheat Tsh is constant even when the hot water temperature changes.
  • the target value Tsh1 is determined by experiment, experience, or the like.
  • step S6-2 constitutes an opening degree control unit that controls the passage opening degree of the second pressure reducer.
  • the injection flow rate is increased as the hot water temperature is higher. Further, when the hot water temperature is higher than the critical temperature of the refrigerant, the rate of increase of the injection flow rate is increased compared to the case where the hot water temperature is lower than the critical temperature of the refrigerant. Thereby, as shown by a point A9 in FIG. 11, an increase in the enthalpy of the injected intermediate pressure refrigerant is suppressed. Suppressing the increase in enthalpy is equivalent to suppressing the degree of superheat.
  • adjusting the injection flow rate so as to keep the superheat degree Tsh of the intermediate pressure refrigerant to be injected constant is the same as adjusting the injection flow rate so as to satisfy the relationship shown in FIG. Therefore, also in this embodiment, there exists an effect similar to 1st Embodiment.
  • the superheat degree of the intermediate pressure refrigerant to be injected can be easily obtained by the first and second refrigerant temperature sensors 32 and 33. Therefore, according to the present embodiment, the injection flow rate can be adjusted with simple control.
  • control device 30 controls the passage opening of the first expansion valve 25 to control the operation of the refrigeration cycle and adjust the pressure of the high-pressure refrigerant. You may go.
  • the control device 30 may control the operation of the refrigeration cycle by controlling the rotation speeds of the first and second compressors 21a and 21b to adjust the pressure of the high-pressure refrigerant.
  • the two-stage compression mechanism 21 is configured using two single-stage compressors 21a and 21b.
  • a two-stage compression mechanism having another structure is employed. May be.
  • a single compressor of two-stage compression type in which two compression units are accommodated in one container may be used.
  • a scroll type compressor that has an intermediate pressure port and injects high-pressure refrigerant from the intermediate pressure port into the refrigerant in the middle of the compression process may be used.
  • the water stored in the hot water storage tank 11 is heated by the water refrigerant heat exchanger 23.
  • the water is heated without being stored in the hot water storage tank 11, and the heated water is used for hot water supply or heating. Also good.
  • the heat radiation from the radiator of the refrigeration cycle apparatus 20 is used for heating water used for hot water supply or heating, but may be used for other heating applications.
  • heat dissipation by the radiator may be performed on air instead of water.
  • the refrigeration cycle apparatus 20 is used for heating, but may be used for cooling.
  • carbon dioxide is used as the refrigerant of the refrigeration cycle apparatus 20, but other refrigerants in which the pressure of the high-pressure refrigerant discharged from the compression mechanism becomes a supercritical pressure may be used.
  • each function unit such as the enthalpy calculation unit, the superheat degree calculation unit, and the pressure determination unit is realized by the function of the control device 30, but at least a part of these function units is provided. You may implement
  • the control device 30 and another control unit constitute a control device that controls the operation of the refrigeration cycle and adjusts the pressure of the high-pressure refrigerant and the flow rate of the intermediate-pressure refrigerant.

Abstract

This refrigeration cycle device is provided with a compression mechanism (21), a heat radiator (23), a first pressure reducer (25), an evaporator (26), a second pressure reducer (27), an internal heat exchanger (24), a temperature detection unit (31), and a control device (30). The compression mechanism (21) discharges a high-pressure refrigerant in a supercritical state, and introduces an intermediate-pressure refrigerant having an intermediate pressure between a low pressure and a high pressure during a process in which a refrigerant is compressed from the low pressure to the high pressure. The temperature detection unit detects the temperature of a heat exchange medium flowing into the heat radiator. When the temperature detected by the temperature detection unit is higher than the critical temperature of the refrigerant, the control device adjusts the pressure of the high-pressure refrigerant so that the higher the detected temperature, the higher the pressure of the high-pressure refrigerant becomes, and also adjusts the flow rate of the intermediate-pressure refrigerant so that the higher the detected temperature, the greater the flow rate of the intermediate-pressure refrigerant becomes.

Description

冷凍サイクル装置Refrigeration cycle equipment 関連出願への相互参照Cross-reference to related applications
 本出願は、2015年10月5日に出願された日本特許出願番号2015-197893号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2015-197893 filed on October 5, 2015, the description of which is incorporated herein by reference.
 本開示は、冷凍サイクル装置に関するものである。 The present disclosure relates to a refrigeration cycle apparatus.
 従来の冷凍サイクル装置として、特許文献1のように、二段圧縮一段膨張サイクルを構成するとともに、二段圧縮式の圧縮機構から吐出される高圧冷媒が超臨界状態で運転されるものがある。このような冷凍サイクル装置では、圧縮機構から吐出された高圧冷媒は、放熱器で放熱された後、一部が内部熱交換器を通過して、第1減圧器で減圧され、蒸発器で吸熱して、圧縮機構に吸入される。放熱器で放熱された高圧冷媒の残部は、第2減圧器で減圧されて中間圧冷媒となり、内部熱交換器で高圧冷媒との熱交換により加熱されて、圧縮機構にインジェクション(すなわち、導入)される。 As a conventional refrigeration cycle apparatus, there is a conventional refrigeration cycle apparatus that constitutes a two-stage compression / one-stage expansion cycle and a high-pressure refrigerant discharged from a two-stage compression type compression mechanism is operated in a supercritical state as in Patent Document 1. In such a refrigeration cycle apparatus, after the high-pressure refrigerant discharged from the compression mechanism is radiated by the radiator, a part of the high-pressure refrigerant passes through the internal heat exchanger, is depressurized by the first decompressor, and is absorbed by the evaporator. Then, it is sucked into the compression mechanism. The remainder of the high-pressure refrigerant radiated by the radiator is decompressed by the second decompressor to become an intermediate-pressure refrigerant, heated by heat exchange with the high-pressure refrigerant by the internal heat exchanger, and injected into the compression mechanism (that is, introduced). Is done.
特開2014-159950号公報JP 2014-159950 A
 ところで、上記した冷凍サイクル装置では、放熱器で高圧冷媒と熱交換される熱交換媒体の温度(以下、熱交換媒体温度という)が冷媒の臨界温度(以下、臨界温度という)よりも高い場合がある。この場合、熱交換媒体温度が臨界温度よりも低い場合と比較して、熱交換媒体温度の上昇に伴う放熱器でのエンタルピ差の減少量が大きくなる。なお、熱交換媒体温度は、冷媒と熱交換する前の温度である。放熱器でのエンタルピ差とは、放熱器の入口側と出口側の冷媒のエンタルピ差である。このため、熱交換媒体温度が臨界温度よりも高い場合では、熱交換媒体温度が高くなるほど、放熱器の放熱性能が低下してしまう。したがって、放熱器を加熱用途に利用する場合では、熱交換媒体温度が臨界温度よりも高くなると、加熱能力が低下してしまう。 By the way, in the refrigeration cycle apparatus described above, the temperature of the heat exchange medium that exchanges heat with the high-pressure refrigerant in the radiator (hereinafter referred to as the heat exchange medium temperature) may be higher than the critical temperature of the refrigerant (hereinafter referred to as the critical temperature). is there. In this case, as compared with the case where the heat exchange medium temperature is lower than the critical temperature, the amount of decrease in the enthalpy difference in the radiator due to the increase in the heat exchange medium temperature is increased. The heat exchange medium temperature is a temperature before heat exchange with the refrigerant. The enthalpy difference in the radiator is the enthalpy difference between the refrigerant on the inlet side and the outlet side of the radiator. For this reason, when the heat exchange medium temperature is higher than the critical temperature, the heat dissipation performance of the radiator decreases as the heat exchange medium temperature increases. Therefore, in the case where the radiator is used for heating, when the heat exchange medium temperature becomes higher than the critical temperature, the heating capacity is lowered.
 また、熱交換媒体温度が臨界温度よりも高い場合では、熱交換媒体温度が上昇すると、内部熱交換器の入口温度が上昇し、高圧側で交換可能な熱量が増えることでエンタルピ差が急激に増大する。内部熱交換器の高圧側でのエンタルピ差とは、内部熱交換器の高圧側通路の入口側と出口側の冷媒のエンタルピ差である。 In addition, when the heat exchange medium temperature is higher than the critical temperature, when the heat exchange medium temperature rises, the inlet temperature of the internal heat exchanger rises, and the amount of heat that can be exchanged on the high pressure side increases, resulting in a drastic difference in enthalpy. Increase. The enthalpy difference on the high pressure side of the internal heat exchanger is the enthalpy difference between the refrigerant on the inlet side and the outlet side of the high pressure side passage of the internal heat exchanger.
 そこで、熱交換媒体温度が臨界温度よりも高い場合に、熱交換媒体温度が高いほど高圧冷媒の圧力を高くすることが考えられる。これにより、放熱器でのエンタルピ差の減少を抑えることができ、放熱器の加熱能力の低下を抑制することができる。 Therefore, when the heat exchange medium temperature is higher than the critical temperature, it is conceivable that the higher the heat exchange medium temperature, the higher the pressure of the high-pressure refrigerant. Thereby, the reduction | decrease of the enthalpy difference in a radiator can be suppressed, and the fall of the heating capability of a radiator can be suppressed.
 しかし、熱交換媒体温度が上昇した際に、高圧冷媒の圧力を上昇させるだけで、圧縮機構にインジェクションされる中間圧冷媒のインジェクション流量を熱交換媒体温度の上昇前と同じとした場合を想定する。すなわち、熱交換媒体温度によらずにインジェクション流量を一定とした場合を想定する。この場合、内部熱交換器の高圧側でのエンタルピ差が大きくなった結果、内部熱交換器で中間圧冷媒が高圧冷媒から受け取る熱量が大きくなり、圧縮機構にインジェクションされる中間圧冷媒のエンタルピが大きくなる。この結果、圧縮機構の吐出冷媒温度が上昇してしまう。このとき、内部熱交換器の入口側の熱交換媒体の温度によっては、吐出冷媒温度が高くなりすぎてしまうため、圧縮機構の信頼性が低下してしまう。 However, it is assumed that when the heat exchange medium temperature rises, only the pressure of the high-pressure refrigerant is increased, and the injection flow rate of the intermediate-pressure refrigerant injected into the compression mechanism is the same as that before the heat exchange medium temperature rises. . That is, it is assumed that the injection flow rate is constant regardless of the heat exchange medium temperature. In this case, as a result of an increase in the enthalpy difference on the high pressure side of the internal heat exchanger, the amount of heat received by the intermediate pressure refrigerant from the high pressure refrigerant in the internal heat exchanger increases, and the enthalpy of the intermediate pressure refrigerant injected into the compression mechanism increases. growing. As a result, the discharge refrigerant temperature of the compression mechanism increases. At this time, depending on the temperature of the heat exchange medium on the inlet side of the internal heat exchanger, the discharge refrigerant temperature becomes too high, and the reliability of the compression mechanism is lowered.
 本開示は、放熱器の加熱性能の低下を抑制しつつ、圧縮機構の信頼性を高めることができる冷凍サイクル装置を提供することを目的とする。 This disclosure aims to provide a refrigeration cycle apparatus that can improve the reliability of a compression mechanism while suppressing a decrease in heating performance of a radiator.
 本開示の1つの観点によれば、
 冷凍サイクル装置は、
 冷媒を低圧から低圧よりも高い高圧まで圧縮し、超臨界状態とされた高圧冷媒を吐出するとともに、低圧から高圧までの冷媒の圧縮過程の途中に低圧と高圧の間の中間圧である中間圧冷媒を導入する圧縮機構と、
 圧縮機構から吐出された高圧冷媒と熱交換媒体との熱交換によって高圧冷媒を放熱させる放熱器と、
 放熱器から流出の高圧冷媒の一部を低圧まで減圧させて低圧冷媒とする第1減圧器と、
 低圧冷媒を蒸発させるとともに、蒸発後の低圧冷媒を圧縮機構に吸入させる蒸発器と、
 放熱器から流出の高圧冷媒の他の一部を中間圧まで減圧させて中間圧冷媒とする第2減圧器と、
 放熱器から流出して第1減圧器に向かって流れる高圧冷媒と、第2減圧器から流出して圧縮機構に向かって流れる中間圧冷媒とを熱交換させる内部熱交換器と、
 放熱器に流入する熱交換媒体の温度を検出する温度検出部と、
 温度検出部の検出温度に基づいて、圧縮機構、放熱器、第1減圧器、蒸発器、第2減圧器および内部熱交換器を有して構成される冷凍サイクルの作動を制御して、高圧冷媒の圧力および中間圧冷媒の流量を調整する制御装置とを備え、
 制御装置は、検出温度が冷媒の臨界温度よりも高い場合に、検出温度が高いほど高圧冷媒の圧力が高くなるように、高圧冷媒の圧力を調整するとともに、検出温度が高いほど中間圧冷媒の流量が多くなるように、中間圧冷媒の流量を調整する。
According to one aspect of the present disclosure,
Refrigeration cycle equipment
The refrigerant is compressed from a low pressure to a high pressure higher than the low pressure, and the high-pressure refrigerant in a supercritical state is discharged. A compression mechanism for introducing a refrigerant;
A radiator that dissipates the high-pressure refrigerant by heat exchange between the high-pressure refrigerant discharged from the compression mechanism and the heat exchange medium;
A first pressure reducer that depressurizes a part of the high-pressure refrigerant flowing out of the radiator to a low pressure to form a low-pressure refrigerant;
An evaporator that evaporates the low-pressure refrigerant and sucks the low-pressure refrigerant after evaporation into the compression mechanism;
A second pressure reducer that reduces the other part of the high-pressure refrigerant flowing out of the radiator to an intermediate pressure to obtain an intermediate-pressure refrigerant;
An internal heat exchanger that exchanges heat between the high-pressure refrigerant that flows out of the radiator and flows toward the first decompressor, and the intermediate-pressure refrigerant that flows out of the second decompressor and flows toward the compression mechanism;
A temperature detector that detects the temperature of the heat exchange medium flowing into the radiator;
Based on the detected temperature of the temperature detector, the operation of the refrigeration cycle including the compression mechanism, the radiator, the first decompressor, the evaporator, the second decompressor, and the internal heat exchanger is controlled to increase the pressure. A control device for adjusting the pressure of the refrigerant and the flow rate of the intermediate pressure refrigerant,
When the detected temperature is higher than the critical temperature of the refrigerant, the control device adjusts the pressure of the high-pressure refrigerant so that the higher the detected temperature, the higher the pressure of the high-pressure refrigerant. The flow rate of the intermediate pressure refrigerant is adjusted so that the flow rate increases.
 これによれば、熱交換媒体温度が臨界温度よりも高い場合に、熱交換媒体温度が高いほど高圧冷媒の圧力を高くすることで、放熱器の加熱能力の低下を抑制することができる。 According to this, when the heat exchange medium temperature is higher than the critical temperature, the higher the heat exchange medium temperature, the higher the pressure of the high-pressure refrigerant can be suppressed, thereby suppressing the heating capacity of the radiator.
 さらに、熱交換媒体温度が臨界温度よりも高い場合、熱交換媒体温度が上昇すると、内部熱交換器の高圧側でのエンタルピ差が急激に増大することに合わせて、熱交換媒体温度が高いほどインジェクションされる中間圧冷媒の流量を多くしている。これにより、インジェクションされる中間圧冷媒のエンタルピの上昇を抑えることができる。このため、圧縮機構の吐出冷媒の温度上昇を抑制でき、圧縮機構の信頼性を高めることができる。 Furthermore, when the heat exchange medium temperature is higher than the critical temperature, as the heat exchange medium temperature rises, the enthalpy difference on the high pressure side of the internal heat exchanger increases rapidly, and the higher the heat exchange medium temperature, the higher the heat exchange medium temperature. The flow rate of the intermediate pressure refrigerant to be injected is increased. Thereby, the raise of the enthalpy of the intermediate pressure refrigerant | coolant injected can be suppressed. For this reason, the temperature rise of the discharge refrigerant | coolant of a compression mechanism can be suppressed, and the reliability of a compression mechanism can be improved.
第1実施形態における給湯暖房機の全体構成を示す図である。It is a figure showing the whole hot-water supply heater composition in a 1st embodiment. 第1実施形態における制御装置の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the control apparatus in 1st Embodiment. 図2のステップS2で決定される目標圧力と給湯水温度との関係を示す図である。It is a figure which shows the relationship between the target pressure determined by step S2 of FIG. 2, and hot-water supply water temperature. 図2のステップS2で決定される目標圧力を説明するための二酸化炭素冷媒のモリエル線図である。FIG. 3 is a Mollier diagram of carbon dioxide refrigerant for explaining the target pressure determined in step S <b> 2 of FIG. 2. 図2のステップS4で決定される第2膨張弁の通路開度に関連するインジェクション流量と給湯水温度との関係を示す図である。It is a figure which shows the relationship between the injection flow volume relevant to the passage opening degree of the 2nd expansion valve determined by step S4 of FIG. 2, and hot-water supply water temperature. 本開示が解決する課題を説明するための図であって、図1に示す冷凍サイクル装置における水冷媒熱交換器の入口側の給湯水温度が25℃のときのサイクルバランスを示すモリエル線図である。It is a figure for demonstrating the subject which this indication solves, Comprising: It is a Mollier diagram which shows cycle balance when the hot-water supply water temperature of the inlet side of the water refrigerant | coolant heat exchanger in the refrigeration cycle apparatus shown in FIG. is there. 本開示が解決する課題を説明するための図であって、図1に示す冷凍サイクル装置における水冷媒熱交換器の入口側の給湯水温度が30℃のときのサイクルバランスを示すモリエル線図である。It is a figure for demonstrating the subject which this indication solves, Comprising: It is a Mollier diagram which shows cycle balance when the hot-water supply water temperature of the inlet side of the water refrigerant | coolant heat exchanger in the refrigeration cycle apparatus shown in FIG. is there. 本開示が解決する課題を説明するための図であって、図1に示す冷凍サイクル装置における水冷媒熱交換器の入口側の給湯水温度が32℃のときのサイクルバランスを示すモリエル線図である。It is a figure for demonstrating the subject which this indication solves, Comprising: It is the Mollier diagram which shows cycle balance when the hot-water-heating-water temperature of the inlet side of the water refrigerant | coolant heat exchanger in the refrigeration cycle apparatus shown in FIG. is there. 本開示が解決する課題を説明するための図であって、図1に示す冷凍サイクル装置における水冷媒熱交換器の入口側の給湯水温度が37℃のときのサイクルバランスを示すモリエル線図である。It is a figure for demonstrating the subject which this indication solves, Comprising: It is the Mollier diagram which shows cycle balance when the hot-water supply water temperature of the inlet side of the water refrigerant | coolant heat exchanger in the refrigeration cycle apparatus shown in FIG. is there. 本開示が解決する課題を説明するための図であって、図1に示す冷凍サイクル装置における水冷媒熱交換器の入口側の給湯水温度が37℃であり、高圧冷媒の圧力を図9のときよりも高くしたときのサイクルバランスを示すモリエル線図である。It is a figure for demonstrating the subject which this indication solves, Comprising: The hot_water | molten_metal water temperature of the inlet side of the water refrigerant | coolant heat exchanger in the refrigeration cycle apparatus shown in FIG. It is a Mollier diagram which shows the cycle balance when making it higher than time. 第1実施形態の効果を説明するための図であって、図1に示す冷凍サイクル装置における水冷媒熱交換器の入口側の給湯水温度が37℃のときのサイクルバランスを示すモリエル線図である。It is a figure for demonstrating the effect of 1st Embodiment, Comprising: It is the Mollier diagram which shows cycle balance when the hot-water supply water temperature of the inlet side of the water refrigerant | coolant heat exchanger in the refrigerating-cycle apparatus shown in FIG. is there. 第2実施形態における制御装置の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the control apparatus in 2nd Embodiment. 図12のステップS6-1を説明するための図であって、図1に示す冷凍サイクル装置における水冷媒熱交換器の入口側の給湯水温度が37℃のときのサイクルバランスを示すモリエル線図である。FIG. 13 is a diagram for explaining step S6-1 in FIG. 12, and is a Mollier diagram showing cycle balance when the hot water temperature on the inlet side of the water refrigerant heat exchanger in the refrigeration cycle apparatus shown in FIG. 1 is 37 ° C. It is. 第3実施形態における制御装置の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the control apparatus in 3rd Embodiment. 図14のステップS6-2を説明するための図であって、図1に示す冷凍サイクル装置における水冷媒熱交換器の入口側の給湯水温度が37℃のときのサイクルバランスを示すモリエル線図である。FIG. 15 is a diagram for explaining step S6-2 in FIG. 14 and is a Mollier diagram showing the cycle balance when the hot water temperature on the inlet side of the water refrigerant heat exchanger in the refrigeration cycle apparatus shown in FIG. 1 is 37 ° C. It is.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 本実施形態では、本開示の冷凍サイクル装置を給湯暖房機に適用している。図1に示すように、本実施形態の給湯暖房機1は、貯湯タンク内の給湯水を循環させる給湯回路10と、冷媒を循環させる冷凍サイクル装置20とを備えている。
(First embodiment)
In the present embodiment, the refrigeration cycle apparatus of the present disclosure is applied to a hot water heater. As shown in FIG. 1, the hot water heater 1 according to the present embodiment includes a hot water supply circuit 10 that circulates hot water in a hot water storage tank and a refrigeration cycle device 20 that circulates refrigerant.
 給湯回路10は、給湯水を貯える貯湯タンク11と、冷凍サイクル装置20の水冷媒熱交換器23と貯湯タンク11とを接続する水配管12と、水冷媒熱交換器23と貯湯タンク11との間で水を循環させる水循環ポンプ13とを有して構成されている。 The hot water supply circuit 10 includes a hot water storage tank 11 that stores hot water, a water pipe 12 that connects the water refrigerant heat exchanger 23 and the hot water storage tank 11 of the refrigeration cycle apparatus 20, and the water refrigerant heat exchanger 23 and the hot water storage tank 11. And a water circulation pump 13 for circulating water between them.
 貯湯タンク11は、水冷媒熱交換器23の水通路23aに接続されている。貯湯タンク11に貯えられる給湯水は、水冷媒熱交換器23によって加熱される。加熱された給湯水は、台所や風呂等へ供給されたり、温水を用いて室内を暖房する暖房装置へ供給されたりする。水循環ポンプ13は、電動ポンプである。 The hot water storage tank 11 is connected to the water passage 23 a of the water refrigerant heat exchanger 23. Hot water stored in the hot water storage tank 11 is heated by the water refrigerant heat exchanger 23. The heated hot water is supplied to a kitchen, a bath, or the like, or supplied to a heating device that heats the room using hot water. The water circulation pump 13 is an electric pump.
 冷凍サイクル装置20は、第1圧縮機21a、第2圧縮機21b、水冷媒熱交換器23、内部熱交換器24、第1膨張弁25、室外熱交換器26、第2膨張弁27を主な構成部品として備えている。各構成部品は、冷媒配管によって接続されている。これらの構成部品によって、二段圧縮一段膨張サイクルが構成されている。冷凍サイクル装置20は、冷媒として臨界温度が31℃である二酸化炭素が用いられている。 The refrigeration cycle apparatus 20 mainly includes a first compressor 21a, a second compressor 21b, a water-refrigerant heat exchanger 23, an internal heat exchanger 24, a first expansion valve 25, an outdoor heat exchanger 26, and a second expansion valve 27. It is provided as a major component. Each component is connected by refrigerant piping. These components constitute a two-stage compression / single-stage expansion cycle. The refrigeration cycle apparatus 20 uses carbon dioxide having a critical temperature of 31 ° C. as a refrigerant.
 第1圧縮機21aは、吸入した低圧の低圧冷媒を圧縮して、低圧冷媒よりも圧力が高い中間圧の中間圧冷媒を吐出する低段側の圧縮機である。第2圧縮機21bは、第1圧縮機21aから吐出された中間圧冷媒を吸入して圧縮し、中間圧冷媒よりも圧力が高い高圧の高圧冷媒を吐出する高段側の圧縮機である。このときの高圧冷媒の圧力は、冷媒の臨界圧力を超えた圧力、すなわち、冷媒が超臨界状態となる圧力である。第1圧縮機21a、第2圧縮機21bは、それぞれ、電動モータで駆動される電動圧縮機である。本実施形態では、第1圧縮機21a、第2圧縮機21bという2台の単段の圧縮機を用いて、二段圧縮式の圧縮機構21を構成している。二段圧縮式の圧縮機構21は、冷媒を低圧から低圧よりも高い高圧まで圧縮するとともに、低圧から高圧までの冷媒の圧縮過程の途中に低圧と高圧の間の中間圧である中間圧冷媒を導入する。 The first compressor 21a is a low-stage compressor that compresses the sucked-in low-pressure refrigerant and discharges an intermediate-pressure refrigerant having an intermediate pressure higher than that of the low-pressure refrigerant. The second compressor 21b is a high-stage compressor that sucks and compresses the intermediate-pressure refrigerant discharged from the first compressor 21a and discharges high-pressure high-pressure refrigerant having a pressure higher than that of the intermediate-pressure refrigerant. The pressure of the high-pressure refrigerant at this time is a pressure exceeding the critical pressure of the refrigerant, that is, a pressure at which the refrigerant becomes a supercritical state. The first compressor 21a and the second compressor 21b are each an electric compressor driven by an electric motor. In the present embodiment, the two-stage compression type compression mechanism 21 is configured using two single-stage compressors, ie, a first compressor 21a and a second compressor 21b. The two-stage compression type compression mechanism 21 compresses the refrigerant from a low pressure to a high pressure higher than the low pressure, and also converts an intermediate pressure refrigerant that is an intermediate pressure between the low pressure and the high pressure in the middle of the compression process of the refrigerant from the low pressure to the high pressure. Introduce.
 水冷媒熱交換器23は、給湯水が流れる水通路23aと、高圧冷媒が流れる冷媒通路23bとを有している。冷媒通路23bの入口側が第2圧縮機21bの吐出口側に接続されている。水冷媒熱交換器23は、第2圧縮機21bから吐出された高圧冷媒と貯湯タンク11の給湯水との熱交換によって高圧冷媒を放熱させるとともに給湯水を加熱する放熱器である。したがって、本実施形態では、給湯水が高圧冷媒と熱交換する熱交換媒体を構成する。換言すると、給湯水が高圧冷媒を冷却する冷却媒体を構成する。 The water refrigerant heat exchanger 23 has a water passage 23a through which hot water flows and a refrigerant passage 23b through which high-pressure refrigerant flows. The inlet side of the refrigerant passage 23b is connected to the discharge port side of the second compressor 21b. The water-refrigerant heat exchanger 23 is a radiator that radiates the high-pressure refrigerant and heats the hot-water supply by heat exchange between the high-pressure refrigerant discharged from the second compressor 21 b and the hot-water supply water in the hot water storage tank 11. Therefore, in the present embodiment, the hot water supply constitutes a heat exchange medium that exchanges heat with the high-pressure refrigerant. In other words, the hot water supply constitutes a cooling medium that cools the high-pressure refrigerant.
 内部熱交換器24は、高圧冷媒が流れる高圧側通路24aと、中間圧冷媒が流れる中間圧側通路24bとを有している。高圧側通路24aの入口側が冷媒通路23bに接続されている。中間圧側通路24bの出口側が第1圧縮機21aと第2圧縮機21bの間に接続されている。内部熱交換器24は、水冷媒熱交換器23から流出の高圧冷媒の一部と第2膨張弁27から流出の中間圧冷媒とを熱交換させる熱交換器である。 The internal heat exchanger 24 has a high-pressure side passage 24a through which high-pressure refrigerant flows and an intermediate-pressure side passage 24b through which intermediate-pressure refrigerant flows. The inlet side of the high-pressure side passage 24a is connected to the refrigerant passage 23b. The outlet side of the intermediate pressure side passage 24b is connected between the first compressor 21a and the second compressor 21b. The internal heat exchanger 24 is a heat exchanger that exchanges heat between a part of the high-pressure refrigerant flowing out of the water refrigerant heat exchanger 23 and the intermediate-pressure refrigerant flowing out of the second expansion valve 27.
 第1膨張弁25の入口側が高圧側通路24aの出口側に接続されている。第1膨張弁25は、高圧側通路24aから流出の高圧冷媒を減圧させて低圧冷媒とする第1減圧器である。第1膨張弁25は、通路開度が可変式であって、通路開度が電気的に調整されるように構成された電気式膨張弁である。 The inlet side of the first expansion valve 25 is connected to the outlet side of the high-pressure side passage 24a. The first expansion valve 25 is a first pressure reducer that depressurizes the high-pressure refrigerant that has flowed out of the high-pressure side passage 24a into a low-pressure refrigerant. The first expansion valve 25 is an electric expansion valve that is configured so that the passage opening is variable and the passage opening is electrically adjusted.
 室外熱交換器26の入口側が第1膨張弁25の出口側に接続されている。室外熱交換器26は、第1膨張弁25で減圧された低圧冷媒と外気との熱交換によって低圧冷媒を蒸発させる蒸発器である。室外熱交換器26の出口側が第1圧縮機21aの吸入側に接続されている。 The inlet side of the outdoor heat exchanger 26 is connected to the outlet side of the first expansion valve 25. The outdoor heat exchanger 26 is an evaporator that evaporates the low-pressure refrigerant by heat exchange between the low-pressure refrigerant decompressed by the first expansion valve 25 and the outside air. The outlet side of the outdoor heat exchanger 26 is connected to the suction side of the first compressor 21a.
 第2膨張弁27は、水冷媒熱交換器23から流出の高圧冷媒の他の一部を中間圧まで減圧させて中間圧冷媒とする第2減圧器である。第2膨張弁27は、第1膨張弁25と同様の電気式膨張弁である。第2膨張弁27の入口側が、水冷媒熱交換器23の冷媒通路23bと内部熱交換器24の高圧側通路24aの間の冷媒通路途中に設けられた分岐点28に接続されている。 The second expansion valve 27 is a second pressure reducer that reduces the other part of the high-pressure refrigerant flowing out of the water-refrigerant heat exchanger 23 to an intermediate pressure to obtain an intermediate-pressure refrigerant. The second expansion valve 27 is an electric expansion valve similar to the first expansion valve 25. The inlet side of the second expansion valve 27 is connected to a branch point 28 provided in the middle of the refrigerant passage between the refrigerant passage 23 b of the water refrigerant heat exchanger 23 and the high-pressure side passage 24 a of the internal heat exchanger 24.
 換言すると、冷凍サイクル装置20は、分岐点28から第1圧縮機21aと第2圧縮機21bの間に至る冷媒通路であるインジェクション回路(すなわち、インジェクション通路)29を備えている。このインジェクション回路29の途中に第2膨張弁27、内部熱交換器24の中間圧側通路24bが配置されている。 In other words, the refrigeration cycle apparatus 20 includes an injection circuit (that is, an injection passage) 29 that is a refrigerant passage extending from the branch point 28 between the first compressor 21a and the second compressor 21b. In the middle of the injection circuit 29, the second expansion valve 27 and the intermediate pressure side passage 24b of the internal heat exchanger 24 are arranged.
 このように構成された冷凍サイクル装置20では、低圧冷媒が第1圧縮機21a、第2圧縮機21bの順に圧縮されて高圧冷媒となる。高圧冷媒は、水冷媒熱交換器23で放熱された後、分岐点28で分岐する。分岐した一方の高圧冷媒は、内部熱交換器24で冷却された後、第1膨張弁25で減圧されて低圧冷媒となる。低圧冷媒は、室外熱交換器26で加熱されて蒸発した後、第1圧縮機21aに吸入される。また、分岐点28で分岐した他方の高圧冷媒は、第2膨張弁27で減圧されて中間圧冷媒となる。中間圧冷媒は、内部熱交換器24で加熱された後、第1圧縮機21aの吐出口と第2圧縮機21bの吸入口の間にインジェクション(すなわち、導入)される。換言すると、中間圧冷媒は、第1圧縮機21aと第2圧縮機21bにおける低圧から高圧までの圧縮過程途中の冷媒に合流する。 In the refrigeration cycle apparatus 20 configured in this way, the low-pressure refrigerant is compressed in the order of the first compressor 21a and the second compressor 21b to become a high-pressure refrigerant. The high-pressure refrigerant is radiated by the water refrigerant heat exchanger 23 and then branches at the branch point 28. One of the branched high-pressure refrigerants is cooled by the internal heat exchanger 24 and then depressurized by the first expansion valve 25 to become a low-pressure refrigerant. The low-pressure refrigerant is heated by the outdoor heat exchanger 26 and evaporated, and then sucked into the first compressor 21a. The other high-pressure refrigerant branched at the branch point 28 is decompressed by the second expansion valve 27 and becomes an intermediate-pressure refrigerant. The intermediate pressure refrigerant is heated by the internal heat exchanger 24 and then injected (that is, introduced) between the discharge port of the first compressor 21a and the suction port of the second compressor 21b. In other words, the intermediate pressure refrigerant joins the refrigerant in the middle of the compression process from the low pressure to the high pressure in the first compressor 21a and the second compressor 21b.
 このとき、第2膨張弁27の通路開度が調整されることにより、第1圧縮機21aと第2圧縮機21bの間にインジェクションされる冷媒流量が調整される。以下では、インジェクションされる中間圧冷媒の冷媒流量をインジェクション流量と呼ぶ。 At this time, the flow rate of the refrigerant injected between the first compressor 21a and the second compressor 21b is adjusted by adjusting the passage opening degree of the second expansion valve 27. Hereinafter, the refrigerant flow rate of the intermediate pressure refrigerant to be injected is referred to as an injection flow rate.
 このように第1圧縮機21aと第2圧縮機21bの間に中間圧冷媒をインジェクションする。これにより、第2圧縮機21bの吐出冷媒温度の上昇を抑制したり、水冷媒熱交換器23の冷媒循環量を増やして放熱能力を増やしたり、室外熱交換器26の入口冷媒エンタルピを下げて冷却能力を増やしたりする効果が得られる。 Thus, the intermediate pressure refrigerant is injected between the first compressor 21a and the second compressor 21b. As a result, an increase in the refrigerant temperature discharged from the second compressor 21b is suppressed, the heat circulation capacity is increased by increasing the refrigerant circulation amount of the water refrigerant heat exchanger 23, or the inlet refrigerant enthalpy of the outdoor heat exchanger 26 is lowered. The effect of increasing the cooling capacity can be obtained.
 冷凍サイクル装置20は、制御装置30を備えている。制御装置30は、マイクロコンピュータおよびその周辺回路等により構成されている。 The refrigeration cycle apparatus 20 includes a control device 30. The control device 30 includes a microcomputer and its peripheral circuits.
 制御装置30の入力側には、水温センサ31と、第1冷媒温度センサ32と、第2冷媒温度センサ33と、冷媒圧力センサ34とが接続されている。水温センサ31は、水冷媒熱交換器23の水通路23aの入口側に設けられている。水温センサ31は、水通路23aに流入する給湯水の温度を検出する温度検出部である。第1冷媒温度センサ32は、内部熱交換器24の中間圧側通路24bの入口側の中間圧冷媒(すなわち、後述する図6等の点A8)の温度を検出する第1冷媒温度検出部である。第2冷媒温度センサ33は、内部熱交換器24の中間圧側通路24bの出口側の中間圧冷媒(すなわち、後述する図6等の点A9)の温度を検出する第2冷媒温度検出部である。冷媒圧力センサ34は、高圧冷媒の圧力を検出する圧力検出部である。冷媒圧力センサ34は、内部熱交換器24の高圧側通路24aと第1膨張弁25の間の冷媒通路に対して設けられている。これらのセンサ31、32、33、34のセンサ信号が制御装置30に入力される。 A water temperature sensor 31, a first refrigerant temperature sensor 32, a second refrigerant temperature sensor 33, and a refrigerant pressure sensor 34 are connected to the input side of the control device 30. The water temperature sensor 31 is provided on the inlet side of the water passage 23 a of the water refrigerant heat exchanger 23. The water temperature sensor 31 is a temperature detection unit that detects the temperature of hot water flowing into the water passage 23a. The first refrigerant temperature sensor 32 is a first refrigerant temperature detector that detects the temperature of the intermediate pressure refrigerant on the inlet side of the intermediate pressure side passage 24b of the internal heat exchanger 24 (that is, a point A8 in FIG. 6 and the like described later). . The second refrigerant temperature sensor 33 is a second refrigerant temperature detection unit that detects the temperature of the intermediate pressure refrigerant on the outlet side of the intermediate pressure side passage 24b of the internal heat exchanger 24 (that is, a point A9 in FIG. 6 and the like described later). . The refrigerant pressure sensor 34 is a pressure detection unit that detects the pressure of the high-pressure refrigerant. The refrigerant pressure sensor 34 is provided for the refrigerant passage between the high-pressure side passage 24 a of the internal heat exchanger 24 and the first expansion valve 25. Sensor signals of these sensors 31, 32, 33, and 34 are input to the control device 30.
 制御装置30の出力側には、第1圧縮機21a、第2圧縮機21b、第1膨張弁25、第2膨張弁27等の冷凍サイクルの構成機器が接続されている。制御装置30は、第1圧縮機21a、第2圧縮機21b、第1膨張弁25、第2膨張弁27等を制御することにより、冷凍サイクルの作動を制御する。 The output side of the control device 30 is connected to refrigeration cycle components such as the first compressor 21a, the second compressor 21b, the first expansion valve 25, and the second expansion valve 27. The control device 30 controls the operation of the refrigeration cycle by controlling the first compressor 21a, the second compressor 21b, the first expansion valve 25, the second expansion valve 27, and the like.
 具体的には、制御装置30は、第1圧縮機21a、第2圧縮機21bの作動を開始させて、冷凍サイクルの運転を開始する。このとき、第1圧縮機21a、第2圧縮機21bのそれぞれの回転数を所定の回転数とする。 Specifically, the control device 30 starts the operation of the refrigeration cycle by starting the operation of the first compressor 21a and the second compressor 21b. At this time, each rotation speed of the first compressor 21a and the second compressor 21b is set to a predetermined rotation speed.
 そして、制御装置30は、図2に示すように、冷凍サイクルの作動を制御して、高圧冷媒の圧力(以下、高圧圧力という)とインジェクション流量を適切に調節する。なお、図2中に示した各ステップは、制御装置40の各種機能を実現する機能部を構成している。 Then, as shown in FIG. 2, the control device 30 controls the operation of the refrigeration cycle and appropriately adjusts the pressure of the high-pressure refrigerant (hereinafter referred to as high-pressure pressure) and the injection flow rate. Each step shown in FIG. 2 constitutes a functional unit that realizes various functions of the control device 40.
 ステップS1で、水温センサ31のセンサ信号を読み込む。これにより、水温センサ31の検出温度、すなわち、水冷媒熱交換器23の入口側の給湯水温度が読み込まれる。 In step S1, the sensor signal of the water temperature sensor 31 is read. Thereby, the detected temperature of the water temperature sensor 31, that is, the hot water temperature on the inlet side of the water refrigerant heat exchanger 23 is read.
 続いて、ステップS2では、水温センサ31の検出温度に基づいて、高圧圧力の目標圧力を決定する。このとき、図3に示す関係を満たすように、目標圧力Pxを決定する。すなわち、図3に示すように、給湯水温度が冷媒の臨界温度以下の場合、給湯水温度によらず目標圧力Pxを所定値P1で一定とする。給湯水温度が臨界温度よりも高い場合、目標圧力Pxを所定値P1よりも高くし、かつ、給湯水温度が高いほど目標圧力Pxを高くする。なお、図3では、給湯水温度が臨界温度よりも高い場合に、給湯水温度が上昇するにつれて目標圧力Pxが直線状に増大していたが、曲線状に増大していてもよい。 Subsequently, in step S2, the target pressure of the high pressure is determined based on the temperature detected by the water temperature sensor 31. At this time, the target pressure Px is determined so as to satisfy the relationship shown in FIG. That is, as shown in FIG. 3, when the hot water temperature is equal to or lower than the critical temperature of the refrigerant, the target pressure Px is made constant at a predetermined value P1 regardless of the hot water temperature. When the hot water temperature is higher than the critical temperature, the target pressure Px is set higher than the predetermined value P1, and the target pressure Px is increased as the hot water temperature is higher. In FIG. 3, when the hot water temperature is higher than the critical temperature, the target pressure Px increases linearly as the hot water temperature rises, but may increase in a curved line.
 また、給湯水温度が臨界温度よりも高い場合の目標圧力は、図4に示すように、二酸化炭素冷媒のモリエル線図における600kg/mの等密度線と等温線との交点での圧力よりも高いことが好ましい。ここでいう等温線とは、モリエル線図における冷媒の等温線のうち水温センサ31の検出温度と同じ温度の等温線のことである。これよりも圧力が低いと、水冷媒熱交換器23の出口での冷媒のエンタルピ上昇が大きくなり、水冷媒熱交換器23の入口と出口での冷媒のエンタルピ差が小さくなり加熱能力の低下抑制ができなくなるからである。 In addition, as shown in FIG. 4, the target pressure when the hot water temperature is higher than the critical temperature is based on the pressure at the intersection of the 600 kg / m 3 isodensity line and the isothermal line in the Mollier diagram of the carbon dioxide refrigerant. Is preferably high. The isotherm here is an isotherm having the same temperature as the temperature detected by the water temperature sensor 31 in the refrigerant isotherm in the Mollier diagram. If the pressure is lower than this, the enthalpy rise of the refrigerant at the outlet of the water refrigerant heat exchanger 23 becomes large, the difference in the enthalpy of the refrigerant at the inlet and outlet of the water refrigerant heat exchanger 23 becomes small, and the reduction in heating capacity is suppressed. It is because it becomes impossible.
 また、この場合の目標圧力は、図4に示すように、700kg/mの等密度線と等温線との交点での圧力よりも低いことが好ましい。これよりも圧力が高いと、水冷媒熱交換器23でのエンタルピ差増分よりも圧縮機21a、21bの仕事量の増加が大きくなり効率が低下するので望ましくないからである。 Further, as shown in FIG. 4, the target pressure in this case is preferably lower than the pressure at the intersection of the 700 kg / m 3 isodensity line and the isotherm. If the pressure is higher than this, the increase in the work amount of the compressors 21a and 21b becomes larger than the enthalpy difference increment in the water-refrigerant heat exchanger 23 and the efficiency is lowered, which is not desirable.
 したがって、この場合の目標圧力は、図4に示すように、650kg/mの等密度線と等温線との交点での圧力であることが特に好ましい。本実施形態では、ステップS2が、高圧冷媒の目標圧力を決定する圧力決定部を構成している。 Therefore, the target pressure in this case is particularly preferably the pressure at the intersection of the 650 kg / m 3 isodensity line and the isotherm, as shown in FIG. In the present embodiment, step S2 constitutes a pressure determining unit that determines the target pressure of the high-pressure refrigerant.
 ステップS3では、冷媒圧力センサ34のセンサ信号を読み込む。これにより、冷媒圧力センサ34の検出圧力、すなわち、高圧冷媒の圧力が読み込まれる。以下では、高圧冷媒の圧力を高圧圧力ともいう。 In step S3, the sensor signal of the refrigerant pressure sensor 34 is read. Thereby, the detected pressure of the refrigerant pressure sensor 34, that is, the pressure of the high-pressure refrigerant is read. Hereinafter, the pressure of the high-pressure refrigerant is also referred to as high-pressure.
 ステップS4では、冷媒圧力センサ34の検出圧力に基づいて、実際の高圧圧力が目標圧力となるように、第1膨張弁25の通路開度を制御する。具体的には、検出圧力が目標圧力よりも高ければ、第1膨張弁25の通路開度を増大させて、実際の高圧圧力が低くなるように調整する。検出圧力が目標圧力よりも低ければ、第1膨張弁25の通路開度を減少させて、実際の高圧圧力が高くなるように調整する。このようにして、実際の高圧圧力を目標圧力に近づける。本実施形態では、ステップS4が、第1減圧器の通路開度を制御する開度制御部を構成している。 In step S4, the passage opening degree of the first expansion valve 25 is controlled based on the detected pressure of the refrigerant pressure sensor 34 so that the actual high pressure becomes the target pressure. Specifically, if the detected pressure is higher than the target pressure, the passage opening degree of the first expansion valve 25 is increased so that the actual high pressure is lowered. If the detected pressure is lower than the target pressure, the passage opening degree of the first expansion valve 25 is decreased and adjusted so that the actual high pressure is increased. In this way, the actual high pressure is brought close to the target pressure. In the present embodiment, step S4 constitutes an opening degree control unit that controls the passage opening degree of the first pressure reducer.
 ステップS5では、水温センサ31の検出温度に基づいて、第2膨張弁27の通路開度を決定する。このとき、図5に示す関係を満たすように、第2膨張弁27の通路開度を決定する。すなわち、図5に示すように、給湯水温度が冷媒の臨界温度以下の場合および給湯水温度が冷媒の臨界温度よりも高い場合のどちらにおいても、給湯水温度が高いほどインジェクション流量を多くする。インジェクション流量の増加割合を、給湯水温度が臨界温度よりも高い場合の方が臨界温度以下の場合よりも大きくする。インジェクション流量の増加割合とは、給湯水温度の上昇量に対するインジェクション流量の増加量の割合である。 In step S5, the passage opening degree of the second expansion valve 27 is determined based on the temperature detected by the water temperature sensor 31. At this time, the passage opening degree of the second expansion valve 27 is determined so as to satisfy the relationship shown in FIG. That is, as shown in FIG. 5, the injection flow rate is increased as the hot-water supply temperature is higher, both in the case where the hot-water supply temperature is lower than the critical temperature of the refrigerant and in the case where the hot-water supply temperature is higher than the critical temperature of the refrigerant. The rate of increase in the injection flow rate is made larger when the hot water temperature is higher than the critical temperature than when it is lower than the critical temperature. The increase rate of the injection flow rate is the ratio of the increase amount of the injection flow rate to the increase amount of the hot water temperature.
 したがって、第2膨張弁27の通路開度は、給湯水温度が高いほど通路開度が大きくなり、給湯水温度が臨界温度よりも高い場合の方が臨界温度以下の場合よりも通路開度の増加割合が大きくなるように決定される。通路開度の増加割合とは、給湯水温度の上昇量に対する通路開度の増加量の割合である。 Therefore, the passage opening degree of the second expansion valve 27 is larger as the hot water temperature is higher, and the passage opening degree is higher when the hot water temperature is higher than the critical temperature than when the hot water temperature is lower than the critical temperature. The increase rate is determined to be large. The increase rate of the passage opening is the ratio of the increase amount of the passage opening to the increase amount of the hot water temperature.
 ステップS6では、ステップS5で決定した通路開度となるように、第2膨張弁27の通路開度を制御する。具体的には、給湯水温度が高くなったときは、第2膨張弁27の通路開度を大きくして、インジェクション流量を増やす。一方、給湯水温度が低くなったときは、第2膨張弁27の通路開度を小さくして、インジェクション流量を減らす。本実施形態では、ステップS6が、第2減圧器の通路開度を制御する開度制御部を構成している。 In step S6, the passage opening of the second expansion valve 27 is controlled so as to be the passage opening determined in step S5. Specifically, when the hot water temperature becomes high, the passage opening degree of the second expansion valve 27 is increased to increase the injection flow rate. On the other hand, when the hot water temperature is lowered, the passage opening degree of the second expansion valve 27 is reduced to reduce the injection flow rate. In this embodiment, Step S6 constitutes an opening degree control unit that controls the passage opening degree of the second pressure reducer.
 このようにして、制御装置30は、検出した給湯水温度が冷媒の臨界温度よりも高い場合、給湯水温度が高いほど高圧圧力を高くする。さらに、制御装置40は、給湯水温度が高いほどインジェクション流量を多くし、かつ、給湯水温度が冷媒の臨界温度よりも低い場合よりもインジェクション流量の増加割合を大きくする。 Thus, when the detected hot water temperature is higher than the critical temperature of the refrigerant, the control device 30 increases the high pressure as the hot water temperature increases. Further, the control device 40 increases the injection flow rate as the hot water supply water temperature is higher, and increases the increase rate of the injection flow rate than when the hot water supply temperature is lower than the critical temperature of the refrigerant.
 ところで、図1に示す構成の冷凍サイクル装置20において、水冷媒熱交換器23に流入する給湯水は、一般的に、5℃以上70℃以内の温度範囲内で、冷媒の臨界温度である31℃をまたいで温度変化する。 By the way, in the refrigeration cycle apparatus 20 having the configuration shown in FIG. 1, hot water flowing into the water-refrigerant heat exchanger 23 is generally within the temperature range of 5 ° C. or more and within 70 ° C., and is the critical temperature of the refrigerant 31. Temperature changes across ℃.
 そして、図6―9に示すように、水冷媒熱交換器23の入口側の給湯水温度が臨界温度よりも高い場合では、給湯水温度が臨界温度よりも低い場合と比較して、水冷媒熱交換器23でのエンタルピ差の減少割合が大きくなる。水冷媒熱交換器23でのエンタルピ差の減少割合とは、給湯水温度の上昇量に対する水冷媒熱交換器23での冷媒のエンタルピ差の減少量の割合である。また、図6―9に示すように、水冷媒熱交換器23の入口側の給湯水温度が臨界温度よりも高い場合では、給湯水温度が臨界温度よりも低い場合と比較して、内部熱交換器24の高圧側通路24aでのエンタルピ差の増加割合が大きくなる。高圧側通路24aでのエンタルピ差の増加割合とは、給湯水温度の上昇量に対する高圧側通路24aでの冷媒のエンタルピ差の増加量の割合である。 As shown in FIGS. 6-9, when the hot water temperature on the inlet side of the water refrigerant heat exchanger 23 is higher than the critical temperature, the water refrigerant is lower than when the hot water temperature is lower than the critical temperature. The decreasing rate of the enthalpy difference in the heat exchanger 23 increases. The decreasing rate of the enthalpy difference in the water refrigerant heat exchanger 23 is a ratio of the decreasing amount of the enthalpy difference of the refrigerant in the water refrigerant heat exchanger 23 to the increasing amount of the hot water temperature. Also, as shown in FIGS. 6-9, when the hot water temperature on the inlet side of the water-refrigerant heat exchanger 23 is higher than the critical temperature, the internal heat is higher than when the hot water temperature is lower than the critical temperature. The increasing rate of the enthalpy difference in the high-pressure side passage 24a of the exchanger 24 becomes large. The increase rate of the enthalpy difference in the high-pressure side passage 24a is the ratio of the increase amount of the enthalpy difference of the refrigerant in the high-pressure side passage 24a to the increase amount of the hot water temperature.
 図6、7、8、9は、それぞれ、水冷媒熱交換器23の入口側の給湯水温度が25℃、30℃、32℃、37℃のときのサイクルバランスの例を示している。図6、7は、給湯水温度が臨界温度よりも低い場合を示している。図8、9は、給湯水温度が臨界温度よりも高い場合を示している。 6, 7, 8, and 9 show examples of cycle balance when the hot water temperature on the inlet side of the water-refrigerant heat exchanger 23 is 25 ° C., 30 ° C., 32 ° C., and 37 ° C., respectively. 6 and 7 show cases where the hot water temperature is lower than the critical temperature. 8 and 9 show the case where the hot water temperature is higher than the critical temperature.
 また、各図中の点A1―A9は、図1に示す冷凍サイクル装置20の各位置での冷媒の状態を示している。点A1は、第1圧縮機21aの吸入側の冷媒の状態を示している。点A2は、第1圧縮機21aの吐出側の冷媒の状態を示している。点A3は、第2圧縮機21bの吸入側であって中間圧冷媒合流後の冷媒の状態を示している。点A4は、第2圧縮機21bの吐出側の冷媒の状態を示している。点A5は、水冷媒熱交換器23の冷媒通路23bの出口側であって、内部熱交換器24の高圧側通路24aの入口側、かつ、第2膨張弁27の入口側の冷媒の状態を示している。点A6は、内部熱交換器24の高圧側通路24aの出口側の冷媒の状態を示している。点A7は、第1膨張弁25の出口側の冷媒の状態を示している。点A8は、第2膨張弁27の出口側であって、内部熱交換器24の中間圧側通路24bの入口側の冷媒の状態を示している。点A9は、内部熱交換器24の中間圧側通路24bの出口側であって、第2圧縮機21bの吸入側の冷媒に合流する前の冷媒の状態を示している。 Further, points A1 to A9 in each figure indicate the state of the refrigerant at each position of the refrigeration cycle apparatus 20 shown in FIG. Point A1 indicates the state of the refrigerant on the suction side of the first compressor 21a. Point A2 shows the state of the refrigerant on the discharge side of the first compressor 21a. Point A3 indicates the state of the refrigerant on the suction side of the second compressor 21b and after the intermediate pressure refrigerant merges. Point A4 indicates the state of the refrigerant on the discharge side of the second compressor 21b. Point A5 is the outlet side of the refrigerant passage 23b of the water refrigerant heat exchanger 23, and shows the state of the refrigerant on the inlet side of the high-pressure side passage 24a of the internal heat exchanger 24 and on the inlet side of the second expansion valve 27. Show. Point A6 indicates the state of the refrigerant on the outlet side of the high-pressure side passage 24a of the internal heat exchanger 24. Point A <b> 7 indicates the state of the refrigerant on the outlet side of the first expansion valve 25. Point A8 indicates the state of the refrigerant on the outlet side of the second expansion valve 27 and on the inlet side of the intermediate pressure side passage 24b of the internal heat exchanger 24. Point A9 indicates the state of the refrigerant on the outlet side of the intermediate pressure side passage 24b of the internal heat exchanger 24 and before joining the refrigerant on the suction side of the second compressor 21b.
 図6―9では、高圧圧力(すなわち、点A4、A5、A6での圧力)を同じ圧力としている。また、図6―9では、インジェクションされる中間圧冷媒の飽和温度(すなわち、点A8での温度)を同じ温度、具体的には15℃としている。 6-9, the high pressure (that is, the pressure at points A4, A5, and A6) is the same pressure. 6-9, the saturation temperature of the injected intermediate pressure refrigerant (that is, the temperature at the point A8) is set to the same temperature, specifically 15 ° C.
 また、理論上、水冷媒熱交換器23の出口側の冷媒温度は、水冷媒熱交換器23の入口側の給湯水温度と等しくなる。そのため、以下の説明では、図6―9において、点A5の温度が水冷媒熱交換器23の入口側の給湯水温度と等しいと仮定する。同様に、理論上、内部熱交換器24の出口側の高圧側冷媒の温度は入口側の中間圧冷媒の温度と等しくなる。そのため、以下の説明では、図6―9において、点A6の温度は点A8の温度と等しいと仮定する。 Theoretically, the refrigerant temperature on the outlet side of the water refrigerant heat exchanger 23 is equal to the hot water temperature on the inlet side of the water refrigerant heat exchanger 23. Therefore, in the following description, in FIGS. 6-9, it is assumed that the temperature at the point A5 is equal to the hot water temperature on the inlet side of the water-refrigerant heat exchanger 23. Similarly, theoretically, the temperature of the high-pressure refrigerant on the outlet side of the internal heat exchanger 24 is equal to the temperature of the intermediate-pressure refrigerant on the inlet side. Therefore, in the following description, in FIGS. 6-9, it is assumed that the temperature at point A6 is equal to the temperature at point A8.
 図7中の破線は、給湯水温度が25℃のときの図6のサイクルバランスを示している。図7に示す矢印D1aは、給湯水温度が25℃のときの水冷媒熱交換器23でのエンタルピ差を示している。D1と記される矢印が長いほど水冷媒熱交換器23での冷媒と給湯水の熱交換量が多いことを示す。このことは、他の図においても同様である。図7に示す矢印D2aは、給湯水温度が25℃のときの内部熱交換器24の高圧側でのエンタルピ差を示している。D2と記される矢印が大きいほど内部熱交換器24での熱交換量が多いことを示す。このことは、他の図においても同様である。 The broken line in FIG. 7 indicates the cycle balance of FIG. 6 when the hot water temperature is 25 ° C. The arrow D1a shown in FIG. 7 has shown the enthalpy difference in the water refrigerant | coolant heat exchanger 23 when hot-water supply water temperature is 25 degreeC. The longer the arrow marked D1, the greater the amount of heat exchange between the refrigerant and hot water in the water / refrigerant heat exchanger 23. The same applies to other drawings. The arrow D2a shown in FIG. 7 has shown the enthalpy difference in the high voltage | pressure side of the internal heat exchanger 24 when hot-water supply water temperature is 25 degreeC. The larger the arrow marked D2, the greater the amount of heat exchange in the internal heat exchanger 24. The same applies to other drawings.
 図7中の太い実線は、給湯水温度が30℃のときのサイクルバランスを示している。図7中の矢印D1bが、このときの水冷媒熱交換器23でのエンタルピ差を示している。図7中の矢印D2bが、このときの内部熱交換器24の高圧側でのエンタルピ差を示している。 The thick solid line in FIG. 7 indicates the cycle balance when the hot water temperature is 30 ° C. An arrow D1b in FIG. 7 indicates the enthalpy difference in the water refrigerant heat exchanger 23 at this time. An arrow D2b in FIG. 7 indicates the enthalpy difference on the high pressure side of the internal heat exchanger 24 at this time.
 図9中の破線は、給湯水温度が32℃のときの図8のサイクルバランスを示している。図9に示す矢印D1cは、このときの水冷媒熱交換器23でのエンタルピ差を示している。図9に示す矢印D2cは、このときの内部熱交換器24の高圧側でのエンタルピ差を示している。 The broken line in FIG. 9 shows the cycle balance of FIG. 8 when the hot water temperature is 32 ° C. The arrow D1c shown in FIG. 9 has shown the enthalpy difference in the water refrigerant | coolant heat exchanger 23 at this time. An arrow D2c shown in FIG. 9 indicates the enthalpy difference on the high-pressure side of the internal heat exchanger 24 at this time.
 図9中の太い実線は、給湯水温度が37℃のときのサイクルバランスを示している。図9中の矢印D1dが、このときの水冷媒熱交換器23でのエンタルピ差を示している。図7中の矢印D2dが、このときの内部熱交換器24の高圧側でのエンタルピ差を示している。 The thick solid line in FIG. 9 indicates the cycle balance when the hot water temperature is 37 ° C. An arrow D1d in FIG. 9 indicates the enthalpy difference in the water refrigerant heat exchanger 23 at this time. An arrow D2d in FIG. 7 indicates the enthalpy difference on the high-pressure side of the internal heat exchanger 24 at this time.
 図7中の矢印D1aと矢印D1bを比較してわかるように、給湯水温度が25℃から30℃に上昇すると、水冷媒熱交換器23でのエンタルピ差が減少する。同様に、図9中の矢印D1cと矢印D1cを比較してわかるように、給湯水温度が32℃から37℃に上昇すると、水冷媒熱交換器23でのエンタルピ差が減少する。 As can be seen by comparing the arrows D1a and D1b in FIG. 7, when the hot water temperature rises from 25 ° C. to 30 ° C., the enthalpy difference in the water-refrigerant heat exchanger 23 decreases. Similarly, as can be seen by comparing the arrows D1c and D1c in FIG. 9, when the hot water temperature rises from 32 ° C. to 37 ° C., the enthalpy difference in the water-refrigerant heat exchanger 23 decreases.
 そして、図7中の矢印D1aと矢印D1bの長さの差と、図9中の矢印D1cと矢印D1dの長さの差を比較すると次のことがわかる。給湯水温度の上昇量が同じ5℃のときの水冷媒熱交換器23でのエンタルピ差の減少量は、給湯水温度が臨界温度よりも高い温度範囲で上昇した場合の方が臨界温度よりも低い温度範囲で上昇した場合よりも大きい。このように、給湯水温度が臨界温度よりも高い場合、給湯水温度が上昇すると、給湯水温度が臨界温度よりも低い場合と比較して、水冷媒熱交換器23でのエンタルピ差が大きく減少する。これは、給湯水温度が上昇すると、水冷媒熱交換器23での冷媒の放熱量が大きく減少することを意味する。このため、水冷媒熱交換器23の加熱能力が低下し、湯が沸きにくくなる。 Then, comparing the difference in length between the arrows D1a and D1b in FIG. 7 and the difference in length between the arrows D1c and D1d in FIG. 9, the following can be understood. The amount of decrease in the enthalpy difference in the water-refrigerant heat exchanger 23 when the amount of rising hot water temperature is the same at 5 ° C. is higher than the critical temperature when the hot water temperature rises in a temperature range higher than the critical temperature. Greater than when it rises in the lower temperature range. In this way, when the hot water temperature is higher than the critical temperature, when the hot water temperature rises, the enthalpy difference in the water refrigerant heat exchanger 23 is greatly reduced as compared with the case where the hot water temperature is lower than the critical temperature. To do. This means that when the hot water temperature rises, the amount of heat released from the refrigerant in the water / refrigerant heat exchanger 23 is greatly reduced. For this reason, the heating capability of the water-refrigerant heat exchanger 23 is reduced, and hot water is difficult to boil.
 また、図7中の矢印D2aと矢印D2bを比較してわかるように、給湯水温度が25℃から30℃に上昇すると、内部熱交換器24の高圧側でのエンタルピ差が増大する。同様に、図9中の矢印D2cと矢印D2dを比較してわかるように、給湯水温度が32℃から37℃に上昇すると、内部熱交換器24の高圧側でのエンタルピ差が増大する。 Further, as can be seen by comparing the arrows D2a and D2b in FIG. 7, when the hot water temperature rises from 25 ° C. to 30 ° C., the enthalpy difference on the high pressure side of the internal heat exchanger 24 increases. Similarly, as can be seen by comparing the arrows D2c and D2d in FIG. 9, when the hot water temperature rises from 32 ° C. to 37 ° C., the enthalpy difference on the high pressure side of the internal heat exchanger 24 increases.
 そして、図7の矢印D2aと矢印D2bの長さの差と、図9の矢印D2cと矢印D2dの長さの差を比較すると次のことがわかる。給湯水温度の上昇量が同じ5℃のときの内部熱交換器24の高圧側でのエンタルピ差の増大量は、給湯水温度が臨界温度よりも高い温度範囲で上昇した場合の方が臨界温度よりも低い温度範囲で上昇した場合よりも大きい。このように、給湯水温度が臨界温度よりも高い場合、給湯水温度が上昇すると、水冷媒熱交換器23とは逆に、給湯水温度が臨界温度よりも低い場合と比較して、内部熱交換器24の高圧側通路24aでのエンタルピ差が大きく増大する。 Then, comparing the difference in length between the arrows D2a and D2b in FIG. 7 and the difference in length between the arrows D2c and D2d in FIG. 9 reveals the following. The amount of increase in the enthalpy difference on the high pressure side of the internal heat exchanger 24 when the amount of the hot water temperature rises is the same 5 ° C. is higher when the hot water temperature rises in a temperature range higher than the critical temperature. It is larger than when it rises in a lower temperature range. As described above, when the hot water temperature is higher than the critical temperature, when the hot water temperature rises, the internal heat is increased as compared with the case where the hot water temperature is lower than the critical temperature, contrary to the water refrigerant heat exchanger 23. The enthalpy difference in the high-pressure side passage 24a of the exchanger 24 greatly increases.
 そこで、水冷媒熱交換器23の加熱能力の低下を抑制するために、給湯水温度が臨界温度よりも高い場合に、給湯水温度が高いほど高圧圧力を高くすることが考えられる。このときのサイクルバランスの例を図10に示す。 Therefore, in order to suppress a decrease in the heating capacity of the water-refrigerant heat exchanger 23, when the hot-water supply temperature is higher than the critical temperature, it is conceivable that the higher the hot-water supply temperature, the higher the high-pressure pressure. An example of the cycle balance at this time is shown in FIG.
 図10の太い実線は、給湯水温度が37℃のときであって、高圧圧力を図9のときよりも高くしたときのサイクルバランスを示している。図10中の破線は、給湯水温度が32℃のときの図8のサイクルバランスを示している。図10では、インジェクション流量を、給湯水温度が32℃のときと同じとしている。図10の矢印D1eが、このときの水冷媒熱交換器23でのエンタルピ差を示している。図10の矢印D2eが、このときの内部熱交換器24の高圧側でのエンタルピ差を示している。 The thick solid line in FIG. 10 indicates the cycle balance when the hot water temperature is 37 ° C. and the high pressure is higher than that in FIG. The broken line in FIG. 10 shows the cycle balance of FIG. 8 when the hot water temperature is 32 ° C. In FIG. 10, the injection flow rate is the same as when the hot water temperature is 32 ° C. An arrow D1e in FIG. 10 indicates the enthalpy difference in the water refrigerant heat exchanger 23 at this time. An arrow D2e in FIG. 10 indicates the enthalpy difference on the high pressure side of the internal heat exchanger 24 at this time.
 しかし、給湯水温度が臨界温度よりも高い場合において、給湯水温度が上昇したときに、インジェクション流量を変えずに、高圧圧力を増大させただけでは、図10に示すように、内部熱交換器24の高圧側通路24aでのエンタルピ差の急激な増大を抑制できない。 However, in the case where the hot water temperature is higher than the critical temperature, when the hot water temperature rises, if the high pressure is increased without changing the injection flow rate, as shown in FIG. The rapid increase of the enthalpy difference in the 24 high-pressure side passages 24a cannot be suppressed.
 このため、内部熱交換器24で中間圧冷媒が高圧冷媒から受け取る熱量が大きくなり、第1、第2圧縮機21a、21bの間にインジェクションされる中間圧冷媒のエンタルピが大きくなる。換言すると、インジェクションされる中間圧冷媒の温度(すなわち、図10の点A9の温度)が高くなる。この結果、インジェクション効果が薄れ、第2圧縮機21bの吐出冷媒温度(すなわち、図10の点A4の温度)が上昇してしまう。このとき、内部熱交換器24の入口側の給湯水温度によっては、吐出冷媒温度が高くなりすぎてしまうため、第2圧縮機21bの信頼性が低下してしまう。 For this reason, the amount of heat that the intermediate pressure refrigerant receives from the high pressure refrigerant in the internal heat exchanger 24 increases, and the enthalpy of the intermediate pressure refrigerant injected between the first and second compressors 21a and 21b increases. In other words, the temperature of the intermediate pressure refrigerant to be injected (that is, the temperature at point A9 in FIG. 10) increases. As a result, the injection effect is weakened, and the discharge refrigerant temperature of the second compressor 21b (that is, the temperature at point A4 in FIG. 10) increases. At this time, depending on the hot water temperature on the inlet side of the internal heat exchanger 24, the discharge refrigerant temperature becomes too high, and the reliability of the second compressor 21b is lowered.
 そこで、本実施形態では、給湯水温度が冷媒の臨界温度よりも高い場合において、給湯水温度が高いほど高圧圧力を高くするとともに、給湯水温度が高いほどインジェクション流量を多くしている。インジェクション流量については、より具体的には、給湯水温度が冷媒の臨界温度よりも低い場合よりも給湯水温度が冷媒の臨界温度よりも高い場合の方が、インジェクション流量の増加割合が大きくなるようにしている。このときのサイクルバランスの例を図11に示す。 Therefore, in this embodiment, when the hot water temperature is higher than the critical temperature of the refrigerant, the higher the hot water temperature, the higher the high pressure, and the higher the hot water temperature, the greater the injection flow rate. More specifically, regarding the injection flow rate, the rate of increase in the injection flow rate is greater when the hot water temperature is higher than the critical temperature of the refrigerant than when the hot water temperature is lower than the critical temperature of the refrigerant. I have to. An example of the cycle balance at this time is shown in FIG.
 図11の太い実線は、給湯水温度が37℃のときであって、高圧圧力を図9のときよりも高くするとともに、図9のときよりもインジェクション流量を増大させたときのサイクルバランスを示している。図11中の破線は、給湯水温度が32℃のときの図8のサイクルバランスを示している。図10の矢印D1fが、このときの水冷媒熱交換器23でのエンタルピ差を示している。図10の矢印D2fが、このときの内部熱交換器24の高圧側でのエンタルピ差を示している。 The thick solid line in FIG. 11 shows the cycle balance when the hot water temperature is 37 ° C. and the high pressure is made higher than in FIG. 9 and the injection flow rate is increased more than in FIG. ing. The broken line in FIG. 11 shows the cycle balance of FIG. 8 when the hot water temperature is 32 ° C. An arrow D1f in FIG. 10 indicates the enthalpy difference in the water refrigerant heat exchanger 23 at this time. An arrow D2f in FIG. 10 indicates the enthalpy difference on the high pressure side of the internal heat exchanger 24 at this time.
 これによれば、図11に示すように、給湯水温度が高いほど高圧圧力を高くすることで、水冷媒熱交換器23でのエンタルピ差の減少を抑えることができる。したがって、水冷媒熱交換器23の加熱能力の低下を抑制することができる。 According to this, as shown in FIG. 11, the higher the hot water temperature, the higher the high pressure, so that the decrease in the enthalpy difference in the water refrigerant heat exchanger 23 can be suppressed. Therefore, it is possible to suppress a decrease in the heating capacity of the water refrigerant heat exchanger 23.
 また、給湯水温度が冷媒の臨界温度よりも高い場合では、給湯水温度が冷媒の臨界温度以下の場合と比較して、内部熱交換器24の高圧側通路24aでのエンタルピ差が急激に増大する。 Further, when the hot water temperature is higher than the critical temperature of the refrigerant, the enthalpy difference in the high-pressure side passage 24a of the internal heat exchanger 24 increases sharply as compared with the case where the hot water temperature is equal to or lower than the critical temperature of the refrigerant. To do.
 そこで、本実施形態では、給湯水温度が冷媒の臨界温度よりも高い場合に、給湯水温度が高いほどインジェクション流量を多くしている。より具体的には、給湯水温度が冷媒の臨界温度よりも高い場合では、給湯水温度が冷媒の臨界温度以下の場合と比較して、インジェクション流量の増加割合を大きくしている。これは、給湯水温度が冷媒の臨界温度よりも高い場合では、給湯水温度が冷媒の臨界温度以下の場合と比較して、内部熱交換器24の高圧側通路24aでのエンタルピ差の増加割合が大きいからである。 Therefore, in this embodiment, when the hot water temperature is higher than the critical temperature of the refrigerant, the injection flow rate is increased as the hot water temperature is higher. More specifically, when the hot water temperature is higher than the critical temperature of the refrigerant, the rate of increase of the injection flow rate is increased compared to the case where the hot water temperature is lower than the critical temperature of the refrigerant. This is because when the hot water temperature is higher than the critical temperature of the refrigerant, the rate of increase in the enthalpy difference in the high-pressure side passage 24a of the internal heat exchanger 24 is compared with the case where the hot water temperature is lower than the critical temperature of the refrigerant. Because is big.
 これにより、図11の点A9に示すように、インジェクションされる中間圧冷媒のエンタルピの上昇を抑えることができる。このため、インジェクションによる吐出温度上昇抑制効果を維持することができる。 Thereby, as shown at a point A9 in FIG. 11, it is possible to suppress an increase in the enthalpy of the injected intermediate pressure refrigerant. For this reason, the discharge temperature rise suppression effect by injection can be maintained.
 よって、本実施形態の冷凍サイクル装置20によれば、水冷媒熱交換器23の加熱能力の低下を抑制できるとともに、第2圧縮機21bの信頼性を高めることができる。 Therefore, according to the refrigeration cycle apparatus 20 of the present embodiment, it is possible to suppress a decrease in the heating capacity of the water-refrigerant heat exchanger 23 and to improve the reliability of the second compressor 21b.
 なお、本実施形態では、図3に示すように、給湯水温度が冷媒の臨界温度以下の場合、給湯水温度によらず目標圧力を所定値で一定としている。これは、一定でも加熱能力、COP、吐出温度上昇への影響が小さいからである。 In this embodiment, as shown in FIG. 3, when the hot water temperature is equal to or lower than the critical temperature of the refrigerant, the target pressure is constant at a predetermined value regardless of the hot water temperature. This is because the influence on the heating capacity, COP, and discharge temperature rise is small even if it is constant.
 また、本実施形態と異なり、給湯水温度が冷媒の臨界温度以下の場合においても、給湯水温度が高いほど目標圧力を高くしてもよい。このとき、目標圧力の増加の割合が、給湯水温度が臨界温度よりも高い場合の方が臨界温度以下の場合よりも大きくなるようにする。目標圧力の増加の割合とは、給湯水温度の増加量に対する目標圧力の増加量の割合である。 Also, unlike the present embodiment, even when the hot water temperature is lower than the critical temperature of the refrigerant, the target pressure may be increased as the hot water temperature is higher. At this time, the rate of increase of the target pressure is set to be larger when the hot water temperature is higher than the critical temperature than when it is lower than the critical temperature. The increase rate of the target pressure is the ratio of the increase amount of the target pressure to the increase amount of the hot water temperature.
 ちなみに、図3では、給湯水温度が冷媒の臨界温度以下の場合の目標圧力の増加の割合は0である。したがって、目標圧力の増加の割合は、給湯水温度が臨界温度よりも高い場合の方が臨界温度以下の場合よりも大きくなっている。 Incidentally, in FIG. 3, the rate of increase of the target pressure when the hot water temperature is below the critical temperature of the refrigerant is zero. Therefore, the rate of increase of the target pressure is greater when the hot water temperature is higher than the critical temperature than when it is lower than the critical temperature.
 また、本実施形態では、図5に示すように、給湯水温度が冷媒の臨界温度以下の場合においても、給湯水温度が高いほどインジェクション流量を多くしているが、給湯水温度によらずインジェクション流量を一定としてもよい。このとき、給湯水温度が冷媒の臨界温度以下の場合のインジェクション流量の増加割合は0である。したがって、このときにおいても、インジェクション流量の増加割合は、給湯水温度が臨界温度よりも高い場合の方が臨界温度以下の場合よりも大きくなっている。 Further, in the present embodiment, as shown in FIG. 5, even when the hot water temperature is lower than the critical temperature of the refrigerant, the injection flow rate is increased as the hot water temperature is higher. The flow rate may be constant. At this time, the increase rate of the injection flow rate when the hot water temperature is equal to or lower than the critical temperature of the refrigerant is zero. Accordingly, even at this time, the increase rate of the injection flow rate is larger when the hot water temperature is higher than the critical temperature than when it is lower than the critical temperature.
 (第2実施形態)
 本実施形態は、第2膨張弁27の開度制御が第1実施形態と異なるものである。本実施形態では、制御装置30は、図12に示す各ステップを実行して、冷凍サイクルの作動を制御することにより、高圧冷媒の圧力とインジェクション流量を適切に調節する。図12のステップS1~S4は、図2のステップS1~S4と同じである。
(Second Embodiment)
In the present embodiment, the opening degree control of the second expansion valve 27 is different from the first embodiment. In the present embodiment, the control device 30 appropriately adjusts the pressure of the high-pressure refrigerant and the injection flow rate by executing the steps shown in FIG. 12 and controlling the operation of the refrigeration cycle. Steps S1 to S4 in FIG. 12 are the same as steps S1 to S4 in FIG.
 ステップS5-1では、第1冷媒温度センサ32と第2冷媒温度センサ33のセンサ信号を読み込む。これにより、内部熱交換器24の入口側の中間圧冷媒(すなわち、図13の点A8)の温度と、内部熱交換器24の出口側の中間圧冷媒の温度(すなわち、図13の点A9)の温度とが読み込まれる。 In step S5-1, sensor signals of the first refrigerant temperature sensor 32 and the second refrigerant temperature sensor 33 are read. Thereby, the temperature of the intermediate pressure refrigerant on the inlet side of the internal heat exchanger 24 (namely, point A8 in FIG. 13) and the temperature of the intermediate pressure refrigerant on the outlet side of the internal heat exchanger 24 (namely, point A9 in FIG. 13). ) Temperature and read.
 続いて、ステップS5-2では、第1冷媒温度センサ32の検出温度および第2冷媒温度センサ33の検出温度に基づいて、第1圧縮機21aと第2圧縮機21bの間にインジェクションされる中間圧冷媒(すなわち、図13の点A9)のエンタルピを算出する。例えば、制御装置30は、第1冷媒温度センサ32の検出温度および第2冷媒温度センサ33の検出温度と中間圧冷媒のエンタルピとの関係を示すマップを有しており、このマップを用いて中間圧冷媒のエンタルピを算出する。なお、制御装置30が、第1冷媒温度センサ32の検出温度から図13の点A8、A9の圧力を算出し、算出した圧力と第2冷媒温度センサ33の検出温度から図13の点A9のエンタルピを算出するようにしてもよい。本実施形態では、ステップS5-2がエンタルピ算出部を構成している。 Subsequently, in step S5-2, based on the detected temperature of the first refrigerant temperature sensor 32 and the detected temperature of the second refrigerant temperature sensor 33, an intermediate is injected between the first compressor 21a and the second compressor 21b. The enthalpy of the pressure refrigerant (that is, the point A9 in FIG. 13) is calculated. For example, the control device 30 has a map that shows the relationship between the detected temperature of the first refrigerant temperature sensor 32, the detected temperature of the second refrigerant temperature sensor 33, and the enthalpy of the intermediate pressure refrigerant. Calculate the enthalpy of the pressurized refrigerant. Note that the control device 30 calculates the pressure at points A8 and A9 in FIG. 13 from the detected temperature of the first refrigerant temperature sensor 32, and calculates the pressure at the point A9 in FIG. 13 from the calculated pressure and the detected temperature of the second refrigerant temperature sensor 33. Enthalpy may be calculated. In the present embodiment, step S5-2 constitutes an enthalpy calculation unit.
 このように、内部熱交換器24の入口側と出口側のそれぞれの中間圧冷媒の温度が、中間圧冷媒のエンタルピと関連する中間圧冷媒の物理量である。したがって、第1冷媒温度センサ32および第2冷媒温度センサ33が、中間圧冷媒のエンタルピと関連する中間圧冷媒の物理量を検出する物理量検出部を構成する。また、第1冷媒温度センサ32が検出する温度および第2冷媒温度センサ33が検出する温度が、物理量検出部が検出する検出物理量である。 Thus, the temperature of the intermediate pressure refrigerant on each of the inlet side and the outlet side of the internal heat exchanger 24 is a physical quantity of the intermediate pressure refrigerant related to the enthalpy of the intermediate pressure refrigerant. Therefore, the first refrigerant temperature sensor 32 and the second refrigerant temperature sensor 33 constitute a physical quantity detection unit that detects the physical quantity of the intermediate pressure refrigerant related to the enthalpy of the intermediate pressure refrigerant. The temperature detected by the first refrigerant temperature sensor 32 and the temperature detected by the second refrigerant temperature sensor 33 are detected physical quantities detected by the physical quantity detector.
 続いて、ステップS6-1では、ステップS5-2によって算出された算出値に基づいて、図13に示すように、点A9の位置でのエンタルピが、予め定められた目標値E1となるように、第2膨張弁27の通路開度を制御する。この目標値E1は、固定値である。したがって、制御装置30は、給湯水温度が変化しても、エンタルピが一定となるように、インジェクション流量を調整する。目標値E1は、実験や経験等によって定められる。本実施形態では、ステップS6-1が、第2減圧器の通路開度を制御する開度制御部を構成している。 Subsequently, in step S6-1, based on the calculated value calculated in step S5-2, as shown in FIG. 13, the enthalpy at the position of point A9 becomes a predetermined target value E1. The passage opening degree of the second expansion valve 27 is controlled. This target value E1 is a fixed value. Therefore, the control device 30 adjusts the injection flow rate so that the enthalpy becomes constant even when the hot water temperature changes. The target value E1 is determined by experiment, experience, or the like. In the present embodiment, step S6-1 constitutes an opening degree control unit that controls the passage opening degree of the second pressure reducer.
 ここで、第1実施形態での説明の通り、インジェクション流量を一定に保つと、内部熱交換器24の高圧側でのエンタルピ差が大きくなるにつれて、インジェクションされる中間圧冷媒のエンタルピは大きくなる。したがって、インジェクションされる中間圧冷媒のエンタルピを一定に保つということは、内部熱交換器24の高圧側でのエンタルピ差の変化に応じて、インジェクション流量を調整していることになる。 Here, as explained in the first embodiment, when the injection flow rate is kept constant, the enthalpy of the intermediate pressure refrigerant to be injected becomes larger as the enthalpy difference on the high pressure side of the internal heat exchanger 24 becomes larger. Therefore, keeping the enthalpy of the injected intermediate pressure refrigerant constant means that the injection flow rate is adjusted according to the change in the enthalpy difference on the high pressure side of the internal heat exchanger 24.
 また、第1実施形態では、図5に示すように、給湯水温度が高いほどインジェクション流量を多くしている。さらに、給湯水温度が冷媒の臨界温度よりも高い場合では、給湯水温度が冷媒の臨界温度以下の場合と比較して、インジェクション流量の増加割合を大きくしている。これにより、図11の点A9に示すように、インジェクションされる中間圧冷媒のエンタルピの上昇を抑えることを図っている。 Further, in the first embodiment, as shown in FIG. 5, the injection flow rate is increased as the hot water temperature is higher. Further, when the hot water temperature is higher than the critical temperature of the refrigerant, the rate of increase of the injection flow rate is increased compared to the case where the hot water temperature is lower than the critical temperature of the refrigerant. Thereby, as shown by a point A9 in FIG. 11, an increase in the enthalpy of the injected intermediate pressure refrigerant is suppressed.
 したがって、インジェクションされる中間圧冷媒のエンタルピを一定に保つように、インジェクション流量を調整することは、図5に示す関係を満たすように、インジェクション流量を調整することと同じである。よって、本実施形態においても、第1実施形態と同様の効果を奏する。 Therefore, adjusting the injection flow rate so as to keep the enthalpy of the intermediate pressure refrigerant to be injected constant is the same as adjusting the injection flow rate so as to satisfy the relationship shown in FIG. Therefore, also in this embodiment, there exists an effect similar to 1st Embodiment.
 (第3実施形態)
 本実施形態は、第2膨張弁27の開度制御が第1実施形態と異なるものである。本実施形態では、制御装置30は、図14に示す各ステップを実行して、冷凍サイクルの作動を制御することにより、高圧冷媒の圧力とインジェクション流量を適切に調節する。図14のステップS1~S4は、図2のステップS1~S4と同じである。
(Third embodiment)
In the present embodiment, the opening degree control of the second expansion valve 27 is different from the first embodiment. In the present embodiment, the control device 30 appropriately adjusts the pressure of the high-pressure refrigerant and the injection flow rate by executing the steps shown in FIG. 14 and controlling the operation of the refrigeration cycle. Steps S1 to S4 in FIG. 14 are the same as steps S1 to S4 in FIG.
 ステップS5-3では、第2実施形態の図12のステップS5-1と同様に、第1冷媒温度センサ32と第2冷媒温度センサ33のセンサ信号を読み込む。 In step S5-3, the sensor signals of the first refrigerant temperature sensor 32 and the second refrigerant temperature sensor 33 are read in the same manner as in step S5-1 of FIG. 12 of the second embodiment.
 続いて、ステップS5-4では、第1冷媒温度センサ32の検出温度および第2冷媒温度センサ33の検出温度に基づいて、第1圧縮機21aと第2圧縮機21bの間にインジェクションされる中間圧冷媒(すなわち、図15の点A9)の過熱度を算出する。中間圧冷媒の過熱度は、図15に示すモリエル線図において、中間圧冷媒の飽和ガス線の温度と点A9の温度の差Tshである。したがって、第2冷媒温度センサ33の検出温度と第1冷媒温度センサ32の検出温度の差を求めることで、中間圧冷媒の過熱度が算出される。本実施形態では、ステップS5-4が、過熱度を算出する過熱度算出部を構成している。 Subsequently, in step S5-4, based on the detected temperature of the first refrigerant temperature sensor 32 and the detected temperature of the second refrigerant temperature sensor 33, an intermediate is injected between the first compressor 21a and the second compressor 21b. The degree of superheat of the pressure refrigerant (that is, point A9 in FIG. 15) is calculated. The degree of superheat of the intermediate pressure refrigerant is a difference Tsh between the temperature of the saturated gas line of the intermediate pressure refrigerant and the temperature at point A9 in the Mollier diagram shown in FIG. Therefore, the degree of superheat of the intermediate pressure refrigerant is calculated by obtaining the difference between the temperature detected by the second refrigerant temperature sensor 33 and the temperature detected by the first refrigerant temperature sensor 32. In the present embodiment, step S5-4 constitutes a superheat degree calculation unit that calculates the superheat degree.
 このように、中間圧冷媒の飽和ガス線の温度、すなわち、内部熱交換器24の入口側の中間圧冷媒の温度と、内部熱交換器24の出口側の中間圧冷媒の温度が、中間圧冷媒の過熱度と関連する中間圧冷媒の物理量である。したがって、第1冷媒温度センサ32および第2冷媒温度センサ33が、中間圧冷媒の過熱度と関連する中間圧冷媒の物理量を検出する物理量検出部を構成する。第1冷媒温度センサ32の検出温度および第2冷媒温度センサ33の検出温度が、物理量検出部が検出する検出物理量である。 Thus, the temperature of the saturated gas line of the intermediate pressure refrigerant, that is, the temperature of the intermediate pressure refrigerant on the inlet side of the internal heat exchanger 24 and the temperature of the intermediate pressure refrigerant on the outlet side of the internal heat exchanger 24 are the intermediate pressure. It is a physical quantity of intermediate pressure refrigerant related to the degree of superheat of the refrigerant. Therefore, the 1st refrigerant | coolant temperature sensor 32 and the 2nd refrigerant | coolant temperature sensor 33 comprise the physical quantity detection part which detects the physical quantity of the intermediate pressure refrigerant | coolant relevant to the superheat degree of an intermediate pressure refrigerant | coolant. The detected temperature of the first refrigerant temperature sensor 32 and the detected temperature of the second refrigerant temperature sensor 33 are detected physical quantities detected by the physical quantity detector.
 続いて、ステップS6-2では、ステップS5-4によって算出された算出値に基づいて、図15に示すように、点A9での過熱度Tshが予め定められた目標値Tsh1となるように、第2膨張弁27の通路開度を制御する。この目標値Tsh1は、固定値である。したがって、制御装置30は、給湯水温度が変化しても、過熱度Tshが一定となるように、インジェクション流量を調整する。目標値Tsh1は、実験や経験等によって定められる。本実施形態では、ステップS6-2が、第2減圧器の通路開度を制御する開度制御部を構成している。 Subsequently, in step S6-2, based on the calculated value calculated in step S5-4, as shown in FIG. 15, the superheat degree Tsh at point A9 is set to a predetermined target value Tsh1. The passage opening degree of the second expansion valve 27 is controlled. This target value Tsh1 is a fixed value. Therefore, the control device 30 adjusts the injection flow rate so that the degree of superheat Tsh is constant even when the hot water temperature changes. The target value Tsh1 is determined by experiment, experience, or the like. In the present embodiment, step S6-2 constitutes an opening degree control unit that controls the passage opening degree of the second pressure reducer.
 ここで、第1実施形態では、図5に示すように、給湯水温度が高いほどインジェクション流量を多くしている。さらに、給湯水温度が冷媒の臨界温度よりも高い場合では、給湯水温度が冷媒の臨界温度以下の場合と比較して、インジェクション流量の増加割合を大きくしている。これにより、図11の点A9に示すように、インジェクションされる中間圧冷媒のエンタルピの上昇を抑えることを図っている。エンタルピの上昇を抑えることは、過熱度を抑えることに等しい。 Here, in the first embodiment, as shown in FIG. 5, the injection flow rate is increased as the hot water temperature is higher. Further, when the hot water temperature is higher than the critical temperature of the refrigerant, the rate of increase of the injection flow rate is increased compared to the case where the hot water temperature is lower than the critical temperature of the refrigerant. Thereby, as shown by a point A9 in FIG. 11, an increase in the enthalpy of the injected intermediate pressure refrigerant is suppressed. Suppressing the increase in enthalpy is equivalent to suppressing the degree of superheat.
 したがって、インジェクションされる中間圧冷媒の過熱度Tshを一定に保つように、インジェクション流量を調整することは、図5に示す関係を満たすように、インジェクション流量を調整することと同じである。よって、本実施形態においても、第1実施形態と同様の効果を奏する。 Therefore, adjusting the injection flow rate so as to keep the superheat degree Tsh of the intermediate pressure refrigerant to be injected constant is the same as adjusting the injection flow rate so as to satisfy the relationship shown in FIG. Therefore, also in this embodiment, there exists an effect similar to 1st Embodiment.
 また、インジェクションされる中間圧冷媒の過熱度は、第1、第2冷媒温度センサ32、33とで、容易に取得できる。よって、本実施形態によれば、簡易な制御で、インジェクション流量を調整できる。 Further, the superheat degree of the intermediate pressure refrigerant to be injected can be easily obtained by the first and second refrigerant temperature sensors 32 and 33. Therefore, according to the present embodiment, the injection flow rate can be adjusted with simple control.
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、下記のように、請求の範囲に記載した範囲内において適宜変更が可能である。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be appropriately changed within the scope described in the claims as follows.
 (1)上記各実施形態では、制御装置30が第1膨張弁25の通路開度を制御することによって、冷凍サイクルの作動を制御して、高圧冷媒の圧力を調整したが、他の制御を行ってもよい。例えば、制御装置30が第1、第2圧縮機21a、21bの回転数を制御することによって、冷凍サイクルの作動を制御して、高圧冷媒の圧力を調整してもよい。 (1) In each of the above embodiments, the control device 30 controls the passage opening of the first expansion valve 25 to control the operation of the refrigeration cycle and adjust the pressure of the high-pressure refrigerant. You may go. For example, the control device 30 may control the operation of the refrigeration cycle by controlling the rotation speeds of the first and second compressors 21a and 21b to adjust the pressure of the high-pressure refrigerant.
 (2)上記各実施形態では、2台の単段の圧縮機21a、21bを用いて二段圧縮式の圧縮機構21を構成したが、他の構成の二段圧縮式の圧縮機構を採用してもよい。例えば、1つの容器内に2つの圧縮部が収容された二段圧縮式の1つの圧縮機を用いてもよい。また、中間圧ポートを有し、中間圧ポートから圧縮過程の途中の冷媒に高圧冷媒を注入するスクロール型の圧縮機を用いてもよい。 (2) In each of the above embodiments, the two-stage compression mechanism 21 is configured using two single- stage compressors 21a and 21b. However, a two-stage compression mechanism having another structure is employed. May be. For example, a single compressor of two-stage compression type in which two compression units are accommodated in one container may be used. Further, a scroll type compressor that has an intermediate pressure port and injects high-pressure refrigerant from the intermediate pressure port into the refrigerant in the middle of the compression process may be used.
 (3)上記各実施形態では、貯湯タンク11に蓄えられる水を水冷媒熱交換器23で加熱したが、貯湯タンク11に蓄えずに水を加熱し、加熱した水を給湯や暖房に用いてもよい。 (3) In each of the above embodiments, the water stored in the hot water storage tank 11 is heated by the water refrigerant heat exchanger 23. However, the water is heated without being stored in the hot water storage tank 11, and the heated water is used for hot water supply or heating. Also good.
 (4)上記各実施形態では、冷凍サイクル装置20の放熱器での放熱を、給湯や暖房に用いられる水の加熱用途に利用したが、他の加熱用途に利用してもよい。例えば、放熱器での放熱を水ではなく空気に行ってもよい。 (4) In each of the above embodiments, the heat radiation from the radiator of the refrigeration cycle apparatus 20 is used for heating water used for hot water supply or heating, but may be used for other heating applications. For example, heat dissipation by the radiator may be performed on air instead of water.
 (5)上記各実施形態では、冷凍サイクル装置20を加熱利用に用いたが、冷却利用に用いてもよい。 (5) In each of the above embodiments, the refrigeration cycle apparatus 20 is used for heating, but may be used for cooling.
 (6)上記各実施形態では、冷凍サイクル装置20の冷媒として二酸化炭素を用いたが、圧縮機構から吐出された高圧冷媒の圧力が超臨界圧力となる他の冷媒を用いてもよい。 (6) In the above embodiments, carbon dioxide is used as the refrigerant of the refrigeration cycle apparatus 20, but other refrigerants in which the pressure of the high-pressure refrigerant discharged from the compression mechanism becomes a supercritical pressure may be used.
 (7)上述の各実施形態では、エンタルピ算出部、過熱度算出部、圧力決定部等の各機能部を制御装置30の機能により実現させていたが、これらの各機能部の少なくとも一部を制御装置30とは別の制御部(ハードウェア等)で実現させても良い。この場合、制御装置30と別の制御部とが、冷凍サイクルの作動を制御して、前記高圧冷媒の圧力および前記中間圧冷媒の流量を調整する制御装置を構成する。 (7) In each of the above-described embodiments, each function unit such as the enthalpy calculation unit, the superheat degree calculation unit, and the pressure determination unit is realized by the function of the control device 30, but at least a part of these function units is provided. You may implement | achieve by the control part (hardware etc.) different from the control apparatus 30. FIG. In this case, the control device 30 and another control unit constitute a control device that controls the operation of the refrigeration cycle and adjusts the pressure of the high-pressure refrigerant and the flow rate of the intermediate-pressure refrigerant.
 (8)上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 (8) The above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes.

Claims (8)

  1.  冷凍サイクル装置であって、
     冷媒を低圧から前記低圧よりも高い高圧まで圧縮し、超臨界状態とされた高圧冷媒を吐出するとともに、前記低圧から前記高圧までの冷媒の圧縮過程の途中に前記低圧と前記高圧の間の中間圧である中間圧冷媒を導入する圧縮機構(21)と、
     前記圧縮機構から吐出された前記高圧冷媒と熱交換媒体との熱交換によって前記高圧冷媒を放熱させる放熱器(23)と、
     前記放熱器から流出の前記高圧冷媒の一部を前記低圧まで減圧させて低圧冷媒とする第1減圧器(25)と、
     前記低圧冷媒を蒸発させるとともに、蒸発後の前記低圧冷媒を前記圧縮機構に吸入させる蒸発器(26)と、
     前記放熱器から流出の前記高圧冷媒の他の一部を前記中間圧まで減圧させて中間圧冷媒とする第2減圧器(27)と、
     前記放熱器から流出して前記第1減圧器に向かって流れる前記高圧冷媒と、前記第2減圧器から流出して前記圧縮機構に向かって流れる前記中間圧冷媒とを熱交換させる内部熱交換器(24)と、
     前記放熱器に流入する前記熱交換媒体の温度を検出する温度検出部(31)と、
     前記温度検出部の検出温度に基づいて、前記圧縮機構、前記放熱器、前記第1減圧器、前記蒸発器、前記第2減圧器および前記内部熱交換器を有して構成される冷凍サイクルの作動を制御して、前記高圧冷媒の圧力および前記中間圧冷媒の流量を調整する制御装置(30)とを備え、
     前記制御装置は、前記検出温度が前記冷媒の臨界温度よりも高い場合に、前記検出温度が高いほど前記高圧冷媒の圧力が高くなるように、前記高圧冷媒の圧力を調整するとともに、前記検出温度が高いほど前記中間圧冷媒の流量が多くなるように、前記中間圧冷媒の流量を調整する冷凍サイクル装置。
    A refrigeration cycle apparatus,
    The refrigerant is compressed from a low pressure to a high pressure higher than the low pressure, and a high-pressure refrigerant in a supercritical state is discharged. A compression mechanism (21) for introducing an intermediate pressure refrigerant that is a pressure;
    A radiator (23) for radiating the high-pressure refrigerant by heat exchange between the high-pressure refrigerant discharged from the compression mechanism and a heat exchange medium;
    A first pressure reducer (25) that depressurizes a part of the high-pressure refrigerant flowing out of the radiator to the low pressure to form a low-pressure refrigerant;
    An evaporator (26) for evaporating the low-pressure refrigerant and sucking the low-pressure refrigerant after evaporation into the compression mechanism;
    A second pressure reducer (27) that reduces the other part of the high-pressure refrigerant flowing out of the radiator to the intermediate pressure to obtain an intermediate-pressure refrigerant;
    An internal heat exchanger that exchanges heat between the high-pressure refrigerant that flows out from the radiator and flows toward the first pressure reducer, and the intermediate-pressure refrigerant that flows out from the second pressure reducer and flows toward the compression mechanism (24) and
    A temperature detector (31) for detecting the temperature of the heat exchange medium flowing into the radiator;
    Based on the temperature detected by the temperature detector, the refrigeration cycle is configured to include the compression mechanism, the radiator, the first decompressor, the evaporator, the second decompressor, and the internal heat exchanger. A controller (30) for controlling the operation to adjust the pressure of the high-pressure refrigerant and the flow rate of the intermediate-pressure refrigerant;
    When the detected temperature is higher than the critical temperature of the refrigerant, the control device adjusts the pressure of the high-pressure refrigerant so that the higher the detected temperature, the higher the pressure of the high-pressure refrigerant, and the detected temperature A refrigeration cycle apparatus that adjusts the flow rate of the intermediate pressure refrigerant so that the flow rate of the intermediate pressure refrigerant increases as the flow rate increases.
  2.  前記制御装置は、前記検出温度が前記冷媒の臨界温度よりも高い場合に、前記検出温度が高いほど前記中間圧冷媒の流量が多くなり、かつ、前記検出温度が前記臨界温度よりも低い場合と比較して、前記検出温度の上昇量に対する前記中間圧冷媒の流量の増加量の割合が大きくなるように、前記中間圧冷媒の流量を調整する請求項1に記載の冷凍サイクル装置。 When the detected temperature is higher than the critical temperature of the refrigerant, the control device increases the flow rate of the intermediate pressure refrigerant as the detected temperature is higher, and the detected temperature is lower than the critical temperature. 2. The refrigeration cycle apparatus according to claim 1, wherein the flow rate of the intermediate pressure refrigerant is adjusted so that the ratio of the increase amount of the flow rate of the intermediate pressure refrigerant to the increase amount of the detected temperature is increased.
  3.  前記第2減圧器は、通路開度が調整されるように構成されており、 
     前記制御装置は、前記第2減圧器の通路開度を制御することにより、前記中間圧冷媒の流量を調整するようになっている請求項1または2に記載の冷凍サイクル装置。
    The second decompressor is configured such that the passage opening is adjusted,
    The refrigeration cycle apparatus according to claim 1 or 2, wherein the control device adjusts a flow rate of the intermediate pressure refrigerant by controlling a passage opening degree of the second decompressor.
  4.  前記内部熱交換器から流出した前記中間圧冷媒のエンタルピと関連する前記中間圧冷媒の物理量を検出する物理量検出部(32、33)を備え、
     前記制御装置は、前記物理量検出部の検出物理量に基づいて、前記エンタルピを算出するエンタルピ算出部(S5-2)と、前記エンタルピ算出部の算出値に基づいて、前記エンタルピが予め定められた目標値となるように、前記第2減圧器の通路開度を制御する開度制御部(S6-1)とを有する請求項3に記載の冷凍サイクル装置。
    A physical quantity detector (32, 33) for detecting a physical quantity of the intermediate pressure refrigerant associated with the enthalpy of the intermediate pressure refrigerant that has flowed out of the internal heat exchanger;
    The control device includes an enthalpy calculating unit (S5-2) that calculates the enthalpy based on a physical quantity detected by the physical quantity detecting unit, and a target in which the enthalpy is determined based on a calculated value of the enthalpy calculating unit. The refrigeration cycle apparatus according to claim 3, further comprising an opening degree control unit (S6-1) for controlling a passage opening degree of the second pressure reducer so as to be a value.
  5.  前記内部熱交換器から流出した前記中間圧冷媒の過熱度と関連する前記中間圧冷媒の物理量を検出する物理量検出部(32、33)を備え、
     前記制御装置は、前記物理量検出部の検出物理量に基づいて、前記過熱度を算出する過熱度算出部(S5-4)と、前記過熱度算出部の算出値に基づいて、前記過熱度が予め定められた目標値となるように、前記第2減圧器の通路開度を制御する開度制御部(S6-2)とを有する請求項3に記載の冷凍サイクル装置。
    A physical quantity detector (32, 33) for detecting a physical quantity of the intermediate pressure refrigerant related to the degree of superheat of the intermediate pressure refrigerant that has flowed out of the internal heat exchanger;
    The control device includes a superheat degree calculation unit (S5-4) that calculates the superheat degree based on the physical quantity detected by the physical quantity detection unit, and the superheat degree is calculated in advance based on the calculated value of the superheat degree calculation unit. The refrigeration cycle apparatus according to claim 3, further comprising an opening degree control unit (S6-2) for controlling a passage opening degree of the second pressure reducer so as to be a predetermined target value.
  6.  前記高圧冷媒の圧力を検出する圧力検出部(34)を備え、
     前記第1減圧器は、通路開度が調整されるように構成されており、
     前記制御装置は、前記検出温度に基づいて、前記高圧冷媒の目標圧力を決定する圧力決定部(S2)と、前記圧力検出部の検出圧力に基づいて、前記高圧冷媒の圧力が前記目標圧力となるように、前記第1減圧器の通路開度を制御する開度制御部(S4)を有し、
     前記圧力決定部は、前記検出温度が前記冷媒の臨界温度よりも高い場合に、前記検出温度が高いほど前記高圧冷媒の圧力が高くなるように、前記目標圧力を決定する請求項1ないし5のいずれか1つに記載の冷凍サイクル装置。
    A pressure detector (34) for detecting the pressure of the high-pressure refrigerant;
    The first pressure reducer is configured such that the passage opening is adjusted,
    The control device is configured to determine a target pressure of the high-pressure refrigerant based on the detected temperature, and to determine whether the pressure of the high-pressure refrigerant is equal to the target pressure based on the detected pressure of the pressure detection unit. An opening degree control unit (S4) for controlling the passage opening degree of the first pressure reducer,
    The said pressure determination part determines the said target pressure so that the pressure of the said high pressure refrigerant may become so high that the said detection temperature is high, when the said detection temperature is higher than the critical temperature of the said refrigerant | coolant. The refrigeration cycle apparatus according to any one of the above.
  7.  前記冷媒は、二酸化炭素であり、
     前記目標圧力は、前記冷媒のモリエル線図上における600kg/mの等密度線と前記検出温度と同じ温度の等温線との交点での圧力よりも高く、前記冷媒のモリエル線図上における700kg/mの等密度線と前記検出温度と同じ温度の等温線との交点での圧力よりも低い請求項6に記載の冷凍サイクル装置。
    The refrigerant is carbon dioxide;
    The target pressure is higher than a pressure at an intersection of an isodensity line of 600 kg / m 3 on the Mollier diagram of the refrigerant and an isothermal line having the same temperature as the detected temperature, and 700 kg on the Mollier diagram of the refrigerant. The refrigeration cycle apparatus according to claim 6, wherein the refrigeration cycle apparatus is lower than a pressure at an intersection of an isodensity line of / m 3 and an isothermal line having the same temperature as the detected temperature.
  8.  前記熱交換媒体は、給湯または暖房に用いられる給湯水である請求項1ないし7のいずれか1つに記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 7, wherein the heat exchange medium is hot water used for hot water supply or heating.
PCT/JP2016/076611 2015-10-05 2016-09-09 Refrigeration cycle device WO2017061233A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112016004544.1T DE112016004544T5 (en) 2015-10-05 2016-09-09 Refrigeration cycle device
JP2017544427A JP6477908B2 (en) 2015-10-05 2016-09-09 Refrigeration cycle equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015197893 2015-10-05
JP2015-197893 2015-10-05

Publications (1)

Publication Number Publication Date
WO2017061233A1 true WO2017061233A1 (en) 2017-04-13

Family

ID=58487467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076611 WO2017061233A1 (en) 2015-10-05 2016-09-09 Refrigeration cycle device

Country Status (3)

Country Link
JP (1) JP6477908B2 (en)
DE (1) DE112016004544T5 (en)
WO (1) WO2017061233A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019095176A (en) * 2017-11-27 2019-06-20 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Improved method and system for cooling hydrocarbon stream
WO2019234986A1 (en) * 2018-06-07 2019-12-12 パナソニックIpマネジメント株式会社 Refrigeration cycle device and liquid heating device comprising same
KR20200009767A (en) * 2018-07-20 2020-01-30 엘지전자 주식회사 An air conditioning system and a method for controlling the same
KR20200009765A (en) * 2018-07-20 2020-01-30 엘지전자 주식회사 An air conditioning system and a method for controlling the same
JP2020153651A (en) * 2019-03-22 2020-09-24 サンデン・リテールシステム株式会社 Cooler
US11624555B2 (en) 2017-11-27 2023-04-11 Air Products And Chemicals, Inc. Method and system for cooling a hydrocarbon stream
JP7390605B2 (en) 2019-12-11 2023-12-04 パナソニックIpマネジメント株式会社 heat pump system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003590A1 (en) * 2018-06-29 2020-01-02 パナソニックIpマネジメント株式会社 Refrigeration cycle device and liquid heating device comprising same
JP7113210B2 (en) * 2018-12-17 2022-08-05 パナソニックIpマネジメント株式会社 heat pump system
JP7012208B2 (en) * 2019-01-18 2022-01-28 パナソニックIpマネジメント株式会社 Refrigeration cycle device and liquid heating device equipped with it
JP2022175115A (en) * 2021-05-12 2022-11-25 パナソニックIpマネジメント株式会社 Refrigeration cycle device and liquid heating device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198699A (en) * 2006-01-30 2007-08-09 Mitsubishi Electric Corp Heat pump water heater
JP2009008378A (en) * 2007-05-25 2009-01-15 Denso Corp Refrigerating cycle device
WO2009011197A1 (en) * 2007-07-18 2009-01-22 Mitsubishi Electric Corporation Refrigerating cycle device and method for controlling operation of the same
JP2010091135A (en) * 2008-10-03 2010-04-22 Tokyo Electric Power Co Inc:The Two-stage compression type hot water supply device and method of controlling its start
JP2015148431A (en) * 2014-02-10 2015-08-20 パナソニックIpマネジメント株式会社 Refrigeration device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015197893A (en) 2014-04-03 2015-11-09 株式会社イーフロー Display control device and display control program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198699A (en) * 2006-01-30 2007-08-09 Mitsubishi Electric Corp Heat pump water heater
JP2009008378A (en) * 2007-05-25 2009-01-15 Denso Corp Refrigerating cycle device
WO2009011197A1 (en) * 2007-07-18 2009-01-22 Mitsubishi Electric Corporation Refrigerating cycle device and method for controlling operation of the same
JP2010091135A (en) * 2008-10-03 2010-04-22 Tokyo Electric Power Co Inc:The Two-stage compression type hot water supply device and method of controlling its start
JP2015148431A (en) * 2014-02-10 2015-08-20 パナソニックIpマネジメント株式会社 Refrigeration device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019095176A (en) * 2017-11-27 2019-06-20 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Improved method and system for cooling hydrocarbon stream
US11624555B2 (en) 2017-11-27 2023-04-11 Air Products And Chemicals, Inc. Method and system for cooling a hydrocarbon stream
WO2019234986A1 (en) * 2018-06-07 2019-12-12 パナソニックIpマネジメント株式会社 Refrigeration cycle device and liquid heating device comprising same
JPWO2019234986A1 (en) * 2018-06-07 2021-06-17 パナソニックIpマネジメント株式会社 Refrigeration cycle device and liquid heating device equipped with it
KR20200009767A (en) * 2018-07-20 2020-01-30 엘지전자 주식회사 An air conditioning system and a method for controlling the same
KR20200009765A (en) * 2018-07-20 2020-01-30 엘지전자 주식회사 An air conditioning system and a method for controlling the same
KR102136416B1 (en) * 2018-07-20 2020-07-21 엘지전자 주식회사 An air conditioning system and a method for controlling the same
KR102165354B1 (en) * 2018-07-20 2020-10-13 엘지전자 주식회사 An air conditioning system and a method for controlling the same
JP2020153651A (en) * 2019-03-22 2020-09-24 サンデン・リテールシステム株式会社 Cooler
JP7229057B2 (en) 2019-03-22 2023-02-27 サンデン・リテールシステム株式会社 Cooling system
JP7390605B2 (en) 2019-12-11 2023-12-04 パナソニックIpマネジメント株式会社 heat pump system

Also Published As

Publication number Publication date
JPWO2017061233A1 (en) 2018-02-22
JP6477908B2 (en) 2019-03-06
DE112016004544T5 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6477908B2 (en) Refrigeration cycle equipment
JP5639477B2 (en) CO2 refrigerant vapor compression system
JP5042058B2 (en) Heat pump type hot water supply outdoor unit and heat pump type hot water supply device
JP5045524B2 (en) Refrigeration equipment
EP2107322B1 (en) Heat pump type hot water supply outdoor apparatus
JP3929067B2 (en) heat pump
JP5120056B2 (en) Refrigeration equipment
JP4905271B2 (en) Refrigeration equipment
EP3301380B1 (en) Refrigeration cycle device and refrigeration cycle device control method
JP2011080633A (en) Refrigerating cycle device and hot-water heating device
CN106796061A (en) Two grades of boosting type refrigeration EGRs
JP2010196975A (en) Refrigerating cycle apparatus
JP2936961B2 (en) Air conditioner
JP6234507B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP2007139244A (en) Refrigeration device
JP2013076541A (en) Heat pump
JP5481838B2 (en) Heat pump cycle equipment
JP5956326B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP2010060181A (en) Refrigeration system
US20180202689A1 (en) Multi-stage compression refrigeration cycle device
JP4873468B2 (en) Refrigerator and temperature control device, or control method thereof
JP5790675B2 (en) heat pump
JP2001066003A (en) Refrigeration cycle
JP2009008346A (en) Refrigerating device
JP2009300028A (en) Ejector type refrigerating cycle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544427

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016004544

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853387

Country of ref document: EP

Kind code of ref document: A1