JP4989507B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4989507B2
JP4989507B2 JP2008034164A JP2008034164A JP4989507B2 JP 4989507 B2 JP4989507 B2 JP 4989507B2 JP 2008034164 A JP2008034164 A JP 2008034164A JP 2008034164 A JP2008034164 A JP 2008034164A JP 4989507 B2 JP4989507 B2 JP 4989507B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
expansion valve
refrigerant circuit
electronic expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008034164A
Other languages
Japanese (ja)
Other versions
JP2009192164A (en
Inventor
篤史 岐部
肇 藤本
浩光 森山
隆 池田
裕士 佐多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008034164A priority Critical patent/JP4989507B2/en
Publication of JP2009192164A publication Critical patent/JP2009192164A/en
Application granted granted Critical
Publication of JP4989507B2 publication Critical patent/JP4989507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、冷凍装置、特に冷凍倉庫などに用いられる低温冷凍装置に関する。   The present invention relates to a refrigeration apparatus, and particularly to a low-temperature refrigeration apparatus used in a refrigeration warehouse.

圧縮機が低段と高段の2段に配置された主冷媒回路を備えた冷凍装置として、中間膨張弁(外均式、キャピラリー等)および中間熱交換器を有したサブクール回路を設けて、主膨張弁に入る冷媒を熱交換させるとともに、サブクール回路からの冷媒を圧縮機の高段吸入側に導入させているものがある(例えば、特許文献1参照)。   As a refrigeration apparatus having a main refrigerant circuit in which a compressor is arranged in two stages, a low stage and a high stage, a subcool circuit having an intermediate expansion valve (external equality, capillary, etc.) and an intermediate heat exchanger is provided, Some refrigerants exchange heat with the main expansion valve and introduce refrigerant from the subcool circuit into the high-stage suction side of the compressor (see, for example, Patent Document 1).

特許第3599996号公報Japanese Patent No. 3599996

上記のような冷凍装置において、高段吸入側過熱度が小さいと液バックしやすく、その過熱度が大きいと高段吐出温度が異常に高くなる。このため従来は、中間膨張弁(中間圧力膨張弁ともいう)を現地の運転状況に合わせて、その都度調整する必要があった。
また、高段吸入過熱度で制御されているため、運転条件により高段吐出温度が変化し、中間回路にバイパスする冷媒量が変化する。バイパス冷媒量が多くなると消費電力も多くなるという課題もあった。
In the refrigeration apparatus as described above, if the high-stage suction side superheat degree is small, liquid back is easy, and if the superheat degree is large, the high-stage discharge temperature becomes abnormally high. For this reason, conventionally, it has been necessary to adjust the intermediate expansion valve (also referred to as an intermediate pressure expansion valve) in accordance with the local operating conditions.
Moreover, since it is controlled by the high-stage suction superheat degree, the high-stage discharge temperature changes depending on the operating conditions, and the amount of refrigerant bypassed to the intermediate circuit changes. There is also a problem that power consumption increases as the amount of bypass refrigerant increases.

この発明は上記の課題を解決するためになされたもので、中間膨張弁を現地の運転状況に合わせて調整する手間をなくすることを第1の目的とする。併せて、高段吸入側の液バックの防止や吐出温度異常の防止を図り、品質を向上させた冷凍装置を提供することも目的とする。
また、高段側の吐出ガス温度を最適値にすることで、どのような運転条件でも一番効率の良いバイパス冷媒量にして、省エネを図ることも目的とする。
The present invention has been made to solve the above-described problems, and a first object thereof is to eliminate the trouble of adjusting the intermediate expansion valve in accordance with the on-site operating conditions. In addition, another object of the present invention is to provide a refrigeration apparatus with improved quality by preventing liquid back on the high suction side and preventing abnormal discharge temperature.
Another object of the present invention is to save energy by setting the discharge gas temperature on the high stage side to an optimum value so that the amount of bypass refrigerant is the most efficient under any operating condition.

この発明の冷凍装置は、直列多段に配置された複数の圧縮機と、凝縮器と、主膨張弁と、蒸発器とが順に接続された主冷媒回路と、前記凝縮器と前記主膨張弁との間から分岐し、中間膨張弁を介して、前記複数の圧縮機の間に接続されたバイパス冷媒回路とを備えた冷凍装置において、前記中間膨張弁をその開度がリニアに制御可能な電子膨張弁とし、前記主冷媒回路の冷媒の温度情報に応じて前記電子膨張弁の開度を制御する制御装置と、前記複数の圧縮機のうちの最終段の圧縮機の吐出温度を検知する第1温度検知器とを備え、前記制御装置は、前記第1温度検知器の検出温度からt秒後の予想温度Ttを予想し、前記予想温度Ttと予め定めた目標温度Tpとの差に応じて、前記電子膨張弁の開度を制御するものである。 The refrigeration apparatus of the present invention includes a main refrigerant circuit in which a plurality of compressors arranged in series in multiple stages, a condenser, a main expansion valve, and an evaporator are connected in order, the condenser, and the main expansion valve. And a bypass refrigerant circuit connected between the plurality of compressors via an intermediate expansion valve and an electronic device whose opening degree is linearly controllable. A controller that controls the opening of the electronic expansion valve in accordance with the temperature information of the refrigerant in the main refrigerant circuit; and a discharge temperature of a final stage compressor among the plurality of compressors. 1 temperature detector, the control device predicts an expected temperature Tt after t seconds from the detected temperature of the first temperature detector, and according to the difference between the expected temperature Tt and a predetermined target temperature Tp Thus, the opening degree of the electronic expansion valve is controlled.

この発明の冷凍装置によれば、中間膨張弁をリニアに制御可能な電子膨張弁としたことにより、その電子膨張弁の開度を、運転中の冷媒の温度情報または温度情報と圧力情報とに応じてリニアに制御できるため、各地の運転状況に合わせて行っていた調整が不要となり、据付工事の際の作業負荷が低減できる。
また、中間膨張弁の開度をリニアに制御できることから、高段吸入側の液バックや吐出温度異常の発生を未然に防止することも可能となる。
さらに、高段側の吐出ガス温度を最適値にすることで、どのような運転条件でも一番効率の良いバイパス冷媒量にして、省エネを図ることができる。
According to the refrigeration apparatus of the present invention, since the intermediate expansion valve is a linearly controllable electronic expansion valve, the opening degree of the electronic expansion valve is changed to the temperature information of the refrigerant in operation or the temperature information and the pressure information. Since it can be controlled linearly, the adjustment that was performed according to the operating conditions in each place is not required, and the workload during installation work can be reduced.
Further, since the opening degree of the intermediate expansion valve can be controlled linearly, it is possible to prevent the occurrence of liquid back on the high-stage suction side and abnormal discharge temperature.
Further, by setting the discharge gas temperature on the high stage side to an optimum value, the most efficient bypass refrigerant amount can be achieved under any operating condition, and energy saving can be achieved.

実施の形態1.
図1は本発明の実施の形態1に係る冷凍装置の冷媒回路図である。この冷媒回路は、直列多段に配置された複数の圧縮機(ここでは第1の圧縮機1と第2の圧縮機2の2段構成)、凝縮器3、受液器4、冷媒・冷媒熱交換器(中間熱交換器)5、主膨張弁6、蒸発器7、気液分離器8が順に接続された主冷媒回路を有する。ここで、圧縮機1は低段圧縮機または第1段圧縮機と、圧縮機2は高段圧縮機または第2段圧縮機ともいう
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 1 of the present invention. This refrigerant circuit includes a plurality of compressors (two-stage configuration of a first compressor 1 and a second compressor 2 here) arranged in series in multiple stages, a condenser 3, a liquid receiver 4, refrigerant / refrigerant heat. It has a main refrigerant circuit in which an exchanger (intermediate heat exchanger) 5, a main expansion valve 6, an evaporator 7, and a gas-liquid separator 8 are connected in order. Here, the compressor 1 is also referred to as a low stage compressor or a first stage compressor, and the compressor 2 is also referred to as a high stage compressor or a second stage compressor .

そして、凝縮器3と主膨張弁6との間(この例では受液器4と冷媒・冷媒熱交換器5があるためそれらの間)から、中間膨張弁であるリニアに制御が可能な電子膨張弁9を介して、圧縮機1の吐出側と圧縮機2の吸入側との間の主冷媒回路に接続されたバイパス冷媒回路(サブクール回路)10を有している。   Then, between the condenser 3 and the main expansion valve 6 (in this example, there are the liquid receiver 4 and the refrigerant / refrigerant heat exchanger 5), an electronic that can be linearly controlled as an intermediate expansion valve. A bypass refrigerant circuit (subcool circuit) 10 is connected to the main refrigerant circuit between the discharge side of the compressor 1 and the suction side of the compressor 2 via the expansion valve 9.

さらに、上記冷媒回路は、圧縮機2の吐出温度を検知する第1温度検知器11、圧縮機2の吸入温度を検知する第2温度検知器12、圧縮機1の吐出温度を検知する第3温度検知器14、圧縮機1の吸入温度を検知する第4温度検知器16、圧縮機2の吸入圧力を検知する第1圧力検知器13、圧縮機1の吸入圧力を検知する第2圧力検知器15、およびそれらの検知器から温度情報と圧力情報を受け取り、それらの情報に基づいて、電子制御弁9の開度を制御する制御装置20を備えている。
なお、図1では、以下に説明する各種の制御態様において使用する温度検知器や圧力検知器を予めすべて設けた構成としているが、それぞれの制御態様に応じて特定の温度検知器や圧力検知器だけが用いられるため、適用する制御態様に応じて必要な温度検知器や圧力検知器だけを設けた構成としても良い。
Furthermore, the refrigerant circuit includes a first temperature detector 11 that detects the discharge temperature of the compressor 2, a second temperature detector 12 that detects the suction temperature of the compressor 2, and a third temperature that detects the discharge temperature of the compressor 1. The temperature detector 14, the fourth temperature detector 16 that detects the suction temperature of the compressor 1, the first pressure detector 13 that detects the suction pressure of the compressor 2, and the second pressure detection that detects the suction pressure of the compressor 1 The control device 20 that receives temperature information and pressure information from the detector 15 and the detectors and controls the opening degree of the electronic control valve 9 based on the information is provided.
In FIG. 1, the temperature detectors and pressure detectors used in various control modes described below are all provided in advance, but specific temperature detectors and pressure detectors are used according to the respective control modes. Therefore, only a necessary temperature detector or pressure detector may be provided according to the control mode to be applied.

上記冷媒回路を有した冷凍装置は次のような基本動作を行う。すなわち、冷媒が圧縮機1,2で圧縮された後、凝縮器3に入って凝縮される。冷媒はその後、受液器4、冷媒・冷媒熱交換器5を経て、主膨張弁6で減圧され、蒸発器7に入りそこで蒸発して周囲の空気を冷却する。その後、冷媒は気液分離器8を経て、圧縮機1に戻る。この際、主冷媒回路を流れる冷媒の状態は、前述した温度検知器11,12,14,16や圧力検知器13,15で検知される。   The refrigeration apparatus having the refrigerant circuit performs the following basic operation. That is, the refrigerant is compressed by the compressors 1 and 2 and then enters the condenser 3 to be condensed. Thereafter, the refrigerant passes through the liquid receiver 4 and the refrigerant / refrigerant heat exchanger 5 and is depressurized by the main expansion valve 6. Thereafter, the refrigerant returns to the compressor 1 through the gas-liquid separator 8. At this time, the state of the refrigerant flowing through the main refrigerant circuit is detected by the temperature detectors 11, 12, 14, 16 and the pressure detectors 13, 15 described above.

制御装置20による電子制御弁9の制御態様はいくつか考えられるが、圧縮機2の吐出温度((ア)部温度)を検知する第1温度検知器11の温度情報を基に、その吐出温度が所定の範囲に収まるように電子膨張弁9を制御することは好ましい制御態様の一つである。以下において、その制御態様を図2のフローチャートを基に説明する。   Although several control modes of the electronic control valve 9 by the control device 20 are conceivable, the discharge temperature is based on the temperature information of the first temperature detector 11 that detects the discharge temperature ((A) part temperature) of the compressor 2. Controlling the electronic expansion valve 9 so that is within a predetermined range is one preferred control mode. Hereinafter, the control mode will be described based on the flowchart of FIG.

冷凍装置の動作がスタートすると(S1)、制御装置20は第1温度検知器11に、例えば一定の間隔で温度検出を行わせて、その温度情報T4を受け取る(S2)。続いて、その温度情報T4を基にt秒後の(ア)部の予想温度Ttを予想する(S3)。そして、その予想温度Ttと予め定めた目標温度Tpとの差の絶対値が、予め定めた値α(1〜3℃程度)内の場合には電子膨張弁9の開度を維持し(S5)、予想温度Ttと目標温度Tpとの差が−αより小さい以下の場合には電子膨張弁9の開度を小さくし(S6)、予想温度Ttと目標温度Tpとの差が+αより大きい場合には電子膨張弁9の開度を大きくする(S7)。
上記において、t秒後の温度情報T4(予想温度Tt)を予想することにより、目標値への収束性を向上させることができる。例えば、現在の温度情報T4と目標値Tpとにより電子膨張弁の開度を制御した場合は、温度の変化勾配が無視されてしまう。これに対して、t秒後の温度情報T4を予想することにより、温度の変化勾配の要素を制御に取り込むことができ、目標値への収束性を向上させることができる。なお、「t秒」は、例えば15〜30秒である。もちろん、現在の検知温度で電子膨張弁の開度を制御してもよい。
When the operation of the refrigeration apparatus starts (S1), the control device 20 causes the first temperature detector 11 to detect temperature at, for example, a constant interval and receives the temperature information T4 (S2). Subsequently, an expected temperature Tt of (a) part after t seconds is predicted based on the temperature information T4 (S3). When the absolute value of the difference between the predicted temperature Tt and the predetermined target temperature Tp is within a predetermined value α (about 1 to 3 ° C.), the opening degree of the electronic expansion valve 9 is maintained (S5). ) When the difference between the predicted temperature Tt and the target temperature Tp is less than −α, the opening degree of the electronic expansion valve 9 is decreased (S6), and the difference between the predicted temperature Tt and the target temperature Tp is greater than + α. In this case, the opening degree of the electronic expansion valve 9 is increased (S7).
In the above, by predicting the temperature information T4 (expected temperature Tt) after t seconds, the convergence to the target value can be improved. For example, when the opening degree of the electronic expansion valve is controlled by the current temperature information T4 and the target value Tp, the temperature change gradient is ignored. On the other hand, by predicting the temperature information T4 after t seconds, an element of the temperature change gradient can be taken into the control, and the convergence to the target value can be improved. “T seconds” is, for example, 15 to 30 seconds. Of course, you may control the opening degree of an electronic expansion valve with the present detection temperature.

上記の制御において、目標温度Tpは100〜115℃程度とする。Tpはできるだけ高くすることが望ましい。それは、Tpを低く設定しすぎると電子膨張弁9に流す冷媒量が増え、圧縮機2の仕事量が増えて効率が悪くなるからである。しかし、高く設定しすぎると、圧縮機内にある冷凍機油の劣化が促進されて、冷媒回路の信頼性が低下するため、Tpは100〜115℃程度とするのが好ましい。
また、値αは1〜3℃程度とする。それは、αが小さすぎると電子膨張弁9がハンティングし、冷媒回路の安定性が悪くなるからである。逆にαが大きすぎると、目標の温度に収束する前に制御を止め、目標温度となりにくい。
また、高段圧縮機である圧縮機2の吸入側の過熱度(SH)が0〜3k以下になった場合には、目標温度Tpによらず、電子膨張弁9の開度を小さくして、圧縮機2への液バック防止することとする。逆に、Ttが120℃〜130℃を超えた場合には、油の劣化を防ぐために一時的に膨張弁開度を大きくすることもできる。
In the above control, the target temperature Tp is about 100 to 115 ° C. It is desirable to make Tp as high as possible. This is because if the Tp is set too low, the amount of refrigerant flowing through the electronic expansion valve 9 increases, the work amount of the compressor 2 increases, and the efficiency deteriorates. However, if the value is set too high, deterioration of the refrigerating machine oil in the compressor is promoted and the reliability of the refrigerant circuit is lowered. Therefore, Tp is preferably set to about 100 to 115 ° C.
The value α is about 1 to 3 ° C. This is because if α is too small, the electronic expansion valve 9 hunts and the stability of the refrigerant circuit deteriorates. On the other hand, if α is too large, the control is stopped before the temperature reaches the target temperature, and it is difficult to reach the target temperature.
Further, when the superheat degree (SH) on the suction side of the compressor 2 which is a high-stage compressor becomes 0 to 3 k or less, the opening degree of the electronic expansion valve 9 is reduced regardless of the target temperature Tp. The liquid back to the compressor 2 is prevented. Conversely, when Tt exceeds 120 ° C. to 130 ° C., the expansion valve opening can be temporarily increased in order to prevent deterioration of the oil.

図3は実施の形態1に係る冷凍装置の冷凍サイクルを示すモリエル線図である。なお、図3中の(ア)〜(カ)は、図1中の(ア)〜(カ)の位置に対応している。また、図3中のT1〜T4は、図1中の(エ)、(イ)、(ウ)、(ア)の各位置での温度を表している。図3に示すように、実施の形態1では、実際の市場や客先で使用される条件は、冷媒の凝縮温度CTを45℃程度とし、冷媒の蒸発温度ETを−60℃程度になることが多いと考えられる。図のなかで波線で示している部分は従来装置のもので、T4の温度が低くなるように設定されていることが多いため、バイパス冷媒量を多くする必要がある。特に、中間膨張弁の設定は、一番流量を必要とする高い蒸発温度で設定するため、低い蒸発温度では流し過ぎになることが多い。 3 is a Mollier diagram showing a refrigeration cycle of the refrigeration apparatus according to Embodiment 1. FIG. Note that (A) to (F) in FIG. 3 correspond to the positions (A) to (F) in FIG. Further, T 1 to T 4 in FIG. 3 represent temperatures at the positions (D), (A), (C), and (A) in FIG. As shown in FIG. 3, in the first embodiment, the conditions used in the actual market and customer are that the refrigerant condensation temperature CT is about 45 ° C. and the refrigerant evaporation temperature ET is about −60 ° C. It is thought that there are many. In the figure, the portion indicated by the wavy line is that of the conventional device, and is often set so that the temperature of T4 is low, so the amount of bypass refrigerant needs to be increased. In particular, since the intermediate expansion valve is set at a high evaporation temperature that requires the highest flow rate, it is often overflowed at a low evaporation temperature.

上記のように制御する実施の形態1の冷凍装置によれば、中間膨張弁である電子膨張弁9の開度を、作動中の冷媒の温度情報に応じて、または冷媒の温度情報と圧力情報に応じてリニアに制御するため、現地の運転状況に合わせて予め行っていた中間膨張弁の調整が不要となる。
また、電子膨張弁9の開度をリニアに制御できることから、吐出温度異常の発生を防止することができる。さらに、圧縮機2の吸入側過熱度を、例えば吸入圧力と吸入ガス温度により監視し、その過熱度に応じて電子膨張弁9の開度を調整可能とすれば、冷媒の圧縮機2への液バックも防止できる。
また、高段側の吐出ガス温度を最適値にすることで、どのような運転条件でも一番効率の良いバイパス冷媒量にして、省エネを図ることができる。
According to the refrigeration apparatus of Embodiment 1 controlled as described above, the opening degree of the electronic expansion valve 9 that is an intermediate expansion valve is set according to the temperature information of the refrigerant in operation, or the temperature information and pressure information of the refrigerant. Therefore, it is not necessary to adjust the intermediate expansion valve, which has been performed in advance according to the local operating conditions.
Moreover, since the opening degree of the electronic expansion valve 9 can be controlled linearly, the occurrence of abnormal discharge temperature can be prevented. Furthermore, if the suction side superheat degree of the compressor 2 is monitored by, for example, the suction pressure and the suction gas temperature, and the opening degree of the electronic expansion valve 9 can be adjusted according to the superheat degree, the refrigerant is supplied to the compressor 2. Liquid back can also be prevented.
In addition, by setting the discharge gas temperature on the high stage side to the optimum value, the most efficient bypass refrigerant amount can be achieved under any operating condition, and energy saving can be achieved.

図4は実施の形態1に係る冷凍装置の効果の説明図である。図4に示したように、上記の制御による実施の形態1の冷凍装置の場合には、従来の冷凍装置に比べて、低蒸発温度で、20〜40%の効率アップが達成された。これは、中間膨張弁である電子膨張弁9の開度が、作動中の冷媒の温度情報に応じて、または冷媒の温度情報と圧力情報に応じてリニアに制御されて、低蒸発温度でのバイパス冷媒量の流し過ぎが防止されるからである。特に従来機では、高蒸発温度帯で電子膨張弁の開度が調整されるため、低温度帯ではバイパス冷媒量が多くなり、効率低下につながっている。   FIG. 4 is an explanatory diagram of the effect of the refrigeration apparatus according to Embodiment 1. As shown in FIG. 4, in the case of the refrigeration apparatus of Embodiment 1 by the above control, an efficiency increase of 20 to 40% was achieved at a low evaporation temperature compared to the conventional refrigeration apparatus. This is because the degree of opening of the electronic expansion valve 9, which is an intermediate expansion valve, is linearly controlled according to the temperature information of the refrigerant in operation or according to the temperature information and pressure information of the refrigerant. This is because an excessive flow of the bypass refrigerant amount is prevented. In particular, in the conventional machine, since the opening degree of the electronic expansion valve is adjusted in the high evaporation temperature range, the amount of bypass refrigerant increases in the low temperature range, leading to a reduction in efficiency.

なお、電子膨張弁9の制御は、圧縮機2の吐出温度に基づいた上記制御に代えて、次に示す(a)、(b)のような制御を行っても良い。
(a)第1圧力検知器13の検出圧力の飽和温度と第2温度検知器12の検出温度との差である過熱度が一定となるように電子膨張弁9の開度を制御する。これによれば、第2の圧縮機2には必ず過熱度が一定のガス冷媒が吸入されるため、圧縮機が液冷媒を吸入するのを防止できる。
(b)第2圧力検知器15の検出圧力の飽和温度と第4温度検知器16の検出温度との差である過熱度が一定となるように電子膨張弁9の開度を制御する。これによれば、(a)と同様、第2の圧縮機2への液戻りを防止できるとともに、第1の圧縮機1への液戻りも防止できる。
The control of the electronic expansion valve 9 may be performed as shown in the following (a) and (b) instead of the above control based on the discharge temperature of the compressor 2.
(A) The opening degree of the electronic expansion valve 9 is controlled so that the degree of superheat that is the difference between the saturation temperature of the detected pressure of the first pressure detector 13 and the detected temperature of the second temperature detector 12 becomes constant. According to this, since the gas refrigerant with a constant superheat degree is always sucked into the second compressor 2, it is possible to prevent the compressor from sucking the liquid refrigerant.
(B) The opening degree of the electronic expansion valve 9 is controlled so that the degree of superheat, which is the difference between the saturation temperature of the detected pressure of the second pressure detector 15 and the detected temperature of the fourth temperature detector 16, becomes constant. According to this, like (a), while being able to prevent the liquid return to the 2nd compressor 2, the liquid return to the 1st compressor 1 can also be prevented.

実施の形態2.
図5は本発明の実施の形態2に係る冷凍装置の冷媒回路図である。図5において図1と同じ符号は同一物または相当物を表している。図5の図1との回路構成上の相違点は、バイパス冷媒回路10が冷媒・冷媒熱交換器5の流路の途中で、第1冷媒回路10aと第2冷媒回路10bとに分岐されている点である。すなわち、第1冷媒回路10aは冷媒・冷媒熱交換器5のバイパス側熱交換流路の途中から分岐し、第1電磁弁(開閉弁)21を経て圧縮機1,2の間に接続されており、第2冷媒回路10bは冷媒・冷媒熱交換器5のバイパス側熱交換流路の終端部を通り、第2電磁弁(開閉弁)22を経て圧縮機1,2の間に接続されている。
なお、冷媒・冷媒熱交換器5の熱交換流路を途中で分岐することに代えて、別体の2つの冷媒・冷媒熱交換器を利用して同様に構成しても、同じ効果が得られる。
Embodiment 2. FIG.
FIG. 5 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 2 of the present invention. 5, the same reference numerals as those in FIG. 1 denote the same or equivalent components. The difference in circuit configuration from FIG. 1 in FIG. 5 is that the bypass refrigerant circuit 10 is branched into the first refrigerant circuit 10a and the second refrigerant circuit 10b in the middle of the flow path of the refrigerant / refrigerant heat exchanger 5. It is a point. That is, the first refrigerant circuit 10a branches from the middle of the bypass side heat exchange flow path of the refrigerant / refrigerant heat exchanger 5 and is connected between the compressors 1 and 2 via the first electromagnetic valve (open / close valve) 21. The second refrigerant circuit 10b is connected between the compressors 1 and 2 via the second electromagnetic valve (open / close valve) 22 through the end of the bypass side heat exchange flow path of the refrigerant / refrigerant heat exchanger 5. Yes.
The same effect can be obtained by using the two separate refrigerant / refrigerant heat exchangers instead of branching the heat exchange flow path of the refrigerant / refrigerant heat exchanger 5 in the middle. It is done.

図5の冷凍装置でも、制御装置20は実施の形態1で説明したようにして電子膨張弁9を制御する。
実施の形態2ではそれに加えて、制御装置20が、第1温度検知器11の検出温度に応じて、第1電磁弁21と第2電磁弁22との開閉を切り替えるように制御する。すなわち、第1温度検知器11の検出温度が上がり易い条件では第1電磁弁21のみを開として、主冷媒回路の冷媒の熱交換量を少なくする。これに対して、第1温度検知器11の検出温度が下がり易い条件では第2電磁弁22のみを開として、主冷媒回路の冷媒の熱交換量を多くする。
第1温度検知器11の検出温度が上がり易い条件とは、高圧と低圧の圧力差が大きいときで、例えば、夏場に蒸発温度が低く設定された場合などが該当する。また、絞り装置6を構成している膨張弁の過熱度が大きく設定されて、第1の圧縮機1に吸入される冷媒温度が非常に高い場合なども、第1温度検知器11の検出温度が上がり易い。
これに対して、第1温度検知器11の検出温度が下がり易い条件とは、高圧と低圧の圧力差が小さいときで、例えば、冬場に蒸発温度が高く設定された場合などが該当する。また、第1の圧縮機1に吸入される冷媒温度が非常に低い場合なども、第1温度検知器11の検出温度が下がり易い。
電子膨張弁9の開度制御に加えて、第1電磁弁21と第2電磁弁22の開閉制御を行うことで、電子膨張弁9の制御だけでは不十分となる場合でも、圧縮機2への液バックの防止、冷凍装置の能力アップ、および消費電力の削減が図れることになる。
Also in the refrigeration apparatus of FIG. 5, the control device 20 controls the electronic expansion valve 9 as described in the first embodiment.
In the second embodiment, in addition to that, the control device 20 performs control so as to switch between opening and closing of the first electromagnetic valve 21 and the second electromagnetic valve 22 in accordance with the temperature detected by the first temperature detector 11. That is, under conditions where the temperature detected by the first temperature detector 11 is likely to rise, only the first solenoid valve 21 is opened, and the amount of heat exchange of the refrigerant in the main refrigerant circuit is reduced. On the other hand, in the condition where the temperature detected by the first temperature detector 11 tends to decrease, only the second electromagnetic valve 22 is opened, and the amount of heat exchange of the refrigerant in the main refrigerant circuit is increased.
The condition that the detected temperature of the first temperature detector 11 is likely to rise is when the pressure difference between the high pressure and the low pressure is large, for example, when the evaporation temperature is set low in summer. The detected temperature of the first temperature detector 11 is also used when the degree of superheat of the expansion valve constituting the expansion device 6 is set large and the refrigerant temperature sucked into the first compressor 1 is very high. Is easy to go up.
On the other hand, the condition that the temperature detected by the first temperature detector 11 is likely to decrease is when the pressure difference between the high pressure and the low pressure is small, for example, when the evaporation temperature is set high in winter. Further, even when the refrigerant temperature sucked into the first compressor 1 is very low, the temperature detected by the first temperature detector 11 tends to decrease.
Even if the control of the electronic expansion valve 9 is not sufficient by performing the opening / closing control of the first electromagnetic valve 21 and the second electromagnetic valve 22 in addition to the opening degree control of the electronic expansion valve 9, to the compressor 2. Prevention of liquid back, increase in the capacity of the refrigeration apparatus, and reduction in power consumption.

実施の形態3.
図6は本発明の実施の形態3に係る冷凍装置の冷媒回路図である。図6において図1と同じ符号は同一物または相当物を表している。図6の図1との回路構成との相違点は、図1のバイパス冷媒回路10が、第1バイパス冷媒回路10Aと第2バイパス冷媒回路10Bとから構成されている点である。第1バイパス冷媒回路10Aは第1電子膨張弁9Aを有したもので、実施の形態1のバイパス冷媒回路10から熱交換部分を除いたものとみなしてよい。一方、第2バイパス冷媒回路10Bは実施の形態1のバイパス冷媒回路10とは別に、新たに追加されたバイパス回路とみることができ、冷媒・冷媒熱交換機5の入口側で主冷媒回路から分岐し、第2電子膨張弁9Bおよび冷媒・冷媒熱交換機5のバイパス側熱交換流路を介して、圧縮機1の入力側に接続されている。
Embodiment 3 FIG.
FIG. 6 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 3 of the present invention. 6, the same reference numerals as those in FIG. 1 denote the same or equivalent components. 6 is different from the circuit configuration of FIG. 1 in that the bypass refrigerant circuit 10 of FIG. 1 includes a first bypass refrigerant circuit 10A and a second bypass refrigerant circuit 10B. The first bypass refrigerant circuit 10A includes the first electronic expansion valve 9A, and may be regarded as a heat exchange portion removed from the bypass refrigerant circuit 10 of the first embodiment. On the other hand, the second bypass refrigerant circuit 10B can be regarded as a newly added bypass circuit separately from the bypass refrigerant circuit 10 of the first embodiment, and branches from the main refrigerant circuit on the inlet side of the refrigerant / refrigerant heat exchanger 5. The second electronic expansion valve 9B and the refrigerant / refrigerant heat exchanger 5 are connected to the input side of the compressor 1 via the bypass side heat exchange flow path.

図6の冷凍装置でも、制御装置20は実施の形態1で説明したようにして電子膨張弁9Aを制御する。
実施の形態3ではそれに加えて、制御装置20が、第5温度検知器23の検出温度と第6温度検知器24の検出温度との差が一定となるように制御する。これにより、主冷媒回路の冷媒・冷媒熱交換機5の出口側のサブクール(SC)が一定となり、冷凍能力の変動を少なくできる。
また、冷媒・冷媒熱交換機5での熱交換量に左右されずに圧縮機2への冷媒インジェクション量が調整できるので、圧縮機2の吐出温度の安定性が図れて信頼性が向上する。
Also in the refrigeration apparatus of FIG. 6, the control device 20 controls the electronic expansion valve 9A as described in the first embodiment.
In the third embodiment, in addition to that, the control device 20 controls the difference between the detected temperature of the fifth temperature detector 23 and the detected temperature of the sixth temperature detector 24 to be constant. Thereby, the subcool (SC) on the outlet side of the refrigerant / refrigerant heat exchanger 5 in the main refrigerant circuit becomes constant, and fluctuations in the refrigerating capacity can be reduced.
Further, since the refrigerant injection amount to the compressor 2 can be adjusted without being influenced by the heat exchange amount in the refrigerant / refrigerant heat exchanger 5, the stability of the discharge temperature of the compressor 2 can be achieved and the reliability can be improved.

実施の形態4.
上記各実施の形態では圧縮機を2段構成にした例を基に説明したが、本発明は2段以上の多段圧縮機の構成とした場合にも適用可能である。図7は圧縮機を3段構成にした図1に対応する冷媒回路図である。なお、点線で囲んだ熱交換器の部分は他の部分と別体に設けても良い。また、図7で省略している部分は図1と同様の構成とみなして良い。
この場合、基本的な制御では、一方の電子膨張弁9は第1温度検出器11の検出温度に基づいてその開度を決定し、他方の電子膨張弁26は第3温度検出器14の検出温度に基づいてその開度を決定する。
また、応用的な制御では、一方の電子膨張弁9は第2温度検出器12と第1圧力検出器13の検出値から計算される過熱度を一定にするようにその開度を決定し、他方の電子膨張弁26は第7温度検出器27と第3圧力検出器28の検出値から計算される過熱度を一定にするようにその開度を決定する。
以上のように電子膨張弁9、26を制御することにより、圧縮機を3段構成にした冷凍装置においても、実施の形態1で説明したような効果を奏することができる。
Embodiment 4 FIG.
In each of the above embodiments, description has been made based on an example in which the compressor has a two-stage configuration. However, the present invention can also be applied to a case of a configuration of a multistage compressor having two or more stages. FIG. 7 is a refrigerant circuit diagram corresponding to FIG. 1 having a three-stage compressor. In addition, you may provide the part of the heat exchanger enclosed with the dotted line separately from another part. Further, the parts omitted in FIG. 7 may be regarded as the same configuration as in FIG.
In this case, in basic control, the opening degree of one electronic expansion valve 9 is determined based on the temperature detected by the first temperature detector 11, and the other electronic expansion valve 26 is detected by the third temperature detector 14. The opening degree is determined based on the temperature.
Further, in applied control, one electronic expansion valve 9 determines its opening degree so as to make the degree of superheat calculated from the detection values of the second temperature detector 12 and the first pressure detector 13 constant, The other electronic expansion valve 26 determines its opening degree so that the degree of superheat calculated from the detection values of the seventh temperature detector 27 and the third pressure detector 28 is constant.
By controlling the electronic expansion valves 9 and 26 as described above, the effects described in the first embodiment can be obtained even in the refrigeration apparatus having the three-stage compressor.

なお、各実施の形態においては、R22、R404A、R410A等のHFC、HCFC冷媒の他、CO2等の自然冷媒が使用できる。 In each embodiment, natural refrigerants such as CO 2 can be used in addition to HFC and HCFC refrigerants such as R22, R404A, and R410A.

実施の形態1に係る冷凍装置の冷媒回路図。2 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 1. FIG. 実施の形態1に係る冷凍装置の制御の一例を示すフローチャート。3 is a flowchart showing an example of control of the refrigeration apparatus according to Embodiment 1. 実施の形態1に係る冷凍装置のモリエル線図。The Mollier diagram of the refrigeration apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍装置の効果の説明図。Explanatory drawing of the effect of the freezing apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る冷凍装置の冷媒回路図。FIG. 4 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 2. 実施の形態3に係る冷凍装置の冷媒回路図。FIG. 6 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 3. 実施の形態4に係る冷凍装置の冷媒回路図。FIG. 6 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 4.

符号の説明Explanation of symbols

1 第1の圧縮機、2 第2の圧縮機、3 凝縮器、4 受液器、5 冷媒・冷媒熱交換器(中間熱交換器)、6 絞り装置、7 蒸発器、8 気液分離器、9 電子膨張弁(中間膨張弁)、9A 第1電子膨張弁、9B 第2電子膨張弁、10 バイパス冷媒回路(サブクール回路)、10A 第1バイパス冷媒回路、10B 第2バイパス冷媒回路、11 第1温度検知器、12 第2温度検知器、13 第1圧力検知器、14 第3温度検知器、15 第2圧力検知器、16 第4温度検知器、20 制御装置、21 第1電磁弁、22 第2電磁弁、23 第5温度検知器、24 第6温度検知器、25 第3の圧縮機、26 電子膨張弁、27 第7温度検知器、28 第3圧力検知器。   DESCRIPTION OF SYMBOLS 1 1st compressor, 2nd 2nd compressor, 3 condenser, 4 liquid receiver, 5 refrigerant | coolant / refrigerant heat exchanger (intermediate heat exchanger), 6 expansion apparatus, 7 evaporator, 8 gas-liquid separator , 9 Electronic expansion valve (intermediate expansion valve), 9A First electronic expansion valve, 9B Second electronic expansion valve, 10 Bypass refrigerant circuit (subcool circuit), 10A First bypass refrigerant circuit, 10B Second bypass refrigerant circuit, 11 DESCRIPTION OF SYMBOLS 1 temperature detector, 12 2nd temperature detector, 13 1st pressure detector, 14 3rd temperature detector, 15 2nd pressure detector, 16 4th temperature detector, 20 control apparatus, 21 1st solenoid valve, 22 2nd solenoid valve, 23 5th temperature detector, 24 6th temperature detector, 25 3rd compressor, 26 Electronic expansion valve, 27 7th temperature detector, 28 3rd pressure detector.

Claims (5)

直列多段に配置された複数の圧縮機と、凝縮器と、主膨張弁と、蒸発器とが順に接続された主冷媒回路と、前記凝縮器と前記主膨張弁との間から分岐し、中間膨張弁を介して、前記複数の圧縮機の間に接続されたバイパス冷媒回路とを備えた冷凍装置において、
前記中間膨張弁をその開度がリニアに制御可能な電子膨張弁とし、
前記主冷媒回路の冷媒の温度情報に応じて前記電子膨張弁の開度を制御する制御装置と、前記複数の圧縮機のうちの最終段の圧縮機の吐出温度を検知する第1温度検知器とを備え、
前記制御装置は、前記第1温度検知器の検出温度からt秒後の予想温度Ttを予想し、前記予想温度Ttと予め定めた目標温度Tpとの差に応じて、前記電子膨張弁の開度を制御することを特徴とする冷凍装置。
A plurality of compressors arranged in series in multiple stages, a condenser, a main expansion valve, a main refrigerant circuit in which an evaporator is connected in order, and a branch from between the condenser and the main expansion valve, In a refrigeration apparatus comprising a bypass refrigerant circuit connected between the plurality of compressors via an expansion valve,
The intermediate expansion valve is an electronic expansion valve whose opening degree can be controlled linearly,
A control device that controls the opening degree of the electronic expansion valve in accordance with the temperature information of the refrigerant in the main refrigerant circuit, and a first temperature detector that detects the discharge temperature of the last stage compressor among the plurality of compressors And
The controller predicts an expected temperature Tt after t seconds from the temperature detected by the first temperature detector, and opens the electronic expansion valve according to a difference between the expected temperature Tt and a predetermined target temperature Tp. A refrigeration apparatus characterized by controlling the degree .
前記予想温度Ttが120℃〜130℃を超えた場合には、前記電子膨張弁の開度を一時的に大きくすることを特徴とする請求項1に記載の冷凍装置。 2. The refrigeration apparatus according to claim 1, wherein when the predicted temperature Tt exceeds 120 ° C. to 130 ° C., the opening degree of the electronic expansion valve is temporarily increased . 前記最終段の圧縮機の吸入側の過熱度が0〜3k以下になった場合には、前記目標温度Tpにかかわらず、前記電子膨張弁の開度を小さくして、該圧縮機への液バック防止するようにしていることを特徴とする請求項1または2に記載の冷凍装置。 When the superheat degree on the suction side of the final stage compressor becomes 0 to 3 k or less, the opening degree of the electronic expansion valve is reduced regardless of the target temperature Tp, and the liquid to the compressor is reduced. The refrigeration apparatus according to claim 1 or 2, wherein back-up is prevented . 2つの流路を有し一方の流路が前記凝縮器と前記主膨張弁との間における前記バイパス冷媒回路の分岐部と前記主膨張弁の間に配置され、他方の流路が前記バイパス冷媒回路の一部を形成する冷媒・冷媒熱交換機を備え、
前記バイパス冷媒回路は、前記冷媒・冷媒熱交換機の流路の途中から分岐し、第1開閉弁を介して前記複数の圧縮機の間に接続された第1冷媒回路と、前記冷媒・冷媒熱交換機の流路の終端部から第2開閉弁を介して前記複数の圧縮機の間に接続された第2冷媒回路とを有し、
前記制御装置は、前記第1温度検知器の検出温度に応じて、前記第1開閉弁と第2開閉弁の開閉を切り替えるように制御することを特徴とする請求項1〜3のいずれか一項に記載の冷凍装置。
There are two flow paths, and one flow path is arranged between the branch portion of the bypass refrigerant circuit and the main expansion valve between the condenser and the main expansion valve, and the other flow path is the bypass refrigerant. It has a refrigerant / refrigerant heat exchanger that forms part of the circuit,
The bypass refrigerant circuit branches from the middle of the flow path of the refrigerant / refrigerant heat exchanger and is connected between the plurality of compressors via a first on-off valve; and the refrigerant / refrigerant heat A second refrigerant circuit connected between the plurality of compressors via a second on-off valve from a terminal portion of the flow path of the exchanger,
Said controller, in response to the detected temperature of the first temperature detector, any one of claims 1 to 3, wherein the controller controls to switch the opening and closing of the first on-off valve and the second on-off valve The refrigeration apparatus according to item .
2つの流路を有し一方の流路が前記凝縮器と前記主膨張弁との間における前記バイパス冷媒回路の分岐部と前記主膨張弁の間に配置された冷媒・冷媒熱交換機と、
前記冷媒・冷媒熱交換機の入口側で分岐し、第2電子膨張弁および前記冷媒・冷媒熱交換機の他方の流路を介して、前記複数の圧縮機のうちの第1段の圧縮機の吸入側に接続された第2バイパス冷媒回路と、
前記主冷媒回路の前記冷媒・冷媒熱交換機の入口と出口に設けられた第5温度検知器および第6温度検知器とを備え、
前記制御装置は、前記第5温度検知器の検出温度と前記第6温度検知器の検出温度との差が一定となるように、前記第2電子膨張弁の開度を制御することを特徴とする請求項1〜3のいずれか一項に記載の冷凍装置。
A refrigerant / refrigerant heat exchanger disposed between the branch of the bypass refrigerant circuit between the condenser and the main expansion valve and the main expansion valve, the first flow path having two flow paths;
Branching on the inlet side of the refrigerant / refrigerant heat exchanger, and suctioning the first stage compressor of the plurality of compressors through the second electronic expansion valve and the other flow path of the refrigerant / refrigerant heat exchanger A second bypass refrigerant circuit connected to the side;
A fifth temperature detector and a sixth temperature detector provided at the inlet and outlet of the refrigerant / refrigerant heat exchanger of the main refrigerant circuit,
The control device controls the opening degree of the second electronic expansion valve so that a difference between a temperature detected by the fifth temperature detector and a temperature detected by the sixth temperature detector is constant. The refrigeration apparatus according to any one of claims 1 to 3 .
JP2008034164A 2008-02-15 2008-02-15 Refrigeration equipment Active JP4989507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008034164A JP4989507B2 (en) 2008-02-15 2008-02-15 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008034164A JP4989507B2 (en) 2008-02-15 2008-02-15 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2009192164A JP2009192164A (en) 2009-08-27
JP4989507B2 true JP4989507B2 (en) 2012-08-01

Family

ID=41074343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008034164A Active JP4989507B2 (en) 2008-02-15 2008-02-15 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4989507B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180011259A (en) * 2015-08-28 2018-01-31 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Control method of refrigeration cycle device and refrigeration cycle device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5573370B2 (en) * 2010-06-01 2014-08-20 パナソニック株式会社 Refrigeration cycle apparatus and control method thereof
JP5478403B2 (en) * 2010-07-22 2014-04-23 三菱電機株式会社 Heat pump water heater
JP6080031B2 (en) * 2012-02-15 2017-02-15 パナソニックIpマネジメント株式会社 Refrigeration equipment
JP2014020209A (en) 2012-07-12 2014-02-03 Mitsubishi Heavy Ind Ltd Two-stage compressor and two-stage compression system
JP5956326B2 (en) * 2012-12-17 2016-07-27 三菱電機株式会社 Refrigeration apparatus and refrigeration cycle apparatus
JP6253370B2 (en) * 2013-11-28 2017-12-27 三菱電機株式会社 Refrigeration cycle equipment
CN106415153B (en) * 2014-06-27 2019-04-23 三菱电机株式会社 Refrigerating circulatory device
JP6680300B2 (en) * 2015-11-11 2020-04-15 富士電機株式会社 Exhaust heat recovery heat pump device
JP6234507B2 (en) * 2016-06-16 2017-11-22 三菱電機株式会社 Refrigeration apparatus and refrigeration cycle apparatus
CN106679067A (en) * 2016-11-11 2017-05-17 青岛海尔空调器有限总公司 Self-cleaning method for air conditioner heat exchanger
JP6899360B2 (en) * 2018-08-21 2021-07-07 日立ジョンソンコントロールズ空調株式会社 Refrigeration cycle equipment
US10895411B2 (en) 2018-10-24 2021-01-19 Heatcraft Refrigeration Products Llc Cooling system
JP2022072526A (en) 2020-10-30 2022-05-17 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP2022175115A (en) 2021-05-12 2022-11-25 パナソニックIpマネジメント株式会社 Refrigeration cycle device and liquid heating device including the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179463U (en) * 1982-05-25 1983-12-01 三菱電機株式会社 Refrigeration equipment
JPS6038560A (en) * 1983-08-11 1985-02-28 三菱電機株式会社 Two-step compression refrigerator
US5095712A (en) * 1991-05-03 1992-03-17 Carrier Corporation Economizer control with variable capacity
JP4433729B2 (en) * 2003-09-05 2010-03-17 ダイキン工業株式会社 Refrigeration equipment
US7631510B2 (en) * 2005-02-28 2009-12-15 Thermal Analysis Partners, LLC. Multi-stage refrigeration system including sub-cycle control characteristics
JP4716935B2 (en) * 2006-06-27 2011-07-06 三洋電機株式会社 Refrigeration cycle apparatus and heat pump water heater
JP4716937B2 (en) * 2006-06-28 2011-07-06 三洋電機株式会社 Refrigeration cycle apparatus, heat pump water heater, and control method for refrigeration cycle apparatus
JP4982224B2 (en) * 2007-03-27 2012-07-25 三洋電機株式会社 Refrigeration equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180011259A (en) * 2015-08-28 2018-01-31 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Control method of refrigeration cycle device and refrigeration cycle device
KR102098164B1 (en) * 2015-08-28 2020-04-08 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Refrigeration cycle device and control method of refrigeration cycle device

Also Published As

Publication number Publication date
JP2009192164A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP4989507B2 (en) Refrigeration equipment
US10969165B2 (en) Micro booster supermarket refrigeration architecture
JP6134477B2 (en) Refrigeration equipment and refrigerator unit
US20150059380A1 (en) Air-conditioning apparatus
EP3301380B1 (en) Refrigeration cycle device and refrigeration cycle device control method
JP6223469B2 (en) Air conditioner
WO2017006474A1 (en) Refrigeration cycle device, remote monitoring system, remote monitoring device, and abnormality determination method
JP2011117626A (en) Air conditioner
JP2009109065A (en) Refrigeration system
JP2016194389A (en) Refrigerating apparatus and refrigerator unit
CN102620458A (en) Refrigeration cycle apparatus
JP2009144940A (en) Heat pump type air conditioner
EP3282208B1 (en) Refrigeration apparatus
JP2009204244A (en) Refrigerating device
US20180363961A1 (en) Air conditioner
JP2005180815A (en) Cooling device
JP2002106984A (en) Control method and exchanging method for refrigerant circuit as well as refrigerant circuit device
JPH07243711A (en) Two-stage cooler
JP6048549B1 (en) Refrigeration equipment
WO2021033426A1 (en) Heat source unit and freezing apparatus
US20220146165A1 (en) Air conditioning apparatus
JP2018173195A (en) Refrigerator
US20220186993A1 (en) Air-conditioning apparatus
US11015851B2 (en) Refrigeration cycle device
KR102128576B1 (en) Refrigerant cycle apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

R150 Certificate of patent or registration of utility model

Ref document number: 4989507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250