WO2017006474A1 - Refrigeration cycle device, remote monitoring system, remote monitoring device, and abnormality determination method - Google Patents

Refrigeration cycle device, remote monitoring system, remote monitoring device, and abnormality determination method Download PDF

Info

Publication number
WO2017006474A1
WO2017006474A1 PCT/JP2015/069725 JP2015069725W WO2017006474A1 WO 2017006474 A1 WO2017006474 A1 WO 2017006474A1 JP 2015069725 W JP2015069725 W JP 2015069725W WO 2017006474 A1 WO2017006474 A1 WO 2017006474A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
refrigeration cycle
refrigerant circuit
cycle apparatus
Prior art date
Application number
PCT/JP2015/069725
Other languages
French (fr)
Japanese (ja)
Inventor
貴玄 中村
齊藤 信
正樹 豊島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/069725 priority Critical patent/WO2017006474A1/en
Priority to JP2017527046A priority patent/JP6403887B2/en
Priority to GB1716771.9A priority patent/GB2553972B/en
Publication of WO2017006474A1 publication Critical patent/WO2017006474A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to a refrigeration cycle apparatus, a remote monitoring system, a remote monitoring apparatus, and an abnormality determination method having a function of determining abnormality such as refrigerant leakage.
  • refrigerant leakage may occur due to insufficient tightening of connection parts such as pipes or damage to pipes.
  • Such a refrigerant leak causes a decrease in the capacity of the refrigeration cycle apparatus and damages to constituent devices. For this reason, a refrigeration cycle apparatus having a function of detecting refrigerant leakage has been proposed.
  • Patent Document 1 stores an outside air temperature at an initial stage and a discharge temperature of the compressor, and then stores the outside air temperature and the discharge temperature of the compressor at the initial stage stored in the initial stage and the compressor temperature.
  • a method is described in which the presence or absence of refrigerant leakage is determined in comparison with the discharge temperature.
  • Patent Document 2 discloses a method for determining that the refrigerant is leaking when the refrigerant pressure is lower than the balance pressure when the refrigeration cycle is stopped by a predetermined value or more at the start of the refrigeration cycle. In operation, a method is described in which it is determined that the refrigerant is leaking when the pressure of the refrigerant rapidly decreases.
  • Patent Document 2 when the outside air temperature is the same as the outside air temperature in the initial stage, the refrigerant leakage is determined by comparing the discharge temperature.
  • the discharge temperature at the time of starting the compressor differs depending on the distribution of the refrigerant amount in the refrigerant circuit immediately before the starting. For example, when the amount of liquid refrigerant present in the condenser is small when the operation is stopped, the discharge temperature at the time of startup becomes high. For this reason, even when the outside air temperature is the same, the discharge temperature varies depending on the refrigerant amount distribution, and refrigerant leakage may not be detected accurately.
  • Patent Document 2 does not describe a method for making the conditions for determining refrigerant leakage constant. Furthermore, it is desirable to make the conditions at the time of determination constant when determining not only refrigerant leakage but also the occurrence of an abnormality in the compressor.
  • the present invention has been made to solve the above-described problems, and is a refrigeration cycle apparatus, a remote monitoring system, a remote monitoring apparatus, and an abnormality determination method capable of improving the determination accuracy of abnormality such as refrigerant leakage.
  • the purpose is to provide.
  • the refrigeration cycle apparatus includes a refrigerant circuit including a compressor, a condenser, a throttling device, and an evaporator, a control unit that controls the refrigerant circuit, and an abnormality determination that determines whether there is an abnormality in the refrigerant circuit.
  • the controller drives the compressor, and when the predetermined time has elapsed, or when the refrigerant pressure on the suction side of the compressor has decreased to a predetermined value, the compressor
  • the abnormality determination unit is configured to determine whether the refrigerant circuit is abnormal after the special operation.
  • a remote monitoring system is a remote monitoring system including a refrigeration cycle apparatus and a remote monitoring apparatus capable of communicating with the refrigeration cycle apparatus, wherein the refrigeration cycle apparatus includes a compressor, a condenser, a throttling device, A refrigerant circuit including an evaporator, and a communication unit that communicates with the remote monitoring device, the remote monitoring device communicating with the refrigeration cycle device, and a control unit that controls the refrigerant circuit via the communication unit
  • An abnormality determination unit that determines whether or not there is an abnormality in the refrigerant circuit, and the control unit drives the compressor, and when a predetermined time has elapsed, or the refrigerant pressure on the suction side of the compressor
  • a special operation for stopping the compressor is performed when the value drops to a predetermined value, and the abnormality determination unit determines whether or not the refrigerant circuit is abnormal after the special operation.
  • the remote monitoring device includes a communication unit that communicates with the refrigeration cycle apparatus, a control unit that controls the refrigerant circuit of the refrigeration cycle apparatus via the communication unit, and an abnormality determination unit that determines whether there is an abnormality in the refrigerant circuit.
  • the control unit drives the compressor of the refrigerant circuit and compresses when a predetermined time has elapsed or when the refrigerant pressure on the suction side of the compressor has decreased to a predetermined value. A special operation for stopping the machine is performed, and the abnormality determination unit determines whether or not the refrigerant circuit is abnormal after the special operation.
  • An abnormality determination method is an abnormality determination method in a refrigerant circuit including a compressor, a condenser, a throttling device, and an evaporator, and the compressor is driven and a predetermined time has elapsed. Or when the refrigerant pressure on the suction side of the compressor drops to a predetermined value, performing a special operation to stop the compressor, and determining a refrigerant circuit abnormality after the special operation. Is included.
  • the remote monitoring system when the compressor is driven and a predetermined time has elapsed, or the refrigerant pressure on the suction side of the compressor is When the value drops to the specified value, the special operation to stop the compressor is performed, and the presence or absence of abnormality is determined after the special operation.
  • the detection accuracy of the occurrence of abnormality can be improved.
  • FIG. 1 is a diagram showing a refrigerant circuit configuration of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 100 of the present embodiment is a refrigerator that performs vapor compression refrigeration cycle operation.
  • a refrigeration cycle apparatus 100 includes a compressor 11, a condenser 12, a receiver 15, a solenoid valve 16, a double pipe heat exchanger 17, a throttling device 13, and an evaporator 14 connected by piping.
  • the double-pipe heat exchanger 17 and the compressor 11 are connected by a pipe 18, and a throttle device 19 is provided in the pipe 18. Note that the receiver 15, the electromagnetic valve 16, the double pipe heat exchanger 17, the pipe 18, and the expansion device 19 may not be provided.
  • the compressor 11 is composed of, for example, an inverter compressor capable of capacity control, and sucks a gas refrigerant, compresses it, and discharges it in a high temperature and high pressure state.
  • the condenser 12 is, for example, a cross fin type fin-and-tube heat exchanger composed of a heat transfer tube and a large number of fins, and a high-temperature and high-pressure refrigerant discharged from the compressor 11 and air or water.
  • the heat medium is condensed with heat exchange.
  • the expansion device 13 is composed of, for example, an expansion valve or a capillary tube, and expands the refrigerant condensed by the condenser 12 by reducing the pressure.
  • the evaporator 14 is, for example, a cross-fin fin-and-tube heat exchanger, and heats the refrigerant expanded by the expansion device 13 and a heat medium such as air or water. It is exchanged and evaporated.
  • the receiver 15 stores excess refrigerant.
  • the electromagnetic valve 16 adjusts the flow rate of the refrigerant flowing into the double pipe heat exchanger 17.
  • the double pipe heat exchanger 17 has a first flow path through which the refrigerant flowing out from the receiver 15 flows, and a second flow path through which the refrigerant flowing out from the expansion device 19 flows.
  • the first flow path and the second flow path Are configured to be able to exchange heat.
  • the pipe 18 is a pipe that injects refrigerant into the compressor 11 through the first flow path of the double pipe heat exchanger 17, the expansion device 19, and the second flow path of the double pipe heat exchanger 17.
  • the expansion device 19 is disposed in the pipe 18 and is configured by, for example, an expansion valve for expanding the refrigerant.
  • the refrigeration cycle apparatus 100 is provided with a detection unit that detects information indicating the operating state of the refrigeration cycle apparatus 100.
  • the detection unit includes an intake temperature sensor 21, a discharge temperature sensor 22, and a current detection unit 23.
  • the intake temperature sensor 21 is disposed on the intake side of the compressor 11 and detects the intake refrigerant temperature of the compressor 11.
  • the discharge temperature sensor 22 is disposed on the discharge side of the compressor 11 and detects the discharge refrigerant temperature.
  • the current detector 23 is disposed in the drive circuit of the compressor 11 and detects a current applied to the motor of the compressor 11.
  • the information indicating the operating state includes the temperature and current detected by the suction temperature sensor 21, the discharge temperature sensor 22, and the current detection unit 23. In the following description, information indicating the driving state is referred to as “driving state amount”.
  • an outside air temperature sensor 24 for detecting the outside air temperature is provided in a portion of the refrigeration cycle apparatus 100 that is disposed outside or outside the warehouse.
  • FIG. 2 is a diagram showing a control configuration of the refrigeration cycle apparatus 100.
  • the refrigeration cycle apparatus 100 includes a control unit 30, a storage unit 40, an abnormality determination unit 50, and a notification unit 60.
  • the control unit 30 controls the rotation speed of the compressor 11 and the opening degrees of the expansion device 13, the expansion device 19, and the electromagnetic valve 16, and performs the operation of the refrigeration cycle apparatus 100.
  • the storage unit 40 is configured with a large-capacity nonvolatile memory or the like, and stores various programs and data used for control of the control unit 30.
  • the storage unit 40 also associates the operating state quantities detected by the suction temperature sensor 21, the discharge temperature sensor 22, and the current detection unit 23 with the outside air temperature detected by the outside temperature sensor 24 when these are detected.
  • the operation state amount detected at the time of past activation is associated with the outside air temperature and sequentially stored.
  • the abnormality determination unit 50 determines whether or not there is an abnormality in the refrigeration cycle apparatus 100 from the operation state quantities detected by the suction temperature sensor 21, the discharge temperature sensor 22, and the current detection unit 23.
  • the notification unit 60 displays the determination result in the abnormality determination unit 50 on the screen or LED of the remote control of the refrigeration cycle apparatus 100, a remote monitor, or the like, or outputs the determination result to notify the user.
  • the control unit 30, the abnormality determination unit 50, and the notification unit 60 are functional blocks realized by a microcomputer or a DSP (Digital Signal Processor) executing a program, or an electronic circuit such as an ASIC (Application Specific IC). Composed.
  • the refrigerant in a low-temperature and low-pressure gas state is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the condenser 12.
  • the high-temperature and high-pressure refrigerant flowing into the condenser 12 dissipates heat to the outdoor air and the like, and is condensed to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the condenser 12 flows into the receiver 15 and is separated into liquid refrigerant and gas refrigerant.
  • the liquid refrigerant flowing out from the receiver 15 flows into the first flow path of the double pipe heat exchanger 17 through the electromagnetic valve 16.
  • the refrigerant that has flowed into the first flow path is cooled by exchanging heat with the refrigerant that has flowed into the second flow path, and is supercooled.
  • a part of the refrigerant flowing out from the first flow path of the double pipe heat exchanger 17 is branched and passed through the expansion device 19 to be depressurized and the temperature is lowered. And the refrigerant
  • the refrigerant flowing out from the second flow path of the double pipe heat exchanger 17 is used to lower the temperature of the gas refrigerant flowing into the compressor 11 and discharged from the compressor 11 through the pipe 18.
  • the gas-liquid two-phase refrigerant flowing into the evaporator 14 evaporates by exchanging heat with air or water, and becomes a low-temperature and low-pressure gas refrigerant.
  • the gas refrigerant that has flowed out of the evaporator 14 is sucked into the compressor 11 and compressed again.
  • the refrigerant that can be used in the refrigeration cycle apparatus 100 includes a single refrigerant, a pseudo-azeotropic mixed refrigerant, a non-azeotropic mixed refrigerant, and the like.
  • the pseudo azeotropic refrigerant mixture include R410A and R404A which are HFC refrigerants.
  • This pseudo azeotrope refrigerant has the same characteristic as that of the non-azeotrope refrigerant and has an operating pressure of about 1.6 times that of R22.
  • Non-azeotropic refrigerant mixture includes R407C, which is an HFC (hydrofluorocarbon) refrigerant. Since this non-azeotropic refrigerant mixture is a mixture of refrigerants having different boiling points, it has a characteristic that the composition ratio of the liquid-phase refrigerant and the gas-phase refrigerant is different.
  • FIG. 3 is a flowchart showing the abnormality determination process of the present embodiment.
  • the operating state amount be detected under certain conditions.
  • the ambient temperature such as the outside temperature or the internal temperature is the same.
  • the detected operating state amount for example, the discharge temperature of the compressor 11
  • the refrigerant distribution forced operation for making the refrigerant amount distribution constant is performed by the control unit 30 (S1).
  • FIG. 4 is a flowchart showing the flow of the refrigerant distribution forced operation.
  • the “refrigerant distribution forced operation” corresponds to the “special operation” of the present invention.
  • the refrigerant distribution forced operation of the present embodiment is performed when an instruction to stop the operation of the refrigeration cycle apparatus 100 is given. If there is no instruction to stop the operation (S11: NO), the process waits until there is an instruction to stop the operation. And when there exists an instruction
  • a predetermined time for example, 10 minutes
  • the predetermined time is a time required to collect the refrigerant in the refrigerant circuit of the refrigeration cycle apparatus 100 on the high-pressure side, and is set in advance and stored in the storage unit 40. For example, when the compressor 11 is large, 15 to 20 minutes, and when the compressor 11 is small, 5 to 10 minutes are set according to the size of the compressor 11.
  • the forced refrigerant distribution operation is an operation that places a burden on the compressor 11, so that it is preferable to end the compressor 11 within 30 minutes when the compressor 11 is large and within 15 minutes when the compressor 11 is small.
  • the operation of the compressor 11 is continued until a predetermined time elapses. Instead, the refrigerant pressure on the low pressure side (that is, the suction side) of the compressor 11 is reduced to a preset value. It is good also as a structure which continues the driving
  • the operation state quantity is detected in a state where the compressor 11 is performing the start-up operation (S5). Specifically, the suction temperature by the suction temperature sensor 21, the discharge temperature by the discharge temperature sensor 22, and the current value of the compressor 11 by the current detection unit 23 are detected. And it is judged whether the past driving
  • a predetermined temperature range for example, ⁇ 3 ° C.
  • the abnormality determination unit 50 of the present embodiment determines whether there is a refrigerant leak and an abnormality of the compressor 11 as an abnormality of the refrigeration cycle apparatus 100.
  • refrigerant leakage will be described.
  • the intake SH (superheat degree) of the compressor 11 increases, and the discharge temperature rises at the time of startup increases. Therefore, the abnormality determination unit 50 compares the current discharge temperature detected by the discharge temperature sensor 22 with the discharge temperature detected at the previous activation among the past operation state quantities, and obtains the difference Dt. And the abnormality determination part 50 determines with there being a refrigerant
  • the abnormality determination unit 50 selects the low pressure or discharge based on the suction temperature detected at the previous activation among the low pressure based on the suction temperature or the high pressure based on the discharge temperature and the past operation state quantity stored in the storage unit 40.
  • a difference Dp is obtained by comparing with a high pressure based on temperature.
  • the abnormality determination part 50 determines with there being a refrigerant
  • the abnormality of the compressor 11 When the total load torque required for starting up the compressor 11 increases, the current value required for starting up increases. Therefore, it can be determined from the current value whether the total load torque at the time of startup is increased. That is, it is possible to estimate a malfunction (for example, damage to the drive shaft) of the compressor 11 from the current value detected by the current detection unit 23. Therefore, the abnormality determination unit 50 compares the current maximum current value with the maximum current value detected at the previous activation among the past operation state quantities stored in the storage unit 40, and obtains the difference Da. And the abnormality determination part 50 determines with the compressor 11 having abnormality, when the calculated
  • the maximum current value at startup is, for example, the maximum value within 10 seconds after startup.
  • the abnormality determination unit 50 compares the current peak position this time with the current peak position detected at the previous activation among the past operation state quantities stored in the storage unit 40, and obtains the difference Ds. And the abnormality determination part 50 determines with the compressor 11 having abnormality, when the calculated
  • FIG. 5 is a diagram illustrating an example of a waveform of a starting current when the compressor 11 is started.
  • the vertical axis indicates the current value
  • the horizontal axis indicates time.
  • C1 indicates a current waveform detected at the previous activation
  • C2 and C3 indicate other examples of the current waveform detected this time.
  • the current maximum current value A2 is larger than the previous maximum current value A1.
  • the difference Da between A1 and A2 is equal to or greater than the threshold value Ra, in this case, it is determined that the compressor 11 is abnormal.
  • the current peak position t2 of this time occurs later than the previous current peak position t1.
  • the compressor 11 Since the difference Ds between t1 and t2 is equal to or greater than the threshold value Rs, it is determined that the compressor 11 is also abnormal in this case.
  • An arbitrary value is set as the threshold used for the comparison in the abnormality determination unit 50 and is stored in the storage unit 40.
  • the threshold value may be obtained in advance by experiments or the like and stored in the storage unit 40.
  • the abnormality determination part 50 is the electric current in the fixed time after starting detected from the integrated current value in the fixed time after starting this time and the past operation state quantity memorize
  • a difference Di from the integral value may be obtained, and it may be determined that an abnormality has occurred in the compressor 11 when the difference Di is equal to or greater than a predetermined threshold.
  • the fixed time after activation is, for example, 3 seconds after activation.
  • the difference in the integral value of the current means that the work amount used for the start is different. Therefore, in this case, it is considered that some abnormality has occurred in the compressor 11.
  • FIG. 6 is a diagram showing a transition of current when the compressor 11 is started.
  • the vertical axis represents current (for example, the maximum current value)
  • the horizontal axis represents the number of activations. For example, as shown in FIG. 6, when the maximum current value detected this time (n-th time) is significantly different from the slope of the maximum current value in the past (up to the (n-1) -th time), it may be determined as abnormal.
  • the refrigerant amount is biased toward the high pressure side, and the suction state when the compressor 11 is started becomes substantially constant.
  • the internal state at the time of starting of the compressor 11 becomes substantially constant, and it is possible to suppress variations in the amount of operation state detected for abnormality determination.
  • the variation in the operating state amount can be further suppressed, and the accuracy of abnormality determination can be further improved.
  • the abnormality determination process in comparison with the past operating state quantity detected at the substantially same outside temperature as the operating state quantity is detected, the influence of the outside air temperature on the operating state quantity is suppressed.
  • the accuracy of abnormality determination can be improved. Further, by determining that there is an abnormality when the difference from the past driving state quantity is equal to or greater than the threshold value, it is possible to prevent the abnormality from being determined when an error within an allowable range occurs.
  • FIG. 7 is a diagram showing a refrigerant circuit configuration of the refrigeration cycle apparatus 200 in the second embodiment.
  • the refrigeration cycle apparatus 200 of the second embodiment is different from the first embodiment in that it is an air conditioner used for indoor cooling and heating by performing a vapor compression refrigeration cycle operation.
  • the refrigeration cycle apparatus 200 is configured by connecting a compressor 111, an outdoor heat exchanger 112, an expansion device 113, an indoor heat exchanger 114, and a flow path switching device 115 through a connection pipe.
  • a refrigerant circuit is provided.
  • the compressor 111, the outdoor heat exchanger 112, the expansion device 113, and the flow path switching device 115 constitute an outdoor unit 210 that is disposed outdoors, and the indoor heat exchanger 114 is disposed indoors.
  • the machine 220 is configured.
  • the refrigeration cycle apparatus 200 includes the same intake temperature sensor 21, discharge temperature sensor 22, current detection unit 23, and outside air temperature sensor 24 as in the first embodiment.
  • the compressor 111 is composed of an inverter compressor capable of capacity control, similarly to the compressor 11 of the first embodiment.
  • the outdoor heat exchanger 112 is, for example, a cross fin type fin-and-tube heat exchanger, and functions as a refrigerant condenser during the cooling operation, and functions as a refrigerant evaporator during the heating operation.
  • the expansion device 113 is composed of, for example, an expansion valve or a capillary tube, and expands the refrigerant by decompressing it.
  • the indoor heat exchanger 114 is, for example, a cross-fin fin-and-tube heat exchanger, and functions as a refrigerant evaporator during cooling operation and as a refrigerant condenser during heating operation.
  • the flow path switching device 115 includes, for example, a four-way valve for switching the direction of refrigerant flow.
  • the flow path switching device 115 switches the refrigerant flow path as shown by the solid line in FIG. 7 during the cooling operation, and switches the refrigerant flow path as shown by the broken line in FIG. 7 during the heating operation.
  • the refrigeration cycle apparatus 200 of the present embodiment has the same control configuration as that of the first embodiment shown in FIG.
  • the control unit 30 according to the present embodiment controls the rotation speed of the compressor 111, the opening degree of the expansion device 113, and the switching of the flow path of the flow path switching device 115.
  • the operation of the refrigeration cycle apparatus 200 will be described. First, the operation during the cooling operation will be described.
  • the flow path of the refrigerant is switched by the flow path switching device 115 as shown by the solid line in FIG.
  • the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 111 flows into the outdoor heat exchanger 112 through the flow path switching device 115.
  • the high-temperature and high-pressure refrigerant that has flowed into the outdoor heat exchanger 112 dissipates heat to the outdoor air or the like, and is condensed to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the outdoor heat exchanger 112 flows into the expansion device 113 and is expanded and depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant that has flowed out of the expansion device 113 flows into the indoor heat exchanger 114.
  • the gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 114 evaporates by exchanging heat with indoor air, and becomes a low-temperature and low-pressure gas refrigerant.
  • the gas refrigerant flowing out of the indoor heat exchanger 114 is sucked into the compressor 11 and compressed again.
  • the flow path of the refrigerant is switched by the flow path switching device 115 as shown by the broken line in FIG.
  • the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 111 flows into the indoor heat exchanger 114 through the flow path switching device 115.
  • the high-temperature and high-pressure refrigerant that has flowed into the indoor heat exchanger 114 dissipates heat to the indoor air and is condensed to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 114 flows into the expansion device 113 and is expanded and depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant that has flowed out of the expansion device 113 flows into the outdoor heat exchanger 112.
  • the gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 112 evaporates by exchanging heat with outdoor air and becomes a low-temperature and low-pressure gas refrigerant.
  • the gas refrigerant that has flowed out of the outdoor heat exchanger 112 is sucked into the compressor 11 and compressed again.
  • FIG. 8 is a flowchart showing the abnormality determination process of the present embodiment.
  • the same reference numerals as those in FIG. 3 are assigned to the same processes as the abnormality determination process of the first embodiment.
  • S101 it is determined whether or not an instruction to start operation has been given (S101). And when the instruction
  • S101: YES the refrigerant distribution forced operation by the control unit 30 is performed (S102).
  • FIG. 9 is a flowchart showing the flow of the refrigerant distribution forced operation in the present embodiment. As described above, in the present embodiment, when there is an instruction to start the operation of the refrigeration cycle apparatus 200, the refrigerant distribution forced operation is performed.
  • the expansion device 113 is fully closed by the control unit 30 (S21), and the operation of the compressor 111 is started with the rotation speed of the compressor 111 being fixed (S22). Then, it is determined whether or not a predetermined time (for example, 10 minutes) has elapsed (S23). If the predetermined time has not elapsed (S23: NO), the operation of the compressor 111 is continued. On the other hand, when the predetermined time has elapsed (S23: YES), the operation of the compressor 111 is stopped (S24).
  • a predetermined time for example, 10 minutes
  • the refrigerant in the refrigerant circuit of the refrigeration cycle apparatus 200 is collected on the high pressure side (from the discharge side of the compressor 111 to the expansion device 113).
  • the predetermined time in this case is set in advance according to the size of the compressor 11 and the like, as in the first embodiment. It should be noted that, instead of elapse of a predetermined time, the operation of the compressor 11 is continued until the refrigerant pressure on the low pressure side of the compressor 11 decreases to a preset value (for example, around 0 to 0.1 Mpa). Also good.
  • the expansion device 113 is fully opened (S25). Thereafter, it is determined whether or not a predetermined time (for example, 3 minutes) has passed (S26). Then, when the predetermined time has elapsed (S26: YES), the processing returns to FIG. In FIG. 8, similarly to the abnormality determination process of the first embodiment, the processes after S3 are performed, and the abnormality determination of the refrigeration cycle apparatus 200 is performed.
  • a predetermined time for example, 3 minutes
  • the processing of S25 and S26 is performed, so that the high / low pressure difference in the refrigerant circuit is eliminated or is made a predetermined value or less.
  • devices such as the flow path switching device 115 are caused by the impact due to the high / low pressure difference in the refrigerant circuit. It is possible to suppress adverse effects.
  • the distribution of the refrigerant amount at the time of starting can be made constant, and the variation in the operation state amount detected for abnormality determination is suppressed. High abnormality determination can be performed.
  • FIG. 10 is a diagram showing a refrigerant circuit configuration of a refrigeration cycle apparatus 200A in a modification of the second embodiment.
  • FIG. 10 it is good also as a structure provided with the accumulator 118 for accumulating an excess refrigerant
  • the abnormality of the refrigeration cycle apparatus 200A is determined by performing the forced refrigerant distribution operation (FIG. 9) and the abnormality determination process (FIG. 8) as in the second embodiment. Further, in this case, by performing the refrigerant distribution forced operation shown in FIG.
  • the refrigerant including the excess refrigerant in the accumulator 118 is collected on the high pressure side. Further, in the forced refrigerant distribution operation, the expansion device 113 is fully closed in S21 and the compressor 111 is driven for a predetermined time.
  • the present invention is not limited to this, and the compressor 11 has suction SH.
  • the diaphragm device 113 may be controlled as described above. Also in this case, the suction state of the compressor 111 at the time of starting can be made constant.
  • FIG. 11 is a diagram showing a refrigerant circuit configuration of the refrigeration cycle apparatus 300 in the third embodiment.
  • the refrigeration cycle apparatus 300 according to the third embodiment is different from the second embodiment in that a receiver 117 is provided between the outdoor heat exchanger 112 and the indoor heat exchanger 114.
  • the refrigerant circuit of the refrigeration cycle apparatus 300 includes a compressor 111, an outdoor heat exchanger 112, a first expansion device 116a, a receiver 117, a second expansion device 116b, an indoor heat exchanger 114, and a flow path switching device 115. Connected by connecting piping.
  • the compressor 111, the outdoor heat exchanger 112, the flow switching device 115, the first expansion device 116a, the second expansion device 116b, and the receiver 117 constitute the outdoor unit 310, and the indoor heat exchanger 114 is
  • the indoor unit 320 is configured.
  • the receiver 117 is located between the first expansion device 116a and the second expansion device 116b in the refrigerant circuit, and accumulates excess refrigerant.
  • the refrigeration cycle apparatus 300 includes the same intake temperature sensor 21, discharge temperature sensor 22, current detection unit 23, and outside air temperature sensor 24 as in the first embodiment. Furthermore, the refrigeration cycle apparatus 300 has the same control configuration as that of the first embodiment shown in FIG. Note that the control unit 30 of the present embodiment controls the rotation speed of the compressor 111, the opening degrees of the first expansion device 116a and the second expansion device 116b, and switching of the flow path switching device 115.
  • FIG. 12 is a flowchart showing the flow of the refrigerant distribution forced operation in the present embodiment.
  • FIG. 12 the same reference numerals as those in FIG. 9 are assigned to the same processes as those in the forced refrigerant distribution operation of the second embodiment.
  • the upstream throttle device is controlled, and the downstream throttle device is fully closed (S31).
  • the first expansion device 116a is the upstream expansion device
  • the second expansion device 116b is the downstream expansion device.
  • the upstream throttle device is controlled by the control unit 30 so that the suction SH of the compressor 111 is applied.
  • the operation of the compressor 111 is started with the rotation speed of the compressor 111 being fixed (S22). Then, it is determined whether or not a predetermined time (for example, 10 minutes) has elapsed (S23). If the predetermined time has not elapsed (S23: NO), the operation of the compressor 111 is continued. On the other hand, when the predetermined time has elapsed (S23: YES), the operation of the compressor 111 is stopped (S24). Thereby, the refrigerant
  • a predetermined time for example, 10 minutes
  • the predetermined time in this case is set in advance according to the size of the compressor 11 and the like, as in the first embodiment. It should be noted that, instead of elapse of a predetermined time, the operation of the compressor 11 is continued until the refrigerant pressure on the low pressure side of the compressor 11 decreases to a preset value (for example, around 0 to 0.1 Mpa). Also good.
  • the upstream throttle device and the downstream throttle device are fully opened (S35). Thereafter, it is determined whether or not a predetermined time (for example, 3 minutes) has passed (S26). And when predetermined time passes (S26: YES), it returns to abnormality determination processing.
  • a predetermined time for example, 3 minutes
  • predetermined time passes (S26: YES)
  • the abnormality determination process the same process as in the second embodiment is performed, and the abnormality determination of the refrigeration cycle apparatus 300 is performed.
  • FIG. 13 is a diagram illustrating a schematic configuration of a remote monitoring system 400 according to the fourth embodiment.
  • the remote monitoring system 400 includes a refrigeration cycle apparatus 100A and a remote monitoring apparatus 500.
  • remote monitoring apparatus 500 includes control unit 30, storage unit 40, abnormality determination unit 50, and notification unit 60.
  • the refrigeration cycle apparatus 100A has the same refrigerant circuit configuration as that of the first embodiment.
  • the refrigeration cycle apparatus 100A and the remote monitoring apparatus 500 each have a communication unit 70a and a communication unit 70b.
  • the communication units 70a and 70b are means for performing communication by radio or wire.
  • the remote monitoring device 500 is configured by a computer and performs centralized management such as remote monitoring and control of the refrigeration cycle device 100A via the communication unit 70b.
  • the operation state quantity detected by the refrigeration cycle apparatus 100A is transmitted to the remote monitoring apparatus 500 via the communication unit 70a, and the remote monitoring apparatus 500 controls the refrigerant distribution forced operation and the abnormality determination process. Is done.
  • the flow of the refrigerant distribution forced operation and abnormality determination process in this case is the same as the flow of the refrigerant distribution forced operation and abnormality determination process of the first embodiment shown in FIGS. 3 and 4.
  • the same effect as in the first embodiment can be obtained, and the abnormality of the refrigeration cycle apparatus 100A can be constantly monitored by remote monitoring.
  • the large-capacity storage unit 40 on the remote monitoring device 500, it is possible to reduce the cost compared to the case where the large-capacity storage unit 40 is installed in the refrigeration cycle apparatus 100A main body.
  • the refrigeration cycle apparatus 100 includes a single compressor 11, a condenser 12, and an evaporator 14, but the present invention particularly includes these numbers. It is not limited. For example, two or more compressors 11, a condenser 12, and an evaporator 14 may be provided. Similarly, in the second embodiment, the number of the outdoor units 210 and the indoor units 220 is not limited, and various combinations are possible.
  • FIG. 14 is a diagram illustrating a schematic configuration of a remote monitoring system 400A according to a modification. For example, as shown in FIG. 14, a plurality of indoor units 220a to 220c may be connected to one outdoor unit 210, and these may be monitored and controlled by the remote monitoring device 500.
  • the abnormality determination process is performed based on the operation state quantity detected in the past stored in the storage unit 40.
  • the refrigeration cycle apparatus 100 records a reference current waveform in a normal state in advance, and compares the current current waveform with the reference current waveform, so that there is an abnormality in the compressor 11 or the suction of the compressor 11 It may be determined whether or not the state of the refrigerant is stable.
  • the refrigeration cycle apparatus 200 includes a plurality of outdoor units 210 and one or a plurality of indoor units 220 are connected to each outdoor unit 210, the past operating state quantities are shared among the plurality of outdoor units 210. When the operating conditions match, the abnormality may be determined by comparing with the operating state quantity of the other outdoor unit 210.
  • the detected operating state quantity is not limited to the example of the above embodiment, and it is possible to determine abnormality by detecting various state quantities in the refrigerant circuit. For example, if the compressor 11 is provided with power consumption detection means, and the power consumption of the compressor 11 is greater than a predetermined threshold value compared to the power consumption at the time of previous activation, an abnormality has occurred in the compressor 11. You may judge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This refrigeration cycle device is equipped with: a refrigeration circuit which includes a compressor, a condenser, a throttle device, and an evaporator; a control unit which controls the refrigeration circuit; and an abnormality determination unit which determines the presence or absence of abnormalities in the refrigeration circuit. The control unit drives the compressor, and performs special operation for stopping the compressor if a predetermined time has elapsed or if the pressure of a refrigerant on the intake side of the compressor decreases to a predetermined value. The abnormality determination unit determines the presence or absence of abnormalities in the refrigeration circuit after the special operation.

Description

冷凍サイクル装置、遠隔監視システム、遠隔監視装置および異常判定方法Refrigeration cycle apparatus, remote monitoring system, remote monitoring apparatus, and abnormality determination method
 本発明は、冷媒漏れなどの異常を判定する機能を備える冷凍サイクル装置、遠隔監視システム、遠隔監視装置および異常判定方法に関するものである。 The present invention relates to a refrigeration cycle apparatus, a remote monitoring system, a remote monitoring apparatus, and an abnormality determination method having a function of determining abnormality such as refrigerant leakage.
 従来の冷凍サイクル装置において、配管等接続箇所の締め付け不足または配管の損傷等によって冷媒漏れが生じることがある。このような冷媒漏れは、冷凍サイクル装置の能力の低下や構成機器の損傷を生じさせる原因になる。そのため、冷媒漏れを検知する機能を備える冷凍サイクル装置が提案されている。 In the conventional refrigeration cycle apparatus, refrigerant leakage may occur due to insufficient tightening of connection parts such as pipes or damage to pipes. Such a refrigerant leak causes a decrease in the capacity of the refrigeration cycle apparatus and damages to constituent devices. For this reason, a refrigeration cycle apparatus having a function of detecting refrigerant leakage has been proposed.
 例えば、特許文献1には、初期段階の外気温度と圧縮機の吐出温度とを記憶し、その後の外気温度と圧縮機の吐出温度とを、記憶されている初期段階の外気温度および圧縮機の吐出温度と比較して、冷媒漏れの有無を判定する方法が記載されている。また、特許文献2には、冷凍サイクルの始動時において、冷媒の圧力が冷凍サイクルの停止時のバランス圧よりも所定値以上低い値である場合に、冷媒漏れであると判断する方法、および通常運転時において、冷媒の圧力が急激に低下した場合に冷媒漏れであると判断する方法が記載されている。 For example, Patent Document 1 stores an outside air temperature at an initial stage and a discharge temperature of the compressor, and then stores the outside air temperature and the discharge temperature of the compressor at the initial stage stored in the initial stage and the compressor temperature. A method is described in which the presence or absence of refrigerant leakage is determined in comparison with the discharge temperature. Further, Patent Document 2 discloses a method for determining that the refrigerant is leaking when the refrigerant pressure is lower than the balance pressure when the refrigeration cycle is stopped by a predetermined value or more at the start of the refrigeration cycle. In operation, a method is described in which it is determined that the refrigerant is leaking when the pressure of the refrigerant rapidly decreases.
特開2013-204871号公報JP 2013-204871 A 特開2000-320936号公報JP 2000-320936 A
 特許文献1に記載される方法では、外気温度が初期段階の外気温度と同じ場合に、吐出温度を比較して冷媒漏れを判定している。しかしながら、圧縮機の起動時における吐出温度は、起動直前の冷媒回路内の冷媒量の分布によって異なる。例えば、運転停止時に凝縮器における液冷媒の存在量が少ない場合、起動時の吐出温度は高めになる。そのため、外気温度が同一の場合でも、冷媒量分布によって吐出温度がばらつき、正確に冷媒漏れを検知できないことがある。また、特許文献2には、冷媒漏れを判定する際の条件を一定とする方法については記載されていない。さらに、冷媒漏れだけでなく、圧縮機の異常の発生などを判定する際にも、判定時の条件を一定とすることが望まれる。 In the method described in Patent Document 1, when the outside air temperature is the same as the outside air temperature in the initial stage, the refrigerant leakage is determined by comparing the discharge temperature. However, the discharge temperature at the time of starting the compressor differs depending on the distribution of the refrigerant amount in the refrigerant circuit immediately before the starting. For example, when the amount of liquid refrigerant present in the condenser is small when the operation is stopped, the discharge temperature at the time of startup becomes high. For this reason, even when the outside air temperature is the same, the discharge temperature varies depending on the refrigerant amount distribution, and refrigerant leakage may not be detected accurately. Further, Patent Document 2 does not describe a method for making the conditions for determining refrigerant leakage constant. Furthermore, it is desirable to make the conditions at the time of determination constant when determining not only refrigerant leakage but also the occurrence of an abnormality in the compressor.
発明の目的Object of the invention
 本発明は、上記のような課題を解決するためになされたものであり、冷媒漏れなどの異常の判定精度を向上させることが可能な冷凍サイクル装置、遠隔監視システム、遠隔監視装置および異常判定方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and is a refrigeration cycle apparatus, a remote monitoring system, a remote monitoring apparatus, and an abnormality determination method capable of improving the determination accuracy of abnormality such as refrigerant leakage. The purpose is to provide.
 本発明に係る冷凍サイクル装置は、圧縮機と、凝縮器と、絞り装置と、蒸発器とを含む冷媒回路と、冷媒回路を制御する制御部と、冷媒回路における異常の有無を判定する異常判定部と、を備え、制御部は、圧縮機を駆動し、予め定められた時間が経過した場合、または圧縮機の吸入側における冷媒の圧力が予め定められた値に低下した場合に、圧縮機を停止させる特殊運転を行うものであり、異常判定部は、特殊運転後に冷媒回路の異常の有無を判定するものである。 The refrigeration cycle apparatus according to the present invention includes a refrigerant circuit including a compressor, a condenser, a throttling device, and an evaporator, a control unit that controls the refrigerant circuit, and an abnormality determination that determines whether there is an abnormality in the refrigerant circuit. And the controller drives the compressor, and when the predetermined time has elapsed, or when the refrigerant pressure on the suction side of the compressor has decreased to a predetermined value, the compressor The abnormality determination unit is configured to determine whether the refrigerant circuit is abnormal after the special operation.
 本発明に係る遠隔監視システムは、冷凍サイクル装置および冷凍サイクル装置と通信可能な遠隔監視装置とを備える遠隔監視システムであって、冷凍サイクル装置は、圧縮機と、凝縮器と、絞り装置と、蒸発器とを含む冷媒回路と、遠隔監視装置と通信する通信部と、を備え、遠隔監視装置は、冷凍サイクル装置と通信する通信部と、通信部を介して冷媒回路を制御する制御部と、冷媒回路における異常の有無を判定する異常判定部と、を備え、制御部は、圧縮機を駆動し、予め定められた時間が経過した場合、または圧縮機の吸入側における冷媒の圧力が予め定められた値に低下した場合に、圧縮機を停止させる特殊運転を行うものであり、異常判定部は、特殊運転後に、冷媒回路の異常の有無を判定するものである。 A remote monitoring system according to the present invention is a remote monitoring system including a refrigeration cycle apparatus and a remote monitoring apparatus capable of communicating with the refrigeration cycle apparatus, wherein the refrigeration cycle apparatus includes a compressor, a condenser, a throttling device, A refrigerant circuit including an evaporator, and a communication unit that communicates with the remote monitoring device, the remote monitoring device communicating with the refrigeration cycle device, and a control unit that controls the refrigerant circuit via the communication unit An abnormality determination unit that determines whether or not there is an abnormality in the refrigerant circuit, and the control unit drives the compressor, and when a predetermined time has elapsed, or the refrigerant pressure on the suction side of the compressor A special operation for stopping the compressor is performed when the value drops to a predetermined value, and the abnormality determination unit determines whether or not the refrigerant circuit is abnormal after the special operation.
 本発明に係る遠隔監視装置は、冷凍サイクル装置と通信する通信部と、通信部を介して冷凍サイクル装置の冷媒回路を制御する制御部と、冷媒回路における異常の有無を判定する異常判定部と、を備え、制御部は、冷媒回路の圧縮機を駆動し、予め定められた時間が経過した場合、または圧縮機の吸入側における冷媒の圧力が予め定められた値に低下した場合に、圧縮機を停止させる特殊運転を行うものであり、異常判定部は、特殊運転後に冷媒回路の異常の有無を判定するものである。 The remote monitoring device according to the present invention includes a communication unit that communicates with the refrigeration cycle apparatus, a control unit that controls the refrigerant circuit of the refrigeration cycle apparatus via the communication unit, and an abnormality determination unit that determines whether there is an abnormality in the refrigerant circuit. The control unit drives the compressor of the refrigerant circuit and compresses when a predetermined time has elapsed or when the refrigerant pressure on the suction side of the compressor has decreased to a predetermined value. A special operation for stopping the machine is performed, and the abnormality determination unit determines whether or not the refrigerant circuit is abnormal after the special operation.
 本発明に係る異常判定方法は、圧縮機と、凝縮器と、絞り装置と、蒸発器とを含む冷媒回路における異常判定方法であって、圧縮機を駆動し、予め定められた時間が経過した場合、または圧縮機の吸入側における冷媒の圧力が予め定められた値に低下した場合に、圧縮機を停止させる特殊運転を行う工程と、特殊運転後に冷媒回路の異常を判定する工程と、を含むものである。 An abnormality determination method according to the present invention is an abnormality determination method in a refrigerant circuit including a compressor, a condenser, a throttling device, and an evaporator, and the compressor is driven and a predetermined time has elapsed. Or when the refrigerant pressure on the suction side of the compressor drops to a predetermined value, performing a special operation to stop the compressor, and determining a refrigerant circuit abnormality after the special operation. Is included.
 本発明に係る冷凍サイクル装置、遠隔監視システム、遠隔監視装置および異常判定方法によると、圧縮機を駆動し、予め定められた時間が経過した場合、または圧縮機の吸入側における冷媒の圧力が予め定められた値に低下した場合に、圧縮機を停止させる特殊運転を行い、特殊運転後に異常の有無を判定することで、検出される運転状態のばらつきを抑制することができ、冷媒漏れなどの異常の発生の検出精度を向上させることができる。 According to the refrigeration cycle apparatus, the remote monitoring system, the remote monitoring apparatus, and the abnormality determination method according to the present invention, when the compressor is driven and a predetermined time has elapsed, or the refrigerant pressure on the suction side of the compressor is When the value drops to the specified value, the special operation to stop the compressor is performed, and the presence or absence of abnormality is determined after the special operation. The detection accuracy of the occurrence of abnormality can be improved.
本発明の実施の形態1における冷凍サイクル装置の冷媒回路構成を示す図である。It is a figure which shows the refrigerant circuit structure of the refrigerating-cycle apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における冷凍サイクル装置の制御構成を示す図である。It is a figure which shows the control structure of the refrigerating-cycle apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における異常判定処理を示すフローチャートである。It is a flowchart which shows the abnormality determination process in Embodiment 1 of this invention. 本発明の実施の形態1における冷媒分布強制運転の流れを示すフローチャートである。It is a flowchart which shows the flow of the refrigerant distribution forced operation in Embodiment 1 of this invention. 本発明の実施の形態1における圧縮機が起動した際の起動電流の波形の例を示す図である。It is a figure which shows the example of the waveform of the starting current at the time of the compressor in Embodiment 1 of this invention starting. 本発明の実施の形態1における圧縮機の起動時の電流の推移を示す図である。It is a figure which shows transition of the electric current at the time of starting of the compressor in Embodiment 1 of this invention. 本発明の実施の形態2における冷凍サイクル装置の冷媒回路構成を示す図である。It is a figure which shows the refrigerant circuit structure of the refrigerating-cycle apparatus in Embodiment 2 of this invention. 本発明の実施の形態2における異常判定処理を示すフローチャートである。It is a flowchart which shows the abnormality determination process in Embodiment 2 of this invention. 本発明の実施の形態2における冷媒分布強制運転の流れを示すフローチャートである。It is a flowchart which shows the flow of the refrigerant distribution forced operation in Embodiment 2 of this invention. 本発明の実施の形態2の変形例における冷凍サイクル装置の冷媒回路構成を示す図である。It is a figure which shows the refrigerant circuit structure of the refrigerating-cycle apparatus in the modification of Embodiment 2 of this invention. 本発明の実施の形態3における冷凍サイクル装置の冷媒回路構成を示す図である。It is a figure which shows the refrigerant circuit structure of the refrigerating-cycle apparatus in Embodiment 3 of this invention. 本発明の実施の形態3における冷媒分布強制運転の流れを示すフローチャートである。It is a flowchart which shows the flow of the refrigerant distribution forced operation in Embodiment 3 of this invention. 本発明の実施の形態4における遠隔監視システムの概略構成を示す図である。It is a figure which shows schematic structure of the remote monitoring system in Embodiment 4 of this invention. 本発明の変形例における遠隔監視システムの概略構成を示す図である。It is a figure which shows schematic structure of the remote monitoring system in the modification of this invention.
 以下に、本発明における冷凍サイクル装置の実施の形態を図面に基づいて詳細に説明する。
 実施の形態1.
 図1は、本発明の実施の形態1における冷凍サイクル装置100の冷媒回路構成を示す図である。本実施の形態の冷凍サイクル装置100は、蒸気圧縮式の冷凍サイクル運転を行う冷凍機である。図1に示すように、冷凍サイクル装置100は、圧縮機11、凝縮器12、レシーバ15、電磁弁16、二重管熱交換器17、絞り装置13および蒸発器14が配管で接続された冷媒回路を備える。また、二重管熱交換器17と圧縮機11とは、配管18で接続され、配管18には、絞り装置19が設けられる。なお、レシーバ15、電磁弁16、二重管熱交換器17、配管18、および絞り装置19については、備えない構成としてもよい。
Embodiments of a refrigeration cycle apparatus according to the present invention will be described below in detail with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a diagram showing a refrigerant circuit configuration of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. The refrigeration cycle apparatus 100 of the present embodiment is a refrigerator that performs vapor compression refrigeration cycle operation. As shown in FIG. 1, a refrigeration cycle apparatus 100 includes a compressor 11, a condenser 12, a receiver 15, a solenoid valve 16, a double pipe heat exchanger 17, a throttling device 13, and an evaporator 14 connected by piping. Provide a circuit. The double-pipe heat exchanger 17 and the compressor 11 are connected by a pipe 18, and a throttle device 19 is provided in the pipe 18. Note that the receiver 15, the electromagnetic valve 16, the double pipe heat exchanger 17, the pipe 18, and the expansion device 19 may not be provided.
 圧縮機11は、例えば、容量制御可能なインバータ圧縮機等で構成され、ガス冷媒を吸入し、圧縮して高温高圧の状態にして吐出するものである。凝縮器12は、例えば、伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型の熱交換器であり、圧縮機11から吐出された高温高圧の冷媒と空気または水などの熱媒体とを熱交換させて凝縮させるものである。絞り装置13は、例えば、膨張弁またはキャピラリーチューブで構成され、凝縮器12によって凝縮された冷媒を減圧して膨張させるものである。蒸発器14は、凝縮器12と同様に、例えば、クロスフィン式のフィン・アンド・チューブ型の熱交換器であり、絞り装置13によって膨張された冷媒と空気または水などの熱媒体とを熱交換させて蒸発させるものである。 The compressor 11 is composed of, for example, an inverter compressor capable of capacity control, and sucks a gas refrigerant, compresses it, and discharges it in a high temperature and high pressure state. The condenser 12 is, for example, a cross fin type fin-and-tube heat exchanger composed of a heat transfer tube and a large number of fins, and a high-temperature and high-pressure refrigerant discharged from the compressor 11 and air or water. The heat medium is condensed with heat exchange. The expansion device 13 is composed of, for example, an expansion valve or a capillary tube, and expands the refrigerant condensed by the condenser 12 by reducing the pressure. Like the condenser 12, the evaporator 14 is, for example, a cross-fin fin-and-tube heat exchanger, and heats the refrigerant expanded by the expansion device 13 and a heat medium such as air or water. It is exchanged and evaporated.
 レシーバ15は、余剰冷媒を溜めるものである。電磁弁16は、二重管熱交換器17に流入する冷媒の流量を調整するものである。二重管熱交換器17は、レシーバ15から流出する冷媒が流れる第1流路と、絞り装置19から流出する冷媒が流れる第2流路とを有し、第1流路と第2流路とが熱交換できるように構成されたものである。配管18は、二重管熱交換器17の第1流路、絞り装置19、および二重管熱交換器17の第2流路を介して圧縮機11に冷媒をインジェクションする配管である。絞り装置19は、配管18に配置され、例えば冷媒を膨張させるための膨張弁などで構成される。 The receiver 15 stores excess refrigerant. The electromagnetic valve 16 adjusts the flow rate of the refrigerant flowing into the double pipe heat exchanger 17. The double pipe heat exchanger 17 has a first flow path through which the refrigerant flowing out from the receiver 15 flows, and a second flow path through which the refrigerant flowing out from the expansion device 19 flows. The first flow path and the second flow path Are configured to be able to exchange heat. The pipe 18 is a pipe that injects refrigerant into the compressor 11 through the first flow path of the double pipe heat exchanger 17, the expansion device 19, and the second flow path of the double pipe heat exchanger 17. The expansion device 19 is disposed in the pipe 18 and is configured by, for example, an expansion valve for expanding the refrigerant.
 また、冷凍サイクル装置100には、冷凍サイクル装置100の運転状態を示す情報を検出する検出部が設けられている。検出部は、吸入温度センサ21、吐出温度センサ22および電流検出部23を含む。吸入温度センサ21は、圧縮機11の吸入側に配置され、圧縮機11の吸入冷媒温度を検出する。吐出温度センサ22は、圧縮機11の吐出側に配置され、吐出冷媒温度を検出する。また、電流検出部23は、圧縮機11の駆動回路に配置され、圧縮機11のモータに印加される電流を検出する。また、運転状態を示す情報は、吸入温度センサ21、吐出温度センサ22、および電流検出部23によって検出された温度および電流を含む。なお、以下の説明において運転状態を示す情報を「運転状態量」という。さらに、冷凍サイクル装置100の室外または庫外に配置される部分には、外気温度を検出するための外気温度センサ24が設けられている。 Further, the refrigeration cycle apparatus 100 is provided with a detection unit that detects information indicating the operating state of the refrigeration cycle apparatus 100. The detection unit includes an intake temperature sensor 21, a discharge temperature sensor 22, and a current detection unit 23. The intake temperature sensor 21 is disposed on the intake side of the compressor 11 and detects the intake refrigerant temperature of the compressor 11. The discharge temperature sensor 22 is disposed on the discharge side of the compressor 11 and detects the discharge refrigerant temperature. The current detector 23 is disposed in the drive circuit of the compressor 11 and detects a current applied to the motor of the compressor 11. The information indicating the operating state includes the temperature and current detected by the suction temperature sensor 21, the discharge temperature sensor 22, and the current detection unit 23. In the following description, information indicating the driving state is referred to as “driving state amount”. Furthermore, an outside air temperature sensor 24 for detecting the outside air temperature is provided in a portion of the refrigeration cycle apparatus 100 that is disposed outside or outside the warehouse.
 図2は、冷凍サイクル装置100の制御構成を示す図である。冷凍サイクル装置100は、制御部30、記憶部40、異常判定部50、および報知部60を有する。制御部30は、圧縮機11の回転数、ならびに絞り装置13、絞り装置19および電磁弁16の開度などを制御して、冷凍サイクル装置100の運転を実施する。記憶部40は、大容量の不揮発性メモリなどで構成され、制御部30の制御に用いられる各種プログラムおよびデータを記憶する。記憶部40は、また、吸入温度センサ21、吐出温度センサ22、および電流検出部23によって検出される運転状態量を、これらが検出された時に外気温度センサ24で検出された外気温度と関連づけて記憶する。なお、記憶部40には、過去の起動時に検出された運転状態量が外気温度と関連づけられ、逐次記憶される。 FIG. 2 is a diagram showing a control configuration of the refrigeration cycle apparatus 100. The refrigeration cycle apparatus 100 includes a control unit 30, a storage unit 40, an abnormality determination unit 50, and a notification unit 60. The control unit 30 controls the rotation speed of the compressor 11 and the opening degrees of the expansion device 13, the expansion device 19, and the electromagnetic valve 16, and performs the operation of the refrigeration cycle apparatus 100. The storage unit 40 is configured with a large-capacity nonvolatile memory or the like, and stores various programs and data used for control of the control unit 30. The storage unit 40 also associates the operating state quantities detected by the suction temperature sensor 21, the discharge temperature sensor 22, and the current detection unit 23 with the outside air temperature detected by the outside temperature sensor 24 when these are detected. Remember. In the storage unit 40, the operation state amount detected at the time of past activation is associated with the outside air temperature and sequentially stored.
 異常判定部50は、吸入温度センサ21、吐出温度センサ22、および電流検出部23によって検出された運転状態量から冷凍サイクル装置100における異常の有無を判定する。報知部60は、冷凍サイクル装置100のリモコンの画面またはLED、もしくは遠隔地のモニタ等に、異常判定部50における判定結果を表示または音声出力して、利用者に報知する。なお、制御部30、異常判定部50および報知部60は、マイクロコンピュータまたはDSP(Digital Signal Processor)がプログラムを実行することにより実現される機能ブロック、またはASIC(Application Specific IC)などの電子回路で構成される。 The abnormality determination unit 50 determines whether or not there is an abnormality in the refrigeration cycle apparatus 100 from the operation state quantities detected by the suction temperature sensor 21, the discharge temperature sensor 22, and the current detection unit 23. The notification unit 60 displays the determination result in the abnormality determination unit 50 on the screen or LED of the remote control of the refrigeration cycle apparatus 100, a remote monitor, or the like, or outputs the determination result to notify the user. The control unit 30, the abnormality determination unit 50, and the notification unit 60 are functional blocks realized by a microcomputer or a DSP (Digital Signal Processor) executing a program, or an electronic circuit such as an ASIC (Application Specific IC). Composed.
 次に、冷凍サイクル装置100の動作について説明する。冷凍サイクル装置100では、低温低圧のガス状態の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、凝縮器12へ流入する。凝縮器12へ流入した高温高圧の冷媒は、室外空気等に対して放熱し、凝縮されて高圧の液冷媒となる。凝縮器12を流出した高圧の液冷媒は、レシーバ15に流入して液冷媒とガス冷媒とに分離させられる。レシーバ15から流出した液冷媒は、電磁弁16を通って二重管熱交換器17の第1流路に流入する。そして、この第1流路に流入した冷媒は、第2流路に流入した冷媒と熱交換を行って冷却され、過冷却をつける。 Next, the operation of the refrigeration cycle apparatus 100 will be described. In the refrigeration cycle apparatus 100, the refrigerant in a low-temperature and low-pressure gas state is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the condenser 12. The high-temperature and high-pressure refrigerant flowing into the condenser 12 dissipates heat to the outdoor air and the like, and is condensed to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the condenser 12 flows into the receiver 15 and is separated into liquid refrigerant and gas refrigerant. The liquid refrigerant flowing out from the receiver 15 flows into the first flow path of the double pipe heat exchanger 17 through the electromagnetic valve 16. The refrigerant that has flowed into the first flow path is cooled by exchanging heat with the refrigerant that has flowed into the second flow path, and is supercooled.
 二重管熱交換器17の第1流路から流出した冷媒の一部は、分岐して絞り装置19を通り減圧されて温度が低下する。そして、この温度が低下した冷媒は、二重管熱交換器17の第2流路に流入し、第1流路の冷媒と熱交換する。二重管熱交換器17の第2流路から流出した冷媒は、配管18を通って、圧縮機11に流入し圧縮機11から吐出するガス冷媒の温度を下げるのに利用される。 A part of the refrigerant flowing out from the first flow path of the double pipe heat exchanger 17 is branched and passed through the expansion device 19 to be depressurized and the temperature is lowered. And the refrigerant | coolant in which this temperature fell flows in into the 2nd flow path of the double-tube heat exchanger 17, and heat-exchanges with the refrigerant | coolant of a 1st flow path. The refrigerant flowing out from the second flow path of the double pipe heat exchanger 17 is used to lower the temperature of the gas refrigerant flowing into the compressor 11 and discharged from the compressor 11 through the pipe 18.
 二重管熱交換器17の第1流路から流出した冷媒の残りは、絞り装置13に流入し、膨張および減圧されて、低温低圧の気液二相冷媒となる。絞り装置13から流出した気液二相冷媒は、蒸発器14へ流入する。蒸発器14へ流入した気液二相冷媒は、空気または水と熱交換して蒸発し、低温低圧のガス冷媒となる。蒸発器14から流出したガス冷媒は、圧縮機11へ吸入され、再び圧縮される。 The remainder of the refrigerant that has flowed out of the first flow path of the double-tube heat exchanger 17 flows into the expansion device 13 and is expanded and depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant that has flowed out of the expansion device 13 flows into the evaporator 14. The gas-liquid two-phase refrigerant flowing into the evaporator 14 evaporates by exchanging heat with air or water, and becomes a low-temperature and low-pressure gas refrigerant. The gas refrigerant that has flowed out of the evaporator 14 is sucked into the compressor 11 and compressed again.
 なお、冷凍サイクル装置100に使用できる冷媒には、単一冷媒、擬似共沸混合冷媒、非共沸混合冷媒等がある。擬似共沸混合冷媒には、HFC冷媒であるR410A、R404A等がある。この擬似共沸混合冷媒は、非共沸混合冷媒と同様の特性の他、R22の約1.6倍の動作圧力という特性を有している。非共沸混合冷媒には、HFC(ハイドロフルオロカーボン)冷媒であるR407C等がある。この非共沸混合冷媒は、沸点が異なる冷媒の混合物であるので、液相冷媒と気相冷媒との組成比率が異なるという特性を有している。 Note that the refrigerant that can be used in the refrigeration cycle apparatus 100 includes a single refrigerant, a pseudo-azeotropic mixed refrigerant, a non-azeotropic mixed refrigerant, and the like. Examples of the pseudo azeotropic refrigerant mixture include R410A and R404A which are HFC refrigerants. This pseudo azeotrope refrigerant has the same characteristic as that of the non-azeotrope refrigerant and has an operating pressure of about 1.6 times that of R22. Non-azeotropic refrigerant mixture includes R407C, which is an HFC (hydrofluorocarbon) refrigerant. Since this non-azeotropic refrigerant mixture is a mixture of refrigerants having different boiling points, it has a characteristic that the composition ratio of the liquid-phase refrigerant and the gas-phase refrigerant is different.
 次に、冷凍サイクル装置100の異常判定部50における異常判定処理について説明する。図3は、本実施の形態の異常判定処理を示すフローチャートである。ここで、冷凍サイクル装置100の異常の有無を判定する場合には、一定の条件下で運転状態量が検出されることが望ましい。この場合の条件としては、まず外気温度または庫内温度などの環境温度が同じであることが挙げられる。また、起動時の冷媒量の分布によっても、検出される運転状態量(例えば圧縮機11の吐出温度)が異なることが知られている。そこで、本実施の形態の異常判定処理では、まず、制御部30によって冷媒量分布を一定にするための冷媒分布強制運転が行われる(S1)。図4は、冷媒分布強制運転の流れを示すフローチャートである。なお、「冷媒分布強制運転」が本発明の「特殊運転」に相当する。 Next, the abnormality determination process in the abnormality determination unit 50 of the refrigeration cycle apparatus 100 will be described. FIG. 3 is a flowchart showing the abnormality determination process of the present embodiment. Here, when determining the presence or absence of an abnormality in the refrigeration cycle apparatus 100, it is desirable that the operating state amount be detected under certain conditions. As a condition in this case, first, the ambient temperature such as the outside temperature or the internal temperature is the same. It is also known that the detected operating state amount (for example, the discharge temperature of the compressor 11) varies depending on the distribution of the refrigerant amount at the time of startup. Therefore, in the abnormality determination process of the present embodiment, first, the refrigerant distribution forced operation for making the refrigerant amount distribution constant is performed by the control unit 30 (S1). FIG. 4 is a flowchart showing the flow of the refrigerant distribution forced operation. The “refrigerant distribution forced operation” corresponds to the “special operation” of the present invention.
 本実施の形態の冷媒分布強制運転は、冷凍サイクル装置100の運転の停止指示があった場合に実施される。運転停止の指示がない場合は(S11:NO)、運転停止の指示があるまで待機する。そして、運転停止の指示があった場合(S11:YES)、電磁弁16が全閉され(S12)、圧縮機11の運転が継続される(S13)。そして、所定の時間(例えば10分)が経過したか否かが判断され(S14)、所定の時間が経過していない場合は(S14:NO)、圧縮機11の運転が継続される。一方、所定の時間が経過した場合(S14:YES)、圧縮機11の運転が停止され(S15)、図3の異常判定処理に戻る。上記の冷媒分布強制運転を行うことにより、冷凍サイクル装置100の冷媒回路内の冷媒が、高圧側(圧縮機11の吐出側から電磁弁16まで)に集められる。ここで、所定の時間は、冷凍サイクル装置100の冷媒回路内の冷媒を高圧側に集めるために要する時間であり、予め設定され、記憶部40に記憶される。例えば、圧縮機11が大型の場合は15~20分、小型の場合は5~10分など、圧縮機11のサイズに応じて異なる時間が設定される。なお、この冷媒分布強制運転は、圧縮機11に負担をかける運転であるため、圧縮機11が大型の場合は30分以内、小型の場合は15分以内に終了させることが望ましい。また、S14では、所定の時間が経過するまで圧縮機11の運転を継続したが、これに替えて、圧縮機11の低圧側(すなわち吸入側)における冷媒の圧力が予め設定された値に低下するまで圧縮機11の運転を継続する構成としてもよい。具体的には、圧縮機11の低圧側における冷媒の圧力が、例えば0~0.1Mpa付近に低下するまで、運転を継続する構成としてもよい。 The refrigerant distribution forced operation of the present embodiment is performed when an instruction to stop the operation of the refrigeration cycle apparatus 100 is given. If there is no instruction to stop the operation (S11: NO), the process waits until there is an instruction to stop the operation. And when there exists an instruction | indication of a driving | operation stop (S11: YES), the solenoid valve 16 is fully closed (S12) and the driving | operation of the compressor 11 is continued (S13). Then, it is determined whether or not a predetermined time (for example, 10 minutes) has elapsed (S14). If the predetermined time has not elapsed (S14: NO), the operation of the compressor 11 is continued. On the other hand, when the predetermined time has elapsed (S14: YES), the operation of the compressor 11 is stopped (S15), and the process returns to the abnormality determination process of FIG. By performing the refrigerant distribution forced operation, the refrigerant in the refrigerant circuit of the refrigeration cycle apparatus 100 is collected on the high pressure side (from the discharge side of the compressor 11 to the electromagnetic valve 16). Here, the predetermined time is a time required to collect the refrigerant in the refrigerant circuit of the refrigeration cycle apparatus 100 on the high-pressure side, and is set in advance and stored in the storage unit 40. For example, when the compressor 11 is large, 15 to 20 minutes, and when the compressor 11 is small, 5 to 10 minutes are set according to the size of the compressor 11. Note that the forced refrigerant distribution operation is an operation that places a burden on the compressor 11, so that it is preferable to end the compressor 11 within 30 minutes when the compressor 11 is large and within 15 minutes when the compressor 11 is small. In S14, the operation of the compressor 11 is continued until a predetermined time elapses. Instead, the refrigerant pressure on the low pressure side (that is, the suction side) of the compressor 11 is reduced to a preset value. It is good also as a structure which continues the driving | operation of the compressor 11 until it does. Specifically, the operation may be continued until the pressure of the refrigerant on the low pressure side of the compressor 11 decreases to, for example, around 0 to 0.1 MPa.
 図3に戻って、運転開始の指示があったか否かが判断され(S2)、運転開始の指示がない場合は(S2:NO)、待機する。そして、運転開始の指示があった場合は(S2:YES)、外気温度センサ24により、外気温度が検出される(S3)。そして、圧縮機11の起動運転が行われる(S4)。このとき、S1にて冷媒分布強制運転を行ったことにより、圧縮機11にかかる負荷は常に略同じ状態となる。また、通常、起動運転時の圧縮機11の運転パターンは、冷凍サイクル装置100の機種ごとに一定となっている。具体的には、例えば起動10秒以内に回転数が50Hzとなることを目標とし、圧縮機11の回転数が5Hz/secで上昇するよう、制御部30によって圧縮機11の回転数が制御される。 Referring back to FIG. 3, it is determined whether or not an instruction to start operation has been issued (S2). If there is no instruction to start operation (S2: NO), the process waits. When an instruction to start operation is given (S2: YES), the outside air temperature is detected by the outside air temperature sensor 24 (S3). And the starting operation of the compressor 11 is performed (S4). At this time, the load applied to the compressor 11 is always in substantially the same state due to the forced refrigerant distribution operation in S1. In general, the operation pattern of the compressor 11 during the start-up operation is constant for each model of the refrigeration cycle apparatus 100. Specifically, for example, the rotational speed of the compressor 11 is controlled by the control unit 30 so that the rotational speed of the compressor 11 is increased at 5 Hz / sec with the goal of reaching 50 Hz within 10 seconds of startup. The
 そして、圧縮機11が起動運転を行っている状態で、運転状態量が検出される(S5)。具体的には、吸入温度センサ21による吸入温度、吐出温度センサ22による吐出温度、および電流検出部23による圧縮機11の電流値がそれぞれ検出される。そして、S3で検出した外気温度に対応する過去の運転状態量が記憶部40に記憶されているか否かが判断される(S6)。ここでは、S3で検出した外気温度と同じまたは所定の温度範囲(例えば±3℃)内の外気温度に関連付けられた運転状態量が記憶部40に記憶されているか否かが判断される。そして、S3で検出した外気温度に対応する過去の運転状態量が記憶部40に記憶されていない場合(S6:NO)、S3で検出された外気温度とS5で検出された運転状態量とを関連付けて記憶部40に記憶し(S7)、本処理を終了する。 Then, the operation state quantity is detected in a state where the compressor 11 is performing the start-up operation (S5). Specifically, the suction temperature by the suction temperature sensor 21, the discharge temperature by the discharge temperature sensor 22, and the current value of the compressor 11 by the current detection unit 23 are detected. And it is judged whether the past driving | running state amount corresponding to the outside temperature detected by S3 is memorize | stored in the memory | storage part 40 (S6). Here, it is determined whether or not an operation state quantity associated with an outside air temperature that is the same as the outside air temperature detected in S3 or within a predetermined temperature range (for example, ± 3 ° C.) is stored in the storage unit 40. If the past operating state quantity corresponding to the outside air temperature detected in S3 is not stored in the storage unit 40 (S6: NO), the outside air temperature detected in S3 and the operating state quantity detected in S5 are obtained. The association is stored in the storage unit 40 (S7), and this process is terminated.
 一方、S3で検出した外気温度に対応する過去の運転状態量が記憶部40に記憶されている場合(S6:YES)、S5で検出された今回の運転状態量と、記憶部40に記憶される過去の運転状態量とが比較され(S8)、異常の有無が判定される(S9)。 On the other hand, when the past operation state amount corresponding to the outside air temperature detected in S3 is stored in the storage unit 40 (S6: YES), the current operation state amount detected in S5 and the storage unit 40 are stored. The past operating state quantity is compared (S8), and the presence or absence of abnormality is determined (S9).
S8およびS9における異常の有無の判定について説明する。本実施の形態の異常判定部50は、冷凍サイクル装置100の異常として、冷媒漏れおよび圧縮機11の異常の有無について判定する。まず、冷媒漏れについて説明する。冷媒回路内の冷媒量が減少すると、圧縮機11の吸入SH(過熱度)が大きくなり、起動時の吐出温度の上昇ペースが速くなる。そこで、異常判定部50は、吐出温度センサ22により検出された今回の吐出温度と、過去の運転状態量のうち、前回の起動時に検出された吐出温度とを比較し、差Dtを求める。そして、異常判定部50は、求められた差Dtが設定される閾値以上である場合に、冷媒漏れがあると判定する。 The determination of the presence / absence of abnormality in S8 and S9 will be described. The abnormality determination unit 50 of the present embodiment determines whether there is a refrigerant leak and an abnormality of the compressor 11 as an abnormality of the refrigeration cycle apparatus 100. First, refrigerant leakage will be described. When the amount of refrigerant in the refrigerant circuit decreases, the intake SH (superheat degree) of the compressor 11 increases, and the discharge temperature rises at the time of startup increases. Therefore, the abnormality determination unit 50 compares the current discharge temperature detected by the discharge temperature sensor 22 with the discharge temperature detected at the previous activation among the past operation state quantities, and obtains the difference Dt. And the abnormality determination part 50 determines with there being a refrigerant | coolant leak, when the calculated | required difference Dt is more than the threshold value set.
また、冷媒回路内の冷媒量が減少することで、正常状態より低圧が低くなる。また低圧の低下に伴い高圧(凝縮圧力)も低くなる。そこで、異常判定部50は、吸入温度に基づく低圧または吐出温度に基づく高圧と、記憶部40に記憶される過去の運転状態量のうち、前回の起動時に検出された吸入温度に基づく低圧または吐出温度に基づく高圧とを比較して差Dpを求める。そして、異常判定部50は、求められた差Dpが閾値以上である場合に、冷媒漏れがあると判定する。 Further, the amount of refrigerant in the refrigerant circuit is reduced, so that the low pressure is lower than the normal state. Further, as the low pressure decreases, the high pressure (condensation pressure) also decreases. Therefore, the abnormality determination unit 50 selects the low pressure or discharge based on the suction temperature detected at the previous activation among the low pressure based on the suction temperature or the high pressure based on the discharge temperature and the past operation state quantity stored in the storage unit 40. A difference Dp is obtained by comparing with a high pressure based on temperature. And the abnormality determination part 50 determines with there being a refrigerant | coolant leakage, when the calculated | required difference Dp is more than a threshold value.
 次に、圧縮機11の異常について説明する。圧縮機11の起動に必要な総負荷トルクが大きくなると、起動に必要な電流値が大きくなる。そのため、起動時の総負荷トルクが増えているかどうかは電流値で判定することができる。すなわち、電流検出部23により検出される電流値から、圧縮機11の不具合(例えば駆動軸の損傷など)を推定することが可能となる。そこで、異常判定部50は、今回の最大電流値と、記憶部40に記憶される過去の運転状態量のうち、前回の起動時に検出された最大電流値とを比較し、差Daを求める。そして、異常判定部50は、求められた差Daが閾値以上である場合、圧縮機11に異常があると判定する。なお、起動時の最大電流値とは、例えば起動後10秒以内の最大値である。 Next, the abnormality of the compressor 11 will be described. When the total load torque required for starting up the compressor 11 increases, the current value required for starting up increases. Therefore, it can be determined from the current value whether the total load torque at the time of startup is increased. That is, it is possible to estimate a malfunction (for example, damage to the drive shaft) of the compressor 11 from the current value detected by the current detection unit 23. Therefore, the abnormality determination unit 50 compares the current maximum current value with the maximum current value detected at the previous activation among the past operation state quantities stored in the storage unit 40, and obtains the difference Da. And the abnormality determination part 50 determines with the compressor 11 having abnormality, when the calculated | required difference Da is more than a threshold value. Note that the maximum current value at startup is, for example, the maximum value within 10 seconds after startup.
 また、上記したように、圧縮機11の起動運転時には、同一の運転パターンで圧縮機11の回転数が制御される。そのため、起動時において電流ピーク(すなわち最大駆動トルク)が生じるタイミングが異なるということは、圧縮機11に何らかの異常が発生していると考えられる。そこで、異常判定部50は、今回の電流ピーク位置と、記憶部40に記憶される過去の運転状態量のうち、前回の起動時に検出された電流ピーク位置とを比較し、差Dsを求める。そして、異常判定部50は、求められた差Dsが閾値(例えば10秒)以上の場合、圧縮機11に異常があると判定する。 Further, as described above, when the compressor 11 is started, the rotation speed of the compressor 11 is controlled with the same operation pattern. Therefore, it is considered that some abnormality has occurred in the compressor 11 that the timing at which the current peak (that is, the maximum driving torque) occurs at the time of startup is different. Therefore, the abnormality determination unit 50 compares the current peak position this time with the current peak position detected at the previous activation among the past operation state quantities stored in the storage unit 40, and obtains the difference Ds. And the abnormality determination part 50 determines with the compressor 11 having abnormality, when the calculated | required difference Ds is more than a threshold value (for example, 10 seconds).
 図5は、圧縮機11が起動した際の起動電流の波形の例を示す図である。図5において縦軸は電流値、横軸は時間を示す。また、図5において、C1は前回の起動時に検出された電流波形、C2およびC3は今回検出された電流波形の別の例をそれぞれ示す。ここで、C1とC2とを比較すると、今回の最大電流値A2は、前回の最大電流値A1に比べ値が大きくなっている。また、A1とA2との差Daは閾値Ra以上であるため、この場合は圧縮機11に異常があると判定される。また、C1とC3とを比較すると、今回の電流ピーク位置t2は、前回の電流ピーク位置t1よりも遅く発生している。そして、t1とt2との差Dsは閾値Rs以上であるため、この場合も圧縮機11に異常があると判定される。なお、異常判定部50での比較に使用される閾値は、任意の値が設定され、記憶部40に記憶される。または、実験等により閾値を予め求め、記憶部40に記憶してもよい。 FIG. 5 is a diagram illustrating an example of a waveform of a starting current when the compressor 11 is started. In FIG. 5, the vertical axis indicates the current value, and the horizontal axis indicates time. In FIG. 5, C1 indicates a current waveform detected at the previous activation, and C2 and C3 indicate other examples of the current waveform detected this time. Here, comparing C1 and C2, the current maximum current value A2 is larger than the previous maximum current value A1. Further, since the difference Da between A1 and A2 is equal to or greater than the threshold value Ra, in this case, it is determined that the compressor 11 is abnormal. Further, when comparing C1 and C3, the current peak position t2 of this time occurs later than the previous current peak position t1. Since the difference Ds between t1 and t2 is equal to or greater than the threshold value Rs, it is determined that the compressor 11 is also abnormal in this case. An arbitrary value is set as the threshold used for the comparison in the abnormality determination unit 50 and is stored in the storage unit 40. Alternatively, the threshold value may be obtained in advance by experiments or the like and stored in the storage unit 40.
 また、異常判定部50は、今回の起動後の一定時間における電流積分値と、記憶部40に記憶される過去の運転状態量のうち、前回の起動時に検出された起動後の一定時間における電流積分値との差Diを求め、差Diが所定の閾値以上である場合に、圧縮機11に異常が発生したと判定してもよい。ここで、起動後の一定時間とは、例えば起動から3秒間とする。上記のように、圧縮機11が同一の運転パターンで起動している状態において、電流の積分値が異なるということは、起動に使用した仕事量が異なるということである。そのため、この場合には、圧縮機11に何らかの異常が発生していると考えられる。 Moreover, the abnormality determination part 50 is the electric current in the fixed time after starting detected from the integrated current value in the fixed time after starting this time and the past operation state quantity memorize | stored in the memory | storage part 40 at the time of starting last time. A difference Di from the integral value may be obtained, and it may be determined that an abnormality has occurred in the compressor 11 when the difference Di is equal to or greater than a predetermined threshold. Here, the fixed time after activation is, for example, 3 seconds after activation. As described above, in a state where the compressor 11 is started with the same operation pattern, the difference in the integral value of the current means that the work amount used for the start is different. Therefore, in this case, it is considered that some abnormality has occurred in the compressor 11.
 また、上記のように今回の運転状態量と前回の運転状態量との差と、閾値とを比較するだけでなく、過去の運転状態量の傾向と今回の運転状態量との比較を行い、異常の有無を判定してもよい。図6は、圧縮機11の起動時の電流の推移を示す図である。図6において、縦軸は電流(例えば最大電流値)、横軸は起動回数を示す。例えば、図6に示すように、今回(n回目)に検出した最大電流値が、過去(n-1回目まで)の最大電流値の傾きと大きく異なる場合に、異常と判定してもよい。 In addition, as described above, not only the difference between the current driving state quantity and the previous driving state quantity and the threshold value, but also a comparison between the past driving state quantity trend and the current driving state quantity, You may determine the presence or absence of abnormality. FIG. 6 is a diagram showing a transition of current when the compressor 11 is started. In FIG. 6, the vertical axis represents current (for example, the maximum current value), and the horizontal axis represents the number of activations. For example, as shown in FIG. 6, when the maximum current value detected this time (n-th time) is significantly different from the slope of the maximum current value in the past (up to the (n-1) -th time), it may be determined as abnormal.
 そして、S9において、異常がないと判定された場合(S9:NO)、S3で検出された外気温度とS5で検出された運転状態量とを関連付けて記憶部40に記憶し(S7)、本処理を終了する。一方、異常があると判定された場合(S9:YES)、報知部60によって、異常が発生したことが利用者に報知される(S10)。その後、S3で検出された外気温度とS5で検出された運転状態量とを関連付けて記憶部40に記憶し(S7)、本処理を終了する。 And when it determines with there being no abnormality in S9 (S9: NO), the external temperature detected by S3 and the driving | running state amount detected by S5 are linked | related and memorize | stored in the memory | storage part 40 (S7), this The process ends. On the other hand, when it is determined that there is an abnormality (S9: YES), the notification unit 60 notifies the user that an abnormality has occurred (S10). Thereafter, the outside air temperature detected in S3 and the operation state quantity detected in S5 are associated with each other and stored in the storage unit 40 (S7), and this process is terminated.
 上記のように、本実施の形態においては、冷媒分布強制運転を行うことによって、冷媒量が高圧側に偏る形になり、圧縮機11の起動時の吸入状態がほぼ一定となる。これにより、圧縮機11の起動時の内部状態が略一定となり、異常判定のために検出される運転状態量のばらつきを抑制することができる。これにより、記憶部40に蓄積された過去の運転状態量と、外気温度のみを変数として比較することができ、精度の高い異常判定を行うことができる。 As described above, in the present embodiment, by performing the refrigerant distribution forced operation, the refrigerant amount is biased toward the high pressure side, and the suction state when the compressor 11 is started becomes substantially constant. Thereby, the internal state at the time of starting of the compressor 11 becomes substantially constant, and it is possible to suppress variations in the amount of operation state detected for abnormality determination. As a result, it is possible to compare the past operation state amount accumulated in the storage unit 40 and only the outside air temperature as a variable, and to perform highly accurate abnormality determination.
 また、圧縮機11が一定の運転パターンで制御される起動運転時に運転状態量を検出することで、より運転状態量のばらつきを抑制することができ、異常判定の精度をさらに向上させることができる。 In addition, by detecting the operating state amount during the start-up operation in which the compressor 11 is controlled with a constant operating pattern, the variation in the operating state amount can be further suppressed, and the accuracy of abnormality determination can be further improved. .
 また、運転状態量が検出されたときの外気温度と略同じ外気温度で検出された過去の運転状態量と比較して異常判定処理を行うことにより、運転状態量に対する外気温度の影響が抑制され、異常判定の精度を向上させることができる。また、過去の運転状態量との差が閾値以上の場合に異常があると判定することにより、許容範囲内の誤差が生じた場合に異常と判定することを防ぐことができる。 In addition, by performing the abnormality determination process in comparison with the past operating state quantity detected at the substantially same outside temperature as the operating state quantity is detected, the influence of the outside air temperature on the operating state quantity is suppressed. The accuracy of abnormality determination can be improved. Further, by determining that there is an abnormality when the difference from the past driving state quantity is equal to or greater than the threshold value, it is possible to prevent the abnormality from being determined when an error within an allowable range occurs.
 さらに、運転状態量として吸入温度センサ21、吐出温度センサ22、および電流検出部23によって検出される温度、電流および消費電力を用いることで、冷凍サイクル装置100に生じる様々な異常の有無を判定することができる。 Furthermore, by using the temperature, current, and power consumption detected by the suction temperature sensor 21, the discharge temperature sensor 22, and the current detection unit 23 as the operating state quantity, it is determined whether there are various abnormalities occurring in the refrigeration cycle apparatus 100. be able to.
 実施の形態2.
 続いて、本発明の実施の形態2について説明する。図7は、実施の形態2における冷凍サイクル装置200の冷媒回路構成を示す図である。実施の形態2の冷凍サイクル装置200は、蒸気圧縮式の冷凍サイクル運転を行うことによって、屋内の冷房および暖房に使用される空気調和装置である点において、実施の形態1と相違する。図7に示すように、冷凍サイクル装置200は、圧縮機111、室外側熱交換器112、絞り装置113、室内側熱交換器114および流路切替装置115が接続配管によって接続されて構成される冷媒回路を備える。また、圧縮機111、室外側熱交換器112、絞り装置113および流路切替装置115が、室外に配置される室外機210を構成し、室内側熱交換器114が、室内に配置される室内機220を構成する。さらに、冷凍サイクル装置200は、実施の形態1と同様の吸入温度センサ21、吐出温度センサ22、電流検出部23および外気温度センサ24を備える。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described. FIG. 7 is a diagram showing a refrigerant circuit configuration of the refrigeration cycle apparatus 200 in the second embodiment. The refrigeration cycle apparatus 200 of the second embodiment is different from the first embodiment in that it is an air conditioner used for indoor cooling and heating by performing a vapor compression refrigeration cycle operation. As shown in FIG. 7, the refrigeration cycle apparatus 200 is configured by connecting a compressor 111, an outdoor heat exchanger 112, an expansion device 113, an indoor heat exchanger 114, and a flow path switching device 115 through a connection pipe. A refrigerant circuit is provided. In addition, the compressor 111, the outdoor heat exchanger 112, the expansion device 113, and the flow path switching device 115 constitute an outdoor unit 210 that is disposed outdoors, and the indoor heat exchanger 114 is disposed indoors. The machine 220 is configured. Furthermore, the refrigeration cycle apparatus 200 includes the same intake temperature sensor 21, discharge temperature sensor 22, current detection unit 23, and outside air temperature sensor 24 as in the first embodiment.
 圧縮機111は、実施の形態1の圧縮機11と同様に、容量制御可能なインバータ圧縮機で構成される。室外側熱交換器112は、例えば、クロスフィン式のフィン・アンド・チューブ型の熱交換器であり、冷房運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する。絞り装置113は、例えば膨張弁またはキャピラリーチューブで構成され、冷媒を減圧して膨張させるものである。室内側熱交換器114は、例えば、クロスフィン式のフィン・アンド・チューブ型の熱交換器であり、冷房運転時には冷媒の蒸発器として機能し、暖房運転時には冷媒の凝縮器として機能する。流路切替装置115は、例えば、冷媒の流れの方向を切り替えるための四方弁からなる。流路切替装置115は、冷房運転時には、図7の実線で示すように冷媒の流路を切り換え、暖房運転時には、図7に破線で示すように冷媒の流路を切り替える。 The compressor 111 is composed of an inverter compressor capable of capacity control, similarly to the compressor 11 of the first embodiment. The outdoor heat exchanger 112 is, for example, a cross fin type fin-and-tube heat exchanger, and functions as a refrigerant condenser during the cooling operation, and functions as a refrigerant evaporator during the heating operation. The expansion device 113 is composed of, for example, an expansion valve or a capillary tube, and expands the refrigerant by decompressing it. The indoor heat exchanger 114 is, for example, a cross-fin fin-and-tube heat exchanger, and functions as a refrigerant evaporator during cooling operation and as a refrigerant condenser during heating operation. The flow path switching device 115 includes, for example, a four-way valve for switching the direction of refrigerant flow. The flow path switching device 115 switches the refrigerant flow path as shown by the solid line in FIG. 7 during the cooling operation, and switches the refrigerant flow path as shown by the broken line in FIG. 7 during the heating operation.
 また、本実施の形態の冷凍サイクル装置200は、図2に示す実施の形態1と同様の制御構成を有する。なお、本実施の形態の制御部30は、圧縮機111の回転数、絞り装置113の開度、および流路切替装置115の流路の切替えを制御する。 Further, the refrigeration cycle apparatus 200 of the present embodiment has the same control configuration as that of the first embodiment shown in FIG. The control unit 30 according to the present embodiment controls the rotation speed of the compressor 111, the opening degree of the expansion device 113, and the switching of the flow path of the flow path switching device 115.
 次に、冷凍サイクル装置200の動作について説明する。まず、冷房運転時の動作について説明する。冷房運転時には、流路切替装置115によって図7の実線で示すように冷媒の流路が切り替えられる。圧縮機111によって圧縮、吐出された高温高圧のガス冷媒は、流路切替装置115を通って室外側熱交換器112へ流入する。室外側熱交換器112へ流入した高温高圧の冷媒は、室外空気等に対して放熱し、凝縮されて高圧の液冷媒となる。室外側熱交換器112を流出した高圧の液冷媒は、絞り装置113へ流入し、膨張および減圧されて、低温低圧の気液二相冷媒となる。絞り装置113から流出した気液二相冷媒は、室内側熱交換器114へ流入する。室内側熱交換器114へ流入した気液二相冷媒は、室内空気と熱交換して蒸発し、低温低圧のガス冷媒となる。室内側熱交換器114から流出したガス冷媒は、圧縮機11へ吸入され、再び圧縮される。 Next, the operation of the refrigeration cycle apparatus 200 will be described. First, the operation during the cooling operation will be described. During the cooling operation, the flow path of the refrigerant is switched by the flow path switching device 115 as shown by the solid line in FIG. The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 111 flows into the outdoor heat exchanger 112 through the flow path switching device 115. The high-temperature and high-pressure refrigerant that has flowed into the outdoor heat exchanger 112 dissipates heat to the outdoor air or the like, and is condensed to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the outdoor heat exchanger 112 flows into the expansion device 113 and is expanded and depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant that has flowed out of the expansion device 113 flows into the indoor heat exchanger 114. The gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 114 evaporates by exchanging heat with indoor air, and becomes a low-temperature and low-pressure gas refrigerant. The gas refrigerant flowing out of the indoor heat exchanger 114 is sucked into the compressor 11 and compressed again.
 次に、暖房運転時の動作について説明する。暖房運転時には、流路切替装置115によって図7の破線で示すように冷媒の流路が切り換えられる。圧縮機111によって圧縮、吐出された高温高圧のガス冷媒は、流路切替装置115を通って室内側熱交換器114へ流入する。室内側熱交換器114へ流入した高温高圧の冷媒は、室内空気に対して放熱し、凝縮されて高圧の液冷媒となる。室内側熱交換器114を流出した高圧の液冷媒は、絞り装置113へ流入し、膨張および減圧されて、低温低圧の気液二相冷媒となる。絞り装置113から流出した気液二相冷媒は、室外側熱交換器112へ流入する。室外側熱交換器112へ流入した気液二相冷媒は、室外空気と熱交換して蒸発し、低温低圧のガス冷媒となる。室外側熱交換器112から流出したガス冷媒は、圧縮機11へ吸入され、再び圧縮される。 Next, the operation during heating operation will be described. During the heating operation, the flow path of the refrigerant is switched by the flow path switching device 115 as shown by the broken line in FIG. The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 111 flows into the indoor heat exchanger 114 through the flow path switching device 115. The high-temperature and high-pressure refrigerant that has flowed into the indoor heat exchanger 114 dissipates heat to the indoor air and is condensed to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 114 flows into the expansion device 113 and is expanded and depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant that has flowed out of the expansion device 113 flows into the outdoor heat exchanger 112. The gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 112 evaporates by exchanging heat with outdoor air and becomes a low-temperature and low-pressure gas refrigerant. The gas refrigerant that has flowed out of the outdoor heat exchanger 112 is sucked into the compressor 11 and compressed again.
 次に、冷凍サイクル装置200における異常判定処理について説明する。図8は、本実施の形態の異常判定処理を示すフローチャートである。図8において、実施の形態1の異常判定処理と同様の処理については、図3と同じ符号を付す。本実施の形態では、まず、運転開始の指示がなされたか否かが判断される(S101)。そして、運転開始の指示がなされていない場合は(S101:NO)待機する。一方、運転開始の指示がなされた場合は(S101:YES)、制御部30による冷媒分布強制運転が行われる(S102)。図9は、本実施の形態における冷媒分布強制運転の流れを示すフローチャートである。上記のように本実施の形態では、冷凍サイクル装置200の運転の開始指示があった場合に、冷媒分布強制運転が実施される。 Next, the abnormality determination process in the refrigeration cycle apparatus 200 will be described. FIG. 8 is a flowchart showing the abnormality determination process of the present embodiment. In FIG. 8, the same reference numerals as those in FIG. 3 are assigned to the same processes as the abnormality determination process of the first embodiment. In the present embodiment, first, it is determined whether or not an instruction to start operation has been given (S101). And when the instruction | indication of a driving | operation start is not made (S101: NO), it waits. On the other hand, when the operation start instruction is given (S101: YES), the refrigerant distribution forced operation by the control unit 30 is performed (S102). FIG. 9 is a flowchart showing the flow of the refrigerant distribution forced operation in the present embodiment. As described above, in the present embodiment, when there is an instruction to start the operation of the refrigeration cycle apparatus 200, the refrigerant distribution forced operation is performed.
 冷媒分布強制運転では、まず、制御部30によって、絞り装置113が全閉され(S21)、圧縮機111の回転数が固定された状態で圧縮機111の運転が開始される(S22)。そして、所定の時間(例えば10分)が経過したか否かが判断され(S23)、所定の時間が経過していない場合は(S23:NO)、圧縮機111の運転が継続される。一方、所定の時間が経過した場合(S23:YES)、圧縮機111の運転が停止される(S24)。このとき、冷凍サイクル装置200の冷媒回路内の冷媒は、高圧側(圧縮機111の吐出側から絞り装置113まで)に集められる。この場合の所定の時間は、実施の形態1と同様に、圧縮機11のサイズなどに応じて予め設定される。なお、所定の時間の経過に替えて、圧縮機11の低圧側における冷媒の圧力が予め設定された値(例えば0~0.1Mpa付近)に低下するまで圧縮機11の運転を継続する構成としてもよい。 In the refrigerant distribution forced operation, first, the expansion device 113 is fully closed by the control unit 30 (S21), and the operation of the compressor 111 is started with the rotation speed of the compressor 111 being fixed (S22). Then, it is determined whether or not a predetermined time (for example, 10 minutes) has elapsed (S23). If the predetermined time has not elapsed (S23: NO), the operation of the compressor 111 is continued. On the other hand, when the predetermined time has elapsed (S23: YES), the operation of the compressor 111 is stopped (S24). At this time, the refrigerant in the refrigerant circuit of the refrigeration cycle apparatus 200 is collected on the high pressure side (from the discharge side of the compressor 111 to the expansion device 113). The predetermined time in this case is set in advance according to the size of the compressor 11 and the like, as in the first embodiment. It should be noted that, instead of elapse of a predetermined time, the operation of the compressor 11 is continued until the refrigerant pressure on the low pressure side of the compressor 11 decreases to a preset value (for example, around 0 to 0.1 Mpa). Also good.
 次に、絞り装置113が全開にされる(S25)。その後、所定時間(例えば3分)が経過したか否かが判断される(S26)。そして、所定時間が経過した場合(S26:YES)、図8の処理に戻る。そして、図8では、実施の形態1の異常判定処理と同様にS3以降の処理が行われ、冷凍サイクル装置200の異常判定が行われる。 Next, the expansion device 113 is fully opened (S25). Thereafter, it is determined whether or not a predetermined time (for example, 3 minutes) has passed (S26). Then, when the predetermined time has elapsed (S26: YES), the processing returns to FIG. In FIG. 8, similarly to the abnormality determination process of the first embodiment, the processes after S3 are performed, and the abnormality determination of the refrigeration cycle apparatus 200 is performed.
 本実施の形態では、冷媒分布強制運転において、冷媒を高圧側に集めた後に、S25およびS26の処理を行うことで、冷媒回路内の高低圧差が解消される、または所定値以下にされる。これにより、冷凍サイクル装置200が空気調和装置の場合であって、暖房運転と冷房運転とが切替えられた場合にも、冷媒回路内の高低圧差による衝撃によって、流路切替装置115などの機器が悪影響を受けることを抑制することができる。また、この場合にも、実施の形態1と同様に、起動時の冷媒量分布を一定とすることができ、異常判定のために検出される運転状態量のばらつきが抑制されるため、精度の高い異常判定を行うことができる。 In the present embodiment, in the refrigerant distribution forced operation, after collecting the refrigerant on the high pressure side, the processing of S25 and S26 is performed, so that the high / low pressure difference in the refrigerant circuit is eliminated or is made a predetermined value or less. Thereby, even when the refrigeration cycle apparatus 200 is an air conditioner and the heating operation and the cooling operation are switched, devices such as the flow path switching device 115 are caused by the impact due to the high / low pressure difference in the refrigerant circuit. It is possible to suppress adverse effects. Also in this case, similarly to the first embodiment, the distribution of the refrigerant amount at the time of starting can be made constant, and the variation in the operation state amount detected for abnormality determination is suppressed. High abnormality determination can be performed.
 なお、上記実施の形態2において、冷媒回路内の高低圧差を解消するために、所定時間が経過するまで待機する構成(S25およびS26)としたが、これに限定されるものではない。例えば、所定時間の設定を行うかわりに、高低圧差を検出する手段を備え、検出される高低圧差が、設定される値まで小さくなった場合に、S3の処理へ移行してもよい。 In addition, in the said Embodiment 2, in order to eliminate the high-low pressure difference in a refrigerant circuit, it was set as the structure which waits until predetermined time passes (S25 and S26), However, It is not limited to this. For example, instead of setting for a predetermined time, a means for detecting a high / low pressure difference may be provided, and when the detected high / low pressure difference is reduced to a set value, the process may proceed to S3.
 また、実施の形態2の冷媒回路構成は、図7に記載される構成に限定されるものではない。図10は、実施の形態2の変形例における冷凍サイクル装置200Aの冷媒回路構成を示す図である。例えば、図10に示すように、圧縮機111の吸入側に余剰冷媒を溜めるためのアキュムレータ118を備える構成としても良い。この場合も、実施の形態2と同様の冷媒分布強制運転(図9)および異常判定処理(図8)を行うことで、冷凍サイクル装置200Aの異常が判定される。また、この場合、図9に示す冷媒分布強制運転を行うことで、アキュムレータ118内の余剰冷媒を含めた冷媒が、高圧側に集められる。さらに、冷媒分布強制運転において、S21で絞り装置113が全閉され、所定の時間、圧縮機111を駆動する構成としたが、これに限定されるものではなく、圧縮機11に吸入SHがつくように絞り装置113を制御してもよい。この場合も、起動時における圧縮機111の吸入状態を一定とすることができる。 Further, the refrigerant circuit configuration of the second embodiment is not limited to the configuration described in FIG. FIG. 10 is a diagram showing a refrigerant circuit configuration of a refrigeration cycle apparatus 200A in a modification of the second embodiment. For example, as shown in FIG. 10, it is good also as a structure provided with the accumulator 118 for accumulating an excess refrigerant | coolant on the suction | inhalation side of the compressor 111. As shown in FIG. Also in this case, the abnormality of the refrigeration cycle apparatus 200A is determined by performing the forced refrigerant distribution operation (FIG. 9) and the abnormality determination process (FIG. 8) as in the second embodiment. Further, in this case, by performing the refrigerant distribution forced operation shown in FIG. 9, the refrigerant including the excess refrigerant in the accumulator 118 is collected on the high pressure side. Further, in the forced refrigerant distribution operation, the expansion device 113 is fully closed in S21 and the compressor 111 is driven for a predetermined time. However, the present invention is not limited to this, and the compressor 11 has suction SH. The diaphragm device 113 may be controlled as described above. Also in this case, the suction state of the compressor 111 at the time of starting can be made constant.
 実施の形態3.
 続いて、本発明の実施の形態3について説明する。図11は、実施の形態3における冷凍サイクル装置300の冷媒回路構成を示す図である。実施の形態3の冷凍サイクル装置300は、室外側熱交換器112と室内側熱交換器114との間にレシーバ117を備える点において実施の形態2と相違する。図11において、実施の形態2と同じ構成については、図7と同じ符号を付す。冷凍サイクル装置300の冷媒回路は、圧縮機111、室外側熱交換器112、第1の絞り装置116a、レシーバ117、第2の絞り装置116b、室内側熱交換器114および流路切替装置115が接続配管によって接続されて構成される。また、圧縮機111、室外側熱交換器112、流路切替装置115、第1の絞り装置116a、第2の絞り装置116bおよびレシーバ117が室外機310を構成し、室内側熱交換器114が室内機320を構成する。
Embodiment 3 FIG.
Subsequently, Embodiment 3 of the present invention will be described. FIG. 11 is a diagram showing a refrigerant circuit configuration of the refrigeration cycle apparatus 300 in the third embodiment. The refrigeration cycle apparatus 300 according to the third embodiment is different from the second embodiment in that a receiver 117 is provided between the outdoor heat exchanger 112 and the indoor heat exchanger 114. In FIG. 11, the same reference numerals as those in FIG. The refrigerant circuit of the refrigeration cycle apparatus 300 includes a compressor 111, an outdoor heat exchanger 112, a first expansion device 116a, a receiver 117, a second expansion device 116b, an indoor heat exchanger 114, and a flow path switching device 115. Connected by connecting piping. The compressor 111, the outdoor heat exchanger 112, the flow switching device 115, the first expansion device 116a, the second expansion device 116b, and the receiver 117 constitute the outdoor unit 310, and the indoor heat exchanger 114 is The indoor unit 320 is configured.
 レシーバ117は、冷媒回路において、第1の絞り装置116aと第2の絞り装置116bとの間に位置し、余剰冷媒を溜めておくものである。また、冷凍サイクル装置300は、実施の形態1と同様の吸入温度センサ21、吐出温度センサ22、電流検出部23および外気温度センサ24を備える。さらに、冷凍サイクル装置300は、図2に示す実施の形態1と同様の制御構成を有する。なお、本実施の形態の制御部30は、圧縮機111の回転数、第1の絞り装置116aおよび第2の絞り装置116bの開度、ならびに流路切替装置115の切替を制御する。 The receiver 117 is located between the first expansion device 116a and the second expansion device 116b in the refrigerant circuit, and accumulates excess refrigerant. The refrigeration cycle apparatus 300 includes the same intake temperature sensor 21, discharge temperature sensor 22, current detection unit 23, and outside air temperature sensor 24 as in the first embodiment. Furthermore, the refrigeration cycle apparatus 300 has the same control configuration as that of the first embodiment shown in FIG. Note that the control unit 30 of the present embodiment controls the rotation speed of the compressor 111, the opening degrees of the first expansion device 116a and the second expansion device 116b, and switching of the flow path switching device 115.
 次に、冷凍サイクル装置300における異常判定処理について説明する。本実施の形態の異常判定処理は、図8のS102における冷媒分布強制運転の流れにおいて実施の形態2と相違する。その他の異常判定処理については、図8に示す実施の形態2の異常判定処理と同様である。図12は、本実施の形態における冷媒分布強制運転の流れを示すフローチャートである。図12において、実施の形態2の冷媒分布強制運転と同様の処理については図9と同じ符号を付す。 Next, the abnormality determination process in the refrigeration cycle apparatus 300 will be described. The abnormality determination process of the present embodiment is different from that of the second embodiment in the flow of the refrigerant distribution forced operation in S102 of FIG. Other abnormality determination processing is the same as the abnormality determination processing of the second embodiment shown in FIG. FIG. 12 is a flowchart showing the flow of the refrigerant distribution forced operation in the present embodiment. In FIG. 12, the same reference numerals as those in FIG. 9 are assigned to the same processes as those in the forced refrigerant distribution operation of the second embodiment.
 本実施の形態の冷媒分布強制運転では、まず、上流側絞り装置が制御され、下流側絞り装置が全閉される(S31)。ここで、冷房運転時は、第1の絞り装置116aが上流側絞り装置であり、第2の絞り装置116bが下流側絞り装置である。また、暖房運転時は、第1の絞り装置116aが下流側絞り装置であり、第2の絞り装置116bが上流側絞り装置である。また、上流側絞り装置は、制御部30によって圧縮機111の吸入SHがつくように制御される。 In the forced refrigerant distribution operation of the present embodiment, first, the upstream throttle device is controlled, and the downstream throttle device is fully closed (S31). Here, during the cooling operation, the first expansion device 116a is the upstream expansion device, and the second expansion device 116b is the downstream expansion device. In the heating operation, the first expansion device 116a is a downstream expansion device, and the second expansion device 116b is an upstream expansion device. Further, the upstream throttle device is controlled by the control unit 30 so that the suction SH of the compressor 111 is applied.
 そして、圧縮機111の回転数が固定された状態で圧縮機111の運転が開始される(S22)。そして、所定の時間(例えば10分)が経過したか否かが判断され(S23)、所定の時間が経過していない場合は(S23:NO)、圧縮機111の運転が継続される。一方、所定の時間が経過した場合は(S23:YES)、圧縮機111の運転が停止される(S24)。これにより、レシーバ117内の余剰冷媒も含め、冷凍サイクル装置300の冷媒回路内の冷媒は、高圧側の機器および配管に集められた状態となる。この場合の所定の時間は、実施の形態1と同様に、圧縮機11のサイズなどに応じて予め設定される。なお、所定の時間の経過に替えて、圧縮機11の低圧側における冷媒の圧力が予め設定された値(例えば0~0.1Mpa付近)に低下するまで圧縮機11の運転を継続する構成としてもよい。 Then, the operation of the compressor 111 is started with the rotation speed of the compressor 111 being fixed (S22). Then, it is determined whether or not a predetermined time (for example, 10 minutes) has elapsed (S23). If the predetermined time has not elapsed (S23: NO), the operation of the compressor 111 is continued. On the other hand, when the predetermined time has elapsed (S23: YES), the operation of the compressor 111 is stopped (S24). Thereby, the refrigerant | coolant in the refrigerant circuit of the refrigerating-cycle apparatus 300 including the excessive refrigerant | coolant in the receiver 117 will be in the state collected by the high voltage | pressure side apparatus and piping. The predetermined time in this case is set in advance according to the size of the compressor 11 and the like, as in the first embodiment. It should be noted that, instead of elapse of a predetermined time, the operation of the compressor 11 is continued until the refrigerant pressure on the low pressure side of the compressor 11 decreases to a preset value (for example, around 0 to 0.1 Mpa). Also good.
 次に、上流側絞り装置および下流側絞り装置が全開される(S35)。その後、所定の時間(例えば3分)が経過したか否かが判断される(S26)。そして、所定時間が経過した場合(S26:YES)、異常判定処理に戻る。異常判定処理では、実施の形態2と同様の処理が行われ、冷凍サイクル装置300の異常判定が行われる。 Next, the upstream throttle device and the downstream throttle device are fully opened (S35). Thereafter, it is determined whether or not a predetermined time (for example, 3 minutes) has passed (S26). And when predetermined time passes (S26: YES), it returns to abnormality determination processing. In the abnormality determination process, the same process as in the second embodiment is performed, and the abnormality determination of the refrigeration cycle apparatus 300 is performed.
 上記のように、冷媒分布強制運転を行うことにより、レシーバ117を備える冷凍サイクル装置300においても、実施の形態1および2と同様に、精度の高い異常判定を行うことができる。 As described above, by performing the refrigerant distribution forced operation, also in the refrigeration cycle apparatus 300 including the receiver 117, it is possible to perform abnormality determination with high accuracy as in the first and second embodiments.
 実施の形態4.
 続いて、本発明の実施の形態4について説明する。実施の形態4は、冷凍サイクル装置100Aから離れた場所に設けられる遠隔監視装置500によって異常判定処理が行われる点において、実施の形態1と相違する。図13は、実施の形態4における遠隔監視システム400の概略構成を示す図である。遠隔監視システム400は、冷凍サイクル装置100Aおよび遠隔監視装置500から構成される。図13に示すように、本実施の形態では、遠隔監視装置500が制御部30、記憶部40、異常判定部50および報知部60を有する。また、冷凍サイクル装置100Aは、実施の形態1と同様の冷媒回路構成を備える。
Embodiment 4 FIG.
Next, a fourth embodiment of the present invention will be described. The fourth embodiment is different from the first embodiment in that an abnormality determination process is performed by a remote monitoring device 500 provided at a location distant from the refrigeration cycle apparatus 100A. FIG. 13 is a diagram illustrating a schematic configuration of a remote monitoring system 400 according to the fourth embodiment. The remote monitoring system 400 includes a refrigeration cycle apparatus 100A and a remote monitoring apparatus 500. As shown in FIG. 13, in the present embodiment, remote monitoring apparatus 500 includes control unit 30, storage unit 40, abnormality determination unit 50, and notification unit 60. The refrigeration cycle apparatus 100A has the same refrigerant circuit configuration as that of the first embodiment.
 冷凍サイクル装置100Aおよび遠隔監視装置500は、通信部70aおよび通信部70bをそれぞれ有している。通信部70aおよび70bは、無線または有線により通信を行う手段である。遠隔監視装置500は、コンピュータで構成され、通信部70bを介して、冷凍サイクル装置100Aの遠隔監視、および制御などの集中管理を行うものである。 The refrigeration cycle apparatus 100A and the remote monitoring apparatus 500 each have a communication unit 70a and a communication unit 70b. The communication units 70a and 70b are means for performing communication by radio or wire. The remote monitoring device 500 is configured by a computer and performs centralized management such as remote monitoring and control of the refrigeration cycle device 100A via the communication unit 70b.
 また、本実施の形態では、冷凍サイクル装置100Aで検出される運転状態量が通信部70aを介して遠隔監視装置500に送信され、遠隔監視装置500によって、冷媒分布強制運転の制御および異常判定処理が行われる。この場合の冷媒分布強制運転および異常判定処理の流れは、図3および図4に示す実施の形態1の冷媒分布強制運転および異常判定処理の流れと同様である。このように構成することで、実施の形態1と同様の効果が得られるとともに、冷凍サイクル装置100Aの異常を遠隔監視により常時監視することができる。また、遠隔監視装置500上に大容量の記憶部40を設置することで、冷凍サイクル装置100A本体に大容量の記憶部40を設置する場合に比べ低コスト化を実現することができる。 In the present embodiment, the operation state quantity detected by the refrigeration cycle apparatus 100A is transmitted to the remote monitoring apparatus 500 via the communication unit 70a, and the remote monitoring apparatus 500 controls the refrigerant distribution forced operation and the abnormality determination process. Is done. The flow of the refrigerant distribution forced operation and abnormality determination process in this case is the same as the flow of the refrigerant distribution forced operation and abnormality determination process of the first embodiment shown in FIGS. 3 and 4. By configuring in this way, the same effect as in the first embodiment can be obtained, and the abnormality of the refrigeration cycle apparatus 100A can be constantly monitored by remote monitoring. Further, by installing the large-capacity storage unit 40 on the remote monitoring device 500, it is possible to reduce the cost compared to the case where the large-capacity storage unit 40 is installed in the refrigeration cycle apparatus 100A main body.
 以上が本発明の実施の形態の説明であるが、本発明は、上記実施の形態の構成に限定されるものではなく、その技術的思想の範囲内で様々な変形または組み合わせが可能である。例えば、上記実施の形態1における冷凍サイクル装置100は、図1に示すように、1台の圧縮機11、凝縮器12および蒸発器14を備えるものであるが、本発明はこれらの台数を特に限定するものではない。例えば、2台以上の圧縮機11、凝縮器12および蒸発器14を備えてもよい。同様に、実施の形態2においても、室外機210および室内機220の数を限定するものではなく、様々な組み合わせが可能である。図14は、変形例における遠隔監視システム400Aの概略構成を示す図である。例えば、図14に示すように、1つの室外機210に複数の室内機220a~220cが接続される構成とし、これらを遠隔監視装置500によって監視および制御する構成としても良い。 The above is the description of the embodiment of the present invention, but the present invention is not limited to the configuration of the above embodiment, and various modifications or combinations are possible within the scope of the technical idea. For example, as shown in FIG. 1, the refrigeration cycle apparatus 100 according to the first embodiment includes a single compressor 11, a condenser 12, and an evaporator 14, but the present invention particularly includes these numbers. It is not limited. For example, two or more compressors 11, a condenser 12, and an evaporator 14 may be provided. Similarly, in the second embodiment, the number of the outdoor units 210 and the indoor units 220 is not limited, and various combinations are possible. FIG. 14 is a diagram illustrating a schematic configuration of a remote monitoring system 400A according to a modification. For example, as shown in FIG. 14, a plurality of indoor units 220a to 220c may be connected to one outdoor unit 210, and these may be monitored and controlled by the remote monitoring device 500.
 また、上記実施の形態では、記憶部40に記憶される過去に検出された運転状態量に基づいて、異常判定処理を行う構成としたが、これに限定されるものではない。例えば、冷凍サイクル装置100が正常状態の基準電流波形を前もって記録しておき、今回の電流波形と基準電流波形とを比較することで、圧縮機11に異常があるか、または圧縮機11の吸入冷媒の状態が安定しているかどうかなどを判定してもよい。また、冷凍サイクル装置200が複数の室外機210を備え、各室外機210に一つまたは複数の室内機220が接続される場合、複数の室外機210間で、過去の運転状態量を共有し、運転条件が一致する場合に、他の室外機210の運転状態量との比較を行って異常を判定してもよい。 In the above-described embodiment, the abnormality determination process is performed based on the operation state quantity detected in the past stored in the storage unit 40. However, the present invention is not limited to this. For example, the refrigeration cycle apparatus 100 records a reference current waveform in a normal state in advance, and compares the current current waveform with the reference current waveform, so that there is an abnormality in the compressor 11 or the suction of the compressor 11 It may be determined whether or not the state of the refrigerant is stable. In addition, when the refrigeration cycle apparatus 200 includes a plurality of outdoor units 210 and one or a plurality of indoor units 220 are connected to each outdoor unit 210, the past operating state quantities are shared among the plurality of outdoor units 210. When the operating conditions match, the abnormality may be determined by comparing with the operating state quantity of the other outdoor unit 210.
 さらに、検出される運転状態量は、上記実施の形態の例に限定されるものではなく、冷媒回路における様々な状態量を検出して、異常の判定を行うことができる。例えば、圧縮機11に消費電力検出手段を設け、圧縮機11の消費電力が前回の起動時の消費電力に比べて所定の閾値以上大きくなった場合に、圧縮機11に何らかの異常が発生したと判定してもよい。 Furthermore, the detected operating state quantity is not limited to the example of the above embodiment, and it is possible to determine abnormality by detecting various state quantities in the refrigerant circuit. For example, if the compressor 11 is provided with power consumption detection means, and the power consumption of the compressor 11 is greater than a predetermined threshold value compared to the power consumption at the time of previous activation, an abnormality has occurred in the compressor 11. You may judge.
 11、111 圧縮機、12、凝縮器、13、113 絞り装置、14 蒸発器、15、117 レシーバ、16 電磁弁、17 二重管熱交換器、18 配管、19 絞り装置、21 吸入温度センサ、22 吐出温度センサ、23 電流検出部、24 外気温度センサ、30 制御部、40 記憶部、50 異常判定部、60 報知部、70a 通信部、70b 通信部、100、100A、200、200A、300 冷凍サイクル装置、112 室外側熱交換器、114 室内側熱交換器、115 流路切替装置、116a 第1の絞り装置、116b 第2の絞り装置、118 アキュムレータ、210、310 室外機、220、220a、220b、220c、320 室内機、400、400A 遠隔監視システム、500 遠隔監視装置。 11, 111 compressor, 12, condenser, 13, 113 throttle device, 14 evaporator, 15, 117 receiver, 16 solenoid valve, 17 double pipe heat exchanger, 18 pipe, 19 throttle device, 21 suction temperature sensor, 22 discharge temperature sensor, 23 current detection unit, 24 outside temperature sensor, 30 control unit, 40 storage unit, 50 abnormality determination unit, 60 notification unit, 70a communication unit, 70b communication unit, 100, 100A, 200, 200A, 300 freezing Cycle device, 112 outdoor heat exchanger, 114 indoor heat exchanger, 115 flow path switching device, 116a first expansion device, 116b second expansion device, 118 accumulator, 210, 310 outdoor unit, 220, 220a, 220b, 220c, 320 indoor unit, 400, 400A remote monitoring system, 50 Remote monitoring device.

Claims (16)

  1.  圧縮機と、凝縮器と、絞り装置と、蒸発器とを含む冷媒回路と、
     前記冷媒回路を制御する制御部と、
     前記冷媒回路における異常の有無を判定する異常判定部と、を備え、
     前記制御部は、前記圧縮機を駆動し、予め定められた時間が経過した場合、または前記圧縮機の吸入側における冷媒の圧力が予め定められた値に低下した場合に、前記圧縮機を停止させる特殊運転を行うものであり、
     前記異常判定部は、前記特殊運転後に前記冷媒回路の異常の有無を判定するものである冷凍サイクル装置。
    A refrigerant circuit including a compressor, a condenser, a throttling device, and an evaporator;
    A control unit for controlling the refrigerant circuit;
    An abnormality determination unit that determines presence or absence of abnormality in the refrigerant circuit,
    The control unit drives the compressor and stops the compressor when a predetermined time has elapsed or when the pressure of the refrigerant on the suction side of the compressor has decreased to a predetermined value. To perform special operation
    The abnormality determination unit is a refrigeration cycle apparatus that determines whether the refrigerant circuit is abnormal after the special operation.
  2.  前記圧縮機における冷媒の吸入温度、前記圧縮機における冷媒の吐出温度、前記圧縮機に印加される電流、または前記圧縮機の消費電力を含む情報を検出する検出部をさらに備え、
     前記異常判定部は、前記特殊運転後に前記検出部で検出された前記情報に基づいて、前記冷媒回路の異常の有無を判定するものである請求項1に記載の冷凍サイクル装置。
    A detector that detects information including a refrigerant suction temperature in the compressor, a refrigerant discharge temperature in the compressor, a current applied to the compressor, or power consumption of the compressor;
    The refrigeration cycle apparatus according to claim 1, wherein the abnormality determination unit determines whether or not the refrigerant circuit is abnormal based on the information detected by the detection unit after the special operation.
  3.  前記特殊運転は、前記冷媒回路内の冷媒を前記圧縮機の吐出側から前記絞り装置までの間に集めるものである請求項1または2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, wherein the special operation collects the refrigerant in the refrigerant circuit between the discharge side of the compressor and the expansion device.
  4.  前記異常判定部は、前記特殊運転後であって、前記圧縮機の再起動時に前記検出部で検出された前記情報に基づいて、前記冷媒回路の異常の有無を判定するものである請求項2または3に記載の冷凍サイクル装置。 The abnormality determination unit is configured to determine whether the refrigerant circuit has an abnormality based on the information detected by the detection unit after the special operation and when the compressor is restarted. Or the refrigeration cycle apparatus of 3.
  5.  外気温度を検出する外気温度センサと、
     前記情報と、前記情報を検出したときに前記外気温度センサによって検出された外気温度とを関連付けて記憶する記憶部と、をさらに備え、
     前記異常判定部は、前記記憶部に記憶される前記情報であって、前記外気温度センサによって検出された外気温度に対応する過去の前記情報と、前記特殊運転後であって、前記圧縮機の起動時に検出された前記情報とを比較して、前記冷媒回路の異常の有無を判定するものである請求項4に記載の冷凍サイクル装置。
    An outside temperature sensor for detecting the outside temperature;
    A storage unit that associates and stores the information and the outside temperature detected by the outside temperature sensor when the information is detected;
    The abnormality determination unit is the information stored in the storage unit, the past information corresponding to the outside air temperature detected by the outside air temperature sensor, and after the special operation, The refrigeration cycle apparatus according to claim 4, wherein the information detected at the time of startup is compared to determine whether the refrigerant circuit is abnormal.
  6.  前記異常判定部は、前記外気温度に対応する過去の前記情報と、前記特殊運転後であって、前記圧縮機の起動時に前記検出部において検出された前記情報との差を求め、前記差が予め定められた閾値以上の場合に、前記冷媒回路に異常があると判定するものである請求項5に記載の冷凍サイクル装置。 The abnormality determination unit obtains a difference between the past information corresponding to the outside air temperature and the information detected by the detection unit at the time of starting the compressor after the special operation. The refrigeration cycle apparatus according to claim 5, wherein the refrigerant circuit is determined to be abnormal when it is equal to or greater than a predetermined threshold value.
  7.  前記制御部は、前記圧縮機の起動時における冷媒の吸入状態がほぼ一定となるように、前記特殊運転を行うものである請求項1~6の何れか一項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the control unit performs the special operation so that a refrigerant suction state when the compressor is started is substantially constant.
  8.  前記冷媒回路は、前記凝縮器と前記絞り装置との間に配置される電磁弁をさらに含むものであり、
     前記制御部は、前記特殊運転において、前記圧縮機の吐出側から前記電磁弁までの間に冷媒を集めるよう前記冷媒回路を制御するものである請求項1~7の何れか一項に記載の冷凍サイクル装置。
    The refrigerant circuit further includes an electromagnetic valve disposed between the condenser and the expansion device,
    The control unit according to any one of claims 1 to 7, wherein the control unit controls the refrigerant circuit so as to collect a refrigerant between a discharge side of the compressor and the electromagnetic valve in the special operation. Refrigeration cycle equipment.
  9.  前記制御部は、前記特殊運転において、前記電磁弁を全閉し、前記圧縮機を前記予め定められた時間運転させるものである請求項8に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 8, wherein the controller is configured to fully close the solenoid valve and operate the compressor for the predetermined time in the special operation.
  10.  前記制御部は、前記特殊運転後に、前記冷媒回路における高低圧差が減少するよう前記冷媒回路を制御するものである請求項1~7の何れか一項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 7, wherein the control unit controls the refrigerant circuit so that a high-low pressure difference in the refrigerant circuit decreases after the special operation.
  11.  前記制御部は、前記特殊運転において、前記絞り装置を全閉し、前記圧縮機を前記予め定められた時間運転させ、その後、前記圧縮機を停止させ、前記絞り装置を予め定められた時間全開とするものである請求項10に記載の冷凍サイクル装置。 In the special operation, the control unit fully closes the expansion device, operates the compressor for the predetermined time, and then stops the compressor, and opens the expansion device for a predetermined time. The refrigeration cycle apparatus according to claim 10.
  12.  前記冷媒回路は、前記蒸発器と前記凝縮器との間に配置されるレシーバをさらに含むものであり、
     前記絞り装置は、前記レシーバの上流に配置される上流側絞り装置と、下流に配置される下流側絞り装置とを有するものであり、
     前記制御部は、前記特殊運転において、前記下流側絞り装置を全閉し、前記上流側絞り装置を制御するとともに前記圧縮機を前記予め定められた時間運転させ、その後、前記圧縮機を停止させ、前記上流側絞り装置および前記下流側絞り装置を予め定められた時間全開とするものである請求項10に記載の冷凍サイクル装置。
    The refrigerant circuit further includes a receiver disposed between the evaporator and the condenser,
    The throttle device has an upstream throttle device arranged upstream of the receiver and a downstream throttle device arranged downstream.
    In the special operation, the control unit fully closes the downstream side throttle device, controls the upstream side throttle device, operates the compressor for the predetermined time, and then stops the compressor. The refrigeration cycle apparatus according to claim 10, wherein the upstream throttle device and the downstream throttle device are fully opened for a predetermined time.
  13.  前記制御部は、前記圧縮機の起動時に、一定の運転パターンで前記圧縮機の回転数を制御するものである請求項4~12の何れか一項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 4 to 12, wherein the control unit controls the number of rotations of the compressor with a constant operation pattern when the compressor is started.
  14.  冷凍サイクル装置および前記冷凍サイクル装置と通信可能な遠隔監視装置とを備える遠隔監視システムであって、
     前記冷凍サイクル装置は、
     圧縮機と、凝縮器と、絞り装置と、蒸発器とを含む冷媒回路と、
     前記遠隔監視装置と通信する通信部と、を備え、
     前記遠隔監視装置は、
     前記冷凍サイクル装置と通信する通信部と、
     前記通信部を介して前記冷媒回路を制御する制御部と、
     前記冷媒回路における異常の有無を判定する異常判定部と、を備え、
     前記制御部は、前記圧縮機を駆動し、予め定められた時間が経過した場合、または前記圧縮機の吸入側における冷媒の圧力が予め定められた値に低下した場合に、前記圧縮機を停止させる特殊運転を行うものであり、
     前記異常判定部は、前記特殊運転後に、前記冷媒回路の異常の有無を判定するものである遠隔監視システム。
    A remote monitoring system comprising a refrigeration cycle apparatus and a remote monitoring apparatus capable of communicating with the refrigeration cycle apparatus,
    The refrigeration cycle apparatus includes:
    A refrigerant circuit including a compressor, a condenser, a throttling device, and an evaporator;
    A communication unit that communicates with the remote monitoring device,
    The remote monitoring device is
    A communication unit communicating with the refrigeration cycle apparatus;
    A control unit for controlling the refrigerant circuit via the communication unit;
    An abnormality determination unit that determines presence or absence of abnormality in the refrigerant circuit,
    The control unit drives the compressor and stops the compressor when a predetermined time has elapsed or when the pressure of the refrigerant on the suction side of the compressor has decreased to a predetermined value. To perform special operation
    The said abnormality determination part is a remote monitoring system which determines the presence or absence of abnormality of the said refrigerant circuit after the said special driving | operation.
  15.  冷凍サイクル装置と通信する通信部と、
     前記通信部を介して前記冷凍サイクル装置の冷媒回路を制御する制御部と、
     前記冷媒回路における異常の有無を判定する異常判定部と、を備え、
     前記制御部は、前記冷媒回路の圧縮機を駆動し、予め定められた時間が経過した場合、または前記圧縮機の吸入側における冷媒の圧力が予め定められた値に低下した場合に、前記圧縮機を停止させる特殊運転を行うものであり、
     前記異常判定部は、前記特殊運転後に前記冷媒回路の異常の有無を判定するものである遠隔監視装置。
    A communication unit communicating with the refrigeration cycle apparatus;
    A control unit that controls the refrigerant circuit of the refrigeration cycle apparatus via the communication unit;
    An abnormality determination unit that determines presence or absence of abnormality in the refrigerant circuit,
    The control unit drives the compressor of the refrigerant circuit, and the compression is performed when a predetermined time has elapsed or when the pressure of the refrigerant on the suction side of the compressor has decreased to a predetermined value. Special operation to stop the machine,
    The said abnormality determination part is a remote monitoring apparatus which determines the presence or absence of abnormality of the said refrigerant circuit after the said special driving | operation.
  16.  圧縮機と、凝縮器と、絞り装置と、蒸発器とを含む冷媒回路における異常判定方法であって、
     前記圧縮機を駆動し、予め定められた時間が経過した場合、または前記圧縮機の吸入側における冷媒の圧力が予め定められた値に低下した場合に、前記圧縮機を停止させる特殊運転を行う工程と、
     前記特殊運転後に前記冷媒回路の異常を判定する工程と、を含む、異常判定方法。
    An abnormality determination method in a refrigerant circuit including a compressor, a condenser, a throttling device, and an evaporator,
    When the compressor is driven and a predetermined time has elapsed, or when the refrigerant pressure on the suction side of the compressor has decreased to a predetermined value, a special operation is performed to stop the compressor. Process,
    Determining an abnormality in the refrigerant circuit after the special operation.
PCT/JP2015/069725 2015-07-09 2015-07-09 Refrigeration cycle device, remote monitoring system, remote monitoring device, and abnormality determination method WO2017006474A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/069725 WO2017006474A1 (en) 2015-07-09 2015-07-09 Refrigeration cycle device, remote monitoring system, remote monitoring device, and abnormality determination method
JP2017527046A JP6403887B2 (en) 2015-07-09 2015-07-09 Refrigeration cycle apparatus, remote monitoring system, remote monitoring apparatus, and abnormality determination method
GB1716771.9A GB2553972B (en) 2015-07-09 2015-07-09 Refrigeration cycle apparatus, remote monitoring system, remote monitoring apparatus, and fault determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069725 WO2017006474A1 (en) 2015-07-09 2015-07-09 Refrigeration cycle device, remote monitoring system, remote monitoring device, and abnormality determination method

Publications (1)

Publication Number Publication Date
WO2017006474A1 true WO2017006474A1 (en) 2017-01-12

Family

ID=57685257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069725 WO2017006474A1 (en) 2015-07-09 2015-07-09 Refrigeration cycle device, remote monitoring system, remote monitoring device, and abnormality determination method

Country Status (3)

Country Link
JP (1) JP6403887B2 (en)
GB (1) GB2553972B (en)
WO (1) WO2017006474A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073517A1 (en) * 2017-10-10 2019-04-18 三菱電機株式会社 Air conditioning device
WO2019166843A1 (en) * 2018-02-27 2019-09-06 Carrier Corporation Refrigerant leak detection system and method
CN110579674A (en) * 2019-10-14 2019-12-17 珠海格力电器股份有限公司 Fault detection circuit with simplified structure, fault judgment method and equipment
JP2019215121A (en) * 2018-06-12 2019-12-19 株式会社デンソー Inspection system and information processing apparatus
CN111156654A (en) * 2019-12-23 2020-05-15 珠海格力电器股份有限公司 Variable-capacity compressor air conditioner system operation control method, computer readable storage medium and air conditioner
CN114383346A (en) * 2021-12-27 2022-04-22 北京世纪互联宽带数据中心有限公司 Refrigeration unit fault processing method and device and computer readable storage medium
WO2022231246A1 (en) * 2021-04-27 2022-11-03 한온시스템 주식회사 Air conditioning apparatus for vehicle
WO2024154345A1 (en) * 2023-01-20 2024-07-25 三菱電機株式会社 Air conditioning system, processing device, and air conditioner operation state determination method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11772452B2 (en) 2017-11-16 2023-10-03 Dometic Sweden Ab Air conditioning apparatus for recreational vehicles
USD905217S1 (en) 2018-09-05 2020-12-15 Dometic Sweden Ab Air conditioning apparatus
IT201900019193A1 (en) 2019-10-17 2021-04-17 Dometic Sweden Ab AIR CONDITIONING APPARATUS FOR RECREATIONAL VEHICLES
CN114838454B (en) * 2022-05-31 2024-03-19 广东申菱商用空调设备有限公司 Test method, device and equipment of air conditioning equipment and storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257831A (en) * 1993-03-03 1994-09-16 Matsushita Electric Ind Co Ltd Year-round cooling control device for air conditioner
JP2001133099A (en) * 1999-11-09 2001-05-18 Fuji Electric Co Ltd Open showcase
JP2005241089A (en) * 2004-02-25 2005-09-08 Mitsubishi Electric Corp Apparatus diagnosing device, refrigeration cycle device, apparatus diagnosing method, apparatus monitoring system and refrigeration cycle monitoring system
JP2007255800A (en) * 2006-03-23 2007-10-04 Daikin Ind Ltd Control device for air conditioner
JP2008180462A (en) * 2007-01-25 2008-08-07 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP2009036491A (en) * 2007-08-03 2009-02-19 Mitsubishi Electric Corp Refrigerator
JP2010156524A (en) * 2009-01-05 2010-07-15 Mitsubishi Electric Corp Refrigerating cycle device
JP2012110184A (en) * 2010-11-19 2012-06-07 Panasonic Corp Air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320936A (en) * 1999-05-11 2000-11-24 Bosch Automotive Systems Corp Safety unit for refrigeration cycle
JP2013204871A (en) * 2012-03-28 2013-10-07 Hitachi Appliances Inc Air conditioner
JP6146392B2 (en) * 2014-10-24 2017-06-14 マツダ株式会社 Air bypass valve failure diagnosis device for turbocharged engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257831A (en) * 1993-03-03 1994-09-16 Matsushita Electric Ind Co Ltd Year-round cooling control device for air conditioner
JP2001133099A (en) * 1999-11-09 2001-05-18 Fuji Electric Co Ltd Open showcase
JP2005241089A (en) * 2004-02-25 2005-09-08 Mitsubishi Electric Corp Apparatus diagnosing device, refrigeration cycle device, apparatus diagnosing method, apparatus monitoring system and refrigeration cycle monitoring system
JP2007255800A (en) * 2006-03-23 2007-10-04 Daikin Ind Ltd Control device for air conditioner
JP2008180462A (en) * 2007-01-25 2008-08-07 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP2009036491A (en) * 2007-08-03 2009-02-19 Mitsubishi Electric Corp Refrigerator
JP2010156524A (en) * 2009-01-05 2010-07-15 Mitsubishi Electric Corp Refrigerating cycle device
JP2012110184A (en) * 2010-11-19 2012-06-07 Panasonic Corp Air conditioner

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073517A1 (en) * 2017-10-10 2019-04-18 三菱電機株式会社 Air conditioning device
JPWO2019073517A1 (en) * 2017-10-10 2020-04-02 三菱電機株式会社 Air conditioner
US11435117B2 (en) 2017-10-10 2022-09-06 Mitsubishi Electric Corporation Air-conditioning apparatus
CN111819406A (en) * 2018-02-27 2020-10-23 开利公司 Refrigerant leak detection system and method
WO2019166843A1 (en) * 2018-02-27 2019-09-06 Carrier Corporation Refrigerant leak detection system and method
US11747065B2 (en) 2018-02-27 2023-09-05 Carrier Corporation Refrigerant leak detection system and method
US11441827B2 (en) 2018-02-27 2022-09-13 Carrier Corporation Refrigerant leak detection system and method
WO2019239836A1 (en) * 2018-06-12 2019-12-19 株式会社デンソー Inspection system, and information processing machine
CN112292574A (en) * 2018-06-12 2021-01-29 株式会社电装 Inspection system, information processing apparatus, and computer readable medium
CN112292574B (en) * 2018-06-12 2022-06-03 株式会社电装 Inspection system, information processing apparatus
JP2019215121A (en) * 2018-06-12 2019-12-19 株式会社デンソー Inspection system and information processing apparatus
CN110579674A (en) * 2019-10-14 2019-12-17 珠海格力电器股份有限公司 Fault detection circuit with simplified structure, fault judgment method and equipment
CN111156654A (en) * 2019-12-23 2020-05-15 珠海格力电器股份有限公司 Variable-capacity compressor air conditioner system operation control method, computer readable storage medium and air conditioner
WO2022231246A1 (en) * 2021-04-27 2022-11-03 한온시스템 주식회사 Air conditioning apparatus for vehicle
CN114383346A (en) * 2021-12-27 2022-04-22 北京世纪互联宽带数据中心有限公司 Refrigeration unit fault processing method and device and computer readable storage medium
CN114383346B (en) * 2021-12-27 2023-10-27 北京世纪互联宽带数据中心有限公司 Method and device for processing fault of refrigerating unit and computer readable storage medium
WO2024154345A1 (en) * 2023-01-20 2024-07-25 三菱電機株式会社 Air conditioning system, processing device, and air conditioner operation state determination method

Also Published As

Publication number Publication date
GB2553972A (en) 2018-03-21
GB2553972B (en) 2021-07-21
GB201716771D0 (en) 2017-11-29
JP6403887B2 (en) 2018-10-10
JPWO2017006474A1 (en) 2018-01-18

Similar Documents

Publication Publication Date Title
JP6403887B2 (en) Refrigeration cycle apparatus, remote monitoring system, remote monitoring apparatus, and abnormality determination method
EP3683524B1 (en) Refrigeration apparatus
JP5063347B2 (en) Refrigeration air conditioner
EP3279580B1 (en) Air-conditioning device
JP4931848B2 (en) Heat pump type outdoor unit for hot water supply
JP5563609B2 (en) Refrigerant system and control method thereof
US10088206B2 (en) Air-conditioning apparatus
WO2015125397A1 (en) Multi split air conditioner
WO2009157200A1 (en) Method for judging amount of refrigerant of air conditioner and air conditioner
US20160146521A1 (en) Refrigeration cycle apparatus
JP5263522B2 (en) Refrigeration equipment
JP2006292213A (en) Air conditioner
JPWO2019053858A1 (en) Refrigeration cycle device and refrigeration device
JP5449266B2 (en) Refrigeration cycle equipment
JP2006292211A (en) Air conditioner
JP6257809B2 (en) Refrigeration cycle equipment
JP2011163729A (en) Cooling device
JP2010164219A (en) Air conditioner
JP5460692B2 (en) Air conditioner
JP2012255648A (en) Air conditioning device, and method for determining amount of refrigerant in the same
JP2006292214A (en) Addition method of refrigerant amount determining function of air conditioner, and air conditioner
KR102500807B1 (en) Air conditioner and a method for controlling the same
JP5245576B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP5245575B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
WO2020111241A1 (en) Refrigeration cycle device and refrigeration cycle system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527046

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201716771

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150709

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897735

Country of ref document: EP

Kind code of ref document: A1