JP2022175115A - Refrigeration cycle device and liquid heating device including the same - Google Patents

Refrigeration cycle device and liquid heating device including the same Download PDF

Info

Publication number
JP2022175115A
JP2022175115A JP2021081277A JP2021081277A JP2022175115A JP 2022175115 A JP2022175115 A JP 2022175115A JP 2021081277 A JP2021081277 A JP 2021081277A JP 2021081277 A JP2021081277 A JP 2021081277A JP 2022175115 A JP2022175115 A JP 2022175115A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
pressure
heat exchanger
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021081277A
Other languages
Japanese (ja)
Inventor
常子 今川
Tsuneko Imagawa
由樹 山岡
Yoshiki Yamaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2021081277A priority Critical patent/JP2022175115A/en
Priority to EP22171958.6A priority patent/EP4089345A1/en
Publication of JP2022175115A publication Critical patent/JP2022175115A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2101Temperatures in a bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

To provide a highly reliable refrigeration cycle device by preventing liquid return by causing a superheating degree of a refrigerant which has passed through a supercooling heat exchanger to become a predetermined value or greater, and a liquid heating device including the refrigeration cycle device.SOLUTION: A refrigeration cycle device includes: a main refrigerant circuit 10; a bypass refrigerant circuit 20; a prior-cooling temperature sensor that detects a temperature of a refrigerant flowing in the bypass refrigerant circuit 20 upstream of an intermediate heat exchanger 13; a post-cooling temperature sensor that detects a temperature of a refrigerant flowing in the bypass refrigerant circuit 20 downstream of the intermediate heat exchanger 13; and a control device 60. The control device 60 calculates a superheating degree of the refrigerant to be merged to a compression rotary element on the basis of temperature data acquired from the prior-cooling temperature sensor and the post-cooling temperature sensor, and performs an operation so as to reduce a valve opening of a second expansion device 21 when the calculated superheating degree is below a predetermined value.SELECTED DRAWING: Figure 1

Description

本発明は、冷凍サイクル装置及びそれを備えた液体加熱装置に関するものである。 The present invention relates to a refrigerating cycle device and a liquid heating device having the same.

特許文献1は、冷媒を二段階で圧縮する圧縮機と、冷媒を二段階で膨張する二つの膨張装置とを備えた超臨界蒸気圧縮式冷凍サイクルを開示し、冷媒には二酸化炭素を用いている。
特許文献1の超臨界蒸気圧縮式冷凍サイクルは、気液分離器を備え、気液分離器内の気相を主成分とする冷媒は、インジェクション回路から圧縮機の中間連結回路の途中にある冷媒混合器に中間インジェクションされ、低段側回転圧縮回転要素から吐出された冷媒に混合され、高段側回転圧縮回転要素に吸入される。
特許文献1では、低段側回転圧縮回転要素の排除容積に対する高段側回転圧縮回転要素の排除容積の割合(排除容積比)を、圧縮機の吸入圧力を第1膨脹装置における冷媒飽和液圧で除算した商の等エントロピ指数乗根以上とすることで、低段側回転圧縮回転要素の吐出圧力を冷媒の臨界圧力以下にしている。
また、特許文献2は、冷媒として二酸化炭素以外の冷媒を用い、冷媒を二段階で圧縮する圧縮機と、冷媒を二段階で膨張する二つの膨張装置とを備えた冷凍装置を開示している。
特許文献2の冷凍装置は、過冷却熱交換器とインジェクション回路とを備えている。インジェクション回路は、圧縮機から吐出された冷媒の一部をバイパス膨張弁で減圧し、減圧した冷媒を過冷却熱交換器で加熱した後に、圧縮機の低段側と高段側に連通する中間ポートにインジェクションする。中間ポートでは、インジェクション回路からの冷媒と低段から吐出される冷媒とを混合させる。混合した後の冷媒は高段側回転要素に吸入されるが、吸入される冷媒の過熱度に従ってバイパス膨張弁の開度を調整して圧縮機への液戻りを防止している。
Patent Document 1 discloses a supercritical vapor compression refrigeration cycle equipped with a compressor that compresses a refrigerant in two stages and two expansion devices that expand the refrigerant in two stages, and uses carbon dioxide as the refrigerant. there is
The supercritical vapor compression refrigerating cycle of Patent Document 1 is provided with a gas-liquid separator, and the refrigerant mainly composed of the gas phase in the gas-liquid separator is a refrigerant in the middle of the intermediate connection circuit of the compressor from the injection circuit. The refrigerant is intermediately injected into the mixer, mixed with the refrigerant discharged from the low-stage rotary compression rotary element, and sucked into the high-stage rotary compression rotary element.
In Patent Document 1, the ratio of the displacement volume of the high-stage rotary compression rotary element to the displacement volume of the low-stage rotary compression rotary element (discharged volume ratio) is defined as the suction pressure of the compressor by the refrigerant saturated liquid pressure in the first expansion device. The discharge pressure of the low stage side rotary compression rotary element is set to be equal to or lower than the critical pressure of the refrigerant by setting the value equal to or higher than the root of the isentropic exponent of the quotient obtained by dividing by .
Further, Patent Document 2 discloses a refrigerating device that uses a refrigerant other than carbon dioxide as a refrigerant and includes a compressor that compresses the refrigerant in two stages and two expansion devices that expand the refrigerant in two stages. .
The refrigeration system of Patent Document 2 includes a supercooling heat exchanger and an injection circuit. In the injection circuit, a part of the refrigerant discharged from the compressor is decompressed by a bypass expansion valve, and after the decompressed refrigerant is heated by a subcooling heat exchanger, an intermediate stage that communicates between the low-stage side and the high-stage side of the compressor. Inject into the port. The intermediate port mixes the refrigerant from the injection circuit with the refrigerant discharged from the low stage. The mixed refrigerant is sucked into the high-stage rotating element, and the degree of opening of the bypass expansion valve is adjusted according to the degree of superheat of the sucked refrigerant to prevent the liquid from returning to the compressor.

特開2010-071643号公報JP 2010-071643 A 特開2009-192164号公報JP 2009-192164 A

しかしながら、前記従来の構成では、中間ポートが直接、圧縮機の圧縮室に接続され、過冷却熱交換器(中間熱交換器)を通過した冷媒が圧縮室にインジェクションされる。このように、インジェクションされる冷媒と圧縮途中の冷媒とが圧縮室内で混合されて再圧縮される構成の圧縮機の場合には、インジェクションされる冷媒が液冷媒であれば、液バックが発生して圧縮機の信頼性を低下させるという課題を有していた。また、圧縮室の中でインジェクションされた冷媒と圧縮途中の冷媒とが混合された後の冷媒の過熱度を直接計測することは困難である。 However, in the conventional configuration, the intermediate port is directly connected to the compression chamber of the compressor, and the refrigerant that has passed through the subcooling heat exchanger (intermediate heat exchanger) is injected into the compression chamber. Thus, in the case of a compressor configured such that the refrigerant to be injected and the refrigerant in the process of being compressed are mixed in the compression chamber and recompressed, if the refrigerant to be injected is a liquid refrigerant, liquid backflow occurs. However, there was a problem that the reliability of the compressor was lowered due to Moreover, it is difficult to directly measure the degree of superheat of the refrigerant after the injected refrigerant and the refrigerant in the process of being compressed are mixed in the compression chamber.

本発明は、前記課題を解決するもので、中間熱交換器を通過した後の冷媒の過熱度を所定値以上にすることで、液バックを防止して信頼性の高い冷凍サイクル装置及びそれを備えた液体加熱装置を提供することを目的とする。 The present invention is intended to solve the above-mentioned problems, and the refrigeration cycle apparatus and its high reliability by preventing liquid backflow by increasing the degree of superheat of the refrigerant after passing through the intermediate heat exchanger to a predetermined value or more. It is an object of the present invention to provide a liquid heating device comprising:

前記従来の課題を解決するために、本発明の冷凍サイクル装置は、圧縮回転要素から構成される圧縮機構、前記圧縮回転要素から吐出された冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、及び熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、前記利用側熱交換器と前記第1膨張装置との間の前記配管から分岐され、分岐された前記冷媒が、第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる前記冷媒と熱交換され、前記圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路と、前記中間熱交換器より上流側の前記バイパス冷媒回路を流れる前記冷媒の温度を検出する冷却前温度センサと、前記中間熱交換器より下流側の前記バイパス冷媒回路を流れる前記冷媒の温度を検出する冷却後温度センサと、制御装置とを備え、前記制御装置は、前記冷却前温度センサと前記冷却後温度センサとから取得する温度データに基づいて、前記圧縮回転要素に合流される前記冷媒の過熱度を算出し、算出された前記過熱度が所定値を下回る場合には、前記第2膨張装置の弁開度を小さくなるように動作させることを特徴とするものである。
これにより、圧縮回転要素の圧縮室に液冷媒が混入することで発生する液バックを防止することができる。
In order to solve the above-described conventional problems, the refrigeration cycle apparatus of the present invention includes a compression mechanism comprising a compression rotary element, and a utilization side heat exchanger that heats a utilization side heat medium with refrigerant discharged from the compression rotary element. , an intermediate heat exchanger, a first expansion device, and a heat source side heat exchanger are sequentially connected by piping to form a main refrigerant circuit; and the piping between the user side heat exchanger and the first expansion device. After being decompressed by the second expansion device, the branched refrigerant is heat-exchanged with the refrigerant flowing through the main refrigerant circuit in the intermediate heat exchanger, and is transferred to the refrigerant being compressed by the compression rotary element. a merged bypass refrigerant circuit, a pre-cooling temperature sensor for detecting the temperature of the refrigerant flowing through the bypass refrigerant circuit upstream of the intermediate heat exchanger, and the bypass refrigerant circuit downstream of the intermediate heat exchanger. A post-cooling temperature sensor that detects the temperature of the flowing refrigerant, and a control device, wherein the control device operates the compression rotary element based on temperature data obtained from the pre-cooling temperature sensor and the post-cooling temperature sensor. calculating the degree of superheat of the refrigerant that joins the refrigerant, and if the calculated degree of superheat falls below a predetermined value, the valve opening degree of the second expansion device is reduced. is.
As a result, it is possible to prevent liquid backflow caused by mixing of the liquid refrigerant in the compression chamber of the compression rotary element.

本発明によれば、液バックの発生による圧縮機構の振動の増大を防止すると共に、圧縮機構の信頼性を確保することができる。特に、起動時に、第2の膨張弁を所定位置まで開ける場合、冷媒がガス化せずに液のままインジェクションされるのを防止することができるため、信頼性の高い冷凍サイクル装置、及び、それを備えた液体加熱装置を提供できる。 Advantageous Effects of Invention According to the present invention, it is possible to prevent an increase in vibration of the compression mechanism due to the generation of liquid back, and to secure the reliability of the compression mechanism. In particular, when the second expansion valve is opened to a predetermined position at start-up, it is possible to prevent the refrigerant from being gasified and injected as a liquid. can be provided.

本発明の実施の形態における液体加熱装置の構成図1 is a configuration diagram of a liquid heating device according to an embodiment of the present invention; 同冷凍サイクル置について理想条件での圧力―エンタルピー線図(P-h線図)Pressure-enthalpy diagram (Ph diagram) under ideal conditions for the same refrigeration cycle 本実施の形態におけるバイパス膨張弁制御のフロー図Flow chart of bypass expansion valve control in the present embodiment

(本開示の基礎となった知見等)
中間冷却器で加熱した冷媒を圧縮室にインジェクションする冷凍サイクルでは、動作時の外気温や水温によって、インジェクションの最適量は異なってくる。そのため、インジェクションする冷媒量を減圧弁によって調整するのが一般的な制御方法である。しかし、インジェクション量を調整する際、インジェクションする冷媒量が多くなり、中間圧側の冷媒が過冷却熱交換器で蒸発しきれずに液のまま圧縮機に流入する。そのため、液圧縮が発生して、圧縮機の信頼性を損なう場合がある。一般的には、圧縮機の信頼性の確保のために、吸入側の液圧縮を防止する制御を行うが、それだけではなく、インジェクションのある冷凍サイクルの場合には、インジェクションでの液圧縮も考慮する必要がある。その課題を解決するために、本開示の主題を構成するに至った。
そこで、本開示は、中間熱交換器を通過した後にインジェクションされる冷媒の液バックを防止して信頼性の高い冷凍サイクル装置、及び、それを備えた液体加熱装置を提供する。
(Knowledge, etc. on which this disclosure is based)
In a refrigeration cycle in which refrigerant heated by an intercooler is injected into a compression chamber, the optimum amount of injection varies depending on the outside air temperature and water temperature during operation. Therefore, a common control method is to adjust the amount of refrigerant to be injected using a pressure reducing valve. However, when the injection amount is adjusted, the amount of refrigerant to be injected increases, and the refrigerant on the intermediate pressure side cannot be completely evaporated in the subcooling heat exchanger and flows into the compressor as a liquid. As a result, liquid compression occurs, which may impair the reliability of the compressor. Generally, in order to ensure the reliability of the compressor, control is performed to prevent liquid compression on the suction side, but in the case of a refrigeration cycle with injection, liquid compression during injection is also considered. There is a need to. In order to solve the problem, the subject matter of the present disclosure has been constructed.
Accordingly, the present disclosure provides a highly reliable refrigeration cycle device that prevents liquid backflow of refrigerant that is injected after passing through an intermediate heat exchanger, and a liquid heating device that includes the same.

以下、図面を参照しながら実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。
なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters or redundant descriptions of substantially the same configurations may be omitted. This is to avoid the following description from becoming more redundant than necessary and to facilitate understanding by those skilled in the art.
It should be noted that the accompanying drawings and the following description are provided to allow those skilled in the art to fully understand the present disclosure and are not intended to limit the claimed subject matter thereby.

(実施の形態)
[1-1.構成]
図1は、本実施の形態による液体加熱装置の構成図である。液体加熱装置は、超臨界蒸気圧縮式冷凍サイクルである冷凍サイクル装置、利用側熱媒体回路30から構成されている。また、冷凍サイクル装置は、主冷媒回路10、バイパス冷媒回路20から構成されている。
主冷媒回路10は、冷媒を圧縮する圧縮機構11、利用側熱交換器である放熱器12、中間熱交換器であるエコノマイザ13、第1膨張装置である主膨張弁14、熱源側熱交換器である蒸発器15が、配管16で順次接続されて形成される。冷媒として二酸化炭素(CO)を用いている。
なお、冷媒としては、二酸化炭素を用いるのが最適だが、例えば、R407C等の非共沸混合冷媒、R410A等の擬似共沸混合冷媒、または、R32等の単一冷媒、または、プロパン等の可燃性冷媒も用いることもできる。
圧縮機構11は、回転要素が冷媒を圧縮する途中にバイパス冷媒回路20からの冷媒をインジェクションし、バイパス冷媒回路20からの冷媒と圧縮途中の冷媒とを合流させて再圧縮を行う。放熱器12は、圧縮機構11から吐出された冷媒により利用側熱媒体を加熱する。
(Embodiment)
[1-1. Constitution]
FIG. 1 is a configuration diagram of a liquid heating apparatus according to this embodiment. The liquid heating device is composed of a refrigeration cycle device, which is a supercritical vapor compression refrigeration cycle, and a utilization-side heat medium circuit 30 . Also, the refrigeration cycle device is composed of a main refrigerant circuit 10 and a bypass refrigerant circuit 20 .
The main refrigerant circuit 10 includes a compression mechanism 11 that compresses the refrigerant, a radiator 12 that is a user side heat exchanger, an economizer 13 that is an intermediate heat exchanger, a main expansion valve 14 that is a first expansion device, and a heat source side heat exchanger. are sequentially connected by pipes 16 to form evaporators 15. Carbon dioxide (CO 2 ) is used as a refrigerant.
As the refrigerant, it is most suitable to use carbon dioxide. Reactive refrigerants can also be used.
The compression mechanism 11 injects the refrigerant from the bypass refrigerant circuit 20 while the rotating element is compressing the refrigerant, joins the refrigerant from the bypass refrigerant circuit 20 and the refrigerant in the middle of compression, and recompresses the refrigerant. The radiator 12 heats the user-side heat medium with the refrigerant discharged from the compression mechanism 11 .

バイパス冷媒回路20は、放熱器12と主膨張弁14との間の配管16から分岐され、圧縮機構11の圧縮途中にある圧縮室に接続されている。
バイパス冷媒回路20には、第2膨張装置であるバイパス膨張弁21が設けられている。放熱器12を通過後の一部の高圧冷媒、又は、エコノマイザ13を通過後の一部の高圧冷媒は、バイパス膨張弁21により減圧されて中間圧冷媒となった後に、エコノマイザ13で主冷媒回路10を流れる高圧冷媒と熱交換され、圧縮機構11の回転要素の中にインジェクションされ、主冷媒回路10の圧縮途中の冷媒と合流される。
The bypass refrigerant circuit 20 branches off from the pipe 16 between the radiator 12 and the main expansion valve 14 and is connected to a compression chamber in the middle of compression of the compression mechanism 11 .
The bypass refrigerant circuit 20 is provided with a bypass expansion valve 21 as a second expansion device. A part of the high-pressure refrigerant after passing through the radiator 12 or a part of the high-pressure refrigerant after passing through the economizer 13 is decompressed by the bypass expansion valve 21 to become an intermediate-pressure refrigerant, and then the economizer 13 passes through the main refrigerant circuit. It exchanges heat with the high-pressure refrigerant flowing through 10 , is injected into the rotating element of the compression mechanism 11 , and joins with the refrigerant in the middle of compression in the main refrigerant circuit 10 .

利用側熱媒体回路30は、放熱器12、搬送装置である搬送ポンプ31、及び暖房端末32aが熱媒体配管33で順次接続されて形成される。利用側熱媒体として、水又は不凍液を用いている。
本実施の形態における利用側熱媒体回路30は、暖房端末32aと並列に貯湯タンク32bを備えており、第1切替弁34、第2切替弁35の切り替えによって利用側熱媒体を、暖房端末32a又は貯湯タンク32bに循環させる。なお、利用側熱媒体回路30は、暖房端末32a及び貯湯タンク32bのいずれかを備えていればよい。
The utilization-side heat medium circuit 30 is formed by sequentially connecting the radiator 12 , the conveying pump 31 that is a conveying device, and the heating terminal 32 a with a heat medium pipe 33 . Water or antifreeze is used as the heat medium on the user side.
The use-side heat medium circuit 30 in the present embodiment includes a hot water storage tank 32b in parallel with the heating terminal 32a. Alternatively, the hot water is circulated to the hot water storage tank 32b. In addition, the utilization side heat medium circuit 30 may be provided with either the heating terminal 32a or the hot water storage tank 32b.

放熱器12で生成された高温水は、暖房端末32aで放熱して暖房に利用され、暖房端末32aで放熱された低温水は再び放熱器12で加熱される。
また、放熱器12で生成された高温水は、貯湯タンク32bの上部から貯湯タンク32bに導入され、貯湯タンク32bの下部から低温水が導出されて放熱器12で加熱される。
The high-temperature water generated by the radiator 12 is radiated by the heating terminal 32a and used for heating, and the low-temperature water radiated by the heating terminal 32a is heated by the radiator 12 again.
The hot water generated by the radiator 12 is introduced into the hot water tank 32b from the upper part of the hot water tank 32b, and the low temperature water is drawn out from the lower part of the hot water tank 32b and heated by the radiator 12.

給湯用熱交換器42は、貯湯タンク32b内に配置され、給水配管43からの給水と貯湯タンク32b内の高温水との間で熱交換させる。すなわち、給湯栓41が開栓されると、給水配管43から給湯用熱交換器42内に給水され、給湯用熱交換器42で加熱されて、給湯栓41で所定温度になるように調整され、給湯栓41からから給湯される。なお、給水配管43から給水され、給湯用熱交換器42で加熱されて、給湯栓41から給湯される湯水と、貯湯タンク32b内の高温水とは、互いに混ざり合うことがない間接加熱である。
給湯用熱交換器42は、伝熱管として銅管あるいはステンレス管を使用する水熱交換器であって、図1に示すように、給水源(水道)から延びる給水配管43と、給湯栓41とが給湯用熱交換器42に接続されている。給水配管43は、常温の水を、給湯用熱交換器42の下端、すなわち、貯湯タンク32b内の下方に導入する。給水配管43より給湯用熱交換器42に導入された常温水は、貯湯タンク32b内を下方から上方に移動しながら、貯湯タンク32b内の高温水から熱を奪い、加熱された高温の加熱水となって給湯栓41から給湯される。
The hot water supply heat exchanger 42 is arranged in the hot water storage tank 32b, and heat-exchanges between the water supply from the water supply pipe 43 and the high-temperature water in the hot water storage tank 32b. That is, when the hot water supply valve 41 is opened, water is supplied from the water supply pipe 43 into the hot water supply heat exchanger 42, heated by the hot water supply heat exchanger 42, and adjusted to a predetermined temperature at the hot water supply valve 41. , hot water is supplied from the hot water tap 41 . The hot water supplied from the water supply pipe 43, heated by the hot water supply heat exchanger 42, and supplied from the hot water tap 41 and the high-temperature water in the hot water storage tank 32b are indirectly heated so as not to mix with each other. .
The hot water supply heat exchanger 42 is a water heat exchanger using copper pipes or stainless steel pipes as heat transfer pipes, and as shown in FIG. is connected to the hot water supply heat exchanger 42 . The water supply pipe 43 introduces normal temperature water to the lower end of the hot water supply heat exchanger 42, that is, to the lower part of the hot water storage tank 32b. The normal temperature water introduced into the hot water supply heat exchanger 42 through the water supply pipe 43 takes heat from the high temperature water in the hot water storage tank 32b while moving upward in the hot water storage tank 32b, and the high temperature water is heated. As a result, hot water is supplied from the hot water tap 41 .

貯湯タンク32bには、複数の貯湯タンク温度サーモミスタが、複数の異なる高さ位置において温水の温度を計測する。例えば、第1貯湯タンク温度サーミスタ55a、第2貯湯タンク温度サーミスタ55b、第3貯湯タンク温度サーミスタ55cが設けられている。給水配管43より給湯用熱交換器42に入った常温水は、貯湯タンク32b内を下方から上方に移動しながら貯湯タンク32b内の高温水から熱を奪う。そのため、貯湯タンク32b内の温水は、自然と、上部が高温、下部が低温となる。 In the hot water storage tank 32b, a plurality of hot water storage tank temperature thermomistors measure the temperature of hot water at a plurality of different height positions. For example, a first hot water storage tank temperature thermistor 55a, a second hot water storage tank temperature thermistor 55b, and a third hot water storage tank temperature thermistor 55c are provided. Normal temperature water entering the hot water supply heat exchanger 42 through the water supply pipe 43 takes heat from high temperature water in the hot water storage tank 32b while moving upward in the hot water storage tank 32b. Therefore, the hot water in the hot water storage tank 32b naturally has a high temperature in the upper part and a low temperature in the lower part.

主冷媒回路10には、圧縮機構11の吐出側の配管16に、高圧側圧力検出装置51が設けられている。なお、高圧側圧力検出装置51は、圧縮機構11の吐出側から、主膨張弁14の上流側までの、主冷媒回路10に設けられている。高圧側圧力検出装置51は、主冷媒回路10の高圧冷媒の圧力を検出できればよい。
また、主冷媒回路10の利用側熱交換器12の下流側で、エコノマイザ13の上流側の配管16には、中間熱交換器主冷媒入口サーミスタ57が設けられていている。中間熱交換器主冷媒入口サーミスタ57は、利用側熱交換器12から流出した冷媒の温度を検出する。さらに、バイパス冷媒回路20には、中間熱交換器バイパス入口サーミスタ56が設けられている。中間熱交換器バイパス入口サーミスタ56は、第2膨張装置21の下流側で、エコノマイザ13の上流側に、第2膨張装置21から流出した冷媒の温度を検出する。
また、利用側熱媒体回路30は、利用側熱交換器12から流出する利用側熱媒体の温度を検出する熱媒体出口温度サーミスタ53と、利用側熱交換器12に流入する利用側熱媒体の温度を検出する熱媒体入口温度サーミスタ54とを備えている。
In the main refrigerant circuit 10 , a high-pressure side pressure detection device 51 is provided in the pipe 16 on the discharge side of the compression mechanism 11 . The high pressure side pressure detection device 51 is provided in the main refrigerant circuit 10 from the discharge side of the compression mechanism 11 to the upstream side of the main expansion valve 14 . The high-pressure side pressure detection device 51 only needs to detect the pressure of the high-pressure refrigerant in the main refrigerant circuit 10 .
An intermediate heat exchanger main refrigerant inlet thermistor 57 is provided in the piping 16 on the downstream side of the user-side heat exchanger 12 in the main refrigerant circuit 10 and on the upstream side of the economizer 13 . The intermediate heat exchanger main refrigerant inlet thermistor 57 detects the temperature of the refrigerant flowing out of the user-side heat exchanger 12 . Further, the bypass refrigerant circuit 20 is provided with an intermediate heat exchanger bypass inlet thermistor 56 . Intermediate heat exchanger bypass inlet thermistor 56 senses the temperature of the refrigerant exiting second expansion device 21 downstream of second expansion device 21 and upstream of economizer 13 .
The utilization-side heat medium circuit 30 also includes a heat-medium outlet temperature thermistor 53 that detects the temperature of the utilization-side heat medium flowing out of the utilization-side heat exchanger 12, and and a heat medium inlet temperature thermistor 54 for detecting temperature.

さらに、バイパス冷媒回路20は、エコノマイザ13の上流側の冷媒温度を検出する中間熱交換器バイパス入口サーミスタ56と下流側の冷媒温度を検出する中間熱交換器バイパス出口サーミスタ58と、第2膨張装置21の下流側の圧力を、直接的または間接的に検出する中間圧側圧力検出装置52を備えている。
中間圧側圧力検出装置52が、圧力を直接的に検出する場合は、中間圧側圧力検出装置52は、冷媒の圧力を直接、すなわち、機械的に検出する圧力検出装置である。
中間圧側圧力検出装置52が、圧力を間接的に検出する場合は、高圧側圧力検出装置51で検出される検出圧力と、中間熱交換器主冷媒入口サーミスタ57で検出される検出温度とに基づいて、または、熱媒体入口温度サーミスタ54で検出される検出温度と、中間熱交換器バイパス入口サーミスタ56で検出される検出温度とに基づいて、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)の値を、制御装置60が算出する。制御装置60は演算処理機能を有している。
すなわち、制御装置60は、図2に示すような、圧力―エンタルピー線図(P-h線図)を記憶する。
Further, the bypass refrigerant circuit 20 includes an intermediate heat exchanger bypass inlet thermistor 56 that detects the refrigerant temperature on the upstream side of the economizer 13, an intermediate heat exchanger bypass outlet thermistor 58 that detects the refrigerant temperature on the downstream side, and a second expansion device. 21 is provided with an intermediate pressure side pressure detection device 52 that directly or indirectly detects the pressure on the downstream side.
When the intermediate pressure side pressure detection device 52 directly detects the pressure, the intermediate pressure side pressure detection device 52 is a pressure detection device that directly, that is, mechanically detects the pressure of the refrigerant.
When the intermediate pressure side pressure detection device 52 indirectly detects the pressure, it is based on the detected pressure detected by the high pressure side pressure detection device 51 and the detected temperature detected by the intermediate heat exchanger main refrigerant inlet thermistor 57. or based on the temperature detected by the heat medium inlet temperature thermistor 54 and the temperature detected by the intermediate heat exchanger bypass inlet thermistor 56. The control device 60 calculates the value of the pressure (intermediate pressure). The control device 60 has an arithmetic processing function.
That is, the controller 60 stores a pressure-enthalpy diagram (Ph diagram) as shown in FIG.

そして、高圧側圧力検出装置51により高圧側圧力(高段側圧縮回転要素11bの吐出圧力)、中間熱交換器主冷媒入口サーミスタ57により利用側熱交換器12の冷媒の出口温度(A点)、中間熱交換器バイパス入口サーミスタ56により中間熱交換器13のバイパス冷媒回路20の冷媒の入口温度(e点)を所定時間ごとに検出する。
そして、A点とe点とはエンタルピーがほぼ同一値であるとの理想条件に基づいて、制御装置60が、e点の圧力とエンタルピーとを算出することで、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)の値を算出し、その値により臨界圧以上であるか否かを判断することができる。
なお、中間熱交換器主冷媒入口サーミスタ57で検出される検出温度の代わりに、熱媒体入口温度サーミスタ54で検出される検出温度を用いても、値はほぼ同一なので構わない。
すなわち、圧縮機構11の吐出圧力と、利用側熱交換器12の冷媒の出口温度(A点)と、中間熱交換器13のバイパス冷媒回路20の冷媒の入口温度(e点)、あるいは、利用側熱交換器12に流入する利用側熱媒体の温度とから、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)が、臨界圧以上であることを判断できるのである。
Then, the high-pressure side pressure detector 51 detects the high-pressure side pressure (discharge pressure of the high-stage compression rotary element 11b), and the intermediate heat exchanger main refrigerant inlet thermistor 57 detects the refrigerant outlet temperature (point A) of the user-side heat exchanger 12. , the intermediate heat exchanger bypass inlet thermistor 56 detects the inlet temperature (point e) of the refrigerant in the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 at predetermined intervals.
Then, based on the ideal condition that the enthalpy at point A and point e are approximately the same value, the control device 60 calculates the pressure and enthalpy at point e, so that the pressure is reduced by the second expansion device 21. It is possible to calculate the value of the pressure (intermediate pressure) of the refrigerant after cooling, and determine whether or not the pressure is equal to or higher than the critical pressure based on the calculated value.
Note that the detected temperature detected by the heat medium inlet temperature thermistor 54 may be used instead of the detected temperature detected by the intermediate heat exchanger main refrigerant inlet thermistor 57, since the values are substantially the same.
That is, the discharge pressure of the compression mechanism 11, the refrigerant outlet temperature (point A) of the utilization side heat exchanger 12, the refrigerant inlet temperature (point e) of the bypass refrigerant circuit 20 of the intermediate heat exchanger 13, or It can be determined from the temperature of the use-side heat medium flowing into the side heat exchanger 12 that the pressure (intermediate pressure) of the refrigerant after being decompressed by the second expansion device 21 is equal to or higher than the critical pressure.

なお、中間圧側圧力検出装置52は、直接的または間接的に検出する圧力検出装置のうち、どちらか一方を備えていえば良い。
制御装置60は、高圧側圧力検出装置51及び中間圧側圧力検出装置52で検出される検出圧力、熱媒体出口温度サーミスタ53及び熱媒体入口温度サーミスタ54で検出される検出温度によって、圧縮機構11の運転周波数、主膨張弁14とバイパス膨張弁21の弁開度、及び搬送ポンプ31を制御する。
It should be noted that the intermediate pressure side pressure detection device 52 may be provided with either one of pressure detection devices that directly or indirectly detect pressure.
The control device 60 controls the compression mechanism 11 based on the pressure detected by the high pressure side pressure detection device 51 and the intermediate pressure side pressure detection device 52 and the temperature detected by the heat medium outlet temperature thermistor 53 and the heat medium inlet temperature thermistor 54. The operating frequency, the opening degrees of the main expansion valve 14 and the bypass expansion valve 21, and the transfer pump 31 are controlled.

[1-2.動作]
図2は、本実施の形態における冷凍サイクル装置について、理想条件での圧力―エンタルピー線図(P-h線図)であり、図2(a)は高圧が所定圧力未満、図2(b)は高圧が所定圧力以上の場合を示している。図2のa~e点、およびA~B点は、図1に示す液体加熱装置における各ポイントに相当する。
[1-2. motion]
FIG. 2 is a pressure-enthalpy diagram (Ph diagram) under ideal conditions for the refrigeration cycle apparatus according to the present embodiment. indicates that the high pressure is equal to or higher than the predetermined pressure. Points a to e and points AB in FIG. 2 correspond to respective points in the liquid heating apparatus shown in FIG.

図2を用いて、冷凍サイクル装置の動作について説明する。
まず、圧縮機構11から吐出される高圧冷媒(a点)は、放熱器12で放熱した後に冷媒分岐点Aで主冷媒回路10から分岐し、バイパス膨張弁21により中間圧まで減圧されて中間圧冷媒(e点)となり、中間圧冷媒は、エコノマイザ13にて熱交換する。
放熱器12で放熱した後の主冷媒回路10を流れる高圧冷媒は、バイパス冷媒回路20を流れる中間圧冷媒(e点)によって冷却され、エンタルピーが低減された状態(b点)で主膨張弁14にて減圧される。
これにより、主膨張弁14にて減圧された後に、蒸発器15に流入する冷媒(c点)の冷媒エンタルピーも低減される。蒸発器15に流入する時点での冷媒乾き度(全冷媒に対して気相成分が占める重量比率)が低下して冷媒の液成分が増大するため、蒸発器15において蒸発に寄与し、冷媒比率が増大して外気からの吸熱量が増大され、圧縮機構11の吸入側(d点)に戻る。
一方、蒸発器15において蒸発に寄与しない気相成分の量に相当する量の冷媒は、バイパス冷媒回路20にバイパスされて低温の中間圧冷媒(e点)となる。中間圧冷媒は、エコノマイザ13にて主冷媒回路10を流れる高圧冷媒によって加熱されて冷媒エンタルピーが高まった状態で、圧縮機構11の圧縮途中の冷媒合流点Bに至る。
従って、圧縮機構11の合流点(B点)では、圧縮機構11の吸入側(d点)より冷媒圧力が高いため冷媒密度も高く、かつ、圧縮機構11の圧縮途中の冷媒と合流した冷媒が更に圧縮機構11で圧縮されて吐出されるため、放熱器12に流入する冷媒流量が大幅に増大し、利用側熱媒体である水を加熱する能力が大幅に増大する。
The operation of the refrigeration cycle apparatus will be described with reference to FIG.
First, the high-pressure refrigerant (point a) discharged from the compression mechanism 11 is branched from the main refrigerant circuit 10 at the refrigerant branch point A after radiating heat in the radiator 12, and is decompressed to the intermediate pressure by the bypass expansion valve 21. The intermediate-pressure refrigerant, which becomes the refrigerant (point e), exchanges heat in the economizer 13 .
The high-pressure refrigerant flowing through the main refrigerant circuit 10 after dissipating heat in the radiator 12 is cooled by the intermediate-pressure refrigerant (point e) flowing through the bypass refrigerant circuit 20, and the main expansion valve 14 is in a state where the enthalpy is reduced (point b). is decompressed at
As a result, the refrigerant enthalpy of the refrigerant (point c) flowing into the evaporator 15 after being decompressed by the main expansion valve 14 is also reduced. Since the dryness of the refrigerant (the weight ratio of the gas phase component to the total refrigerant) at the time of flowing into the evaporator 15 decreases and the liquid component of the refrigerant increases, it contributes to evaporation in the evaporator 15, and the refrigerant ratio increases, the amount of heat absorbed from the outside air increases, and returns to the suction side of the compression mechanism 11 (point d).
On the other hand, an amount of refrigerant corresponding to the amount of gaseous components that do not contribute to evaporation in the evaporator 15 is bypassed to the bypass refrigerant circuit 20 and becomes low-temperature intermediate-pressure refrigerant (point e). The intermediate-pressure refrigerant is heated by the high-pressure refrigerant flowing through the main refrigerant circuit 10 in the economizer 13 to increase the refrigerant enthalpy, and reaches the refrigerant junction B in the middle of compression in the compression mechanism 11 .
Therefore, at the confluence point (point B) of the compression mechanism 11, since the refrigerant pressure is higher than that on the suction side (d point) of the compression mechanism 11, the refrigerant density is also high. Furthermore, since the refrigerant is compressed by the compression mechanism 11 and discharged, the flow rate of the refrigerant flowing into the radiator 12 is greatly increased, and the ability to heat water, which is the heat medium on the utilization side, is greatly increased.

圧縮機構11の吐出圧力が上昇し、所定値を超えた場合には、制御装置60は、バイパス膨張弁21により減圧された後の冷媒の圧力が、図2(b)に示すように臨界圧を超えた状態となるように、バイパス膨張弁21の弁開度の制御を開始する。
具体的には、制御装置60は、高圧側圧力検出装置51で検出される検出圧力が上昇し、第1所定高圧値を超えたと判断した場合に、中間圧側圧力検出装置52で検出される検出圧力が、臨界圧以下の場合には、バイパス膨張弁21の弁開度を大きくなるように動作を開始させる。
そして、図2(b)に示すように、制御装置60は、バイパス膨張弁21の弁開度を大きくなるように動作させ、かつ、圧縮機構11の運転周波数を上昇させて、バイパス冷媒回路20を流れる冷媒の循環量を増加させ、高圧側圧力検出装置51で検出される検出圧力が目標高圧値である第2所定高圧値になるようにする。なお、第2所定高圧値は、第1所定高圧値よりも高い値である。
When the discharge pressure of the compression mechanism 11 rises and exceeds a predetermined value, the control device 60 controls the pressure of the refrigerant after being decompressed by the bypass expansion valve 21 to reach the critical pressure as shown in FIG. 2(b). control of the valve opening degree of the bypass expansion valve 21 is started so that the state exceeds .
Specifically, when the control device 60 determines that the detected pressure detected by the high pressure side pressure detection device 51 has increased and exceeds the first predetermined high pressure value, the detection pressure detected by the intermediate pressure side pressure detection device 52 is increased. When the pressure is below the critical pressure, the bypass expansion valve 21 is started to open to a greater degree.
Then, as shown in FIG. 2B, the control device 60 operates to increase the valve opening degree of the bypass expansion valve 21 and increases the operating frequency of the compression mechanism 11 so that the bypass refrigerant circuit 20 is increased so that the detected pressure detected by the high pressure side pressure detecting device 51 becomes the second predetermined high pressure value, which is the target high pressure value. The second predetermined high pressure value is higher than the first predetermined high pressure value.

それと同時に、図2(a)に示すように、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)が臨界圧未満の場合において、制御装置60は図3の制御フローに示すように、バイパス膨張弁21の弁開度を制御する。バイパス冷媒回路20のエコノマイザ13の下流側で、圧縮機構11の圧縮途中の冷媒と合流前の冷媒の過熱度SHmを取得し(S1)、過熱度SHmが所定値SHtを下回ったと判断した場合(S2でYES)、バイパス膨張弁21の弁開度を小さくなるように動作させ、冷媒の流量を少なくする(S3)。これにより、主冷媒回路10との熱交換による冷媒の温度上昇幅が大きくなり、エコノマイザ13の下流側で、圧縮機構11の圧縮途中の冷媒と合流前の冷媒の過熱度SHmが上昇する。そのため、圧縮機構11にインジェクションされる冷媒はガスとなる。また、取得したエコノマイザ13の下流側の冷媒の過熱度SHmが所定値SHtを超えたと判断した場合(S2でNO)、バイパス膨張弁21の弁開度を大きくなるように動作させ、冷媒の流量を多くする(S4)。これにより、主冷媒回路10との熱交換による冷媒の温度上昇幅が小さくなり、エコノマイザ13の下流側で、圧縮機構11の圧縮途中の冷媒と合流前の冷媒の過熱度SHmが低下し、圧縮機構11の圧縮途中で主冷媒回路10と合流した冷媒の温度が低下し、圧縮機構11から吐出される冷媒の温度である吐出温度が低下する。
このとき、圧縮機構11にインジェクションされる冷媒の過熱度SHmは、エコノマイザ13の圧力損失を考慮した上で、中間熱交換器バイパス入口サーミスタ56と中間熱交換器バイパス出口サーミスタ58から得られる温度の差から算出できる。これは、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)が臨界圧未満の場合には、中間熱交換器バイパス入口サーミスタ56が検出する温度が飽和温度となるからである。なお、中間圧側圧力検出装置52から検出される圧力情報と中間熱交換器バイパス出口サーミスタ58から検出される温度情報から算出することもできる。
At the same time, when the pressure (intermediate pressure) of the refrigerant after being decompressed by the second expansion device 21 is less than the critical pressure as shown in FIG. , the valve opening degree of the bypass expansion valve 21 is controlled. On the downstream side of the economizer 13 in the bypass refrigerant circuit 20, when the degree of superheat SHm of the refrigerant being compressed in the compression mechanism 11 and the refrigerant before joining is acquired (S1), and it is determined that the degree of superheat SHm has fallen below a predetermined value SHt ( If YES in S2), the degree of opening of the bypass expansion valve 21 is decreased to decrease the flow rate of the refrigerant (S3). As a result, the temperature of the refrigerant increases due to heat exchange with the main refrigerant circuit 10 , and the degree of superheat SHm between the refrigerant being compressed in the compression mechanism 11 and the refrigerant before joining increases downstream of the economizer 13 . Therefore, the refrigerant injected into the compression mechanism 11 becomes gas. Further, when it is determined that the acquired degree of superheat SHm of the refrigerant on the downstream side of the economizer 13 exceeds the predetermined value SHt (NO in S2), the bypass expansion valve 21 is operated to increase the valve opening degree, and the flow rate of the refrigerant is increased. is increased (S4). As a result, the extent of temperature rise of the refrigerant due to heat exchange with the main refrigerant circuit 10 is reduced, and the degree of superheat SHm of the refrigerant in the process of compression and the refrigerant before joining in the compression mechanism 11 on the downstream side of the economizer 13 is reduced. The temperature of the refrigerant that joins the main refrigerant circuit 10 during compression of the mechanism 11 decreases, and the discharge temperature, which is the temperature of the refrigerant discharged from the compression mechanism 11, decreases.
At this time, the degree of superheat SHm of the refrigerant injected into the compression mechanism 11 is the temperature obtained from the intermediate heat exchanger bypass inlet thermistor 56 and the intermediate heat exchanger bypass outlet thermistor 58 after considering the pressure loss of the economizer 13. It can be calculated from the difference. This is because the temperature detected by the intermediate heat exchanger bypass inlet thermistor 56 is the saturation temperature when the pressure (intermediate pressure) of the refrigerant after being decompressed by the second expansion device 21 is less than the critical pressure. . It can also be calculated from pressure information detected by the intermediate pressure side pressure detector 52 and temperature information detected by the intermediate heat exchanger bypass outlet thermistor 58 .

以下、利用側熱媒体回路30に貯湯タンク32bを用いる場合の動作について説明する。
複数の貯湯タンク温度サーミスタのうち、例えば、貯湯タンク32bの最も高い位置に配置されている第1貯湯タンク温度サーミスタ55aで検出される検出温度が所定値未満の場合、貯湯タンク32b内に高温水が足りないと、制御装置60は判断する。
そして、制御装置60は、圧縮機構11を動作させ、放熱器12で低温水を加熱するが、その加熱生成温度である熱媒体出口温度サーミスタ53で検出される検出温度が目標温度と等しくなるように、搬送ポンプ31を動作させる。
これにより、貯湯タンク32bの下部から導出された低温水を放熱器12で加熱する。これによって高温水が生成され、生成された高温水は、貯湯タンク32bの上部から貯湯タンク32bに導入される。このときには、熱媒体入口温度サーミスタ54で検出される検出温度が第3所定温度以下のため、図2(a)に記載の状態で動作する。
そして、貯湯タンク32b内には上部から次第に高温水が貯湯されていくため、熱媒体入口温度サーミスタ54で検出される検出温度は次第に上昇していくが、熱媒体入口温度サーミスタ54で検出される検出温度が第3所定温度を超えた場合には、図2(b)に記載の状態で動作するようにする。
The operation when the hot water storage tank 32b is used in the utilization side heat medium circuit 30 will be described below.
Among the plurality of hot water storage tank temperature thermistors, for example, when the temperature detected by the first hot water storage tank temperature thermistor 55a arranged at the highest position in the hot water storage tank 32b is less than a predetermined value, high-temperature water is supplied to the hot water storage tank 32b. is insufficient, the controller 60 determines.
Then, the control device 60 operates the compression mechanism 11 to heat the low-temperature water with the radiator 12 so that the temperature detected by the heat medium outlet temperature thermistor 53, which is the temperature generated by heating, becomes equal to the target temperature. Then, the conveying pump 31 is operated.
As a result, the radiator 12 heats the low-temperature water drawn out from the lower portion of the hot water storage tank 32b. As a result, high-temperature water is generated, and the generated high-temperature water is introduced into the hot water tank 32b from the upper portion of the hot water tank 32b. At this time, the temperature detected by the heat medium inlet temperature thermistor 54 is lower than or equal to the third predetermined temperature, so the operation is performed in the state shown in FIG. 2(a).
Since hot water is gradually stored in the hot water storage tank 32b from the top, the detected temperature detected by the heat medium inlet temperature thermistor 54 gradually rises, but is detected by the heat medium inlet temperature thermistor 54. When the detected temperature exceeds the third predetermined temperature, the operation is performed in the state shown in FIG. 2(b).

すなわち、制御装置60は、バイパス膨張弁21の弁開度を大きくなるように動作させ、かつ、圧縮機構11の運転周波数を上昇させて、バイパス冷媒回路20を流れる冷媒の循環量を増加させ、高圧側圧力検出装置51で検出される検出圧力が目標高圧値である第2所定高圧値になるようにする。制御装置60は、それと同時に、中間圧側圧力検出装置52で検出される検出圧力が、目標中間圧値である所定中間圧値になるようにする。
これにより、放熱器12への熱媒体の入口温度が高くなり、放熱器12における冷媒のエンタルピー差(a-A)が小さくなった分を、放熱器12における冷媒の加熱能力を増加させることで、高温水の貯湯タンク32bへの供給を維持できるようにしている。
そして、制御装置60は、熱媒体入口温度サーミスタ54で検出される検出温度が第3所定温度より高い第1所定温度を超えた場合には、圧縮機構11の運転周波数を低下させることで、放熱器12における高圧冷媒の圧力が、目標高圧値である第2所定高圧値を超えないにように、放熱器12における高圧冷媒の圧力上昇を抑えながら、貯湯タンク32bに高温水を貯めることができる。
That is, the control device 60 operates to increase the degree of opening of the bypass expansion valve 21 and increases the operating frequency of the compression mechanism 11 to increase the circulation amount of the refrigerant flowing through the bypass refrigerant circuit 20, The detected pressure detected by the high-pressure side pressure detector 51 is set to the second predetermined high pressure value, which is the target high pressure value. At the same time, the control device 60 causes the detected pressure detected by the intermediate pressure side pressure detection device 52 to become the predetermined intermediate pressure value, which is the target intermediate pressure value.
As a result, the inlet temperature of the heat medium to the radiator 12 increases, and the refrigerant heating capacity of the radiator 12 is increased to compensate for the decrease in the enthalpy difference (aA) of the refrigerant in the radiator 12. , to maintain the supply of hot water to the hot water storage tank 32b.
Then, when the temperature detected by the heat medium inlet temperature thermistor 54 exceeds a first predetermined temperature higher than the third predetermined temperature, the control device 60 reduces the operating frequency of the compression mechanism 11 so that heat is dissipated. High-temperature water can be stored in the hot water storage tank 32b while suppressing the pressure rise of the high-pressure refrigerant in the radiator 12 so that the pressure of the high-pressure refrigerant in the vessel 12 does not exceed the second predetermined high-pressure value, which is the target high-pressure value. .

なお、閾値として、熱媒体入口温度サーミスタ54で検出される検出温度である第3所定温度および第1所定温度の代わりに、それぞれ、高圧側圧力検出装置51で検出される検出圧力である第1所定高圧値および第2所定高圧値を用いて、同様の運転動作を実行してもよい。 As the thresholds, instead of the third predetermined temperature and the first predetermined temperature, which are the temperatures detected by the heat medium inlet temperature thermistor 54, the first temperature, which is the detected pressure detected by the high pressure side pressure detection device 51, is used. Similar operational actions may be performed using the predetermined high pressure value and the second predetermined high pressure value.

利用側熱媒体回路30に暖房端末32aを用いる場合について説明する。
制御装置60は、圧縮機構11を動作させ、放熱器12で循環水を加熱するが、その循環水の温度差である熱媒体出口温度サーミスタ53で検出される検出温度と熱媒体入口温度サーミスタ54で検出される検出温度との温度差が目標温度差となるように、搬送ポンプ31を動作させる。
これにより、放熱器12で生成された高温水は、暖房端末32aで放熱して暖房に利用され、暖房端末32aで放熱された低温水は、再び放熱器12で加熱される。このときには、熱媒体出口温度サーミスタ53で検出される検出温度と熱媒体入口温度サーミスタ54で検出される検出温度との温度差が目標温度差となるように制御され、かつ、熱媒体出口温度サーミスタ53で検出される検出温度が第4所定温度以下のため、図2(a)に記載の状態で動作する。
そして、次第に暖房負荷が小さくなるため、熱媒体出口温度サーミスタ53で検出される検出温度と熱媒体入口温度サーミスタ54で検出される検出温度との温度差が目標温度差となるように制御している関係上、熱媒体出口温度サーミスタ53で検出される検出温度及び熱媒体入口温度サーミスタ54で検出される検出温度は次第に上昇していくが、熱媒体出口温度サーミスタ53で検出される検出温度が第4所定温度を超えた場合には、図2(b)に記載の状態で動作するようにする。
A case where the heating terminal 32a is used for the heat medium circuit 30 on the utilization side will be described.
The controller 60 operates the compression mechanism 11 and heats the circulating water with the radiator 12. The temperature difference between the circulating water, which is detected by the heat medium outlet temperature thermistor 53 and the heat medium inlet temperature thermistor 54, is The conveying pump 31 is operated so that the temperature difference from the detection temperature detected in 1 becomes the target temperature difference.
As a result, the high-temperature water generated by the radiator 12 is radiated by the heating terminal 32a and used for heating, and the low-temperature water radiated by the heating terminal 32a is heated by the radiator 12 again. At this time, the temperature difference between the temperature detected by the heat medium outlet temperature thermistor 53 and the temperature detected by the heat medium inlet temperature thermistor 54 is controlled to be a target temperature difference, and the heat medium outlet temperature thermistor Since the detected temperature detected by 53 is equal to or lower than the fourth predetermined temperature, it operates in the state shown in FIG. 2(a).
Since the heating load gradually decreases, control is performed so that the temperature difference between the temperature detected by the heat medium outlet temperature thermistor 53 and the temperature detected by the heat medium inlet temperature thermistor 54 becomes the target temperature difference. Therefore, the temperature detected by the heat medium outlet temperature thermistor 53 and the temperature detected by the heat medium inlet temperature thermistor 54 gradually increase. When the fourth predetermined temperature is exceeded, the operation is performed in the state shown in FIG. 2(b).

すなわち、バイパス膨張弁21の弁開度を大きくなるように動作させ、かつ、圧縮機構11の運転周波数を上昇させて、バイパス冷媒回路20を流れる冷媒の循環量を増加させ、高圧側圧力検出装置51で検出される検出圧力が目標高圧値である第2所定高圧値になるようにする。 That is, the bypass expansion valve 21 is operated to increase the valve opening degree, and the operating frequency of the compression mechanism 11 is increased to increase the circulation amount of the refrigerant flowing through the bypass refrigerant circuit 20, thereby increasing the high-pressure side pressure detection device. The detected pressure detected at 51 is set to the second predetermined high pressure value, which is the target high pressure value.

それと同時に、特第2膨張装置21により減圧された後の冷媒の圧力(中間圧)が臨界圧未満の場合において、制御装置60は、図3の制御フローに示すようにバイパス膨張弁21の弁開度を制御する。バイパス冷媒回路20のエコノマイザ13の下流側で、圧縮機構11の圧縮途中の冷媒と合流前の冷媒の過熱度SHmを取得し(S1)、過熱度SHmが所定値SHtを下回ったと判断した場合(S2でYES)、バイパス膨張弁21の弁開度を小さくなるように動作させ、冷媒の流量を少なくする(S3)。これにより、主冷媒回路10との熱交換による冷媒の温度上昇幅が大きくなり、エコノマイザ13の下流側で、圧縮機構11の圧縮途中の冷媒と合流前の冷媒の過熱度SHmが上昇する。そのため、圧縮機構11にインジェクションされる冷媒はガスとなる。また、取得したエコノマイザ13の下流側の冷媒の過熱度SHmが所定値SHtを超えたと判断した場合(S2でNO)、バイパス膨張弁21の弁開度を大きくなるように動作させ、冷媒の流量を多くする(S4)。これにより、主冷媒回路10との熱交換による冷媒の温度上昇幅が小さくなり、エコノマイザ13の下流側で、圧縮機構11の圧縮途中の冷媒と合流前の冷媒の過熱度SHmが低下し、圧縮機構11の圧縮途中で主冷媒回路10と合流した冷媒の温度が低下し、圧縮機構11から吐出される冷媒の温度である吐出温度が低下する。
このとき、圧縮機構11にインジェクションされる冷媒の過熱度SHmは、エコノマイザ13の圧力損失を考慮した上で、中間熱交換器バイパス入口サーミスタ56と中間熱交換器バイパス出口サーミスタ58から得られる温度の差から算出できる。これは、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)が臨界圧未満の場合には、中間熱交換器バイパス入口サーミスタ56が検出する温度が飽和温度となるからである。なお、中間圧側圧力検出装置52から検出される圧力情報と中間熱交換器バイパス出口サーミスタ58から検出される温度情報から算出を行うこともできる。
これにより、暖房負荷が小さくなり、放熱器12におけるエンタルピー差(a-A)が小さくなった分を、放熱器12における冷媒の加熱能力を増加させることで、高温水の暖房端末32aへの供給を維持できるようにしている。
At the same time, when the pressure (intermediate pressure) of the refrigerant after being decompressed by the second expansion device 21 is less than the critical pressure, the control device 60 controls the bypass expansion valve 21 as shown in the control flow of FIG. Control the degree of opening. On the downstream side of the economizer 13 in the bypass refrigerant circuit 20, when the degree of superheat SHm of the refrigerant being compressed in the compression mechanism 11 and the refrigerant before joining is acquired (S1), and it is determined that the degree of superheat SHm has fallen below a predetermined value SHt ( If YES in S2), the degree of opening of the bypass expansion valve 21 is decreased to reduce the flow rate of the refrigerant (S3). As a result, the temperature of the refrigerant increases due to heat exchange with the main refrigerant circuit 10 , and the degree of superheat SHm between the refrigerant being compressed in the compression mechanism 11 and the refrigerant before joining increases downstream of the economizer 13 . Therefore, the refrigerant injected into the compression mechanism 11 becomes gas. Further, when it is determined that the acquired degree of superheat SHm of the refrigerant on the downstream side of the economizer 13 exceeds the predetermined value SHt (NO in S2), the bypass expansion valve 21 is operated to increase the valve opening degree, and the flow rate of the refrigerant is increased. is increased (S4). As a result, the extent of temperature rise of the refrigerant due to heat exchange with the main refrigerant circuit 10 is reduced, and the degree of superheat SHm of the refrigerant in the process of compression and the refrigerant before joining in the compression mechanism 11 on the downstream side of the economizer 13 is reduced. The temperature of the refrigerant that joins the main refrigerant circuit 10 during compression of the mechanism 11 decreases, and the discharge temperature, which is the temperature of the refrigerant discharged from the compression mechanism 11, decreases.
At this time, the degree of superheat SHm of the refrigerant injected into the compression mechanism 11 is the temperature obtained from the intermediate heat exchanger bypass inlet thermistor 56 and the intermediate heat exchanger bypass outlet thermistor 58 after considering the pressure loss of the economizer 13. It can be calculated from the difference. This is because the temperature detected by the intermediate heat exchanger bypass inlet thermistor 56 becomes the saturation temperature when the pressure (intermediate pressure) of the refrigerant after being decompressed by the second expansion device 21 is less than the critical pressure. . The calculation can also be performed from pressure information detected by the intermediate pressure side pressure detector 52 and temperature information detected by the intermediate heat exchanger bypass outlet thermistor 58 .
As a result, the heating load is reduced, and the enthalpy difference (aA) in the radiator 12 is reduced by increasing the refrigerant heating capacity in the radiator 12, so that high-temperature water is supplied to the heating terminal 32a. is maintained.

そして、熱媒体出口温度サーミスタ53で検出される検出温度が、第4所定温度より高い第2所定温度を超えた場合には、圧縮機構11の運転周波数を低下させることで、放熱器12における高圧冷媒の圧力が、目標高圧値である第2所定高圧値を超えないにように、放熱器12における高圧冷媒の圧力上昇を抑えながら、高温水を用いた暖房機器として利用できる。 Then, when the detected temperature detected by the heat medium outlet temperature thermistor 53 exceeds a second predetermined temperature higher than the fourth predetermined temperature, the operating frequency of the compression mechanism 11 is lowered to reduce the high pressure in the radiator 12. It can be used as a heating device using high-temperature water while suppressing the pressure rise of the high-pressure refrigerant in the radiator 12 so that the pressure of the refrigerant does not exceed the second predetermined high-pressure value, which is the target high-pressure value.

[1-3.効果等]
バイパス冷媒回路20のエコノマイザ13の下流側で、圧縮機構11の圧縮途中の冷媒と合流前の冷媒の過熱度SHmが所定値SHtを下回った場合、バイパス膨張弁21の弁開度を小さくなるように動作させることにより、エコノマイザ13の下流側で、圧縮機構11の圧縮途中の冷媒と合流前の冷媒の過熱度SHmが上昇する。そのため、圧縮機構11にインジェクションされる冷媒が、液状態で圧縮されるのを防止することができる。
また、エコノマイザ13の下流側で、圧縮機構11の圧縮途中の冷媒と合流前の冷媒の過熱度SHmが所定値SHtを超えた場合、バイパス膨張弁21の弁開度を大きくなるように動作させることにより、エコノマイザ13の下流側で、圧縮機構11の圧縮途中の冷媒と合流前の冷媒の過熱度SHmが低下し、圧縮機構11から吐出される冷媒の温度である吐出温度も低下させることができるため、使用範囲を超える吐出温度の過度な上昇を抑えることができる。
これらのことから、バイパス膨張弁21を用いてエコノマイザ13の下流側で、圧縮機構11の圧縮途中の冷媒と合流前の冷媒の過熱度SHmを制御することにより、圧縮機構11の信頼性を確保することができる。なお、バイパス膨張弁21の弁開度を大きくなるように動作させる所定値SHtと、バイパス膨張弁21の弁開度を小さくなるように動作させる所定値SHtは同一でもよいし、異なっていてもよい。すなわち、バイパス膨張弁21の弁開度を大きくなるように動作させる所定値SHtが、バイパス膨張弁21の弁開度を小さくなるように動作させる所定値SHtよりも大きくてもよい。
[1-3. effects, etc.]
On the downstream side of the economizer 13 in the bypass refrigerant circuit 20, when the degree of superheat SHm of the refrigerant in the middle of compression in the compression mechanism 11 and the refrigerant before joining falls below a predetermined value SHt, the degree of opening of the bypass expansion valve 21 is reduced. As a result, the degree of superheat SHm of the refrigerant being compressed in the compression mechanism 11 and the refrigerant before joining together increases on the downstream side of the economizer 13 . Therefore, the refrigerant injected into the compression mechanism 11 can be prevented from being compressed in a liquid state.
Further, when the degree of superheat SHm of the refrigerant being compressed in the compression mechanism 11 and the refrigerant before being merged exceeds a predetermined value SHt on the downstream side of the economizer 13, the valve opening degree of the bypass expansion valve 21 is increased. As a result, on the downstream side of the economizer 13, the degree of superheat SHm of the refrigerant in the middle of compression in the compression mechanism 11 and the refrigerant before merging decreases, and the discharge temperature, which is the temperature of the refrigerant discharged from the compression mechanism 11, also decreases. Therefore, it is possible to suppress an excessive rise in the discharge temperature exceeding the use range.
For these reasons, the reliability of the compression mechanism 11 is ensured by controlling the degree of superheat SHm of the refrigerant during compression and the refrigerant before joining the compression mechanism 11 downstream of the economizer 13 using the bypass expansion valve 21. can do. The predetermined value SHt for increasing the opening degree of the bypass expansion valve 21 and the predetermined value SHt for decreasing the opening degree of the bypass expansion valve 21 may be the same or different. good. That is, the predetermined value SHt for increasing the degree of opening of the bypass expansion valve 21 may be greater than the predetermined value SHt for decreasing the degree of opening of the bypass expansion valve 21 .

なお、閾値として、熱媒体出口温度サーミスタ53で検出される検出温度である第4所定温度および第2所定温度の代わりに、それぞれ、高圧側圧力検出装置51で検出される検出圧力である第1所定高圧値および第2所定高圧値を用いて、同様の運転動作を実行してもよい。 Instead of the fourth predetermined temperature and the second predetermined temperature, which are the temperatures detected by the heat medium outlet temperature thermistor 53, as the threshold values, the first Similar operational actions may be performed using the predetermined high pressure value and the second predetermined high pressure value.

本実施の形態による冷凍サイクル装置では、冷媒を二酸化炭素とすることが好ましい。これは、放熱器12において、冷媒である二酸化炭素で、利用側熱媒体を加熱したときの、利用側熱媒体の高温化が可能となるためである。
また、利用側熱媒体を水又は不凍液とすることで、暖房端末32aに用い、又は貯湯タンク32bに高温水を貯えることができる。
In the refrigeration cycle apparatus according to the present embodiment, carbon dioxide is preferably used as the refrigerant. This is because, in the radiator 12, the temperature of the utilization-side heat medium can be increased when the utilization-side heat medium is heated with carbon dioxide, which is a refrigerant.
In addition, by using water or antifreeze as the heat medium to be used, it can be used for the heating terminal 32a, or high-temperature water can be stored in the hot water storage tank 32b.

以上のように、本発明にかかる冷凍サイクル装置は、中間熱交換器を備えた主冷媒回路とバイパス冷媒回路からなり、バイパス冷媒回路から圧縮機構へインジェクションする冷媒の過熱度を所定値以上にすることで、圧縮機構での液圧縮が発生することを防止することができるため、冷凍サイクル装置を用いた冷凍、空調、および、給湯、暖房機器の液体加熱装置等に有用である。 As described above, the refrigeration cycle apparatus according to the present invention comprises a main refrigerant circuit and a bypass refrigerant circuit provided with an intermediate heat exchanger, and sets the degree of superheat of the refrigerant injected from the bypass refrigerant circuit to the compression mechanism to a predetermined value or more. As a result, it is possible to prevent the occurrence of liquid compression in the compression mechanism, and thus it is useful for refrigeration, air conditioning, hot water supply, liquid heating devices using a refrigeration cycle device, and the like.

10 主冷媒回路
11 圧縮機構
12 放熱器(利用側熱交換器)
13 エコノマイザ(中間熱交換器)
14 主膨張弁(第1膨張装置)
15 蒸発器(熱源側熱交換器)
16 配管
20 バイパス冷媒回路
21 バイパス膨張弁(第2膨張装置)
30 利用側熱媒体回路
31 搬送ポンプ(搬送装置)
32a 暖房端末
32b 貯湯タンク
33 熱媒体配管
34 第1切替弁
35 第2切替弁
41 給湯栓
42 給湯用熱交換器
43 給水配管
51 高圧側圧力検出装置
52 中間圧側圧力検出装置
53 熱媒体出口温度サーミスタ
54 熱媒体入口温度サーミスタ
55a 第1貯湯タンク温度サーミスタ
55b 第2貯湯タンク温度サーミスタ
55c 第3貯湯タンク温度サーミスタ
56 中間熱交換器バイパス入口サーミスタ(冷却前温度センサ)
57 中間熱交換器主冷媒入口サーミスタ
58 中間熱交換器バイパス出口サーミスタ(冷却後温度センサ)
60 制御装置
10 main refrigerant circuit 11 compression mechanism 12 radiator (utilization side heat exchanger)
13 economizer (intermediate heat exchanger)
14 main expansion valve (first expansion device)
15 evaporator (heat source side heat exchanger)
16 piping 20 bypass refrigerant circuit 21 bypass expansion valve (second expansion device)
30 Heat medium circuit on the user side 31 Conveying pump (conveying device)
32a heating terminal 32b hot water storage tank 33 heat medium pipe 34 first switching valve 35 second switching valve 41 hot water tap 42 hot water supply heat exchanger 43 water supply pipe 51 high pressure side pressure detector 52 intermediate pressure side pressure detector 53 heat medium outlet temperature thermistor 54 Heat medium inlet temperature thermistor 55a First hot water storage tank temperature thermistor 55b Second hot water storage tank temperature thermistor 55c Third hot water storage tank temperature thermistor 56 Intermediate heat exchanger bypass inlet thermistor (pre-cooling temperature sensor)
57 Intermediate heat exchanger main refrigerant inlet thermistor 58 Intermediate heat exchanger bypass outlet thermistor (post-cooling temperature sensor)
60 control device

Claims (10)

圧縮回転要素から構成される圧縮機構、前記圧縮回転要素から吐出された冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、及び熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、
前記利用側熱交換器と前記第1膨張装置との間の前記配管から分岐され、分岐された前記冷媒が、第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる前記冷媒と熱交換され、前記圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路と、
前記中間熱交換器より上流側の前記バイパス冷媒回路を流れる前記冷媒の温度を検出する冷却前温度センサと、
前記中間熱交換器より下流側の前記バイパス冷媒回路を流れる前記冷媒の温度を検出する冷却後温度センサと、
制御装置と
を備え、
前記制御装置は、前記冷却前温度センサと前記冷却後温度センサとから取得する温度データに基づいて、前記圧縮回転要素に合流される前記冷媒の過熱度を算出し、算出された前記過熱度が所定値を下回る場合には、前記第2膨張装置の弁開度を小さくなるように動作させることを特徴とする冷凍サイクル装置。
A compression mechanism composed of a compression rotary element, a utilization side heat exchanger for heating a utilization side heat medium with refrigerant discharged from the compression rotary element, an intermediate heat exchanger, a first expansion device, and a heat source side heat exchanger. a main refrigerant circuit formed by sequentially connecting pipes;
After the refrigerant is branched from the pipe between the user-side heat exchanger and the first expansion device, and the branched refrigerant is depressurized by the second expansion device, the main refrigerant circuit is passed through the intermediate heat exchanger. a bypass refrigerant circuit that exchanges heat with the flowing refrigerant and joins the refrigerant that is being compressed by the compression rotary element;
a pre-cooling temperature sensor that detects the temperature of the refrigerant flowing through the bypass refrigerant circuit on the upstream side of the intermediate heat exchanger;
a post-cooling temperature sensor that detects the temperature of the refrigerant flowing through the bypass refrigerant circuit downstream of the intermediate heat exchanger;
a control device;
The control device calculates the degree of superheat of the refrigerant joining the compression rotary element based on the temperature data acquired from the pre-cooling temperature sensor and the post-cooling temperature sensor, and the calculated degree of superheat is A refrigeration cycle apparatus characterized in that, when the second expansion device is below a predetermined value, the valve opening degree of the second expansion device is reduced.
前記制御装置が、前記冷却前温度センサと前記冷却後温度センサとから取得する前記温度データに基づいて、前記圧縮回転要素に合流される前記冷媒の前記過熱度を算出し、算出される前記過熱度が前記所定値以上である場合には、前記第2膨張装置の前記弁開度を大きくなるように動作させることを特徴とする請求項1記載の冷凍サイクル装置。 The control device calculates the degree of superheat of the refrigerant joining the compression rotary element based on the temperature data obtained from the pre-cooling temperature sensor and the post-cooling temperature sensor, and the calculated superheat 2. The refrigeration cycle apparatus according to claim 1, wherein when the degree of opening of the second expansion device is greater than or equal to the predetermined value, the valve opening degree of the second expansion device is increased. 前記第2膨張装置より下流側の前記バイパス冷媒回路を流れる前記冷媒の圧力を検出する中間圧側圧力検出装置を備え、
前記中間圧側圧力検出装置で検出される検出圧力が、臨界圧以下の場合には、前記制御装置は、前記第2膨張装置の前記弁開度を大きくなるように動作させることを特徴とする請求項2に記載の冷凍サイクル装置。
an intermediate pressure side pressure detection device that detects the pressure of the refrigerant flowing through the bypass refrigerant circuit downstream of the second expansion device;
When the detected pressure detected by the intermediate pressure side pressure detecting device is equal to or lower than the critical pressure, the control device operates to increase the opening degree of the valve of the second expansion device. Item 3. The refrigeration cycle device according to Item 2.
前記制御装置は、前記圧縮回転要素の運転周波数を上昇させることを特徴とする請求項3に記載の冷凍サイクル装置。 4. The refrigeration cycle apparatus according to claim 3, wherein said control device increases the operating frequency of said compression rotary element. 前記主冷媒回路の高圧側の圧力を検出する高圧側圧力検出装置を備え、
前記高圧側圧力検出装置で検出される検出圧力が、所定値を越えた場合には、前記制御装置は、前記圧縮回転要素の前記運転周波数を低下させることを特徴とする請求項4に記載の冷凍サイクル装置。
A high-pressure side pressure detection device that detects the pressure on the high-pressure side of the main refrigerant circuit,
5. The apparatus according to claim 4, wherein when the detected pressure detected by said high pressure side pressure detecting device exceeds a predetermined value, said control device reduces said operating frequency of said compression rotary element. Refrigeration cycle equipment.
前記冷媒を二酸化炭素としたことを特徴とする請求項1から請求項5のいずれか1項に記載の冷凍サイクル装置。 6. The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein the refrigerant is carbon dioxide. 請求項1から請求項5のいずれか1項に記載の冷凍サイクル装置と、搬送装置によって前記利用側熱媒体を循環させる利用側熱媒体回路とを備えたことを特徴とする液体加熱装置。 A liquid heating apparatus comprising: the refrigeration cycle apparatus according to any one of claims 1 to 5; and a utilization-side heat medium circuit that circulates the utilization-side heat medium by a conveying device. 前記利用側熱交換器から流出される前記利用側熱媒体の温度を検出する熱媒体出口温度サーミスタと、
前記利用側熱交換器に流入される前記利用側熱媒体の温度を検出する熱媒体入口温度サーミスタと
を備え、
前記制御装置は、前記熱媒体出口温度サーミスタで検出される検出温度が目標温度と等しくなるように、前記搬送装置を動作させるとともに、前記熱媒体入口温度サーミスタで検出される検出温度が第1所定温度を超えた場合には、前記圧縮回転要素の運転周波数を低下させることを特徴とする請求項7に記載の液体加熱装置。
a heat medium outlet temperature thermistor for detecting the temperature of the heat transfer medium flowing out of the use heat exchanger;
a heat medium inlet temperature thermistor that detects the temperature of the use-side heat medium flowing into the use-side heat exchanger;
The control device operates the conveying device so that the detected temperature detected by the heat medium outlet temperature thermistor becomes equal to a target temperature, and the detected temperature detected by the heat medium inlet temperature thermistor is set to a first predetermined temperature. 8. A liquid heating apparatus according to claim 7, wherein the operating frequency of said compression rotating element is reduced when the temperature exceeds.
前記利用側熱交換器から流出される前記利用側熱媒体の温度を検出する熱媒体出口温度サーミスタと、
前記利用側熱交換器に流入される前記利用側熱媒体の温度を検出する熱媒体入口温度サーミスタと
を備え、
前記制御装置は、前記熱媒体出口温度サーミスタで検出される検出温度と前記熱媒体入口温度サーミスタで検出される検出温度との温度差が目標温度差となるように、前記搬送装置を動作させるとともに、前記熱媒体出口温度サーミスタの前記検出温度が第2所定温度を超えた場合には、前記圧縮回転要素の運転周波数を低下させることを特徴とする請求項7に記載の液体加熱装置。
a heat medium outlet temperature thermistor for detecting the temperature of the heat transfer medium flowing out of the use heat exchanger;
a heat medium inlet temperature thermistor that detects the temperature of the use-side heat medium flowing into the use-side heat exchanger;
The control device operates the conveying device such that the temperature difference between the temperature detected by the heat medium outlet temperature thermistor and the temperature detected by the heat medium inlet temperature thermistor becomes a target temperature difference. 8. The liquid heating apparatus according to claim 7, wherein when the detected temperature of the heat medium outlet temperature thermistor exceeds a second predetermined temperature, the operating frequency of the compression rotary element is lowered.
前記利用側熱媒体を、水又は不凍液としたことを特徴とする請求項7から請求項9のいずれか1項に記載の液体加熱装置。 10. The liquid heating apparatus according to any one of claims 7 to 9, wherein the heat medium on the utilization side is water or antifreeze liquid.
JP2021081277A 2021-05-12 2021-05-12 Refrigeration cycle device and liquid heating device including the same Pending JP2022175115A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021081277A JP2022175115A (en) 2021-05-12 2021-05-12 Refrigeration cycle device and liquid heating device including the same
EP22171958.6A EP4089345A1 (en) 2021-05-12 2022-05-06 Refrigeration cycle device and liquid heating device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021081277A JP2022175115A (en) 2021-05-12 2021-05-12 Refrigeration cycle device and liquid heating device including the same

Publications (1)

Publication Number Publication Date
JP2022175115A true JP2022175115A (en) 2022-11-25

Family

ID=81585093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021081277A Pending JP2022175115A (en) 2021-05-12 2021-05-12 Refrigeration cycle device and liquid heating device including the same

Country Status (2)

Country Link
EP (1) EP4089345A1 (en)
JP (1) JP2022175115A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024088461A (en) * 2022-12-20 2024-07-02 パナソニックIpマネジメント株式会社 Refrigeration Cycle Equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989507B2 (en) 2008-02-15 2012-08-01 三菱電機株式会社 Refrigeration equipment
JP4833330B2 (en) 2009-11-27 2011-12-07 三菱電機株式会社 Supercritical vapor compression refrigeration cycle, air conditioning equipment and heat pump water heater using the same
DE112016004544T5 (en) * 2015-10-05 2018-06-21 Denso Corporation Refrigeration cycle device
KR102165354B1 (en) * 2018-07-20 2020-10-13 엘지전자 주식회사 An air conditioning system and a method for controlling the same
JP7012208B2 (en) * 2019-01-18 2022-01-28 パナソニックIpマネジメント株式会社 Refrigeration cycle device and liquid heating device equipped with it

Also Published As

Publication number Publication date
EP4089345A1 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
KR100856991B1 (en) Refrigerating air conditioner, operation control method of refrigerating air conditioner, and refrigerant quantity control method of refrigerating air conditioner
US20120000237A1 (en) Heat pump system
JP6019837B2 (en) Heat pump system
US10161647B2 (en) Air-conditioning apparatus
JP5355016B2 (en) Refrigeration equipment and heat source machine
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JP2007278686A (en) Heat pump water heater
JP2011052884A (en) Refrigerating air conditioner
JPWO2012104893A1 (en) Air conditioner
JP2022175115A (en) Refrigeration cycle device and liquid heating device including the same
JP7012208B2 (en) Refrigeration cycle device and liquid heating device equipped with it
JP6986675B2 (en) Supercritical vapor compression refrigeration cycle and liquid heating device
JP2007093097A (en) Heat pump water heater and control method of the same
JP6820205B2 (en) Refrigerant circuit system and control method
JP2004020070A (en) Heat pump type cold-hot water heater
JP2009293887A (en) Refrigerating device
JP6964241B2 (en) Refrigeration cycle device and liquid heating device equipped with it
JP7113210B2 (en) heat pump system
JP6381712B2 (en) Refrigeration cycle equipment
JP7438363B2 (en) Cold heat source unit and refrigeration cycle equipment
JP7390605B2 (en) heat pump system
JP5141364B2 (en) Refrigeration equipment
US20240151443A1 (en) Refrigeration cycle apparatus, control method for refrigeration cycle apparatus, and non-transitory computer-readable recording medium
JP2020148381A (en) Refrigeration cycle device and liquid heating device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240425