WO2021033426A1 - Heat source unit and freezing apparatus - Google Patents

Heat source unit and freezing apparatus Download PDF

Info

Publication number
WO2021033426A1
WO2021033426A1 PCT/JP2020/025197 JP2020025197W WO2021033426A1 WO 2021033426 A1 WO2021033426 A1 WO 2021033426A1 JP 2020025197 W JP2020025197 W JP 2020025197W WO 2021033426 A1 WO2021033426 A1 WO 2021033426A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion valve
heat source
condition
heat exchanger
opening degree
Prior art date
Application number
PCT/JP2020/025197
Other languages
French (fr)
Japanese (ja)
Inventor
覚 阪江
東 近藤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to ES20853725T priority Critical patent/ES2966337T3/en
Priority to CN202080058823.3A priority patent/CN114270108B/en
Priority to EP20853725.8A priority patent/EP3995756B1/en
Publication of WO2021033426A1 publication Critical patent/WO2021033426A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves

Definitions

  • This disclosure relates to a heat source unit and a refrigerating device.
  • an oil recovery operation is performed in which the oil accumulated in the heat exchanger used is returned to the compressor. Specifically, in the oil recovery operation, first, the opening degree of the first expansion valve of the liquid pipe is reduced. Then, the flow rate and pressure of the refrigerant flowing through the utilization heat exchanger decrease, and the suction superheat degree increases. Along with this, the opening degree of the utilization expansion valve gradually increases. When a predetermined first time t1 elapses after reducing the opening degree of the first expansion valve, the opening degree of the first expansion valve is increased. As a result, the flow rate of the refrigerant flowing through the utilization heat exchanger increases. This refrigerant is compatible with the refrigerating machine oil in the heat exchanger used and is recovered in the compressor together with the refrigerating machine oil.
  • An object of the present disclosure is to improve the accuracy of determining that the opening degree of the utilization expansion valve has increased in the first operation of reducing the opening degree of the heat source expansion valve in the oil recovery operation.
  • the first embodiment has a compression element (C), a liquid pipe (43), a heat source expansion valve (28) connected to the liquid pipe (43), and a heat source heat exchanger (25), and utilizes heat exchange.
  • a utilization unit (70) having a vessel (73) and a utilization expansion valve (72)
  • the heat source heat exchanger (25) becomes a radiator
  • the utilization heat exchanger (73) becomes an evaporator.
  • the oil recovery operation includes a first operation of reducing the opening degree of the heat source expansion valve (28), and after the first operation, the heat source expansion valve (28).
  • the controller (80) is configured to execute the second operation when the first condition is satisfied during the first operation, and the first condition is included. At least includes a condition in which the difference ⁇ P between the pressure of the refrigerant on the downstream side of the heat source expansion valve (28) in the liquid pipe (43) and the pressure of the suction refrigerant of the compression element (C) is smaller than a predetermined value.
  • the difference ⁇ P between the pressure of the refrigerant on the downstream side of the heat source expansion valve (28) in the liquid pipe (43) and the pressure of the suction refrigerant of the compression element (C) is greater than a predetermined value.
  • the first condition includes a condition in which the degree of inhalation superheat is greater than the first value.
  • the controller (80) when the second condition is satisfied during the second operation, sets the opening degree of the heat source expansion valve (28) to the first. It is configured to execute the third operation which is the opening degree immediately before the start of the operation, and the second condition includes a condition where the suction superheat degree is smaller than the second value.
  • the accuracy of determining that the oil has been recovered in the compression element (C) can be improved by setting the suction superheat degree to be smaller than the second value as the second condition.
  • the controller (80) opens the heat source expansion valve (28) when the second condition is satisfied during the second operation. Is configured to execute the third operation with the opening degree immediately before the start of the first operation, and the second condition is that of the refrigerant on the downstream side of the heat source expansion valve (28) in the liquid pipe (43). Includes the condition that the pressure becomes higher than the predetermined value.
  • the oil in the compression element (C) under the second condition that the pressure of the refrigerant on the downstream side of the heat source expansion valve (28) is higher than a predetermined value.
  • the accuracy of the judgment can be improved.
  • the speed at which the opening degree of the heat source expansion valve (28) is increased during the second operation is increased during the first operation. It is faster than the speed of reducing the opening of 28).
  • the oil accumulated in the utilization heat exchanger (73) is quickly compressed together with the refrigerant (21,22,23). ) Can be returned.
  • a sixth aspect comprises the heat source unit (20) according to any one of the first to fifth aspects, and a utilization unit (70) having a utilization heat exchanger (73) and a utilization expansion valve (72).
  • a refrigeration cycle using the heat source heat exchanger (25) as a radiator and the utilization heat exchanger (73) as an evaporator can be performed. It is a refrigerating apparatus in which the refrigerant circuit (10) is configured.
  • a seventh aspect is a refrigerating apparatus according to the sixth aspect, wherein the utilization expansion valve (72) is a temperature automatic expansion valve.
  • FIG. 1 is a piping system diagram of the refrigerating device according to the embodiment.
  • FIG. 2 is a diagram corresponding to FIG. 1 showing the flow of the refrigerant in the cold operation.
  • FIG. 3 is a diagram corresponding to FIG. 1 showing the flow of the refrigerant in the defrost operation.
  • FIG. 4 is a flowchart of the oil return operation.
  • the refrigerating apparatus (1) cools the air to be cooled.
  • the cooling target of this example is the air inside a refrigerator, a freezer, a showcase, or the like.
  • the refrigerating device (1) includes an outdoor unit (20) installed outdoors and a cooling unit (70) for cooling the air inside the refrigerator.
  • the number of cooling units (70) is not limited to two, and may be one or three or more.
  • the outdoor unit (20) and the two cooling units (70) are connected to each other via a liquid communication pipe (14) and a gas communication pipe (13).
  • the refrigerant circuit (10) is configured in the refrigerating device (1).
  • a vapor compression refrigeration cycle is performed by circulating the filled refrigerant.
  • the outdoor unit (20) is a heat source unit.
  • the outdoor unit (20) is installed outdoors.
  • the outdoor unit (20) has a heat source circuit (20a) and an outdoor fan (F1).
  • the heat source circuit (20a) has three compressors (21,22,23), a four-way switching valve (24), an outdoor heat exchanger (25), and a receiver (receiver), which are the compression elements (C) as the main components. It has a 26), supercooled heat exchanger (27), and an outdoor expansion valve (28).
  • the heat source circuit (20a) is provided with a gas shutoff valve (11) and a liquid shutoff valve (12).
  • a gas connecting pipe (13) is connected to the gas shutoff valve (11).
  • a liquid communication pipe (14) is connected to the liquid shutoff valve (12).
  • the compression element (C) of this example is composed of three compressors (21,22,23). In the heat source circuit (20a), three compressors (21,22,23) are connected in parallel.
  • the three compressors (21,22,23) are composed of a first compressor (21), a second compressor (22), and a third compressor (23).
  • Each compressor (21,22,23) is composed of, for example, a scroll compressor.
  • the first compressor (21) is a variable capacitance type. Power is supplied to the electric motor of the first compressor (21) via an inverter circuit.
  • the second compressor (22) and the third compressor (23) are of a fixed capacitance type.
  • the first discharge pipe (31) is connected to the discharge portion of the first compressor (21).
  • a first suction pipe (34) is connected to the suction portion of the first compressor (21).
  • a second discharge pipe (32) is connected to the discharge portion of the second compressor (22).
  • a second suction pipe (35) is connected to the suction portion of the second compressor (22).
  • a third discharge pipe (33) is connected to the discharge pipe (33) of the third compressor (23).
  • a third suction pipe (36) is connected to the suction portion of the third compressor (23).
  • the inflow end of the main discharge pipe (37) is connected to each outflow end of the first discharge pipe (31), the second discharge pipe (32), and the third discharge pipe (33).
  • the outflow end of the main suction pipe (38) is connected to each inflow end of the first suction pipe (34), the second suction pipe (35), and the third suction pipe (36).
  • the first check valve (CV1) is connected to the first discharge pipe (31).
  • a second check valve (CV2) is connected to the second discharge pipe (32).
  • a third check valve (CV3) is connected to the third discharge pipe (33).
  • the first check valve (CV1), the second check valve (CV2), and the third check valve (CV3) are from the discharge part of each compressor (21,22,23) to the main discharge pipe (37). Allows the flow of refrigerant and prohibits the reverse flow of refrigerant.
  • An oil separator (39) is provided in the main discharge pipe (37).
  • the oil separator (39) separates the oil from the refrigerant compressed by the compression element (C).
  • the inflow end of the oil return pipe (39a) is connected to the oil separator (39).
  • the outflow end of the oil return pipe (39a) is connected to the injection circuit (I).
  • An oil return valve (39b), which is an electric valve, is connected to the oil return pipe (39a).
  • the oil separated by the oil separator (39) is returned to the compression chamber (intermediate pressure section) of each compressor (21,22,23) via the oil return pipe (39a) and the injection circuit (I).
  • the four-way switching valve (24) has a first port (P1), a second port (P2), a third port (P3), and a fourth port (P4).
  • the first port (P1) is connected to the outflow end of the main discharge pipe (37).
  • the second port (P2) is connected to the inflow end of the main suction pipe (38).
  • the third port (P3) is connected to the gas end of the outdoor heat exchanger (25).
  • the fourth port (P4) is connected to the gas shutoff valve (11).
  • the four-way switching valve (24) switches between the first state (the state shown by the solid line in FIG. 1) and the second state (the state shown by the broken line in FIG. 1).
  • the four-way switching valve (24) in the first state communicates the first port (P1) and the third port (P3), and communicates the second port (P2) and the fourth port (P4).
  • the four-way switching valve (24) in the second state communicates the first port (P1) and the fourth port (P4), and communicates the second port (P2) and the third port (P3).
  • the outdoor heat exchanger (25) is a heat source heat exchanger.
  • the outdoor heat exchanger (25) is a fin-and-tube heat exchanger.
  • the outdoor fan (F1) is located near the outdoor heat exchanger (25).
  • the outdoor fan (F1) carries the outdoor air that passes through the outdoor heat exchanger (25). In the outdoor heat exchanger (25), the outdoor air conveyed by the outdoor fan (F1) exchanges heat with the refrigerant.
  • the receiver (26) stores the refrigerant.
  • the receiver (26) is a vertically long closed container.
  • the supercooled heat exchanger (27) has a first flow path (27a) and a second flow path (27b).
  • the supercooling heat exchanger (27) exchanges heat between the refrigerant flowing through the first flow path (27a) and the refrigerant flowing through the second flow path (27b).
  • the first pipe (41) is connected between the liquid end of the outdoor heat exchanger (25) and the top of the receiver (26).
  • a fourth check valve (CV4) is connected to the first pipe (41).
  • the fourth check valve (CV4) allows the flow of refrigerant from the outdoor heat exchanger (25) side to the receiver (26) side and prohibits the reverse flow of refrigerant.
  • a second pipe (42) is connected between the bottom of the receiver (26) and one end of the first flow path (27a) of the supercooled heat exchanger (27).
  • a third pipe (43) is connected between the other end of the first flow path (27a) and the liquid shutoff valve (12).
  • the third pipe (43) constitutes a part of the liquid pipe.
  • a fifth check valve (CV5) is connected to the third pipe (43). The fifth check valve (CV5) allows the flow of refrigerant from the other end side of the first flow path (27a) to the liquid closing valve (12) side, and prohibits the reverse flow of refrigerant.
  • An outdoor expansion valve (28) is connected to the third pipe (43) between the other end of the first flow path (27a) and the fifth check valve (CV5).
  • the outdoor expansion valve (28) is a heat source expansion valve.
  • the outdoor expansion valve (28) is a pressure reducing mechanism for reducing the pressure of the refrigerant.
  • the outdoor expansion valve (28) is composed of an electronic expansion valve.
  • the fourth pipe (44) is connected to the third pipe (43).
  • One end of the fourth pipe (44) is connected between the fifth check valve (CV5) and the liquid shutoff valve (12) in the third pipe (43).
  • the other end of the fourth pipe (44) is connected between the fourth check valve (CV4) and the receiver (26) in the first pipe (41).
  • a sixth check valve (CV6) is connected to the fourth pipe (44).
  • the sixth check valve (CV6) allows the flow of refrigerant from the third pipe (43) side to the first pipe (41) side, and prohibits the reverse flow of refrigerant.
  • the fifth pipe (45) is connected to the third pipe (43).
  • One end of the fifth pipe (45) is connected between the outdoor expansion valve (28) and the fifth check valve (CV5) in the third pipe (43).
  • the other end of the fifth pipe (45) is connected between the fourth check valve (CV4) in the first pipe (41) and the outdoor heat exchanger (25).
  • a seventh check valve (CV7) is connected to the fifth pipe (45).
  • the seventh check valve (CV7) allows the flow of refrigerant from the third pipe (43) side to the first pipe (41) side, and prohibits the reverse flow of refrigerant.
  • the heat source circuit (20a) includes an injection circuit (I).
  • the injection circuit (I) introduces the intermediate pressure refrigerant into the intermediate pressure portion of the compression element (C).
  • the injection circuit (I) includes one branch pipe (51), one relay pipe (52), and three injection pipes (53,54,55).
  • the inflow end of the branch pipe (51) is connected between the first flow path (27a) and the outdoor expansion valve (28) in the third pipe (43).
  • the outflow end of the branch pipe (51) is connected to the inflow end of the second flow path (27b).
  • An injection valve (59) is connected to the branch pipe (51).
  • the injection valve (59) is composed of an electronic expansion valve.
  • the inflow end of the relay pipe (52) is connected to the outflow end of the second flow path (27b).
  • the outflow end of the oil return pipe (39a) is connected to the relay pipe (52).
  • the inflow ends of the first injection pipe (53), the second injection pipe (54), and the third injection pipe (55) are connected to the outflow portion of the relay pipe (52).
  • the outflow end of the first injection pipe (53) communicates with the compression chamber of the first compressor (21).
  • the outflow end of the second injection pipe (54) communicates with the compression chamber of the second compressor (22).
  • the outflow end of the third injection pipe (55) communicates with the compression chamber of the third compressor (23).
  • the first electric valve (56) is connected to the first injection pipe (53).
  • a second electric valve (57) is connected to the second injection pipe (54).
  • a third electric valve (58) is connected to the third injection pipe (55).
  • Each electric valve (56,57,58) is a flow control valve.
  • Each motorized valve (56,57,58) regulates the flow rate of refrigerant in the corresponding injection tube (53,54,55).
  • the heat source unit (20) is provided with a plurality of sensors for detecting the physical quantity of the refrigerant in the heat source circuit (20a).
  • the plurality of sensors include a first discharge temperature sensor (61), a second discharge temperature sensor (62), a third discharge temperature sensor (63), a high pressure pressure sensor (64), a suction temperature sensor (65), and a low pressure pressure sensor ( 67), has at least a liquid side pressure sensor (68), and an intermediate pressure sensor (69).
  • the first discharge temperature sensor (61) detects the temperature (Td1) of the refrigerant in the first discharge pipe (31).
  • the second discharge temperature sensor (62) detects the temperature (Td2) of the refrigerant in the second discharge pipe (32).
  • the third discharge temperature sensor (63) detects the temperature (Td3) of the refrigerant in the third discharge pipe (33).
  • the high-pressure pressure sensor (64) detects the discharge pressure of the compression element (C) (high-pressure pressure (HP) of the refrigerant circuit (10)).
  • the suction temperature sensor (65) detects the temperature of the suction refrigerant of the compression element (C).
  • the low pressure pressure sensor (67) detects the suction pressure of the compression element (C) (low pressure (LP) of the refrigerant circuit (10)).
  • the liquid side pressure sensor (68) detects the pressure (liquid pressure (Ps)) of the liquid refrigerant in the third pipe (43).
  • the intermediate pressure sensor (69) detects the pressure (MP) of the refrigerant in the relay pipe (52) of the injection circuit (I).
  • the low-pressure pressure sensor (67) and the suction temperature sensor (66) constitute a suction superheat detection unit for detecting the suction superheat (SSH) of the compression element (C).
  • the controller (80) determines the suction superheat degree (80) by the difference between the saturation temperature corresponding to the low pressure (LP) detected by the low pressure pressure sensor (67) and the temperature detected by the suction temperature sensor (66). SSH) is requested.
  • the high-pressure pressure sensor (64) and the three discharge temperature sensors (61,62,63) constitute a discharge superheat detection unit for detecting the discharge superheat (DSH) of the compression element (C).
  • the controller (80) has a saturation temperature corresponding to the high pressure (HP) detected by the high pressure sensor (64) and a temperature detected by each discharge temperature sensor (61,62,63) (for example, these).
  • the discharge superheat degree (DSH) is calculated from the difference from the average temperature).
  • the cooling unit (70) is a utilization unit.
  • Each cooling unit (70) has a utilization circuit (70a) and an internal fan (F2), respectively.
  • the utilization circuit (70a) is connected in parallel to the liquid communication pipe (14) and the gas communication pipe (13).
  • Each utilization circuit (70a) has an on-off valve (71), an internal expansion valve (72), and an internal heat exchanger (73) in this order from the liquid end portion to the gas end portion.
  • the on-off valve (71) is an electromagnetic on-off valve that opens and closes the utilization circuit (70a). The on-off valve (71) is opened during normal operation.
  • the internal expansion valve (72) is a utilization expansion valve.
  • the internal expansion valve (72) is a temperature-sensitive automatic expansion valve.
  • the opening degree of the internal expansion valve (72) is adjusted according to the degree of superheat of the refrigerant flowing out of the utilization heat exchanger (73) serving as an evaporator. This degree of superheat corresponds to the degree of suction superheat (SSH) of the refrigerant sucked into the compression element (C).
  • the internal expansion valve (72) has an expansion valve main body (72a), a temperature sensitive tube (72b), and a capillary tube (72c).
  • the expansion valve body (72a) is connected between the on-off valve (71) of the utilization circuit (70a) and the internal heat exchanger (73).
  • the temperature sensitive cylinder (72b) is arranged so as to come into contact with the piping at the gas end of the utilization heat exchanger (73).
  • the expansion valve body (72a) and the temperature sensitive cylinder (72b) are connected via a capillary tube (72c).
  • the internal heat exchanger (73) is a utilization heat exchanger.
  • the internal heat exchanger (73) is a fin-and-tube heat exchanger.
  • the internal fan (F2) is arranged in the vicinity of the internal heat exchanger (73).
  • the internal fan (F2) conveys the internal air passing through the internal heat exchanger (73).
  • the internal air conveyed by the internal fan (F2) exchanges heat with the refrigerant.
  • the outdoor unit (20) includes a controller (80).
  • the controller (80) includes a microcomputer mounted on a control board and a memory device (specifically, a semiconductor memory) for storing software for operating the microcomputer.
  • the controller (80) controls each device of the outdoor unit (21,22,23) based on the operation command and the detection signal of each sensor.
  • the controller (80) controls each device so as to switch between the cold operation, the defrost operation, and the oil return operation.
  • the cooling operation is an operation in which the air inside the refrigerator is cooled by the cooling unit (70).
  • the defrost operation is an operation of melting the frost on the surface of the internal heat exchanger (73).
  • the oil return operation is an operation of recovering the oil (refrigerator oil) accumulated in the internal heat exchanger (73) to the compressor (21,22,23).
  • the controller (80) controls the outdoor unit (20) to execute the first operation, the second operation, and the third operation.
  • the first operation is an operation of reducing the opening degree of the outdoor expansion valve (28).
  • the second operation is an operation of increasing the opening degree of the outdoor expansion valve (28).
  • the third operation is an operation of returning the opening degree of the outdoor expansion valve (28) to the opening degree immediately before the start of the first operation.
  • the controller (80) makes a determination to execute the second operation during the first operation. This determination is made based on the first condition (details will be described later).
  • the controller (80) determines to execute the third operation during the second operation. This determination is made based on the second condition (details will be described later).
  • each compressor (21,22,23), an outdoor fan (F1), and an internal fan (F2) are operated.
  • the four-way switching valve (24) is set to the first state, and the outdoor expansion valve (28) is fully opened.
  • the on-off valve (71) is opened.
  • the opening degree of each internal expansion valve (72) is adjusted as appropriate. Specifically, the opening degree of each internal expansion valve (72) is adjusted so as to maintain the degree of superheat of the refrigerant flowing out of the internal heat exchanger (73) at a predetermined value.
  • the opening degrees of the injection valve (59), the first electric valve (56), the second electric valve (57), and the third electric valve (58) are appropriately adjusted.
  • the first refrigeration cycle is performed in which the outdoor heat exchanger (25) is used as a radiator or condenser and the internal heat exchanger (73) is used as an evaporator.
  • the refrigerant compressed by each compressor (21,22,23) flows through the outdoor heat exchanger (25).
  • the refrigerant dissipates heat to the outdoor air.
  • the refrigerant radiated by the outdoor heat exchanger (25) passes through the first pipe (41), the receiver (26), and the second pipe (42), and passes through the first flow path (27a) of the supercooled heat exchanger (27). ) Flow.
  • the injection valve (59) When the injection valve (59) is opened, a part of the refrigerant in the third pipe (43) flows through the branch pipe (51).
  • the refrigerant in the branch pipe (51) is decompressed by the injection valve (59) and then flows through the second flow path (27b) of the supercooling heat exchanger (27).
  • the refrigerant in the second flow path (27b) and the refrigerant in the first flow path (27a) exchange heat.
  • the refrigerant in the second flow path (27b) absorbs heat from the refrigerant in the first flow path (27a) and evaporates. As a result, the refrigerant in the first flow path (27a) is cooled, and the degree of supercooling of this refrigerant increases.
  • the refrigerant flowing through the second flow path (27b) is introduced from each injection pipe (53,54,55) to the compression chamber of each compressor (21,22,23) via the relay pipe (52). To.
  • the refrigerant cooled in the first flow path (27a) flows through the third pipe (43) and the liquid communication pipe (14), and is sent to each cooling unit (70).
  • each cooling unit (70) the refrigerant is decompressed by the internal expansion valve (72) and then flows through the internal heat exchanger (73).
  • the refrigerant absorbs heat from the internal air and evaporates. As a result, the air inside the refrigerator is cooled.
  • each heat exchanger (73) flows through the gas connecting pipe (13) and is sent to the outdoor unit (20). This refrigerant flows through the main suction pipe (38) and is sucked into each compressor (21, 22, 23).
  • each compressor (21,22,23), an outdoor fan (F1), and an internal fan (F2) are operated.
  • the four-way switching valve (24) is set to the second state, and the internal expansion valve (72) is fully opened.
  • the on-off valve (71) is opened.
  • the opening degree of the outdoor expansion valve (28) is adjusted.
  • the refrigerant may flow through the injection circuit (I) as in the cold operation. It is not necessary to fully close the injection valve (59) and allow the refrigerant to flow through the injection circuit (I).
  • a second refrigeration cycle is performed in which the internal heat exchanger (73) is used as a radiator or condenser and the outdoor heat exchanger (25) is used as an evaporator.
  • each compressor (21,22,23) passes through the gas connecting pipe (13) and is sent to each cooling unit (70).
  • each cooling unit (70) the refrigerant flows through the internal heat exchanger (73).
  • the refrigerant melts the frost on the surface.
  • the refrigerant radiated by each internal heat exchanger (73) flows through the liquid communication pipe (14) and is sent to the outdoor unit (20).
  • the refrigerant of the outdoor unit (20) is the fourth pipe (44), the receiver (26), the second pipe (42), the first flow path (27a) of the supercooled heat exchanger (27), and the third pipe (43). ) Flow in order.
  • the refrigerant flowing out to the third pipe (43) is depressurized by the outdoor expansion valve (28), and then flows through the fifth pipe (45) and the outdoor heat exchanger (25) in this order.
  • the outdoor heat exchanger (25) the refrigerant absorbs heat from the outdoor air and evaporates.
  • the refrigerant evaporated in the outdoor heat exchanger (25) flows through the main suction pipe (38) and is sucked into each compressor (21,22,23).
  • the oil return operation is executed when a predetermined condition is satisfied during the above-mentioned cold operation.
  • each compressor (21,22,23), an outdoor fan (F1), and an internal fan (F2) are operated.
  • the four-way switching valve (24) is set to the first state.
  • the on-off valve (71) is opened.
  • the opening degree of each internal expansion valve (72) is adjusted as appropriate. Specifically, the opening degree of each internal expansion valve (72) is adjusted so as to maintain the degree of superheat of the refrigerant flowing out of the internal heat exchanger (73) at a predetermined value.
  • the opening degrees of the injection valve (59), the first electric valve (56), the second electric valve (57), and the third electric valve (58) are appropriately adjusted.
  • the oil recovery operation described below is an example of recovering the oil of all the internal heat exchangers (73) at the same time.
  • step ST1 when a command to execute the oil recovery operation is input to the controller (80), in step ST1, the storage unit of the controller (80) changes the current opening degree (pls1) of the outdoor expansion valve (28). ) Is memorized.
  • This current opening degree (Pls1) is, for example, the maximum opening degree of the outdoor expansion valve (28). Then, in step ST2, the first operation is executed.
  • the opening degree of the outdoor expansion valve (28) gradually decreases. Specifically, in the first operation, the opening degree of the outdoor expansion valve (28) is gradually reduced every predetermined time ⁇ T1.
  • the opening degree (pulse) of the next outdoor expansion valve (28) after the elapse of ⁇ T1 is EV1
  • the opening degree (pulse) of the current outdoor expansion valve (28) is EV1'.
  • ⁇ T1 is set to, for example, 15 seconds.
  • is set to 0.75.
  • the opening degree (pulse) of the outdoor expansion valve (28) decreases by 25% every 15 seconds.
  • the first operation is continuously performed until the first condition of step ST3 is satisfied.
  • step ST3 it is determined whether or not the first condition for executing the second operation is satisfied during the first operation.
  • the first condition includes the following conditions a) to e). In this example, when any one of the conditions a) to e) is satisfied, the process proceeds from step ST4 to step S6, and the second operation is executed.
  • the degree of inhalation superheat (SSH) is larger than the predetermined value (first value).
  • the first value is set to, for example, several tens of degrees Celsius.
  • Low pressure (LP) is smaller than the specified value.
  • this predetermined value is set to several tens of KPa.
  • High pressure (HP) is greater than the specified value.
  • this predetermined value is set to several hundred MPa.
  • t1 A predetermined time t1 has elapsed since the first operation was executed.
  • t1 is set to, for example, a few minutes.
  • the above a) is a condition for determining that the opening degree of the internal expansion valve (72) has been sufficiently increased by the first operation.
  • the hydraulic pressure (Ps) of the refrigerant on the downstream side of the outdoor expansion valve (28) corresponds to the pressure on the inflow side of the internal expansion valve (72).
  • the low pressure (LP) corresponds to the pressure on the outflow side of the internal expansion valve (72). Therefore, ⁇ P corresponds to the pressure at which the refrigerant is depressurized by the internal expansion valve (72). Therefore, on condition that ⁇ P is smaller than a predetermined value, it is possible to accurately determine that the opening degree of the internal expansion valve (72) is large.
  • condition a) uses only the pressure of the refrigerant as an index for judgment.
  • the pressure of the refrigerant is highly responsive compared to the temperature of the refrigerant. Therefore, by setting a) as the first condition, it can be quickly determined that the opening degree of the internal expansion valve (72) is large.
  • the above b) is a condition for determining that the opening degree of the internal expansion valve (72) has been sufficiently increased by the first operation.
  • the opening degree of each internal expansion valve (72) increases.
  • the suction superheat degree (SSH) is larger than the first value, it can be estimated that the opening degree of the internal expansion valve (72) is sufficiently large or is in a fully open state. Therefore, on condition that the suction superheat degree (SSH) is larger than the first value, it is possible to accurately determine that the opening degree of the internal expansion valve (72) is large.
  • the above c) is a condition set from the viewpoint of protection of the refrigerating apparatus (1).
  • the low pressure pressure (LP) may become excessively low. Therefore, in the first operation, when the low pressure pressure (LP) becomes lower than the predetermined value, the process proceeds to steps ST4 to ST6, and the second operation is executed. As a result, the opening degree of the outdoor expansion valve (28) is increased, and a decrease in low pressure (LP) can be suppressed.
  • the above d) is a condition set from the viewpoint of protection of the refrigerating apparatus (1).
  • the high pressure (HP) may become excessively high. Therefore, in the first operation, when the high pressure pressure (HP) becomes higher than the predetermined value, the process proceeds to steps ST4 to ST6, and the second operation is executed.
  • the above e) is a condition for determining that the opening degree of the internal expansion valve (72) has been sufficiently increased by the first operation.
  • the opening degree of the internal expansion valve (72) increases with the passage of time. Therefore, by setting d) on which the predetermined time t1 elapses as the first condition, it can be determined that the opening degree of the internal expansion valve (72) is large.
  • the predetermined time t1 is set sufficiently long so that the conditions a) and b) above are satisfied first.
  • the condition e) can be said to be a protective condition for shifting to the second operation even when the conditions a) to d) are not satisfied when, for example, a sensor failure or false detection occurs.
  • step ST3 when any of the above conditions a) to e) is satisfied, the process proceeds to step ST4, and when the predetermined time t2 elapses, the process proceeds to step ST5.
  • t2 is about several seconds.
  • step S4 may be omitted and the process may be shifted from step ST3 to step ST5.
  • step ST5 the hydraulic pressure (Ps1) detected by the liquid side pressure sensor (68) is stored in the storage unit of the controller (80). Then, the process proceeds to step ST6, and the second operation is executed.
  • the opening of the outdoor expansion valve (28) gradually increases. Specifically, in the second operation, the opening degree of the outdoor expansion valve (28) is gradually increased every predetermined time ⁇ T2.
  • the opening degree (pulse) of the next outdoor expansion valve (28) after ⁇ T2 has elapsed is defined as EV2
  • the opening degree (pulse) of the current outdoor expansion valve (28) is defined as EV2'.
  • ⁇ T2 is set to, for example, 10 seconds.
  • is set to 1.5.
  • the opening degree (pulse) of the outdoor expansion valve (28) increases by 50% every 10 seconds.
  • the second operation is continuously performed until the second condition of step ST7 is satisfied.
  • the speed at which the opening degree of the outdoor expansion valve (28) is increased during the second operation is faster than the speed at which the opening degree of the outdoor expansion valve (28) is decreased during the first operation.
  • the second operation As the opening degree of the outdoor expansion valve (28) increases, the flow rate and pressure of the refrigerant flowing through the internal heat exchanger (73) increase.
  • the second operation is executed after the condition that the opening degree of the internal expansion valve (72) is increased is satisfied in step ST3, except when the conditions c) and d) are satisfied. .. Therefore, a sufficient flow rate of the refrigerant flowing through the internal heat exchanger (73) can be secured.
  • the oil accumulated in the internal heat exchanger (73) is dissolved in the liquid refrigerant or the gas-liquid two-phase refrigerant and then sucked into the compressor (21,22,23). As a result, the oil accumulated in the internal heat exchanger (73) can be quickly recovered.
  • the speed at which the opening degree of the outdoor expansion valve (28) is increased during the second operation is faster than the speed at which the opening degree of the outdoor expansion valve (28) is decreased during the first operation. Therefore, in a situation where the opening degree of the internal expansion valve (72) is large, the refrigerant can be quickly sent to the internal heat exchanger (73), and the oil in the internal heat exchanger (73) can be quickly sent. It can be collected in a compressor (21,22,23).
  • the second operation is continuously executed until the second condition is satisfied in the next step ST7.
  • step ST7 it is determined whether or not the second condition for executing the third operation is satisfied during the second operation.
  • the second condition includes the following conditions f) to i). In this example, when any one of the conditions from f) to i) is satisfied, the process proceeds to steps ST8 and ST9, and the third operation is executed.
  • the current hydraulic pressure (Ps) is larger than the specified value. Strictly speaking, the current hydraulic pressure (Ps) is larger than the hydraulic pressure (Ps1) ⁇ A immediately before the start of the second operation stored in step ST5.
  • the coefficient A is set to, for example, 2.0.
  • Inhalation superheat is smaller than the second value.
  • Strictly speaking the state in which the inhalation superheat degree (SSH) is smaller than the second value continues for t3 for a predetermined time.
  • the second value is set to, for example, about several ° C to 10 ° C, and t3 is set to about several tens of seconds.
  • Discharge superheat degree (DSH) is smaller than the specified value. Strictly speaking, the state in which the discharge superheat degree (DSH) is smaller than the predetermined value is continuous for t4 for a predetermined time.
  • this predetermined value is set to, for example, about several tens of degrees, and t4 is set to about several tens of seconds.
  • t5 has passed since the second operation was executed.
  • t5 is set to about several minutes.
  • t5 is shorter than t1 under the condition e) above.
  • the above f) is a condition for determining that the oil in the internal heat exchanger (73) has been recovered by the compressor (21,22,23) by the second operation.
  • the pressure (hydraulic pressure (Ps)) on the downstream side of the outdoor expansion valve (28) is larger than a predetermined value, it indicates that the opening degree of the outdoor expansion valve (28) is large.
  • condition of f) uses only the pressure of the refrigerant as an index.
  • the pressure of the refrigerant is highly responsive compared to the temperature of the refrigerant. Therefore, by setting f) as the second condition, it can be quickly determined that the oil in the internal heat exchanger (73) has been recovered by the compressor (21,22,23).
  • the above g) is a condition for determining that the oil in the internal heat exchanger (73) has been recovered by the compressor (21,22,23) by the second operation.
  • the suction superheat degree (SSH) is smaller than a predetermined value, it indicates that sufficient liquid refrigerant is being sent to the internal heat exchanger (73).
  • the suction superheat degree (SSH) is smaller than the predetermined value for t3 consecutive times, the liquid refrigerant is continuously sent to the internal heat exchanger (73), and the oil is sent to the compressor (21,22,23) together with the refrigerant. ) Can be estimated to have been recovered.
  • the above h) is a condition set from the viewpoint of protection of the refrigerating apparatus (1).
  • the second operation is executed and the opening degree of the outdoor expansion valve (28) is increased, there is a possibility that the wet refrigerant is sucked into the compressor (21,22,23). In this case, the oil in the compressor (21,22,23) is diluted, which may lead to poor lubrication of the sliding portion. Therefore, the second operation is terminated on the condition that the discharge superheat degree (DSH) is smaller than a predetermined value, strictly speaking, this state is continuous for t4 hours. This can protect the compressor (21,22,23).
  • DSH discharge superheat degree
  • the above i) is a condition for determining that the oil in the internal heat exchanger (73) has been recovered by the compressor (21,22,23) by the second operation.
  • the opening degree of the outdoor expansion valve (28) increases with the passage of time. Therefore, by setting i) on which the predetermined time t5 has elapsed as the second condition, it can be determined that the oil in the internal heat exchanger (73) has been recovered by the compressor (21,22,23).
  • the predetermined time t5 is set sufficiently long so that the above conditions f) and g) are satisfied first.
  • the condition of l) can be said to be a protective condition for terminating the second operation even when the conditions of f) and g) are not satisfied, for example, when a sensor failure or false detection occurs.
  • step ST7 when any of the above conditions f) to i) is satisfied, the process proceeds to step ST8, and further determination as to whether or not to retain the second operation is performed.
  • step ST8 when any of the conditions j) to l) is satisfied, the process proceeds to step ST9.
  • j) is a condition in which the high pressure (HP) is larger than a predetermined value. This predetermined value is set to several MPa.
  • k) is a condition in which the maximum discharge temperature (TdMAX) is smaller than a predetermined value.
  • the maximum discharge temperature (TdMAX) is the maximum value among the discharge refrigerant temperatures (Td1, Td2, Td3) detected by each discharge temperature sensor (61,62,63).
  • This predetermined value is set to, for example, a value of around 100 ° C. i) is a condition in which a predetermined time t6 has elapsed since the transition to step ST8. t6 is set to about several minutes. If the second condition of step ST7 is satisfied, the determination of ST8 may be omitted and the process may proceed to step ST9.
  • the third operation is executed.
  • the opening degree of the outdoor expansion valve (28) returns to the opening degree (Psl1) immediately before the start of the first operation.
  • This opening degree (Psl1) is the opening degree stored in step ST1.
  • this opening degree (Psl1) is the maximum opening degree of the outdoor expansion valve (28). Then, the oil recovery operation is completed, and the above-mentioned cold operation is performed.
  • a controller (80) for controlling the heat source unit (20) is further provided so as to execute an oil recovery operation for recovering the oil of the utilization heat exchanger (73) during the refrigeration cycle.
  • the oil recovery operation includes a first operation of reducing the opening degree of the heat source expansion valve (28) and a second operation of increasing the opening degree of the heat source expansion valve (28) after the first operation.
  • the controller (80) is configured to execute the second operation when the first condition is satisfied during the first operation, and the first condition is the heat source expansion valve (the heat source expansion valve (43) in the liquid pipe (43). At least the condition that the difference ⁇ P between the pressure of the refrigerant on the downstream side of 28) and the pressure of the suction refrigerant of the compression element (C) is smaller than a predetermined value is included.
  • the first condition is that the difference ⁇ P between the hydraulic pressure (Ps) and the low pressure pressure (Ps) is smaller than a predetermined value, so that the opening degree of the internal expansion valve (72) is large. It can be judged accurately.
  • ⁇ P can be obtained by using the low pressure pressure sensor (67) and the liquid side pressure sensor (68) of the heat source unit (20). Therefore, it can be determined that the first condition is satisfied regardless of the specifications of the cooling unit (70). The same judgment can be made even if the cooling unit (70) is replaced.
  • the first condition includes a condition in which the inhalation superheat degree (SSH) is larger than the first value.
  • the first condition is that the suction superheat degree (SSH) is larger than the first value, it can be accurately determined that the opening degree of the internal expansion valve (72) is large.
  • suction superheat degree (SSH) can be obtained by using the suction temperature sensor (66) and the low pressure pressure sensor (67) of the heat source unit (20). Therefore, it can be determined that the first condition is satisfied regardless of the specifications of the cooling unit (70). The same judgment can be made even if the cooling unit (70) is replaced.
  • the opening degree of the heat source expansion valve (28) is set to the opening degree immediately before the start of the first operation.
  • the second condition is configured to execute three operations, and the second condition includes a condition in which the suction superheat degree (SSH) is smaller than the second value.
  • the second condition is that the suction superheat degree (SSH) is smaller than the second value, so that the oil in the internal heat exchanger (73) is recovered by the compressor (21,22,23). Can be judged accurately.
  • suction superheat degree (SSH) can be obtained by using the suction temperature sensor (66) and the low pressure pressure sensor (67) of the heat source unit (20). Therefore, it can be determined that the first condition is satisfied regardless of the specifications of the cooling unit (70). The same judgment can be made even if the cooling unit (70) is replaced.
  • the controller (80) sets the opening degree of the heat source expansion valve (28) to the opening degree immediately before the start of the first operation.
  • the second condition is configured to execute the three operations, and includes a condition in which the pressure of the refrigerant on the downstream side of the heat source expansion valve (28) in the liquid pipe (43) becomes higher than a predetermined value.
  • the second condition is that the hydraulic pressure (Ps) on the downstream side of the outdoor expansion valve (28) in the third pipe (43) is higher than a predetermined value, so that the opening degree of the outdoor expansion valve (28) is increased. It can be determined that it is sufficiently large, and it can be accurately determined that the oil in the internal heat exchanger (73) has been recovered by the compressor (21,22,23).
  • the pressure (Ps) can be obtained by using the low pressure pressure sensor (67) and the liquid side pressure sensor (68) of the heat source unit (20). Therefore, it can be determined that the first condition is satisfied regardless of the specifications of the cooling unit (70). The same judgment can be made even if the cooling unit (70) is replaced.
  • the opening degree of the outdoor expansion valve (28) is sufficiently large due to the second operation. It can be determined more reliably that it has become.
  • the speed at which the opening degree of the heat source expansion valve (28) is increased during the second operation is faster than the speed at which the opening degree of the heat source expansion valve (28) is decreased during the first operation.
  • the internal heat exchanger (73) in order to quickly increase the opening degree of the outdoor expansion valve (28), the internal heat exchanger (73) is used. Oil can be quickly recovered in the compressor (21,22,23).
  • the opening degree of the outdoor expansion valve (28) is gradually reduced. Therefore, it is possible to prevent the high pressure pressure (HP) from becoming excessively high or the low pressure pressure (LP) from becoming excessively low due to the opening degree of the outdoor expansion valve (28) becoming excessively small. it can.
  • the first condition may include at least the condition a) above, and preferably includes the condition b) above.
  • the second condition preferably includes the condition of f) or the condition of g).
  • the refrigerating device (1) of the above embodiment is a refrigerating device that cools the air in the refrigerator.
  • the freezing device (1) may be an air conditioner that air-conditions the indoor air, or may be a freezing device that simultaneously cools the air inside the refrigerator and air-conditions the indoor air.
  • the utilization expansion valve (72) is a temperature-sensitive automatic expansion valve.
  • the utilization expansion valve (72) may be an expansion valve that adjusts the opening degree based on the degree of superheat of the refrigerant after evaporation, and may be an electronic expansion valve.
  • the utilization heat exchanger (73) is an air heat exchanger that exchanges heat between air and a refrigerant.
  • the utilization heat exchanger (73) may be a heat exchanger that exchanges heat between the refrigerant and a predetermined heat medium (for example, water).
  • the present disclosure is useful for heat source units and refrigeration equipment.
  • Refrigerant circuit 20 Outdoor unit (heat source unit) 20a Heat source circuit 25 Outdoor heat exchanger (heat source heat exchanger) 28 Outdoor expansion valve (heat source expansion valve) 43 Third pipe (liquid pipe) 70 Cold installation unit (utilization unit) 72 Internal expansion valve (utilization expansion valve) 73 Internal heat exchanger (utilized heat exchanger) 80 controller (controller)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

According to the present invention, an oil recovery operation comprises a first operation of reducing the opening degree of a heat source expansion valve (28) and a second operation of increasing the opening degree of the heat source expansion valve (28) after the first operation. A controller (80) is configured to execute the second operation when a first condition is satisfied during the first operation. The first condition includes at least a condition in which a difference ΔP between the pressure of a refrigerant on the downstream side of the heat source expansion valve (28) in a liquid pipe (43) and the pressure of a suction refrigerant of a compression element (C) is smaller than a predetermined value.

Description

熱源ユニット及び冷凍装置Heat source unit and refrigeration equipment
 本開示は、熱源ユニット及び冷凍装置に関する。 This disclosure relates to a heat source unit and a refrigerating device.
 特許文献1に記載された冷凍装置では、利用熱交換器に溜まった油を圧縮機に戻す油回収運転が行われる。具体的には、油回収運転では、まず、液管の第1膨張弁の開度を小さくする。すると、利用熱交換器を流れる冷媒の流量及び圧力が減少し、吸入過熱度が増大する。これに伴い、利用膨張弁の開度が徐々に大きくなる。第1膨張弁の開度を小さくしてから所定の第1時間t1が経過すると、第1膨張弁の開度を大きくする。これにより、利用熱交換器に流れる冷媒の流量が増大する。この冷媒は利用熱交換器内の冷凍機油と相溶し、冷凍機油とともに圧縮機に回収される。 In the refrigerating apparatus described in Patent Document 1, an oil recovery operation is performed in which the oil accumulated in the heat exchanger used is returned to the compressor. Specifically, in the oil recovery operation, first, the opening degree of the first expansion valve of the liquid pipe is reduced. Then, the flow rate and pressure of the refrigerant flowing through the utilization heat exchanger decrease, and the suction superheat degree increases. Along with this, the opening degree of the utilization expansion valve gradually increases. When a predetermined first time t1 elapses after reducing the opening degree of the first expansion valve, the opening degree of the first expansion valve is increased. As a result, the flow rate of the refrigerant flowing through the utilization heat exchanger increases. This refrigerant is compatible with the refrigerating machine oil in the heat exchanger used and is recovered in the compressor together with the refrigerating machine oil.
特開2018-84376号公報JP-A-2018-84376
 特許文献1に記載の冷凍装置では、第1膨張弁の開度を小さくした後、所定の第1時間t1が経過すると、利用膨張弁の開度が大きくなったとみなし、第1膨張弁の開度を大きくしている。しかし、このようなタイマーによる判定では、利用膨張弁の開度が大きくなったことを精度よく判定できない。 In the refrigeration apparatus described in Patent Document 1, when the predetermined first time t1 elapses after reducing the opening degree of the first expansion valve, it is considered that the opening degree of the utilization expansion valve has increased, and the opening of the first expansion valve is opened. The degree is increased. However, it is not possible to accurately determine that the opening degree of the expansion valve used has increased by the determination by such a timer.
 本開示の目的は、油回収運転において、熱源膨張弁の開度を小さくする第1動作において、利用膨張弁の開度が大きくなったことの判定の精度を向上することである。 An object of the present disclosure is to improve the accuracy of determining that the opening degree of the utilization expansion valve has increased in the first operation of reducing the opening degree of the heat source expansion valve in the oil recovery operation.
 第1の態様は、圧縮要素(C)、液管(43)、該液管(43)に接続される熱源膨張弁(28)、及び熱源熱交換器(25)を有し、利用熱交換器(73)及び利用膨張弁(72)を有する利用ユニット(70)に接続されることで、前記熱源熱交換器(25)を放熱器とし前記利用熱交換器(73)を蒸発器とする冷凍サイクルを行う冷媒回路(10)が構成される熱源ユニットであって、前記冷凍サイクル中に前記利用熱交換器(73)の油を回収する油回収運転を実行するように前記熱源ユニット(20)を制御する制御器(80)をさらに備え、前記油回収運転は、前記熱源膨張弁(28)の開度を小さくする第1動作と、該第1動作の後、該熱源膨張弁(28)の開度を大きくする第2動作とを含み、前記制御器(80)は、前記第1動作中に第1条件が成立すると前記第2動作を実行するように構成され、前記第1条件は、前記液管(43)における前記熱源膨張弁(28)の下流側の冷媒の圧力と、前記圧縮要素(C)の吸入冷媒の圧力との差ΔPが所定値より小さい条件を少なくとも含んでいる。 The first embodiment has a compression element (C), a liquid pipe (43), a heat source expansion valve (28) connected to the liquid pipe (43), and a heat source heat exchanger (25), and utilizes heat exchange. By connecting to a utilization unit (70) having a vessel (73) and a utilization expansion valve (72), the heat source heat exchanger (25) becomes a radiator and the utilization heat exchanger (73) becomes an evaporator. A heat source unit including a refrigerant circuit (10) that performs a refrigeration cycle, and the heat source unit (20) so as to execute an oil recovery operation for recovering oil from the utilization heat exchanger (73) during the refrigeration cycle. ) Is further provided, and the oil recovery operation includes a first operation of reducing the opening degree of the heat source expansion valve (28), and after the first operation, the heat source expansion valve (28). ) Is included, and the controller (80) is configured to execute the second operation when the first condition is satisfied during the first operation, and the first condition is included. At least includes a condition in which the difference ΔP between the pressure of the refrigerant on the downstream side of the heat source expansion valve (28) in the liquid pipe (43) and the pressure of the suction refrigerant of the compression element (C) is smaller than a predetermined value. There is.
 第1の態様では、第1動作において、液管(43)における熱源膨張弁(28)の下流側の冷媒の圧力と、圧縮要素(C)の吸入冷媒の圧力との差ΔPが所定値より小さいことを第1条件とすることで、利用膨張弁の開度が大きくなったことの判定の精度を向上できる。 In the first aspect, in the first operation, the difference ΔP between the pressure of the refrigerant on the downstream side of the heat source expansion valve (28) in the liquid pipe (43) and the pressure of the suction refrigerant of the compression element (C) is greater than a predetermined value. By setting the first condition to be small, it is possible to improve the accuracy of determining that the opening degree of the utilization expansion valve has increased.
 第2の態様は、第1の態様において、前記第1条件は、吸入過熱度が第1値より大きい条件を含んでいる。 In the second aspect, in the first aspect, the first condition includes a condition in which the degree of inhalation superheat is greater than the first value.
 第2の態様では、第1動作において、吸入過熱度が大きいことを第1条件とすることで、利用膨張弁(72)の開度が大きくなったことの判定の精度を向上できる。 In the second aspect, in the first operation, by setting a large suction superheat degree as the first condition, it is possible to improve the accuracy of determining that the opening degree of the utilization expansion valve (72) has increased.
 第3の態様は、第1又は第2の態様において、前記制御器(80)は、前記第2動作中に第2条件が成立すると、前記熱源膨張弁(28)の開度を前記第1動作の開始直前の開度とする第3動作を実行させるように構成され、前記第2条件は、吸入過熱度が第2値より小さくなる条件を含む。 In the third aspect, in the first or second aspect, when the second condition is satisfied during the second operation, the controller (80) sets the opening degree of the heat source expansion valve (28) to the first. It is configured to execute the third operation which is the opening degree immediately before the start of the operation, and the second condition includes a condition where the suction superheat degree is smaller than the second value.
 第3の態様では、第2動作において、吸入過熱度が第2値より小さいことを第2条件とすることで、圧縮要素(C)に油が回収されたことの判定の精度を向上できる。 In the third aspect, in the second operation, the accuracy of determining that the oil has been recovered in the compression element (C) can be improved by setting the suction superheat degree to be smaller than the second value as the second condition.
 第4の態様は、第1~第3のいずれか1つの態様において、前記制御器(80)は、前記第2動作中に第2条件が成立すると、前記熱源膨張弁(28)の開度を前記第1動作の開始直前の開度とする第3動作を実行させるように構成され、前記第2条件は、前記液管(43)における前記熱源膨張弁(28)の下流側の冷媒の圧力が、所定値より高くなる条件を含む。 In the fourth aspect, in any one of the first to third aspects, the controller (80) opens the heat source expansion valve (28) when the second condition is satisfied during the second operation. Is configured to execute the third operation with the opening degree immediately before the start of the first operation, and the second condition is that of the refrigerant on the downstream side of the heat source expansion valve (28) in the liquid pipe (43). Includes the condition that the pressure becomes higher than the predetermined value.
 第4の態様では、第2動作において、熱源膨張弁(28)の下流側の冷媒の圧力が所定値より高いことを第2条件とすることで、圧縮要素(C)に油が回収されたことの判定の精度を向上できる。 In the fourth aspect, in the second operation, the oil is recovered in the compression element (C) under the second condition that the pressure of the refrigerant on the downstream side of the heat source expansion valve (28) is higher than a predetermined value. The accuracy of the judgment can be improved.
 第5の態様は、第1~第4のいずれか1つの態様において、前記第2動作時に前記熱源膨張弁(28)の開度を大きくする速度が、前記第1動作時に前記熱源膨張弁(28)の開度を小さくする速度よりも早い。 In the fifth aspect, in any one of the first to fourth aspects, the speed at which the opening degree of the heat source expansion valve (28) is increased during the second operation is increased during the first operation. It is faster than the speed of reducing the opening of 28).
 第5の態様では、第2動作において、利用膨張弁(72)の開度が大きい条件下において、利用熱交換器(73)に溜まった油を冷媒とともに速やかに圧縮機(21,22,23)に戻すことができる。 In the fifth aspect, in the second operation, under the condition that the opening degree of the utilization expansion valve (72) is large, the oil accumulated in the utilization heat exchanger (73) is quickly compressed together with the refrigerant (21,22,23). ) Can be returned.
 第6の態様は、第1~第5のいずれか1つに記載の熱源ユニット(20)と、利用熱交換器(73)及び利用膨張弁(72)を有する利用ユニット(70)とを備え、前記熱源ユニット(20)と前記利用ユニット(70)とが接続されることで、前記熱源熱交換器(25)を放熱器とし前記利用熱交換器(73)を蒸発器とする冷凍サイクルを行う冷媒回路(10)が構成される冷凍装置である。 A sixth aspect comprises the heat source unit (20) according to any one of the first to fifth aspects, and a utilization unit (70) having a utilization heat exchanger (73) and a utilization expansion valve (72). By connecting the heat source unit (20) and the utilization unit (70), a refrigeration cycle using the heat source heat exchanger (25) as a radiator and the utilization heat exchanger (73) as an evaporator can be performed. It is a refrigerating apparatus in which the refrigerant circuit (10) is configured.
 第7の態様は、第6の態様において、前記利用膨張弁(72)は、温度自動膨張弁であることを特徴とする冷凍装置である。 A seventh aspect is a refrigerating apparatus according to the sixth aspect, wherein the utilization expansion valve (72) is a temperature automatic expansion valve.
図1は、実施形態に係る冷凍装置の配管系統図である。FIG. 1 is a piping system diagram of the refrigerating device according to the embodiment. 図2は、冷設運転の冷媒の流れを示した図1に相当する図である。FIG. 2 is a diagram corresponding to FIG. 1 showing the flow of the refrigerant in the cold operation. 図3は、デフロスト運転の冷媒の流れを示した図1に相当する図である。FIG. 3 is a diagram corresponding to FIG. 1 showing the flow of the refrigerant in the defrost operation. 図4は、油戻し運転のフローチャートである。FIG. 4 is a flowchart of the oil return operation.
 以下、本実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, this embodiment will be described with reference to the drawings. It should be noted that the following embodiments are essentially preferred examples and are not intended to limit the scope of the present invention, its applications, or its uses.
 〈全体構成〉
 実施形態1に係る冷凍装置(1)は、冷却対象である空気を冷却する。本例の冷却対象は、冷蔵庫、冷凍庫、ショーケースなどの庫内の空気である。
<overall structure>
The refrigerating apparatus (1) according to the first embodiment cools the air to be cooled. The cooling target of this example is the air inside a refrigerator, a freezer, a showcase, or the like.
 図1に示すように、冷凍装置(1)は、室外に設置される室外ユニット(20)と、庫内の空気を冷却する冷設ユニット(70)とを備える。冷設ユニット(70)の数量は、2つに限らず、1つ又は3つ以上であってもよい。室外ユニット(20)と2つの冷設ユニット(70)とは液連絡配管(14)及びガス連絡配管(13)を介して互いに接続される。これにより、冷凍装置(1)に冷媒回路(10)が構成される。冷媒回路(10)では、充填された冷媒が循環することで蒸気圧縮式の冷凍サイクルが行われる。 As shown in FIG. 1, the refrigerating device (1) includes an outdoor unit (20) installed outdoors and a cooling unit (70) for cooling the air inside the refrigerator. The number of cooling units (70) is not limited to two, and may be one or three or more. The outdoor unit (20) and the two cooling units (70) are connected to each other via a liquid communication pipe (14) and a gas communication pipe (13). As a result, the refrigerant circuit (10) is configured in the refrigerating device (1). In the refrigerant circuit (10), a vapor compression refrigeration cycle is performed by circulating the filled refrigerant.
 〈室外ユニットの概要〉
 室外ユニット(20)は、熱源ユニットである。室外ユニット(20)は、屋外に設置される。室外ユニット(20)は、熱源回路(20a)と室外ファン(F1)とを有する。熱源回路(20a)は、主な構成要素として、圧縮要素(C)である3台の圧縮機(21,22,23)、四方切換弁(24)、室外熱交換器(25)、レシーバ(26)、過冷却熱交換器(27)、及び室外膨張弁(28)を有する。
<Overview of outdoor unit>
The outdoor unit (20) is a heat source unit. The outdoor unit (20) is installed outdoors. The outdoor unit (20) has a heat source circuit (20a) and an outdoor fan (F1). The heat source circuit (20a) has three compressors (21,22,23), a four-way switching valve (24), an outdoor heat exchanger (25), and a receiver (receiver), which are the compression elements (C) as the main components. It has a 26), supercooled heat exchanger (27), and an outdoor expansion valve (28).
 熱源回路(20a)には、ガス閉鎖弁(11)と液閉鎖弁(12)とが設けられる。ガス閉鎖弁(11)には、ガス連絡配管(13)が接続される。液閉鎖弁(12)には、液連絡配管(14)が接続される。 The heat source circuit (20a) is provided with a gas shutoff valve (11) and a liquid shutoff valve (12). A gas connecting pipe (13) is connected to the gas shutoff valve (11). A liquid communication pipe (14) is connected to the liquid shutoff valve (12).
 〈圧縮要素、及びその周辺構造〉
 本例の圧縮要素(C)は、3台の圧縮機(21,22,23)で構成される。熱源回路(20a)では、3台の圧縮機(21,22,23)が並列に接続される。3台の圧縮機(21,22,23)は、第1圧縮機(21)、第2圧縮機(22)、及び第3圧縮機(23)で構成される。各圧縮機(21,22,23)は、例えばスクロール圧縮機で構成される。第1圧縮機(21)は、可変容量式である。第1圧縮機(21)には、電源電力がインバータ回路を介し電動機に供給される。第2圧縮機(22)及び第3圧縮機(23)は、固定容量式である。
<Compression element and its peripheral structure>
The compression element (C) of this example is composed of three compressors (21,22,23). In the heat source circuit (20a), three compressors (21,22,23) are connected in parallel. The three compressors (21,22,23) are composed of a first compressor (21), a second compressor (22), and a third compressor (23). Each compressor (21,22,23) is composed of, for example, a scroll compressor. The first compressor (21) is a variable capacitance type. Power is supplied to the electric motor of the first compressor (21) via an inverter circuit. The second compressor (22) and the third compressor (23) are of a fixed capacitance type.
 第1圧縮機(21)の吐出部には第1吐出管(31)が接続される。第1圧縮機(21)の吸入部には第1吸入管(34)が接続される。第2圧縮機(22)の吐出部には第2吐出管(32)が接続される。第2圧縮機(22)の吸入部には第2吸入管(35)が接続される。第3圧縮機(23)の吐出管(33)には第3吐出管(33)が接続される。第3圧縮機(23)の吸入部には第3吸入管(36)が接続される。 The first discharge pipe (31) is connected to the discharge portion of the first compressor (21). A first suction pipe (34) is connected to the suction portion of the first compressor (21). A second discharge pipe (32) is connected to the discharge portion of the second compressor (22). A second suction pipe (35) is connected to the suction portion of the second compressor (22). A third discharge pipe (33) is connected to the discharge pipe (33) of the third compressor (23). A third suction pipe (36) is connected to the suction portion of the third compressor (23).
 第1吐出管(31)、第2吐出管(32)、及び第3吐出管(33)の各流出端は、主吐出管(37)の流入端が接続される。第1吸入管(34)、第2吸入管(35)、及び第3吸入管(36)の各流入端は、主吸入管(38)の流出端が接続される。 The inflow end of the main discharge pipe (37) is connected to each outflow end of the first discharge pipe (31), the second discharge pipe (32), and the third discharge pipe (33). The outflow end of the main suction pipe (38) is connected to each inflow end of the first suction pipe (34), the second suction pipe (35), and the third suction pipe (36).
 第1吐出管(31)には、第1逆止弁(CV1)が接続される。第2吐出管(32)には、第2逆止弁(CV2)が接続される。第3吐出管(33)には、第3逆止弁(CV3)が接続される。第1逆止弁(CV1)、第2逆止弁(CV2)、第3逆止弁(CV3)は、各圧縮機(21,22,23)の吐出部から主吐出管(37)への冷媒の流れを許容し、その逆の冷媒の流れを禁止する。 The first check valve (CV1) is connected to the first discharge pipe (31). A second check valve (CV2) is connected to the second discharge pipe (32). A third check valve (CV3) is connected to the third discharge pipe (33). The first check valve (CV1), the second check valve (CV2), and the third check valve (CV3) are from the discharge part of each compressor (21,22,23) to the main discharge pipe (37). Allows the flow of refrigerant and prohibits the reverse flow of refrigerant.
 主吐出管(37)には、油分離器(39)が設けられる。油分離器(39)は、圧縮要素(C)で圧縮された冷媒から油を分離する。油分離器(39)には、油戻し管(39a)の流入端が接続される。油戻し管(39a)の流出端は、インジェクション回路(I)に接続される。油戻し管(39a)には、電動弁である油戻し弁(39b)が接続される。油分離器(39)で分離された油は、油戻し管(39a)、インジェクション回路(I)を介して各圧縮機(21,22,23)の圧縮室(中間圧力部)に戻される。 An oil separator (39) is provided in the main discharge pipe (37). The oil separator (39) separates the oil from the refrigerant compressed by the compression element (C). The inflow end of the oil return pipe (39a) is connected to the oil separator (39). The outflow end of the oil return pipe (39a) is connected to the injection circuit (I). An oil return valve (39b), which is an electric valve, is connected to the oil return pipe (39a). The oil separated by the oil separator (39) is returned to the compression chamber (intermediate pressure section) of each compressor (21,22,23) via the oil return pipe (39a) and the injection circuit (I).
 〈四方切換弁〉
 四方切換弁(24)は、第1ポート(P1)、第2ポート(P2)、第3ポート(P3)、及び第4ポート(P4)を有する。第1ポート(P1)は、主吐出管(37)の流出端に接続する。第2ポート(P2)は、主吸入管(38)の流入端に接続する。第3ポート(P3)は、室外熱交換器(25)のガス端部に繋がる。第4ポート(P4)は、ガス閉鎖弁(11)に繋がる。
<Four-way switching valve>
The four-way switching valve (24) has a first port (P1), a second port (P2), a third port (P3), and a fourth port (P4). The first port (P1) is connected to the outflow end of the main discharge pipe (37). The second port (P2) is connected to the inflow end of the main suction pipe (38). The third port (P3) is connected to the gas end of the outdoor heat exchanger (25). The fourth port (P4) is connected to the gas shutoff valve (11).
 四方切換弁(24)は、第1状態(図1の実線で示す状態)と第2状態(図1の破線で示す状態)とに切り換わる。第1状態の四方切換弁(24)は、第1ポート(P1)と第3ポート(P3)とを連通させ且つ第2ポート(P2)と第4ポート(P4)とを連通させる。第2状態の四方切換弁(24)は、第1ポート(P1)と第4ポート(P4)とを連通させ且つ第2ポート(P2)と第3ポート(P3)とを連通させる。 The four-way switching valve (24) switches between the first state (the state shown by the solid line in FIG. 1) and the second state (the state shown by the broken line in FIG. 1). The four-way switching valve (24) in the first state communicates the first port (P1) and the third port (P3), and communicates the second port (P2) and the fourth port (P4). The four-way switching valve (24) in the second state communicates the first port (P1) and the fourth port (P4), and communicates the second port (P2) and the third port (P3).
 〈室外熱交換器、及びその周辺構造〉
 室外熱交換器(25)は、熱源熱交換器である。室外熱交換器(25)は、フィン・アンド・チューブ式の熱交換器である。室外ファン(F1)は、室外熱交換器(25)の近傍に配置される。室外ファン(F1)は、室外熱交換器(25)を通過する室外空気を搬送する。室外熱交換器(25)では、室外ファン(F1)により搬送される室外空気と冷媒とが熱交換する。
<Outdoor heat exchanger and its peripheral structure>
The outdoor heat exchanger (25) is a heat source heat exchanger. The outdoor heat exchanger (25) is a fin-and-tube heat exchanger. The outdoor fan (F1) is located near the outdoor heat exchanger (25). The outdoor fan (F1) carries the outdoor air that passes through the outdoor heat exchanger (25). In the outdoor heat exchanger (25), the outdoor air conveyed by the outdoor fan (F1) exchanges heat with the refrigerant.
 〈レシーバ、過冷却熱交換器、及びその周辺構造〉
 レシーバ(26)は、冷媒を貯留する。レシーバ(26)は、縦長の密閉容器である。
<Receiver, supercooled heat exchanger, and its peripheral structure>
The receiver (26) stores the refrigerant. The receiver (26) is a vertically long closed container.
 過冷却熱交換器(27)は、第1流路(27a)と第2流路(27b)とを有する。過冷却熱交換器(27)は、第1流路(27a)を流れる冷媒と、第2流路(27b)を流れる冷媒とを熱交換させる。 The supercooled heat exchanger (27) has a first flow path (27a) and a second flow path (27b). The supercooling heat exchanger (27) exchanges heat between the refrigerant flowing through the first flow path (27a) and the refrigerant flowing through the second flow path (27b).
 室外熱交換器(25)の液端部とレシーバ(26)の頂部との間には、第1管(41)が接続される。第1管(41)には、第4逆止弁(CV4)が接続される。第4逆止弁(CV4)は、室外熱交換器(25)側からレシーバ(26)側への冷媒の流れを許容し、その逆の冷媒の流れを禁止する。 The first pipe (41) is connected between the liquid end of the outdoor heat exchanger (25) and the top of the receiver (26). A fourth check valve (CV4) is connected to the first pipe (41). The fourth check valve (CV4) allows the flow of refrigerant from the outdoor heat exchanger (25) side to the receiver (26) side and prohibits the reverse flow of refrigerant.
 レシーバ(26)の底部と過冷却熱交換器(27)の第1流路(27a)の一端との間には、第2管(42)が接続される。第1流路(27a)の他端と液閉鎖弁(12)との間には、第3管(43)が接続される。第3管(43)は、液管の一部を構成する。第3管(43)には、第5逆止弁(CV5)が接続される。第5逆止弁(CV5)は、第1流路(27a)の他端側から液閉鎖弁(12)側への冷媒の流れを許容し、その逆の冷媒の流れを禁止する。 A second pipe (42) is connected between the bottom of the receiver (26) and one end of the first flow path (27a) of the supercooled heat exchanger (27). A third pipe (43) is connected between the other end of the first flow path (27a) and the liquid shutoff valve (12). The third pipe (43) constitutes a part of the liquid pipe. A fifth check valve (CV5) is connected to the third pipe (43). The fifth check valve (CV5) allows the flow of refrigerant from the other end side of the first flow path (27a) to the liquid closing valve (12) side, and prohibits the reverse flow of refrigerant.
 第3管(43)には、第1流路(27a)の他端と第5逆止弁(CV5)との間に室外膨張弁(28)が接続される。室外膨張弁(28)は、熱源膨張弁である。室外膨張弁(28)は、冷媒を減圧する減圧機構である。室外膨張弁(28)は、電子膨張弁で構成される。 An outdoor expansion valve (28) is connected to the third pipe (43) between the other end of the first flow path (27a) and the fifth check valve (CV5). The outdoor expansion valve (28) is a heat source expansion valve. The outdoor expansion valve (28) is a pressure reducing mechanism for reducing the pressure of the refrigerant. The outdoor expansion valve (28) is composed of an electronic expansion valve.
 第3管(43)には、第4管(44)が接続される。第4管(44)の一端は、第3管(43)における第5逆止弁(CV5)と液閉鎖弁(12)との間に接続される。第4管(44)の他端は、第1管(41)における第4逆止弁(CV4)とレシーバ(26)との間に接続される。第4管(44)には、第6逆止弁(CV6)が接続される。第6逆止弁(CV6)は、第3管(43)側から第1管(41)側への冷媒の流れを許容し、その逆の冷媒の流れを禁止する。 The fourth pipe (44) is connected to the third pipe (43). One end of the fourth pipe (44) is connected between the fifth check valve (CV5) and the liquid shutoff valve (12) in the third pipe (43). The other end of the fourth pipe (44) is connected between the fourth check valve (CV4) and the receiver (26) in the first pipe (41). A sixth check valve (CV6) is connected to the fourth pipe (44). The sixth check valve (CV6) allows the flow of refrigerant from the third pipe (43) side to the first pipe (41) side, and prohibits the reverse flow of refrigerant.
 第3管(43)には、第5管(45)が接続される。第5管(45)の一端は、第3管(43)における室外膨張弁(28)と第5逆止弁(CV5)との間に接続される。第5管(45)の他端は、第1管(41)における第4逆止弁(CV4)と室外熱交換器(25)との間に接続される。第5管(45)には、第7逆止弁(CV7)が接続される。第7逆止弁(CV7)は、第3管(43)側から第1管(41)側への冷媒の流れを許容し、その逆の冷媒の流れを禁止する。 The fifth pipe (45) is connected to the third pipe (43). One end of the fifth pipe (45) is connected between the outdoor expansion valve (28) and the fifth check valve (CV5) in the third pipe (43). The other end of the fifth pipe (45) is connected between the fourth check valve (CV4) in the first pipe (41) and the outdoor heat exchanger (25). A seventh check valve (CV7) is connected to the fifth pipe (45). The seventh check valve (CV7) allows the flow of refrigerant from the third pipe (43) side to the first pipe (41) side, and prohibits the reverse flow of refrigerant.
 〈インジェクション回路〉
 熱源回路(20a)は、インジェクション回路(I)を含む。インジェクション回路(I)は、中間圧の冷媒を圧縮要素(C)の中間圧力部へ導入する。インジェクション回路(I)は、1つの分岐管(51)と、1つの中継管(52)と、3つのインジェクション管(53,54,55)とを含む。
<Injection circuit>
The heat source circuit (20a) includes an injection circuit (I). The injection circuit (I) introduces the intermediate pressure refrigerant into the intermediate pressure portion of the compression element (C). The injection circuit (I) includes one branch pipe (51), one relay pipe (52), and three injection pipes (53,54,55).
 分岐管(51)の流入端は、第3管(43)における第1流路(27a)と室外膨張弁(28)との間に接続される。分岐管(51)の流出端は、第2流路(27b)の流入端に接続される。分岐管(51)には、インジェクション弁(59)が接続される。インジェクション弁(59)は、電子膨張弁で構成される。 The inflow end of the branch pipe (51) is connected between the first flow path (27a) and the outdoor expansion valve (28) in the third pipe (43). The outflow end of the branch pipe (51) is connected to the inflow end of the second flow path (27b). An injection valve (59) is connected to the branch pipe (51). The injection valve (59) is composed of an electronic expansion valve.
 中継管(52)の流入端は、第2流路(27b)の流出端に接続される。中継管(52)には、油戻し管(39a)の流出端が接続される。中継管(52)の流出部には、第1インジェクション管(53)と、第2インジェクション管(54)と、第3インジェクション管(55)の各流入端が接続される。 The inflow end of the relay pipe (52) is connected to the outflow end of the second flow path (27b). The outflow end of the oil return pipe (39a) is connected to the relay pipe (52). The inflow ends of the first injection pipe (53), the second injection pipe (54), and the third injection pipe (55) are connected to the outflow portion of the relay pipe (52).
 第1インジェクション管(53)の流出端は、第1圧縮機(21)の圧縮室に連通する。第2インジェクション管(54)の流出端は、第2圧縮機(22)の圧縮室に連通する。第3インジェクション管(55)の流出端は、第3圧縮機(23)の圧縮室に連通する。 The outflow end of the first injection pipe (53) communicates with the compression chamber of the first compressor (21). The outflow end of the second injection pipe (54) communicates with the compression chamber of the second compressor (22). The outflow end of the third injection pipe (55) communicates with the compression chamber of the third compressor (23).
 第1インジェクション管(53)には、第1電動弁(56)が接続される。第2インジェクション管(54)には、第2電動弁(57)が接続される。第3インジェクション管(55)には、第3電動弁(58)が接続される。各電動弁(56,57,58)は、流量調節弁である。各電動弁(56,57,58)は、対応するインジェクション管(53,54,55)の冷媒の流量を調節する。 The first electric valve (56) is connected to the first injection pipe (53). A second electric valve (57) is connected to the second injection pipe (54). A third electric valve (58) is connected to the third injection pipe (55). Each electric valve (56,57,58) is a flow control valve. Each motorized valve (56,57,58) regulates the flow rate of refrigerant in the corresponding injection tube (53,54,55).
 〈熱源ユニットのセンサ〉
 熱源ユニット(20)には、熱源回路(20a)の冷媒の物理量を検知する複数のセンサが設けられる。複数のセンサは、第1吐出温度センサ(61)、第2吐出温度センサ(62)、第3吐出温度センサ(63)、高圧圧力センサ(64)、吸込温度センサ(65)、低圧圧力センサ(67)、液側圧力センサ(68)、及び中間圧力センサ(69)を少なくとも有する。
<Sensor of heat source unit>
The heat source unit (20) is provided with a plurality of sensors for detecting the physical quantity of the refrigerant in the heat source circuit (20a). The plurality of sensors include a first discharge temperature sensor (61), a second discharge temperature sensor (62), a third discharge temperature sensor (63), a high pressure pressure sensor (64), a suction temperature sensor (65), and a low pressure pressure sensor ( 67), has at least a liquid side pressure sensor (68), and an intermediate pressure sensor (69).
 第1吐出温度センサ(61)は、第1吐出管(31)の冷媒の温度(Td1)を検知する。第2吐出温度センサ(62)は、第2吐出管(32)の冷媒の温度(Td2)を検知する。第3吐出温度センサ(63)は、第3吐出管(33)の冷媒の温度(Td3)を検知する。高圧圧力センサ(64)は、圧縮要素(C)の吐出圧力(冷媒回路(10)の高圧圧力(HP))を検知する。吸込温度センサ(65)は、圧縮要素(C)の吸入冷媒の温度を検出する。低圧圧力センサ(67)は、圧縮要素(C)の吸入圧力(冷媒回路(10)の低圧圧力(LP))を検知する。液側圧力センサ(68)は、第3管(43)の液冷媒の圧力(液圧(Ps))を検知する。中間圧力センサ(69)は、インジェクション回路(I)の中継管(52)の冷媒の圧力(MP)を検知する。 The first discharge temperature sensor (61) detects the temperature (Td1) of the refrigerant in the first discharge pipe (31). The second discharge temperature sensor (62) detects the temperature (Td2) of the refrigerant in the second discharge pipe (32). The third discharge temperature sensor (63) detects the temperature (Td3) of the refrigerant in the third discharge pipe (33). The high-pressure pressure sensor (64) detects the discharge pressure of the compression element (C) (high-pressure pressure (HP) of the refrigerant circuit (10)). The suction temperature sensor (65) detects the temperature of the suction refrigerant of the compression element (C). The low pressure pressure sensor (67) detects the suction pressure of the compression element (C) (low pressure (LP) of the refrigerant circuit (10)). The liquid side pressure sensor (68) detects the pressure (liquid pressure (Ps)) of the liquid refrigerant in the third pipe (43). The intermediate pressure sensor (69) detects the pressure (MP) of the refrigerant in the relay pipe (52) of the injection circuit (I).
 低圧圧力センサ(67)及び吸入温度センサ(66)は、圧縮要素(C)の吸入過熱度(SSH)を検出するための吸入過熱度検知部を構成する。具体的には、コントローラ(80)は、低圧圧力センサ(67)で検出した低圧圧力(LP)に相当する飽和温度と、吸入温度センサ(66)の検出温度との差により、吸入過熱度(SSH)を求める。 The low-pressure pressure sensor (67) and the suction temperature sensor (66) constitute a suction superheat detection unit for detecting the suction superheat (SSH) of the compression element (C). Specifically, the controller (80) determines the suction superheat degree (80) by the difference between the saturation temperature corresponding to the low pressure (LP) detected by the low pressure pressure sensor (67) and the temperature detected by the suction temperature sensor (66). SSH) is requested.
 高圧圧力センサ(64)及び3つの吐出温度センサ(61,62,63)は、圧縮要素(C)の吐出過熱度(DSH)を検出するための吐出過熱度検知部を構成する。具体的には、コントローラ(80)は、高圧圧力センサ(64)で検出した高圧圧力(HP)に相当する飽和温度と、各吐出温度センサ(61,62,63)の検出温度(例えばこれらの平均温度)との差により、吐出過熱度(DSH)を求める。 The high-pressure pressure sensor (64) and the three discharge temperature sensors (61,62,63) constitute a discharge superheat detection unit for detecting the discharge superheat (DSH) of the compression element (C). Specifically, the controller (80) has a saturation temperature corresponding to the high pressure (HP) detected by the high pressure sensor (64) and a temperature detected by each discharge temperature sensor (61,62,63) (for example, these). The discharge superheat degree (DSH) is calculated from the difference from the average temperature).
 〈冷設ユニット〉
 冷設ユニット(70)は、利用ユニットである。各冷設ユニット(70)は、利用回路(70a)と庫内ファン(F2)とをそれぞれ有する。
<Colding unit>
The cooling unit (70) is a utilization unit. Each cooling unit (70) has a utilization circuit (70a) and an internal fan (F2), respectively.
 利用回路(70a)は、液連絡配管(14)及びガス連絡配管(13)に並列に接続される。各利用回路(70a)は、その液端部からガス端部に向かって順に、開閉弁(71)、庫内膨張弁(72)、及び庫内熱交換器(73)をそれぞれ有する。 The utilization circuit (70a) is connected in parallel to the liquid communication pipe (14) and the gas communication pipe (13). Each utilization circuit (70a) has an on-off valve (71), an internal expansion valve (72), and an internal heat exchanger (73) in this order from the liquid end portion to the gas end portion.
 開閉弁(71)は、利用回路(70a)を開閉する電磁開閉弁である。開閉弁(71)は、通常の運転時には開放される。 The on-off valve (71) is an electromagnetic on-off valve that opens and closes the utilization circuit (70a). The on-off valve (71) is opened during normal operation.
 庫内膨張弁(72)は、利用膨張弁である。庫内膨張弁(72)は、感温自動膨張弁である。庫内膨張弁(72)は、蒸発器となる利用熱交換器(73)を流出する冷媒の過熱度に応じて、開度が調節される。この過熱度は、圧縮要素(C)に吸入される冷媒の吸入過熱度(SSH)に相当する。 The internal expansion valve (72) is a utilization expansion valve. The internal expansion valve (72) is a temperature-sensitive automatic expansion valve. The opening degree of the internal expansion valve (72) is adjusted according to the degree of superheat of the refrigerant flowing out of the utilization heat exchanger (73) serving as an evaporator. This degree of superheat corresponds to the degree of suction superheat (SSH) of the refrigerant sucked into the compression element (C).
 より詳細には、図1に示すように、庫内膨張弁(72)は、膨張弁本体(72a)と、感温筒(72b)と、キャピラリーチューブ(72c)とを有する。膨張弁本体(72a)は、利用回路(70a)の開閉弁(71)と庫内熱交換器(73)との間に接続される。感温筒(72b)は、利用熱交換器(73)のガス端部の配管に接触するように配置される。膨張弁本体(72a)と感温筒(72b)とはキャピラリーチューブ(72c)を介して接続される。蒸発器となる庫内熱交換器(73)を流出した冷媒の過熱度が変化すると、感温筒(72b)及びキャピラリーチューブ(72c)の内部に封入された作動流体の圧力が変化する。この内圧変化に応じて膨張弁本体(72a)のダイヤフラムが変位し、ひいては庫内膨張弁(72)の開度が調節される。 More specifically, as shown in FIG. 1, the internal expansion valve (72) has an expansion valve main body (72a), a temperature sensitive tube (72b), and a capillary tube (72c). The expansion valve body (72a) is connected between the on-off valve (71) of the utilization circuit (70a) and the internal heat exchanger (73). The temperature sensitive cylinder (72b) is arranged so as to come into contact with the piping at the gas end of the utilization heat exchanger (73). The expansion valve body (72a) and the temperature sensitive cylinder (72b) are connected via a capillary tube (72c). When the degree of superheat of the refrigerant flowing out of the internal heat exchanger (73) serving as an evaporator changes, the pressure of the working fluid sealed inside the temperature sensitive cylinder (72b) and the capillary tube (72c) changes. The diaphragm of the expansion valve main body (72a) is displaced according to this change in internal pressure, and the opening degree of the internal expansion valve (72) is adjusted.
 庫内熱交換器(73)は、利用熱交換器である。庫内熱交換器(73)は、フィン・アンド・チューブ式の熱交換器である。庫内ファン(F2)は、庫内熱交換器(73)の近傍に配置される。庫内ファン(F2)は、庫内熱交換器(73)を通過する庫内空気を搬送する。庫内熱交換器(73)では、庫内ファン(F2)が搬送する庫内空気と冷媒とが熱交換する。 The internal heat exchanger (73) is a utilization heat exchanger. The internal heat exchanger (73) is a fin-and-tube heat exchanger. The internal fan (F2) is arranged in the vicinity of the internal heat exchanger (73). The internal fan (F2) conveys the internal air passing through the internal heat exchanger (73). In the internal heat exchanger (73), the internal air conveyed by the internal fan (F2) exchanges heat with the refrigerant.
 〈コントローラ〉
 室外ユニット(20)は、コントローラ(80)を備える。コントローラ(80)は、制御基板上に搭載されたマイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエアを格納するメモリディバイス(具体的には半導体メモリ)とを含む。
<controller>
The outdoor unit (20) includes a controller (80). The controller (80) includes a microcomputer mounted on a control board and a memory device (specifically, a semiconductor memory) for storing software for operating the microcomputer.
 コントローラ(80)は、運転指令、及び各センサの検出信号に基づいて、室外ユニット(21,22,23)の各機器を制御する。コントローラ(80)は、冷設運転、デフロスト運転、油戻し運転を切り換えるように、各機器を制御する。冷設運転は、冷設ユニット(70)により庫内の空気を冷却する運転である。デフロスト運転は、庫内熱交換器(73)の表面に付いた霜を融かす運転である。油戻し運転は、庫内熱交換器(73)に溜まった油(冷凍機油)を圧縮機(21,22,23)に回収する運転である。 The controller (80) controls each device of the outdoor unit (21,22,23) based on the operation command and the detection signal of each sensor. The controller (80) controls each device so as to switch between the cold operation, the defrost operation, and the oil return operation. The cooling operation is an operation in which the air inside the refrigerator is cooled by the cooling unit (70). The defrost operation is an operation of melting the frost on the surface of the internal heat exchanger (73). The oil return operation is an operation of recovering the oil (refrigerator oil) accumulated in the internal heat exchanger (73) to the compressor (21,22,23).
 油戻し運転において、コントローラ(80)は、第1動作、第2動作、及び第3動作を実行するように室外ユニット(20)を制御する。第1動作は、室外膨張弁(28)の開度を減少させる動作である。第2動作は、室外膨張弁(28)の開度を増大させる動作である。第3動作は、室外膨張弁(28)の開度を第1動作の開始直前に開度に戻す動作である。 In the oil return operation, the controller (80) controls the outdoor unit (20) to execute the first operation, the second operation, and the third operation. The first operation is an operation of reducing the opening degree of the outdoor expansion valve (28). The second operation is an operation of increasing the opening degree of the outdoor expansion valve (28). The third operation is an operation of returning the opening degree of the outdoor expansion valve (28) to the opening degree immediately before the start of the first operation.
 コントローラ(80)は、第1動作中において、第2動作を実行させる判定を行う。この判定は、第1条件(詳細は後述する)に基づいて行われる。コントローラ(80)は、第2動作中において第3動作を実行させる判定を行う。この判定は、第2条件(詳細は後述する)に基づいて行われる。 The controller (80) makes a determination to execute the second operation during the first operation. This determination is made based on the first condition (details will be described later). The controller (80) determines to execute the third operation during the second operation. This determination is made based on the second condition (details will be described later).
 -運転動作-
 実施形態に係る冷凍装置(1)の運転動作について説明する。
-Driving operation-
The operation operation of the refrigerating apparatus (1) according to the embodiment will be described.
 〈冷設運転〉
 冷設運転では、各圧縮機(21,22,23)、室外ファン(F1)、及び庫内ファン(F2)が運転される。四方切換弁(24)が第1状態に設定され、室外膨張弁(28)が全開状態になる。開閉弁(71)が開放される。各庫内膨張弁(72)の開度が適宜調節される。具体的には、各庫内膨張弁(72)の開度は、庫内熱交換器(73)を流出した冷媒の過熱度を所定値に維持するように調節される。インジェクション弁(59)、第1電動弁(56)、第2電動弁(57)、及び第3電動弁(58)の開度が適宜調節される。
<Cold operation>
In the cold operation, each compressor (21,22,23), an outdoor fan (F1), and an internal fan (F2) are operated. The four-way switching valve (24) is set to the first state, and the outdoor expansion valve (28) is fully opened. The on-off valve (71) is opened. The opening degree of each internal expansion valve (72) is adjusted as appropriate. Specifically, the opening degree of each internal expansion valve (72) is adjusted so as to maintain the degree of superheat of the refrigerant flowing out of the internal heat exchanger (73) at a predetermined value. The opening degrees of the injection valve (59), the first electric valve (56), the second electric valve (57), and the third electric valve (58) are appropriately adjusted.
 冷設運転では、室外熱交換器(25)を放熱器ないし凝縮器とし、庫内熱交換器(73)を蒸発器とする第1冷凍サイクルが行われる。 In the cold operation, the first refrigeration cycle is performed in which the outdoor heat exchanger (25) is used as a radiator or condenser and the internal heat exchanger (73) is used as an evaporator.
 図2に示すように、冷設運転では、各圧縮機(21,22,23)で圧縮された冷媒が、室外熱交換器(25)を流れる。室外熱交換器(25)では、冷媒が室外空気へ放熱する。室外熱交換器(25)で放熱した冷媒は、第1管(41)、レシーバ(26)、第2管(42)を通過し、過冷却熱交換器(27)の第1流路(27a)を流れる。 As shown in FIG. 2, in the cold operation, the refrigerant compressed by each compressor (21,22,23) flows through the outdoor heat exchanger (25). In the outdoor heat exchanger (25), the refrigerant dissipates heat to the outdoor air. The refrigerant radiated by the outdoor heat exchanger (25) passes through the first pipe (41), the receiver (26), and the second pipe (42), and passes through the first flow path (27a) of the supercooled heat exchanger (27). ) Flow.
 インジェクション弁(59)が開放されると、第3管(43)の冷媒の一部が分岐管(51)を流れる。分岐管(51)の冷媒は、インジェクション弁(59)で減圧された後、過冷却熱交換器(27)の第2流路(27b)を流れる。過冷却熱交換器(27)では、第2流路(27b)の冷媒と、第1流路(27a)の冷媒とが熱交換する。第2流路(27b)の冷媒は、第1流路(27a)の冷媒から吸熱して蒸発する。これにより、第1流路(27a)の冷媒が冷却され、この冷媒の過冷却度が大きくなる。 When the injection valve (59) is opened, a part of the refrigerant in the third pipe (43) flows through the branch pipe (51). The refrigerant in the branch pipe (51) is decompressed by the injection valve (59) and then flows through the second flow path (27b) of the supercooling heat exchanger (27). In the supercooling heat exchanger (27), the refrigerant in the second flow path (27b) and the refrigerant in the first flow path (27a) exchange heat. The refrigerant in the second flow path (27b) absorbs heat from the refrigerant in the first flow path (27a) and evaporates. As a result, the refrigerant in the first flow path (27a) is cooled, and the degree of supercooling of this refrigerant increases.
 第2流路(27b)を流れた冷媒は、中継管(52)を経由して、各インジェクション管(53,54,55)から各圧縮機(21,22,23)の圧縮室へ導入される。 The refrigerant flowing through the second flow path (27b) is introduced from each injection pipe (53,54,55) to the compression chamber of each compressor (21,22,23) via the relay pipe (52). To.
 第1流路(27a)で冷却された冷媒は、第3管(43)、液連絡配管(14)を流れ、各冷設ユニット(70)へ送られる。 The refrigerant cooled in the first flow path (27a) flows through the third pipe (43) and the liquid communication pipe (14), and is sent to each cooling unit (70).
 各冷設ユニット(70)では、冷媒が庫内膨張弁(72)で減圧された後、庫内熱交換器(73)を流れる。庫内熱交換器(73)では、冷媒が庫内空気から吸熱して蒸発する。これにより、庫内空気が冷却される。 In each cooling unit (70), the refrigerant is decompressed by the internal expansion valve (72) and then flows through the internal heat exchanger (73). In the internal heat exchanger (73), the refrigerant absorbs heat from the internal air and evaporates. As a result, the air inside the refrigerator is cooled.
 各利用熱交換器(73)で蒸発した冷媒は、ガス連絡配管(13)を流れ、室外ユニット(20)へ送られる。この冷媒は、主吸入管(38)を流れ、各圧縮機(21,22,23)にそれぞれ吸入される。 The refrigerant evaporated in each heat exchanger (73) flows through the gas connecting pipe (13) and is sent to the outdoor unit (20). This refrigerant flows through the main suction pipe (38) and is sucked into each compressor (21, 22, 23).
 〈デフロスト運転〉
 デフロスト運転では、各圧縮機(21,22,23)、室外ファン(F1)、及び庫内ファン(F2)が運転される。四方切換弁(24)が第2状態に設定され、庫内膨張弁(72)が全開状態となる。開閉弁(71)が開放される。室外膨張弁(28)の開度が調節される。なお、図3に示すように、デフロスト運転では、冷設運転と同様、インジェクション回路(I)に冷媒を流してもよい。インジェクション弁(59)を全閉とし、インジェクション回路(I)に冷媒を流さなくてもよい。
<Defrost operation>
In the defrost operation, each compressor (21,22,23), an outdoor fan (F1), and an internal fan (F2) are operated. The four-way switching valve (24) is set to the second state, and the internal expansion valve (72) is fully opened. The on-off valve (71) is opened. The opening degree of the outdoor expansion valve (28) is adjusted. As shown in FIG. 3, in the defrost operation, the refrigerant may flow through the injection circuit (I) as in the cold operation. It is not necessary to fully close the injection valve (59) and allow the refrigerant to flow through the injection circuit (I).
 デフロスト運転では、庫内熱交換器(73)を放熱器ないし凝縮器とし、室外熱交換器(25)を蒸発器とする第2冷凍サイクルが行われる。 In the defrost operation, a second refrigeration cycle is performed in which the internal heat exchanger (73) is used as a radiator or condenser and the outdoor heat exchanger (25) is used as an evaporator.
 図3に示すように、デフロスト運転では、各圧縮機(21,22,23)で圧縮された冷媒が、ガス連絡配管(13)を通過し、各冷設ユニット(70)に送られる。各冷設ユニット(70)では、冷媒が庫内熱交換器(73)を流れる。庫内熱交換器(73)では、冷媒によって、その表面の霜が融かされる。各庫内熱交換器(73)で放熱した冷媒は、液連絡配管(14)を流れ、室外ユニット(20)へ送られる。 As shown in FIG. 3, in the defrost operation, the refrigerant compressed by each compressor (21,22,23) passes through the gas connecting pipe (13) and is sent to each cooling unit (70). In each cooling unit (70), the refrigerant flows through the internal heat exchanger (73). In the internal heat exchanger (73), the refrigerant melts the frost on the surface. The refrigerant radiated by each internal heat exchanger (73) flows through the liquid communication pipe (14) and is sent to the outdoor unit (20).
 室外ユニット(20)の冷媒は、第4管(44)、レシーバ(26)、第2管(42)、過冷却熱交換器(27)の第1流路(27a)、第3管(43)を順に流れる。第3管(43)に流出した冷媒は、室外膨張弁(28)で減圧された後、第5管(45)、室外熱交換器(25)を順に流れる。室外熱交換器(25)では、冷媒が室外空気から吸熱して蒸発する。室外熱交換器(25)で蒸発した冷媒は、主吸入管(38)を流れ、各圧縮機(21,22,23)に吸入される。 The refrigerant of the outdoor unit (20) is the fourth pipe (44), the receiver (26), the second pipe (42), the first flow path (27a) of the supercooled heat exchanger (27), and the third pipe (43). ) Flow in order. The refrigerant flowing out to the third pipe (43) is depressurized by the outdoor expansion valve (28), and then flows through the fifth pipe (45) and the outdoor heat exchanger (25) in this order. In the outdoor heat exchanger (25), the refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant evaporated in the outdoor heat exchanger (25) flows through the main suction pipe (38) and is sucked into each compressor (21,22,23).
 〈油回収運転〉
 次いで、油回収運転について詳細に説明する。油戻し運転は、上述冷設運転中に所定の条件が成立すると実行される。油戻し運転では、各圧縮機(21,22,23)、室外ファン(F1)、及び庫内ファン(F2)が運転される。四方切換弁(24)が第1状態に設定される。開閉弁(71)が開放される。各庫内膨張弁(72)の開度が適宜調節される。具体的には、各庫内膨張弁(72)の開度は、庫内熱交換器(73)を流出した冷媒の過熱度を所定値に維持するように調節される。インジェクション弁(59)、第1電動弁(56)、第2電動弁(57)、及び第3電動弁(58)の開度が適宜調節される。
<Oil recovery operation>
Next, the oil recovery operation will be described in detail. The oil return operation is executed when a predetermined condition is satisfied during the above-mentioned cold operation. In the oil return operation, each compressor (21,22,23), an outdoor fan (F1), and an internal fan (F2) are operated. The four-way switching valve (24) is set to the first state. The on-off valve (71) is opened. The opening degree of each internal expansion valve (72) is adjusted as appropriate. Specifically, the opening degree of each internal expansion valve (72) is adjusted so as to maintain the degree of superheat of the refrigerant flowing out of the internal heat exchanger (73) at a predetermined value. The opening degrees of the injection valve (59), the first electric valve (56), the second electric valve (57), and the third electric valve (58) are appropriately adjusted.
 なお、以下に説明する油回収運転は、全ての庫内熱交換器(73)の油を同時に回収する例である。 The oil recovery operation described below is an example of recovering the oil of all the internal heat exchangers (73) at the same time.
 図4に示すように、油回収運転を実行させる指令がコントローラ(80)に入力されると、ステップST1において、コントローラ(80)の記憶部が室外膨張弁(28)の現在の開度(pls1)を記憶する。この現在の開度(Pls1)は、例えば室外膨張弁(28)の最大開度である。次いで、ステップST2において、第1動作が実行される。 As shown in FIG. 4, when a command to execute the oil recovery operation is input to the controller (80), in step ST1, the storage unit of the controller (80) changes the current opening degree (pls1) of the outdoor expansion valve (28). ) Is memorized. This current opening degree (Pls1) is, for example, the maximum opening degree of the outdoor expansion valve (28). Then, in step ST2, the first operation is executed.
 第1動作では、室外膨張弁(28)の開度が徐々に小さくなる。具体的には、第1動作では、所定時間ΔT1毎に室外膨張弁(28)の開度が段階的に小さくなる。ここで、ΔT1が経過した後の次の室外膨張弁(28)の開度(パルス)をEV1とし、現在の室外膨張弁(28)の開度(パルス)をEV1’とする。第1動作では、ΔT1毎にEV1=α×EV1’となるように室外膨張弁(28)の開度を小さくしていく。ここで、ΔT1は例えば15秒に設定される。αは0.75に設定される。言い換えると、第1動作では、室外膨張弁(28)の開度(パルス)が15秒毎に25%ずつ小さくなっていく。第1動作は、ステップST3の第1条件が成立するまで継続して行われる。 In the first operation, the opening degree of the outdoor expansion valve (28) gradually decreases. Specifically, in the first operation, the opening degree of the outdoor expansion valve (28) is gradually reduced every predetermined time ΔT1. Here, the opening degree (pulse) of the next outdoor expansion valve (28) after the elapse of ΔT1 is EV1, and the opening degree (pulse) of the current outdoor expansion valve (28) is EV1'. In the first operation, the opening degree of the outdoor expansion valve (28) is reduced so that EV1 = α × EV1'for each ΔT1. Here, ΔT1 is set to, for example, 15 seconds. α is set to 0.75. In other words, in the first operation, the opening degree (pulse) of the outdoor expansion valve (28) decreases by 25% every 15 seconds. The first operation is continuously performed until the first condition of step ST3 is satisfied.
 第1動作において、室外膨張弁(28)の開度が小さくなると、室外膨張弁(28)で冷媒が減圧される。このため、利用熱交換器(73)を流れる冷媒の流量及び圧力が小さくなる。この結果、各庫内熱交換器(73)を流出する冷媒の過熱度が大きくなり、各庫内膨張弁(72)の開度が大きくなっていく。 In the first operation, when the opening degree of the outdoor expansion valve (28) becomes small, the refrigerant is depressurized by the outdoor expansion valve (28). Therefore, the flow rate and pressure of the refrigerant flowing through the utilization heat exchanger (73) are reduced. As a result, the degree of superheat of the refrigerant flowing out of each internal heat exchanger (73) increases, and the opening degree of each internal expansion valve (72) increases.
 ステップST3では、第1動作中において、第2動作を実行させる第1条件が成立するか否かの判定が行われる。第1条件は、次のa)~e)の条件を含む。本例では、a)からe)のうちのいずれか1つの条件が成立すると、ステップST4~ステップS6へ移行し、第2動作が実行される。 In step ST3, it is determined whether or not the first condition for executing the second operation is satisfied during the first operation. The first condition includes the following conditions a) to e). In this example, when any one of the conditions a) to e) is satisfied, the process proceeds from step ST4 to step S6, and the second operation is executed.
 a)液側圧力センサ(68)で検出した液圧(Ps)と、低圧圧力センサ(67)で検出した低圧圧力(LP)との差ΔP(=Ps-LP)が所定値より小さい。ここで、この所定値は、例えば数百KPaに設定される。 A) The difference ΔP (= Ps-LP) between the hydraulic pressure (Ps) detected by the liquid side pressure sensor (68) and the low pressure pressure (LP) detected by the low pressure pressure sensor (67) is smaller than the predetermined value. Here, this predetermined value is set to, for example, several hundred KPa.
 b)吸入過熱度(SSH)が所定値(第1値)よりも大きい。ここで、第1値は、例えば数十℃に設定される。 B) The degree of inhalation superheat (SSH) is larger than the predetermined value (first value). Here, the first value is set to, for example, several tens of degrees Celsius.
 c)低圧圧力(LP)が所定値より小さい。ここで、この所定値は、数十KPaに設定される。 C) Low pressure (LP) is smaller than the specified value. Here, this predetermined value is set to several tens of KPa.
 d)高圧圧力(HP)が所定値より大きい。ここで、この所定値は、数百MPaに設定される。 D) High pressure (HP) is greater than the specified value. Here, this predetermined value is set to several hundred MPa.
 e)第1動作が実行されてから所定時間t1が経過した。ここで、t1は、例えば数分に設定される。 E) A predetermined time t1 has elapsed since the first operation was executed. Here, t1 is set to, for example, a few minutes.
 上記a)は、第1動作により、庫内膨張弁(72)の開度が十分に大きくなったことを判定する条件である。室外膨張弁(28)の下流側の冷媒の液圧(Ps)は、庫内膨張弁(72)の流入側の圧力に相当する。低圧圧力(LP)は、庫内膨張弁(72)の流出側の圧力に相当する。よって、ΔPは庫内膨張弁(72)によって冷媒を減圧した圧力に相当する。したがって、ΔPが所定値より小さいことを条件とすることで、庫内膨張弁(72)の開度が大きいことを精度よく判定できる。 The above a) is a condition for determining that the opening degree of the internal expansion valve (72) has been sufficiently increased by the first operation. The hydraulic pressure (Ps) of the refrigerant on the downstream side of the outdoor expansion valve (28) corresponds to the pressure on the inflow side of the internal expansion valve (72). The low pressure (LP) corresponds to the pressure on the outflow side of the internal expansion valve (72). Therefore, ΔP corresponds to the pressure at which the refrigerant is depressurized by the internal expansion valve (72). Therefore, on condition that ΔP is smaller than a predetermined value, it is possible to accurately determine that the opening degree of the internal expansion valve (72) is large.
 加えて、a)の条件は、冷媒の圧力のみを判定の指標としている。冷媒の圧力は冷媒の温度と比較して応答性が高い。このため、a)を第1条件とすることで、庫内膨張弁(72)の開度が大きいことを速やかに判定できる。 In addition, the condition a) uses only the pressure of the refrigerant as an index for judgment. The pressure of the refrigerant is highly responsive compared to the temperature of the refrigerant. Therefore, by setting a) as the first condition, it can be quickly determined that the opening degree of the internal expansion valve (72) is large.
 上記b)は、第1動作により庫内膨張弁(72)の開度が十分に大きくなったことを判定する条件である。上述したように、第1動作により各庫内熱交換器(73)を流出する冷媒の過熱度が大きくなると、各庫内膨張弁(72)の開度が大きくなっていく。それにも拘わらず、吸入過熱度(SSH)が第1値よりも大きい場合、庫内膨張弁(72)の開度が十分に大きい、あるいは全開状態になっていると推定できる。したがって、吸入過熱度(SSH)が第1値よりも大きいことを条件とすることで、庫内膨張弁(72)の開度が大きいことを精度よく判定できる。 The above b) is a condition for determining that the opening degree of the internal expansion valve (72) has been sufficiently increased by the first operation. As described above, when the degree of superheat of the refrigerant flowing out of each internal heat exchanger (73) increases due to the first operation, the opening degree of each internal expansion valve (72) increases. Nevertheless, when the suction superheat degree (SSH) is larger than the first value, it can be estimated that the opening degree of the internal expansion valve (72) is sufficiently large or is in a fully open state. Therefore, on condition that the suction superheat degree (SSH) is larger than the first value, it is possible to accurately determine that the opening degree of the internal expansion valve (72) is large.
 上記c)は、冷凍装置(1)の保護の観点から設定された条件である。第1動作を実行し、室外膨張弁(28)の開度を小さくしていくと、低圧圧力(LP)が過剰に低くなる可能性がある。そこで、第1動作において、低圧圧力(LP)が所定値よりも低くなると、ステップST4~ST6へ移行し、第2動作を実行させる。これにより、室外膨張弁(28)の開度が増大し、低圧圧力(LP)の低下を抑制できる。 The above c) is a condition set from the viewpoint of protection of the refrigerating apparatus (1). When the first operation is executed and the opening degree of the outdoor expansion valve (28) is reduced, the low pressure pressure (LP) may become excessively low. Therefore, in the first operation, when the low pressure pressure (LP) becomes lower than the predetermined value, the process proceeds to steps ST4 to ST6, and the second operation is executed. As a result, the opening degree of the outdoor expansion valve (28) is increased, and a decrease in low pressure (LP) can be suppressed.
 上記d)は、冷凍装置(1)の保護の観点から設定された条件である。第1動作を実行し、室外膨張弁(28)の開度を小さくしていくと、高圧圧力(HP)が過剰に高くなる可能性がある。そこで、第1動作において、高圧圧力(HP)が所定値よりも高くなると、ステップST4~ST6へ移行し、第2動作を実行させる。 The above d) is a condition set from the viewpoint of protection of the refrigerating apparatus (1). When the first operation is executed and the opening degree of the outdoor expansion valve (28) is reduced, the high pressure (HP) may become excessively high. Therefore, in the first operation, when the high pressure pressure (HP) becomes higher than the predetermined value, the process proceeds to steps ST4 to ST6, and the second operation is executed.
 上記e)は、第1動作により、庫内膨張弁(72)の開度が十分に大きくなったことを判定する条件である。第1動作では、時間の経過に伴い庫内膨張弁(72)の開度が大きくなる。このため、所定時間t1が経過するd)を第1条件とすることで、庫内膨張弁(72)の開度が大きいことを判定できる。この所定時間t1は、上記a)やb)の条件が先に成立する程度に、十分長めに設定される。e)の条件は、例えばセンサの故障や誤検知があった場合に、a)~d)の条件が成立しない場合にも、第2動作へ移行させるための保護的な条件ともいえる。 The above e) is a condition for determining that the opening degree of the internal expansion valve (72) has been sufficiently increased by the first operation. In the first operation, the opening degree of the internal expansion valve (72) increases with the passage of time. Therefore, by setting d) on which the predetermined time t1 elapses as the first condition, it can be determined that the opening degree of the internal expansion valve (72) is large. The predetermined time t1 is set sufficiently long so that the conditions a) and b) above are satisfied first. The condition e) can be said to be a protective condition for shifting to the second operation even when the conditions a) to d) are not satisfied when, for example, a sensor failure or false detection occurs.
 ステップST3において、上記a)~e)のいずれかの条件が成立すると、ステップST4に移行し、所定時間t2が経過すると、ステップST5に移行する。t2は数秒程度である。なお、ステップS4を省略し、ステップST3からステップST5へ移行するようにしてもよい。ステップST5では、コントローラ(80)の記憶部に、液側圧力センサ(68)で検出した液圧(Ps1)が記憶される。次いでステップST6に移行し、第2動作が実行される。 In step ST3, when any of the above conditions a) to e) is satisfied, the process proceeds to step ST4, and when the predetermined time t2 elapses, the process proceeds to step ST5. t2 is about several seconds. Note that step S4 may be omitted and the process may be shifted from step ST3 to step ST5. In step ST5, the hydraulic pressure (Ps1) detected by the liquid side pressure sensor (68) is stored in the storage unit of the controller (80). Then, the process proceeds to step ST6, and the second operation is executed.
 第2動作では、室外膨張弁(28)の開度が徐々に大きくなる。具体的には、第2動作では、所定時間ΔT2毎に室外膨張弁(28)の開度が段階的に大きくなる。ここで、ΔT2が経過した後の次の室外膨張弁(28)の開度(パルス)をEV2とし、現在の室外膨張弁(28)の開度(パルス)をEV2’とする。第2動作では、ΔT2毎にEV2=β×EV2’となるように室外膨張弁(28)の開度を大きくしていく。ここで、ΔT2は例えば10秒に設定される。βは1.5に設定される。言い換えると、第2動作では、室外膨張弁(28)の開度(パルス)が10秒毎に50%ずつ大きくなっていく。第2動作は、ステップST7の第2条件が成立するまで継続して行われる。 In the second operation, the opening of the outdoor expansion valve (28) gradually increases. Specifically, in the second operation, the opening degree of the outdoor expansion valve (28) is gradually increased every predetermined time ΔT2. Here, the opening degree (pulse) of the next outdoor expansion valve (28) after ΔT2 has elapsed is defined as EV2, and the opening degree (pulse) of the current outdoor expansion valve (28) is defined as EV2'. In the second operation, the opening degree of the outdoor expansion valve (28) is increased so that EV2 = β × EV2'for each ΔT2. Here, ΔT2 is set to, for example, 10 seconds. β is set to 1.5. In other words, in the second operation, the opening degree (pulse) of the outdoor expansion valve (28) increases by 50% every 10 seconds. The second operation is continuously performed until the second condition of step ST7 is satisfied.
 このように、本実施形態では、第2動作時に室外膨張弁(28)の開度を増大させる速度が、第1動作時に室外膨張弁(28)の開度を減少させる速度よりも早い。 As described above, in the present embodiment, the speed at which the opening degree of the outdoor expansion valve (28) is increased during the second operation is faster than the speed at which the opening degree of the outdoor expansion valve (28) is decreased during the first operation.
 第2動作において、室外膨張弁(28)の開度が大きくなると、庫内熱交換器(73)を流れる冷媒の流量及び圧力が大きくなる。ここで、第2動作は、ステップST3において、上記c)及びd)の条件が成立した場合を除き、庫内膨張弁(72)の開度が大きくなった条件が成立してから実行される。このため、庫内熱交換器(73)を流れる冷媒の流量を十分に確保できる。庫内熱交換器(73)に溜まった油は、液冷媒、又は気液二相冷媒に相溶した後、圧縮機(21,22,23)に吸い込まれる。これにより、庫内熱交換器(73)に溜まった油を速やかに回収できる。 In the second operation, as the opening degree of the outdoor expansion valve (28) increases, the flow rate and pressure of the refrigerant flowing through the internal heat exchanger (73) increase. Here, the second operation is executed after the condition that the opening degree of the internal expansion valve (72) is increased is satisfied in step ST3, except when the conditions c) and d) are satisfied. .. Therefore, a sufficient flow rate of the refrigerant flowing through the internal heat exchanger (73) can be secured. The oil accumulated in the internal heat exchanger (73) is dissolved in the liquid refrigerant or the gas-liquid two-phase refrigerant and then sucked into the compressor (21,22,23). As a result, the oil accumulated in the internal heat exchanger (73) can be quickly recovered.
 上述したように、第2動作時に室外膨張弁(28)の開度を増大させる速度は、第1動作時に室外膨張弁(28)の開度を減少させる速度よりも早い。このため、庫内膨張弁(72)の開度が大きい状況化において、冷媒を速やかに庫内熱交換器(73)に送ることができ、庫内熱交換器(73)の油を速やかに圧縮機(21,22,23)に回収できる。 As described above, the speed at which the opening degree of the outdoor expansion valve (28) is increased during the second operation is faster than the speed at which the opening degree of the outdoor expansion valve (28) is decreased during the first operation. Therefore, in a situation where the opening degree of the internal expansion valve (72) is large, the refrigerant can be quickly sent to the internal heat exchanger (73), and the oil in the internal heat exchanger (73) can be quickly sent. It can be collected in a compressor (21,22,23).
 第2動作は、次のステップST7において第2条件が成立するまで継続して実行される。 The second operation is continuously executed until the second condition is satisfied in the next step ST7.
 ステップST7では、第2動作中において、第3動作を実行させる第2条件が成立するか否かの判定が行われる。第2条件は、次のf)~i)の条件を含む。本例では、f)からi)のうちのいずれか1つの条件が成立すると、ステップST8、ST9へ移行し、第3動作が実行される。 In step ST7, it is determined whether or not the second condition for executing the third operation is satisfied during the second operation. The second condition includes the following conditions f) to i). In this example, when any one of the conditions from f) to i) is satisfied, the process proceeds to steps ST8 and ST9, and the third operation is executed.
 f)現在の液圧(Ps)が、所定値よりも大きい。厳密には、現在の液圧(Ps)が、ステップST5で記憶した第2動作の開始直前の液圧(Ps1)×Aよりも大きい。ここで、係数Aは例えば2.0に設定される。 F) The current hydraulic pressure (Ps) is larger than the specified value. Strictly speaking, the current hydraulic pressure (Ps) is larger than the hydraulic pressure (Ps1) × A immediately before the start of the second operation stored in step ST5. Here, the coefficient A is set to, for example, 2.0.
 g)吸入過熱度(SSH)が第2値より小さい。厳密には、吸入過熱度(SSH)が第2値より小さい状態が、所定時間t3連続する。ここで、第2値は例えば数℃~10℃程度、t3は数十秒程度に設定される。 G) Inhalation superheat (SSH) is smaller than the second value. Strictly speaking, the state in which the inhalation superheat degree (SSH) is smaller than the second value continues for t3 for a predetermined time. Here, the second value is set to, for example, about several ° C to 10 ° C, and t3 is set to about several tens of seconds.
 h)吐出過熱度(DSH)が所定値より小さい。厳密には、吐出過熱度(DSH)が所定値より小さい状態が、所定時間t4連続する。ここで、この所定値は例えば数十度程度、t4は数十秒程度に設定される。 H) Discharge superheat degree (DSH) is smaller than the specified value. Strictly speaking, the state in which the discharge superheat degree (DSH) is smaller than the predetermined value is continuous for t4 for a predetermined time. Here, this predetermined value is set to, for example, about several tens of degrees, and t4 is set to about several tens of seconds.
 i)第2動作が実行されてからt5が経過した。ここで、t5は、数分程度に設定される。t5は、上記e)の条件のt1よりも短い。 I) t5 has passed since the second operation was executed. Here, t5 is set to about several minutes. t5 is shorter than t1 under the condition e) above.
 上記f)は、第2動作により、庫内熱交換器(73)の油が圧縮機(21,22,23)に回収されたことを判定する条件である。室外膨張弁(28)の下流側の圧力(液圧(Ps))が所定値より大きいことは、室外膨張弁(28)の開度が大きいことを示す。厳密には、液圧(Ps)が第2動作の開始直前の液圧(Ps1)×A(A=2.0)より大きいことは、第2動作により、室外膨張弁(28)の開度が十分に大きくなったことを示す。よって、f)の条件が成立する場合、十分な液冷媒が庫内熱交換器(73)に送られ、ひいては庫内熱交換器(73)の油が圧縮機(21,22,23)に回収されたと推定できる。したがって、液圧(Ps)が所定値(液圧(Ps1)×A)より大きいことを条件とすることで、庫内熱交換器(73)の油が圧縮機(21,22,23)に回収されたことを精度よく判定できる。 The above f) is a condition for determining that the oil in the internal heat exchanger (73) has been recovered by the compressor (21,22,23) by the second operation. When the pressure (hydraulic pressure (Ps)) on the downstream side of the outdoor expansion valve (28) is larger than a predetermined value, it indicates that the opening degree of the outdoor expansion valve (28) is large. Strictly speaking, the fact that the hydraulic pressure (Ps) is larger than the hydraulic pressure (Ps1) × A (A = 2.0) immediately before the start of the second operation means that the opening of the outdoor expansion valve (28) is due to the second operation. Indicates that is large enough. Therefore, when the condition of f) is satisfied, sufficient liquid refrigerant is sent to the internal heat exchanger (73), and the oil of the internal heat exchanger (73) is sent to the compressor (21,22,23). It can be estimated that it was recovered. Therefore, on condition that the hydraulic pressure (Ps) is larger than the predetermined value (hydraulic pressure (Ps1) × A), the oil in the internal heat exchanger (73) is transferred to the compressor (21,22,23). It can be accurately determined that it has been recovered.
 加えて、f)の条件は、冷媒の圧力のみを指標としている。冷媒の圧力は冷媒の温度と比較して応答性が高い。このため、f)を第2条件とすることで、庫内熱交換器(73)の油が圧縮機(21,22,23)に回収されたことを速やかに判定できる。 In addition, the condition of f) uses only the pressure of the refrigerant as an index. The pressure of the refrigerant is highly responsive compared to the temperature of the refrigerant. Therefore, by setting f) as the second condition, it can be quickly determined that the oil in the internal heat exchanger (73) has been recovered by the compressor (21,22,23).
 上記g)は、第2動作により、庫内熱交換器(73)の油が圧縮機(21,22,23)に回収されたことを判定する条件である。吸入過熱度(SSH)が所定値より小さいことは、庫内熱交換器(73)に十分な液冷媒が送られていることを示す。吸入過熱度(SSH)が所定値より小さいことがt3連続することで、庫内熱交換器(73)に液冷媒が連続して送られ、ひいては冷媒とともに油が圧縮機(21,22,23)に回収されたと推定できる。したがって、吸入過熱度(SSH)が所定値より小さいこと、厳密にはこの状態がt3時間連続することを条件とすることで、庫内熱交換器(73)の油が圧縮機(21,22,23)に回収されたことを精度よく判定できる。 The above g) is a condition for determining that the oil in the internal heat exchanger (73) has been recovered by the compressor (21,22,23) by the second operation. When the suction superheat degree (SSH) is smaller than a predetermined value, it indicates that sufficient liquid refrigerant is being sent to the internal heat exchanger (73). When the suction superheat degree (SSH) is smaller than the predetermined value for t3 consecutive times, the liquid refrigerant is continuously sent to the internal heat exchanger (73), and the oil is sent to the compressor (21,22,23) together with the refrigerant. ) Can be estimated to have been recovered. Therefore, on condition that the suction superheat degree (SSH) is smaller than the predetermined value, strictly speaking, this state is continuous for t3 hours, the oil of the internal heat exchanger (73) is compressed (21,22). , 23) can be accurately determined to have been recovered.
 上記h)は、冷凍装置(1)の保護の観点から設定された条件である。第2動作を実行し、室外膨張弁(28)の開度を大きくしていくと、圧縮機(21,22,23)に湿り状態の冷媒が吸入される可能性がある。この場合、圧縮機(21,22,23)内の油が希釈され、摺動部の潤滑不良を招く可能性がある。そこで、吐出過熱度(DSH)が所定値より小さいこと、厳密にはこの状態がt4時間連続することを条件とすることで、第2動作を終了させる。これにより、圧縮機(21,22,23)を保護できる。 The above h) is a condition set from the viewpoint of protection of the refrigerating apparatus (1). When the second operation is executed and the opening degree of the outdoor expansion valve (28) is increased, there is a possibility that the wet refrigerant is sucked into the compressor (21,22,23). In this case, the oil in the compressor (21,22,23) is diluted, which may lead to poor lubrication of the sliding portion. Therefore, the second operation is terminated on the condition that the discharge superheat degree (DSH) is smaller than a predetermined value, strictly speaking, this state is continuous for t4 hours. This can protect the compressor (21,22,23).
 上記i)は、第2動作により、庫内熱交換器(73)の油が圧縮機(21,22,23)に回収されたことを判定する条件である。第2動作では、時間の経過に伴い室外膨張弁(28)の開度が大きくなる。このため、所定時間t5が経過するi)を第2条件とすることで、庫内熱交換器(73)の油が圧縮機(21,22,23)に回収されたことを判定できる。この所定時間t5は、上記f)やg)の条件が先に成立する程度に、十分長めに設定される。l)の条件は、例えばセンサの故障や誤検知があった場合に、f)やg)の条件が成立しない場合にも、第2動作を終了させるための保護的な条件ともいえる。 The above i) is a condition for determining that the oil in the internal heat exchanger (73) has been recovered by the compressor (21,22,23) by the second operation. In the second operation, the opening degree of the outdoor expansion valve (28) increases with the passage of time. Therefore, by setting i) on which the predetermined time t5 has elapsed as the second condition, it can be determined that the oil in the internal heat exchanger (73) has been recovered by the compressor (21,22,23). The predetermined time t5 is set sufficiently long so that the above conditions f) and g) are satisfied first. The condition of l) can be said to be a protective condition for terminating the second operation even when the conditions of f) and g) are not satisfied, for example, when a sensor failure or false detection occurs.
 ステップST7において、上記f)~i)のいずれかの条件が成立すると、ステップST8に移行し、第2動作を保持するか否かのさらなる判定が行われる。ステップST8では、j)~l)のいずれかの条件が成立すると、ステップST9へ移行する。ここで、j)は、高圧圧力(HP)が所定値より大きい条件である。この所定値は、数MPaに設定される。k)は、最大吐出温度(TdMAX)が所定値より小さい条件である。最大吐出温度(TdMAX)は、各吐出温度センサ(61,62,63)で検出した吐出冷媒の温度(Td1,Td2,Td3)のうち最大値である。この所定値は、例えば100℃前後の値に設定される。i)は、ステップST8へ移行してからさらに所定時間t6が経過した条件である。t6は数分程度に設定される。なお、ステップST7の第2条件が成立すると、ST8の判定を省略し、ステップST9へ移行してもよい。 In step ST7, when any of the above conditions f) to i) is satisfied, the process proceeds to step ST8, and further determination as to whether or not to retain the second operation is performed. In step ST8, when any of the conditions j) to l) is satisfied, the process proceeds to step ST9. Here, j) is a condition in which the high pressure (HP) is larger than a predetermined value. This predetermined value is set to several MPa. k) is a condition in which the maximum discharge temperature (TdMAX) is smaller than a predetermined value. The maximum discharge temperature (TdMAX) is the maximum value among the discharge refrigerant temperatures (Td1, Td2, Td3) detected by each discharge temperature sensor (61,62,63). This predetermined value is set to, for example, a value of around 100 ° C. i) is a condition in which a predetermined time t6 has elapsed since the transition to step ST8. t6 is set to about several minutes. If the second condition of step ST7 is satisfied, the determination of ST8 may be omitted and the process may proceed to step ST9.
 ステップST9に移行すると、第3動作が実行される。第3動作では、室外膨張弁(28)の開度が第1動作の開始直前の開度(Psl1)に戻る。この開度(Psl1)は、ステップST1で記憶された開度である。本例では、この開度(Psl1)は、室外膨張弁(28)の最大開度である。次いで油回収運転が終了し、上述した冷設運転が行われる。 When moving to step ST9, the third operation is executed. In the third operation, the opening degree of the outdoor expansion valve (28) returns to the opening degree (Psl1) immediately before the start of the first operation. This opening degree (Psl1) is the opening degree stored in step ST1. In this example, this opening degree (Psl1) is the maximum opening degree of the outdoor expansion valve (28). Then, the oil recovery operation is completed, and the above-mentioned cold operation is performed.
 -実施形態の効果-
 上記実施形態は、圧縮要素(C)、液管(43)(第3管)、該液管(43)に接続される熱源膨張弁(28)(室外膨張弁)、及び熱源熱交換器(25)(室外熱交換器)を有し、利用熱交換器(73)(庫内熱交換器)及び利用膨張弁(72)(庫内膨張弁)を有する利用ユニット(70)(冷設ユニット)に接続されることで、前記熱源熱交換器(25)を放熱器とし前記利用熱交換器(73)を蒸発器とする冷凍サイクルを行う冷媒回路(10)が構成される熱源ユニットであって、前記冷凍サイクル中に前記利用熱交換器(73)の油を回収する油回収運転を実行するように前記熱源ユニット(20)を制御する制御器(80)(コントローラ)をさらに備え、前記油回収運転は、前記熱源膨張弁(28)の開度を小さくする第1動作と、該第1動作の後、該熱源膨張弁(28)の開度を大きくする第2動作とを含み、前記制御器(80)は、前記第1動作中に第1条件が成立すると前記第2動作を実行するように構成され、前記第1条件は、前記液管(43)における前記熱源膨張弁(28)の下流側の冷媒の圧力と、前記圧縮要素(C)の吸入冷媒の圧力との差ΔPが所定値より小さい条件を少なくとも含んでいる。
-Effect of embodiment-
In the above embodiment, the compression element (C), the liquid pipe (43) (third pipe), the heat source expansion valve (28) (outdoor expansion valve) connected to the liquid pipe (43), and the heat source heat exchanger ( 25) Utilization unit (70) (cooling unit) having (outdoor heat exchanger) and utilization heat exchanger (73) (internal heat exchanger) and utilization expansion valve (72) (internal expansion valve) ), It is a heat source unit that constitutes a refrigerant circuit (10) that performs a refrigeration cycle using the heat source heat exchanger (25) as a radiator and the utilization heat exchanger (73) as an evaporator. Further, a controller (80) (controller) for controlling the heat source unit (20) is further provided so as to execute an oil recovery operation for recovering the oil of the utilization heat exchanger (73) during the refrigeration cycle. The oil recovery operation includes a first operation of reducing the opening degree of the heat source expansion valve (28) and a second operation of increasing the opening degree of the heat source expansion valve (28) after the first operation. The controller (80) is configured to execute the second operation when the first condition is satisfied during the first operation, and the first condition is the heat source expansion valve (the heat source expansion valve (43) in the liquid pipe (43). At least the condition that the difference ΔP between the pressure of the refrigerant on the downstream side of 28) and the pressure of the suction refrigerant of the compression element (C) is smaller than a predetermined value is included.
 本形態では、液圧(Ps)と低圧圧力(Ps)との差ΔPが所定値より小さいことを第1条件とするため、庫内膨張弁(72)の開度が大きくなっていることを精度よく判定できる。 In this embodiment, the first condition is that the difference ΔP between the hydraulic pressure (Ps) and the low pressure pressure (Ps) is smaller than a predetermined value, so that the opening degree of the internal expansion valve (72) is large. It can be judged accurately.
 加えて、この条件は、圧力のみを指標とするため、温度を指標とする場合と比較して応答性も高い。したがって、庫内膨張弁(72)の開度が大きくなっていることを速やかに判定できる。 In addition, since this condition uses only pressure as an index, it is more responsive than the case where temperature is used as an index. Therefore, it can be quickly determined that the opening degree of the internal expansion valve (72) is large.
 加えて、ΔPは、熱源ユニット(20)の低圧圧力センサ(67)と液側圧力センサ(68)を用いて求めることできる。よって、冷設ユニット(70)の仕様に拘わらず、第1条件が成立したことを判定できる。冷設ユニット(70)を交換しても、同様の判定ができる。 In addition, ΔP can be obtained by using the low pressure pressure sensor (67) and the liquid side pressure sensor (68) of the heat source unit (20). Therefore, it can be determined that the first condition is satisfied regardless of the specifications of the cooling unit (70). The same judgment can be made even if the cooling unit (70) is replaced.
 上記実施形態は、前記第1条件は、吸入過熱度(SSH)が第1値より大きい条件を含んでいる。 In the above embodiment, the first condition includes a condition in which the inhalation superheat degree (SSH) is larger than the first value.
 本形態では、吸入過熱度(SSH)が第1値より大きいことを第1条件とするため、庫内膨張弁(72)の開度が大きくなっていることを精度よく判定できる。 In this embodiment, since the first condition is that the suction superheat degree (SSH) is larger than the first value, it can be accurately determined that the opening degree of the internal expansion valve (72) is large.
 加えて、吸入過熱度(SSH)は、熱源ユニット(20)の吸入温度センサ(66)と低圧圧力センサ(67)とを用いて求めることができる。よって、冷設ユニット(70)の仕様に拘わらず、第1条件が成立したことを判定できる。冷設ユニット(70)を交換しても、同様の判定ができる。 In addition, the suction superheat degree (SSH) can be obtained by using the suction temperature sensor (66) and the low pressure pressure sensor (67) of the heat source unit (20). Therefore, it can be determined that the first condition is satisfied regardless of the specifications of the cooling unit (70). The same judgment can be made even if the cooling unit (70) is replaced.
 上記実施形態は、前記制御器(80)が、前記第2動作中に第2条件が成立すると、前記熱源膨張弁(28)の開度を前記第1動作の開始直前の開度とする第3動作を実行させるように構成され、前記第2条件は、吸入過熱度(SSH)が第2値より小さくなる条件を含む。 In the above embodiment, when the second condition is satisfied during the second operation of the controller (80), the opening degree of the heat source expansion valve (28) is set to the opening degree immediately before the start of the first operation. The second condition is configured to execute three operations, and the second condition includes a condition in which the suction superheat degree (SSH) is smaller than the second value.
 本形態では、吸入過熱度(SSH)が第2値より小さいことを第2条件とするため、庫内熱交換器(73)の油が圧縮機(21,22,23)に回収されたことを精度よく判定できる。 In this embodiment, the second condition is that the suction superheat degree (SSH) is smaller than the second value, so that the oil in the internal heat exchanger (73) is recovered by the compressor (21,22,23). Can be judged accurately.
 加えて、吸入過熱度(SSH)は、熱源ユニット(20)の吸入温度センサ(66)と低圧圧力センサ(67)とを用いて求めることができる。よって、冷設ユニット(70)の仕様に拘わらず、第1条件が成立したことを判定できる。冷設ユニット(70)を交換しても、同様の判定ができる。 In addition, the suction superheat degree (SSH) can be obtained by using the suction temperature sensor (66) and the low pressure pressure sensor (67) of the heat source unit (20). Therefore, it can be determined that the first condition is satisfied regardless of the specifications of the cooling unit (70). The same judgment can be made even if the cooling unit (70) is replaced.
 上記実施形態は、前記制御器(80)は、前記第2動作中に第2条件が成立すると、前記熱源膨張弁(28)の開度を前記第1動作の開始直前の開度とする第3動作を実行させるように構成され、前記第2条件は、前記液管(43)における前記熱源膨張弁(28)の下流側の冷媒の圧力が、所定値より高くなる条件を含む。 In the above embodiment, when the second condition is satisfied during the second operation, the controller (80) sets the opening degree of the heat source expansion valve (28) to the opening degree immediately before the start of the first operation. The second condition is configured to execute the three operations, and includes a condition in which the pressure of the refrigerant on the downstream side of the heat source expansion valve (28) in the liquid pipe (43) becomes higher than a predetermined value.
 本形態では、第3管(43)における室外膨張弁(28)の下流側の液圧(Ps)が所定値より高いことを第2条件とするため、室外膨張弁(28)の開度が十分に大きいことを判定でき、ひいては庫内熱交換器(73)の油が圧縮機(21,22,23)に回収されたことを精度よく判定できる。 In this embodiment, the second condition is that the hydraulic pressure (Ps) on the downstream side of the outdoor expansion valve (28) in the third pipe (43) is higher than a predetermined value, so that the opening degree of the outdoor expansion valve (28) is increased. It can be determined that it is sufficiently large, and it can be accurately determined that the oil in the internal heat exchanger (73) has been recovered by the compressor (21,22,23).
 加えて、この条件は、圧力のみを指標とするため、温度を指標とする場合と比較して応答性も高い。したがって、圧縮機(21,22,23)に油が回収されたことを速やかに判定できる。 In addition, since this condition uses only pressure as an index, it is more responsive than the case where temperature is used as an index. Therefore, it can be quickly determined that the oil has been recovered in the compressor (21,22,23).
 加えて、圧力(Ps)は、熱源ユニット(20)の低圧圧力センサ(67)と液側圧力センサ(68)を用いて求めることできる。よって、冷設ユニット(70)の仕様に拘わらず、第1条件が成立したことを判定できる。冷設ユニット(70)を交換しても、同様の判定ができる。 In addition, the pressure (Ps) can be obtained by using the low pressure pressure sensor (67) and the liquid side pressure sensor (68) of the heat source unit (20). Therefore, it can be determined that the first condition is satisfied regardless of the specifications of the cooling unit (70). The same judgment can be made even if the cooling unit (70) is replaced.
 特に上記実施形態では、現在の液圧(Ps)と、第2動作の開始直前の液圧(Ps1)とを比較するため、第2動作により室外膨張弁(28)の開度が十分に大きくなったことをより確実に判定できる。 In particular, in the above embodiment, in order to compare the current hydraulic pressure (Ps) with the hydraulic pressure (Ps1) immediately before the start of the second operation, the opening degree of the outdoor expansion valve (28) is sufficiently large due to the second operation. It can be determined more reliably that it has become.
 上記実施形態は、前記第2動作時に前記熱源膨張弁(28)の開度を大きくする速度が、前記第1動作時に前記熱源膨張弁(28)の開度を小さくする速度よりも早い。 In the above embodiment, the speed at which the opening degree of the heat source expansion valve (28) is increased during the second operation is faster than the speed at which the opening degree of the heat source expansion valve (28) is decreased during the first operation.
 本形態では、第2動作において、庫内膨張弁(72)の開度が大きい状況化において、室外膨張弁(28)の開度を速やかに大きくするため、庫内熱交換器(73)の油を圧縮機(21,22,23)に速やかに回収できる。 In this embodiment, in the second operation, in a situation where the opening degree of the internal expansion valve (72) is large, in order to quickly increase the opening degree of the outdoor expansion valve (28), the internal heat exchanger (73) is used. Oil can be quickly recovered in the compressor (21,22,23).
 加えて、第1動作では、室外膨張弁(28)の開度を徐々に小さくする。このため、室外膨張弁(28)の開度が過剰に小さくなることに起因して、高圧圧力(HP)が過剰に高くなったり、低圧圧力(LP)が過剰に低くなったりすることを回避できる。 In addition, in the first operation, the opening degree of the outdoor expansion valve (28) is gradually reduced. Therefore, it is possible to prevent the high pressure pressure (HP) from becoming excessively high or the low pressure pressure (LP) from becoming excessively low due to the opening degree of the outdoor expansion valve (28) becoming excessively small. it can.
 《その他の実施形態》
 第1条件は、少なくとも上記a)の条件を含んでいればよく、上記b)の条件を含んでいるのが好ましい。第2条件は、上記f)の条件、あるいは上記g)の条件を含んでいるのが好ましい。
<< Other Embodiments >>
The first condition may include at least the condition a) above, and preferably includes the condition b) above. The second condition preferably includes the condition of f) or the condition of g).
 上記実施形態の冷凍装置(1)は、庫内の空気を冷却する冷凍装置である。しかし、冷凍装置(1)は、室内空気を空調する空気調和装置であってもよいし、庫内の空気の冷却と、室内空気の空調とを同時に行う冷凍装置であってもよい。 The refrigerating device (1) of the above embodiment is a refrigerating device that cools the air in the refrigerator. However, the freezing device (1) may be an air conditioner that air-conditions the indoor air, or may be a freezing device that simultaneously cools the air inside the refrigerator and air-conditions the indoor air.
 利用膨張弁(72)は、感温自動膨張弁である。しかし、利用膨張弁(72)は、蒸発後の冷媒の過熱度に基づいて開度を調節する膨張弁であればよく、電子膨張弁であってもよい。 The utilization expansion valve (72) is a temperature-sensitive automatic expansion valve. However, the utilization expansion valve (72) may be an expansion valve that adjusts the opening degree based on the degree of superheat of the refrigerant after evaporation, and may be an electronic expansion valve.
 利用熱交換器(73)は、空気と冷媒と熱交換する空気熱交換器である。しかし、利用熱交換器(73)は、冷媒と所定の熱媒体(例えば水)とを熱交換する熱交換器であってもよい。 The utilization heat exchanger (73) is an air heat exchanger that exchanges heat between air and a refrigerant. However, the utilization heat exchanger (73) may be a heat exchanger that exchanges heat between the refrigerant and a predetermined heat medium (for example, water).
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。 Although the embodiments and modifications have been described above, it will be understood that various modifications of the forms and details are possible without departing from the purpose and scope of the claims. In addition, the above embodiments and modifications may be appropriately combined or replaced as long as they do not impair the functions of the present disclosure. The above-mentioned descriptions of "first", "second", "third" ... Are used to distinguish the words and phrases to which these descriptions are given, and the number and order of the words and phrases are also limited. It's not something to do.
 以上説明したように、本開示は、熱源ユニット及び冷凍装置について有用である。 As described above, the present disclosure is useful for heat source units and refrigeration equipment.
      10   冷媒回路
   20   室外ユニット(熱源ユニット)
   20a  熱源回路
   25   室外熱交換器(熱源熱交換器)
   28   室外膨張弁(熱源膨張弁)
   43   第3管(液管)
   70   冷設ユニット(利用ユニット)
   72   庫内膨張弁(利用膨張弁)
   73   庫内熱交換器(利用熱交換器)
   80   コントローラ(制御器)
10 Refrigerant circuit 20 Outdoor unit (heat source unit)
20a Heat source circuit 25 Outdoor heat exchanger (heat source heat exchanger)
28 Outdoor expansion valve (heat source expansion valve)
43 Third pipe (liquid pipe)
70 Cold installation unit (utilization unit)
72 Internal expansion valve (utilization expansion valve)
73 Internal heat exchanger (utilized heat exchanger)
80 controller (controller)

Claims (7)

  1.  圧縮要素(C)、液管(43)、該液管(43)に接続される熱源膨張弁(28)、及び熱源熱交換器(25)を有し、
     利用熱交換器(73)及び利用膨張弁(72)を有する利用ユニット(70)に接続されることで、前記熱源熱交換器(25)を放熱器とし前記利用熱交換器(73)を蒸発器とする冷凍サイクルを行う冷媒回路(10)が構成される熱源ユニットであって、
     前記冷凍サイクル中に前記利用熱交換器(73)の油を回収する油回収運転を実行するように前記熱源ユニット(20)を制御する制御器(80)を備え、
     前記油回収運転は、前記熱源膨張弁(28)の開度を小さくする第1動作と、該第1動作の後、該熱源膨張弁(28)の開度を大きくする第2動作とを含み、
     前記制御器(80)は、前記第1動作中に第1条件が成立すると前記第2動作を実行するように構成され、
     前記第1条件は、前記液管(43)における前記熱源膨張弁(28)の下流側の冷媒の圧力と、前記圧縮要素(C)の吸入冷媒の圧力との差ΔPが所定値より小さい条件を少なくとも含んでいることを特徴とする熱源ユニット。
    It has a compression element (C), a liquid pipe (43), a heat source expansion valve (28) connected to the liquid pipe (43), and a heat source heat exchanger (25).
    By connecting to a utilization unit (70) having a utilization heat exchanger (73) and a utilization expansion valve (72), the utilization heat exchanger (25) is used as a radiator and the utilization heat exchanger (73) is evaporated. A heat source unit composed of a refrigerant circuit (10) that performs a refrigeration cycle
    A controller (80) for controlling the heat source unit (20) to execute an oil recovery operation for recovering oil from the utilization heat exchanger (73) during the refrigeration cycle is provided.
    The oil recovery operation includes a first operation of reducing the opening degree of the heat source expansion valve (28) and a second operation of increasing the opening degree of the heat source expansion valve (28) after the first operation. ,
    The controller (80) is configured to execute the second operation when the first condition is satisfied during the first operation.
    The first condition is a condition in which the difference ΔP between the pressure of the refrigerant on the downstream side of the heat source expansion valve (28) in the liquid pipe (43) and the pressure of the suction refrigerant of the compression element (C) is smaller than a predetermined value. A heat source unit characterized by containing at least.
  2.  請求項1において、
     前記第1条件は、吸入過熱度が第1値より大きい条件を含んでいることを特徴とする熱源ユニット。
    In claim 1,
    The first condition is a heat source unit characterized in that the suction superheat degree includes a condition larger than the first value.
  3.  請求項1又は2において、
     前記制御器(80)は、前記第2動作中に第2条件が成立すると、前記熱源膨張弁(28)の開度を前記第1動作の開始直前の開度とする第3動作を実行させるように構成され、
     前記第2条件は、吸入過熱度が第2値より小さくなる条件を含むことを特徴とする熱源ユニット。
    In claim 1 or 2,
    When the second condition is satisfied during the second operation, the controller (80) executes a third operation in which the opening degree of the heat source expansion valve (28) is set to the opening degree immediately before the start of the first operation. Is configured as
    The second condition is a heat source unit characterized in that the suction superheat degree is smaller than the second value.
  4.  請求項1~3のいずれか1つにおいて、 
     前記制御器(80)は、前記第2動作中に第2条件が成立すると、前記熱源膨張弁(28)の開度を前記第1動作の開始直前の開度とする第3動作を実行させるように構成され、
     前記第2条件は、前記液管(43)における前記熱源膨張弁(28)の下流側の冷媒の圧力が、所定値より高くなる条件を含むことを特徴とする熱源ユニット。
    In any one of claims 1 to 3,
    When the second condition is satisfied during the second operation, the controller (80) executes a third operation in which the opening degree of the heat source expansion valve (28) is set to the opening degree immediately before the start of the first operation. Is configured as
    The second condition is a heat source unit including a condition in which the pressure of the refrigerant on the downstream side of the heat source expansion valve (28) in the liquid pipe (43) becomes higher than a predetermined value.
  5.  請求項1~4のいずれか1つにおいて、
     前記第2動作時に前記熱源膨張弁(28)の開度を大きくする速度が、前記第1動作時に前記熱源膨張弁(28)の開度を小さくする速度よりも早いことを特徴とする熱源ユニット。
    In any one of claims 1 to 4,
    A heat source unit characterized in that the speed at which the opening degree of the heat source expansion valve (28) is increased during the second operation is faster than the speed at which the opening degree of the heat source expansion valve (28) is decreased during the first operation. ..
  6.  請求項1~5のいずれか1つに記載の熱源ユニット(20)と、利用熱交換器(73)及び利用膨張弁(72)を有する利用ユニット(70)とを備え、前記熱源ユニット(20)と前記利用ユニット(70)とが接続されることで、前記熱源熱交換器(25)を放熱器とし前記利用熱交換器(73)を蒸発器とする冷凍サイクルを行う冷媒回路(10)が構成される冷凍装置。 The heat source unit (20) according to any one of claims 1 to 5, and a utilization unit (70) having a utilization heat exchanger (73) and a utilization expansion valve (72) are provided. ) And the utilization unit (70), a refrigerant circuit (10) that performs a refrigeration cycle using the heat source heat exchanger (25) as a radiator and the utilization heat exchanger (73) as an evaporator. Is composed of a refrigeration system.
  7.  請求項6において、
     前記利用膨張弁(72)は、温度自動膨張弁であることを特徴とする冷凍装置。
    In claim 6,
    The utilization expansion valve (72) is a refrigeration apparatus characterized by being a temperature automatic expansion valve.
PCT/JP2020/025197 2019-08-21 2020-06-26 Heat source unit and freezing apparatus WO2021033426A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES20853725T ES2966337T3 (en) 2019-08-21 2020-06-26 Heat source unit and cooling apparatus
CN202080058823.3A CN114270108B (en) 2019-08-21 2020-06-26 Heat source unit and refrigerating device
EP20853725.8A EP3995756B1 (en) 2019-08-21 2020-06-26 Heat source unit and refrigeration apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019151047A JP6844667B2 (en) 2019-08-21 2019-08-21 Heat source unit and refrigeration equipment
JP2019-151047 2019-08-21

Publications (1)

Publication Number Publication Date
WO2021033426A1 true WO2021033426A1 (en) 2021-02-25

Family

ID=74661084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025197 WO2021033426A1 (en) 2019-08-21 2020-06-26 Heat source unit and freezing apparatus

Country Status (5)

Country Link
EP (1) EP3995756B1 (en)
JP (1) JP6844667B2 (en)
CN (1) CN114270108B (en)
ES (1) ES2966337T3 (en)
WO (1) WO2021033426A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7188479B2 (en) 2021-03-02 2022-12-13 三菱マテリアル株式会社 Hot-rolled copper alloy sheet and sputtering target

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027314A (en) * 2009-07-24 2011-02-10 Mitsubishi Electric Corp Air conditioner
JP2015124893A (en) * 2013-12-25 2015-07-06 株式会社富士通ゼネラル Air conditioning device
JP2018084376A (en) 2016-11-24 2018-05-31 ダイキン工業株式会社 Refrigeration unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5125124B2 (en) * 2007-01-31 2013-01-23 ダイキン工業株式会社 Refrigeration equipment
JP6390688B2 (en) * 2016-11-24 2018-09-19 ダイキン工業株式会社 Refrigeration equipment
JP6780518B2 (en) * 2017-01-25 2020-11-04 ダイキン工業株式会社 Refrigeration equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027314A (en) * 2009-07-24 2011-02-10 Mitsubishi Electric Corp Air conditioner
JP2015124893A (en) * 2013-12-25 2015-07-06 株式会社富士通ゼネラル Air conditioning device
JP2018084376A (en) 2016-11-24 2018-05-31 ダイキン工業株式会社 Refrigeration unit

Also Published As

Publication number Publication date
EP3995756A1 (en) 2022-05-11
ES2966337T3 (en) 2024-04-22
JP2021032440A (en) 2021-03-01
CN114270108A (en) 2022-04-01
CN114270108B (en) 2022-09-16
EP3995756A4 (en) 2022-08-10
JP6844667B2 (en) 2021-03-17
EP3995756B1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
JP4462387B1 (en) Refrigeration equipment
JP4069947B2 (en) Refrigeration equipment
EP3205954B1 (en) Refrigeration cycle device
WO2010013392A1 (en) Refrigerating device
JP6052456B2 (en) Refrigeration equipment
US11486616B2 (en) Refrigeration device
JP4868049B2 (en) Refrigeration equipment
WO2021033426A1 (en) Heat source unit and freezing apparatus
KR20190041091A (en) Air Conditioner
WO2017056394A1 (en) Refrigeration device
JP2015068571A (en) Refrigeration unit
CN114341569B (en) Heat source unit and refrigerating device
JP2008267691A (en) Air conditioner
JP2009144967A (en) Refrigerating device
JP2021032441A (en) Refrigeration unit and intermediate unit
JP2007298188A (en) Refrigerating device
JP2014070829A (en) Refrigerator
KR102128576B1 (en) Refrigerant cycle apparatus
JP6787465B1 (en) Heat source unit and refrigeration equipment
CN109564034B (en) Refrigerating device
WO2020202519A1 (en) Refrigeration cycle device
JP2004205142A (en) Refrigerating and air conditioning apparatus and its operation control method
JP2017101858A (en) Freezing device
JP2009287789A (en) Refrigerating device
JP2009030937A (en) Refrigeration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020853725

Country of ref document: EP

Effective date: 20220204

NENP Non-entry into the national phase

Ref country code: DE